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1. Introduction

Les mathématiciens du xvi-ème siècle avaient coutume de parler de la “méta-
physique du calcul infinitésimal”, de la “métaphysique de la théorie des équa-
tions”. Ils entendaient par là un ensemble d’analogies vagues, difficilement
saisissables et difficilement formulables, qui néanmoins leur semblaient jouer
un rôle important à un moment donné dans la recherche et la découverte mathé-
matiques. (A. Weil, De la métaphysique aux mathématiques, 1960, [31])

Yuri Manin, to whose memory we dedicate this article, first recognized in [22] the
importance of developing a theory of “absolute coefficients” in arithmetic geometry,
independently of the early ideas proposed by R. Steinberg [28] and J. Tits [29] in the
context of Chevalley groups. In arithmetic, for number fields, the goal is to provide
the geometric counterpart to the construction that A. Weil used in his proof of the
Riemann hypothesis for function fields. The search for a close analogy between number
fields and function fields of curves in positive characteristic induced Manin to postulate
the existence of the absolute point “Spec F1”, over which one could apply Weil’s
strategy to the study of the Riemann zeta function. For the algebraic scheme Spec Z,
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one would then use the spectrum of the tensor product “Z˝F1 Z” as a substitute for
the self-product of a curve over (the spectrum of) a finite field.

Manin always advocated the fruitfulness of unexpected interactions between differ-
ent approaches to a mathematical problem. In Sections 2 and 3 we shall discuss two of
such unexpected occurrences, in fact two pillars of our joint work in the past fifteen
years. Section 2 is about the hypothetical curve1 C that we propose as the absolute
geometric entity. Section 3 concerns instead the absolute coefficients. The aim of this
paper is to sponsor S the most basic combinatorial form of the sphere spectrum and of
an S-algebra, as the most natural candidate for the absolute coefficients (aka F1). We
claim that this algebra is the absolute “field” of constants over which Z becomes a ring
of polynomials in one variable. This point of view is supported by the Riemann–Roch
theorem for the ring Z recently proved in [15], whose formula shows that the genus of
Spec Z is zero. In an earlier result on the same topic [14], the integers were considered
as polynomials over SŒ˙1� with generator X D 3. This fact is based on the balanced
ternary numeral system2 which provides a balanced signed-digit representation of the
integers as finite sums of powers of the “variable” X D 3 with coefficients in the set
¹�1; 0; 1º underlying the pointed multiplicative monoid �2;C of quadratic roots of
unity. The new version of the Riemann–Roch theorem for the ring Z in [15] simplifies
the earlier version [14] and it also reconciles the formula (and our understanding of this
subject) with the classical number theoretic viewpoint. Indeed, in the analogy between
number fields and curves over finite fields, the field Q has genus zero [32] and it is
singled out as the only field contained in any other number field. The view of Z as a
ring of polynomials over the absolute base S selects the generator X D �2. The key
fact is that any integer can be uniquely written as a sum of powers of �2 [21].

The above special cases of generators X for rings over finite spherical S-algebras
justify a systematic and broader study of rings of SŒ�n;C�-polynomials. In Section 5
we introduce the general notion of rings of SŒ�n;C�-polynomials in one and several
variables. Let n > 0 be an integer, �n the multiplicative group of n-th roots of 1,
and SŒ�n;C� the spherical S-algebra of the (pointed) monoid �n;C D �n [ ¹0º. We
recall that the morphisms of S-algebras SŒ�n;C�! HR (R being a ring) correspond
bĳectively to group homomorphisms � W �n ! R� [10]. Let P .�n/ be the subset
of the set .�n [ ¹0º/N of sequences with only finitely many non-zero terms. By
definition, an element X 2 R is an SŒ�n;C�-generator if and only if the evaluation map
� W P .�n/! R, �.. j̨ // D

P
j �. j̨ /X

j is bĳective. Proposition 5.8 shows that the
pair .R; X/ of a ring of SŒ�n;C�-polynomials in one variable is uniquely specified,

