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Short note Vandermonde’s identity proved
by complex analysis

Bikash Chakraborty and Soumon Roy

Abstract. In this short note, we propose a proof of the Vandermonde identity based
on elementary complex analysis.

Among the elegant results implied by the binomial theorem, one of the most attractive and
widely known identities is Vandermonde’s identity. Motivated by an old result of Min-
sker [2], in this note, we prove a q-analog of the Vandermonde identity using Cauchy’s
integral formula [1]. The q-analog of the Vandermonde identity isX
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for any nonnegative integers n1; n2; : : : ; nq , m and 0 � ki � ni (1 � i � q), and m �
n1 C n2 C � � � C nq .

There are many elementary proofs of identity (1), but here, we prescribe an analytical
proof of it.

Lemma 1. Let N and n be two nonnegative integers with n � N . Then
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Proof. The proof follows from Cauchy’s integral formula by considering the n-th derivat-
ive of

.1C z/N

nŠ
:

Proof of a q-analog of the Vandermonde identity. By Lemma 1, we have
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But using the binomial expansions of .1C z/nj and Cauchy’s integral formula, we have
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This completes the proof.

Remark 1. Thus the following identity is obvious:�
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for any nonnegative integers m, n and r , with 0 � r � m and 0 � r � n. This identity is
named after Alexandre-Théophile Vandermonde, although it was already known in 1303
by the Chinese mathematician Zhu Shijie.

Remark 2. For two nonnegative integers n and k with n � k, using Lemma 1, we have�
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Remark 3. If we choosemD nD r in Remark 1, we have the well-known identity (see [2])�
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