(1) We reserve throughout the symbol C for this entity.
(2) An early occurrence of this numeral system is found in the 1544 book “Arithmetica

integra” of Michael Stifel. See also [30]
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up to isomorphism, by the map h W �n ! P .�n/, which, in turn, is uniquely defined
by the equality �.h.�// D �.�/C 1. In Section 6 we give several examples of rings
of SŒ�n;C�-polynomials based on some known number systems. We refer to [2] for a
survey on systems of numerations and for references therein contained, but we claim no
exhaustiveness. Conceptually, the examples of rings of SŒ�n;C�-polynomials discussed
in this article provide an explicit bridge between the p-adic and the complex world.
At the geometric level, the rings of polynomials are naturally related to the projective
line P1, and the evaluation at the points 0 and1 of P1 yields, after completion, the
following refinement (the lower line) of a classical diagram (upper line). In the upper
line, K is the field of fractions of the p-typical Witt ring of the algebraic closure of Fq
(q D p`) and xK is its algebraic closure

xFq
�

� W.xFq/ ,! xK � xQ � C

� � � � D

Fq
�

� W.Fq/ ,! W.Fq/Œ��  - RŒX�1� ,! C

In the lower line, X is an SŒ�n;C�-generator of the ring R where nC 1 D q. RŒX�1�
is the ring of Laurent polynomials; the map to C is the inclusion of RŒX�1� in C by
specialization of X , obtained by solving the equations �.h.�// D �.�/C 1; � 2 �n,
and using the canonical embedding �n;C � C. The map from RŒX�1� to the finite
extension W.Fq/Œ�� is obtained from the canonical inclusion of R in the projective
limit lim

 �
Rn (see Proposition 5.8).

The general theory of rings of SŒ�n;C�-polynomials, together with the role of the
absolute base S in the formulation of the Riemann–Roch theorem [15], suggest the
following refinement of the definition of the Arithmetic Site. Originally, this space
was defined by the pair of the arithmetic topos bN� and the structure sheaf given by
the Frobenius action of N� on the tropical semiring Zmax [11]. The role of the field of
constants is here played by the Boolean semifield B. The development of this paper
evidently hints to a replacement of the structure sheaf Zmax by the sheaf of S-algebras
obtained from the Frobenius action X 7! Xn of N� on the spherical algebra SŒX�.
This new version of S-arithmetic site provides simultaneously a natural base both at
the coefficients and at the geometric levels. The topos bN� is the geometric incarnation
of the �-operations in the theory of �-rings [3] in the context of geometry over F1.
We expect that through a suitable understanding of the “algebraic closure” xF1 of the
absolute coefficients one may relate the space of points of the S-arithmetic site over
xF1 with the (points of the) curve C whose structure is recalled in Section 2.

Finally, these results also point out to the open and interesting question of the
classification of rings of SŒ�n;C�-polynomials in several variables which pursues the
intuitive statement of Yuri Manin [22]:
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The central question we address can be provocatively put as follows: if numbers
are similar to polynomials in one variable over a finite field, what is the analog
of polynomials in several variables? Or, in more geometric terms, does there
exist a category in which one can define “absolute Descartes powers” Spec Z�

� � � � Spec Z?

2. Adelic and topos theoretic incarnation of C

A first connection between Manin’s point of view on F1 and a seemingly unrelated topic
takes place as a by-product of the relations between C. Soulé’s perspective on varieties
over F1 (named “Critical Realism” in [23])—motivated by Manin [22] (cf. Section 1.5)—
and the work of the first author [6] on the trace formula in noncommutative geometry
and the zeros of the Riemann zeta function. In [27], Soulé introduced the following
zeta function of a variety X over F1:

(2.1) �X .s/ WD lim
q!1

Z.X; q�s/.q � 1/N.1/; s 2 R;

using the polynomial counting functionN.x/ 2 ZŒx� associated withX and the Hasse–
Weil exponential series

(2.2) Z.X; T / WD exp
�X
r�1

N.qr/
T r

r

�
:

All the examples of varieties considered in op. cit. are rational. Thus, the existence of
an underlying curve C related, in a similar manner, to the Riemann zeta function is sub-
ordinated to finding a function N.q/ (highly non-polynomial!) that produces, through
the use of (2.1), the complete Riemann zeta function �Q.s/ D �

�s=2�.s=2/�.s/. This
is a non-trivial problem since, classically, N.1/ in the above formula inputs the Euler
characteristic of the geometric space. Thus one might be induced to expect3 that since
for the Riemann zeta-function one ought to have N.1/ D �1, the use of (2.1) should
be precluded, and with it also the expectation that N.q/ � 0 for q 2 .1;1/. There is,
in fact, a natural way to by-pass this problem by applying the logarithmic derivatives to
both sides of (2.1) and then observing that the right-hand side determines the Riemann
sums of an integral [7, 8]. In this way, in place of (2.1) one considers the equation:

@s�N .s/

�N .s/
D �

Z 1
1

N.u/ u�sd�u;

(3) The number of zeros of �Q is infinite, and so is the dimension of the (mysterious)
cohomology H1.C/.
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Figure 1. Graph of a primitive J.u/ of the counting distribution N.u/. One has J.u/! �1
when u! 1. The wiggly graph is the approximation of J.u/ obtained using the symmetric set
Zm of the first 2m zeros to perform the sum Jm.u/ D

u2

2
�
P
Zm

order.�/u
�C1

�C1
C u.

where d�u WD du=u. This integral formula produces the following one for the sought
for counting function N.q/ associated with C:

(2.3)
@s�Q.s/

�Q.s/
D �

Z 1
1

N.u/ u�sd�u:

The above equation admits a meaningful solution expressible in terms of the distribution
(cf. Figure 1)

(2.4) N.u/ D
d

du
'.u/C �.u/; '.u/ WD

X
n<u

nƒ.n/;

where �.u/ is the distribution that appears in the Riemann–Weil explicit formulaZ 1
1

�.u/f .u/d�u D

Z 1
1

u2f .u/ � f .1/

u2 � 1
d�uC cf .1/; c D

1

2
.log� C /:

One shows that the distribution N.u/ is positive on .1;1/, and when written in terms
of the non-trivial zeros � 2 Z of the Riemann zeta function, it is given, in complete
analogy with its counterpart holding in the function field case, by

(2.5) N.u/ D u �
d

du

�X
�2Z

order.�/
u�C1

�C 1

�
C 1;

where the derivative is taken in the sense of distributions. The value at u D 1 of the
term

!.u/ D
X
�2Z

order.�/
u�C1

�C 1

is given by 1
2
C


2
C

log4�
2
�
� 0.�1/
�.�1/

.
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The tension between the positivity of the distribution N.q/ for q > 1 and the
expectation that its value N.1/ ought to be N.1/ D �1 is resolved by implementing
the theory of distributions. Indeed, even though N.u/ is finite as a distribution, when
one looks at it as a function, its value at q D 1 is formally given by

N.1/ D 2 � lim
"!0

!.1C "/ � !.1/

"
� �

1

2
E logE; E D

1

"
I

thus, it is �1, and this fact reflects, when "! 0, the density of the zeros of the zeta
function.

We emphasize that the role of the Riemann–Weil explicit analytic formulas in the
process of overcoming the initial difficulty through a solution defined by a positive
distribution N.q/ directly connects the original (classical geometric) viewpoint with
the trace formula in [6], thus providing a first geometric description for the points of C
in terms of the double quotient

(2.6) XQ WD Q�nAQ=yZ
�

of the adele class space of the rationals Q�nAQ, by the maximal compact subgroup
yZ� of the idele class group. The main key player in this construction is the scaling
action of R�C which provides4 the above counting distribution N.u/, u 2 Œ1;1/, that
determines, in turn, the complete Riemann zeta function via a limiting procedure as
q! 1, operated on the Hasse–Weil formula. Noncommutative geometry plays a crucial
role in this development mainly by implementing the noncommutative space Q�nAQ

which naturally arises as the dual of the BC-system [4].
To achieve a more classical geometric understanding of the double quotient XQ

with its scaling action, in analogy with the action of the Frobenius automorphism on
the points of a curve over the algebraic closure of a ground field, one needs to push
further the search of other unexpected interactions : : : : This geometric understanding
comes in fact from the interplay among three a priori unrelated theories:

(1) Noncommutative geometry.

(2) Grothendieck topoi.

(3) Tropical geometry.

The natural starting point is the topos bN�, defined in [11] as the Grothendieck presheaf
topos dual to the multiplicative monoid N� of non-zero positive integers. This space
is in fact the geometric incarnation of N�-actions on sets. These actions often occur in

(4) To remove the divergent logarithmic term from the trace formula [6] one needs to remove
from XQ the orbit of the unit adele 1, i.e. equivalently to subtract the regular representation of
R�
C

as in [24].
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the global instances of Frobenius endomorphisms: for �-rings they were advocated
in [3] in the context of varieties over F1 (“Futurism” in Manin’s interpretation, [23]).
Special �-rings R [1, Proposition 5.2] belong naturally to the topos bN� since the
Adams operations  n turn R into a sheaf of rings on the topos bN�.

At a very basic algebraic level, a fundamental example of Frobenius action of N�

occurs in the theory of semirings (i.e. when one drops the existence of the additive
inverse in rings). For a semifield5 R of “characteristic one” (aka idempotent: i.e. such
that 1C 1 D 1), the map x 7! xn D Frn.x/ is an injective endomorphism [18], for
any integer n 2 N�. Thus, one obtains a canonical action of the semigroup N� on any
such R. For this reason it is natural to work with sets endowed with an action of N�,
i.e. with the topos bN�. Furthermore, one also knows that there is a unique semifield6

Zmax whose multiplicative group is infinite cyclic and it is of characteristic one. Given
these facts, it is natural to introduce the following space.

Definition 2.7 ([11]). The Arithmetic Site A D .bN�;O/ is the topos bN� endowed
with the structure sheaf O WD Zmax, viewed as a semiring in the topos and with the
action of N� by Frobenius endomorphisms.

The semifield Zmax and its companion Rmax
C (whose multiplicative group is R�C)

are familiar objects in tropical geometry where the maximum substitutes the usual
addition.

By implementing a straightforward generalization in semi-ringed toposes of the
understanding of a point in algebraic geometry, one obtains the following result which
determines a bridge connecting noncommutative geometry with (Grothendieck) topos
theory.

Theorem 2.8 ([11]). The set of points of the arithmetic site A over Rmax
C is canonically

isomorphic to XQ D Q�nAQ=yZ�. The action of the Frobenius automorphisms Fr�
of Rmax

C on these points corresponds to the action of the idele class group on XQ D

Q�nAQ=yZ�.

This theorem sheds new light on a geometric intuition of the curve C; in particular,
it displays the noncommutative space XQ as the set of points of A over the semifield
Rmax
C , with the scaling action understood as the action of the Galois group AutB.Rmax

C /

of Rmax
C over the Boolean semifield7 B. It also suggests that Rmax

C ought to be involved

(5) A semifield is a semiring whose non-zero elements form a group under multiplication.
(6) As a multiplicative monoid Zmax is obtained by adjoining the zero element �1 to the

infinite cyclic group Z while the operation which plays the role of addition in the semifield is
.x; y/ 7! max.x; y/.

(7) B WD ¹0; 1º with 1C 1 D 1.
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in the construction of the “algebraic closure” of F1, and that the combinatorial core
underlying C is countable since both N� and Zmax are so. We find it quite remarkable
that while the Arithmetic Site is a combinatorial object of countable nature, it comes
nonetheless endowed with a one-parameter semigroup of “correspondences” which
can be viewed as congruences on the square of this site [11].

The countable set of places of Q (the points of the Arakelov compactification
Spec Z) is the (classically) visible analog of the set of the orbits of the Frobenius
automorphism in the function field case. One obtains a better view of the points of
C by considering the periodic orbits Cp (parameterized by primes p) as they occur
among the points of the Arithmetic Site A over Rmax

C . One shows that the points of Cp
form a circle whose elements are rank-one subgroups of the multiplicative group of
Rmax
C of the form

(2.9) H� WD ¹�
n

pk j n 2 Z; k 2 Nº:

This subgroup is unchanged if one replaces � with �p, and the Frobenius action
of AutB.Rmax

C / D R�C, � 7! ��, induces the transitive action of the quotient group
R�C=p

Z. The length of this periodic orbit is log p, and their full collection plays a
key role in the trace formula interpretation of the Riemann–Weil explicit formulas
in [6]. Moreover, each Cp inherits, as a subspace of the Scaling Site (obtained from
the Arithmetic Site by extension of scalars), a structure sheaf (of characteristic one)
which turns each periodic orbit into the analog of a classical elliptic curve [12]. In
this way, one can still apply several key tools of algebraic geometry, such as rational
functions, divisors, etc. A striking new feature of the geometry of a periodic orbit
is that the degree of a divisor is a real number. For any divisor D in Cp, there is a
corresponding Riemann–Roch problem with solution space H 0.D/. The continuous
dimension8 DimR.H

0.D// of this Rmax
C -module is defined by the limit

(2.10) DimR

�
H 0.D/

�
WD lim

n!1
p�n dimtop

�
H 0.D/p

n�
;

whereH 0.D/p
n is a naturally defined filtration and dimtop.E/ denotes the topological

dimension of an Rmax
C -module E . The following Riemann–Roch formula holds.

Theorem 2.11 ([12]).

(i) LetD 2Div.Cp/ be a divisor with deg.D/� 0. Then the limit in (2.10) converges
and one has

DimR

�
H 0.D/

�
D deg.D/:

(8) In analogy with von-Neumann’s continuous dimensions of the theory of type II factors.
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(ii) The following Riemann–Roch formula holds:

DimR

�
H 0.D/

�
� DimR

�
H 0.�D/

�
D deg.D/ 8D 2 Div.Cp/:

In view of these results and the leading role played by the Boolean semifield B

among algebraic idempotent structures9, one might be (wrongly) induced to think of B

as the natural incarnation of F1. However, this cannot be the case for the straightforward
reason10:

The ring Z is not an algebra over B.

3. The absolute coefficients, spectra and S

The above undeniable fact led us, once again, to compare Manin’s ideas on F1 with
another a priori unrelated topic: this is the world of homotopy theory spectra. Topo-
logical spectra greatly generalize cohomology theories; many important invariants in
algebraic topology, like ordinary cohomology and K-theory, can be reformulated in
terms of spectra, which thus provide a unified treatment for “generalized coefficients”.
One fundamental discovery in the topological context is that “ring spectra” generalize
rings, and in particular, the “sphere spectrum” S becomes more basic than the ring Z,
because the latter can be seen as an algebra over the former. This theory of “brave new
rings” has proved to be the right framework for cyclic homology; in particular, the
theory of �-spaces is known to provide a workable model of connective spectra [16].
One usually works at the homotopy level, so it is crucial to handle Kan complexes to
obtain a good model structure. However, to take full advantage of this theory for the
development of Manin’s ideas on F1 in number theory, we believe that �-spaces ought
to be viewed in their most basic form, namely as simplicial objects in the category of
�-sets, so that homotopy theory can play the role of homological algebra corresponding
to the “absolute algebra” over the base �-ring S [10]. This �-ring is the categorical
starting point in the construction of the sphere spectrum S, together with the natural
functor from �-spaces to spectra, and it is exactly this basic combinatorial nature that
makes it closer to the sought for F1. The category �Sets� of pointed �-sets (aka
S-modules Mod.S/) can be directly described as follows. One starts with the small
category �op as a full subcategory of the category of finite pointed sets whose objects
are the pointed finite sets11 kC WD ¹0; : : : ; kº, for k � 0. In particular, 0C is both initial
and final in �op, making �op a pointed category. A �-set is defined as a (covariant)

(9) B is, in particular, the only finite semifield that is not a field, cf. [18].
(10) Algebras over B are of characteristic one.
(11) where 0 is the base point.
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functor �op ! Sets� between pointed categories, and the morphisms in this category
are natural transformations. One lets S W �op ! Sets� be the inclusion functor. The
internal hom functor is defined by

HomS.M;N / WD
®
kC 7! HomS

�
M;N.kC ^ �/

�¯
:

This formula uniquely defines the smash product of �-sets by applying the adjunction

HomS.M1 ^M2; N / D HomS

�
M1;HomS.M2; N /

�
:

The basic construction of S-modules associates to an abelian monoid A with a zero
element, the Eilenberg–MacLane functor M D HA

HA.kC/ D A
k; Hf W HA.kC/! HA.nC/; Hf .m/.j / WD

X
f .`/Dj

m`;

where m D .m1; : : : ; mk/ 2 HA.kC/, and the zero element of A gives meaning to
the empty sum. An S-algebra A is an S-module A W �op ! Sets� endowed with an
associative multiplication � W A ^A! A and a unit 1 W S! A.

An ordinary semiring R gives rise to the S-algebra HR, and the corresponding
embedding of categories is fully faithful so that no information is lost. In contrast, the
basic S-algebra S now lies under HR for any semiring R.

Given a multiplicative monoid M with a zero element 0 2M such that 0 � x D
x � 0 D 0 for all x 2M , one defines the spherical S-algebra SŒM � which associates
to the pointed set X the smash product X ^M , where the base point of M is 0 2M .
One identifies SŒM �Œ1C� D 1C ^M with M by sending the base point of 1C ^M to
0 2M , and a ^m where a 2 1C n ¹�º andm 2M n ¹0º tom. To avoid confusion we
write 2C D ¹�; a; bº. Besides the base point the elements of SŒM �Œ2C� D 2C ^M are
given by pairs of the form .a;m/ or .b;m/ where m 2M n ¹0º. One has three natural
pointed maps f W 2C ! 1C, which are

�.a/ D a; �.b/ D �;  .a/ D �;  .b/ D a; �.a/ D �.b/ D a:

Letm 2M n ¹0º and consider the pair z D .b;m/ 2 SŒM �Œ2C�. One has ��.z/D�D 0
and �.z/Dm. Moreover one has ��.z/Dm. This means that for the partially defined
addition in SŒM �Œ1C� DM , one has 0Cm D m for all m 2M .

Thus both ordinary rings and monoids fit fully faithfully and naturally [10, Propo-
sition 3.5] in the category of S-algebras yielding a strong argument for viewing S as
the natural candidate for F1. Nonetheless one needs to test this idea in various ways.
For instance, one sees op. cit. that the tensor square of HZ over S is non-isomorphic
to HZ, and this result provides more ground to the original intuition of Manin in
[22]. One may also wonder which advancements this point of view may produce to the
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understanding of the ring Z and its algebraic spectrum Spec Z. We shall now move to
a detailed discussion of this topic.

Let Spec Z be the Arakelov compactification of Spec Z obtained by adding the
archimedean place with associated symbol1. Then, the new point of view described
above provides a natural extension of the classical structure sheaf of Spec Z to the
Arakelov compactification. The crucial points concerning the quest for the curve C
are two: firstly, this extended structure sheaf O is still a subsheaf of the constant sheaf
Q; the second interesting point is that the global sections of O form a finite algebra
extension of S. This extension is identifiable with the extension by the two roots of
unity inside Q that we used in [9] in the process of showing that Chevalley groups are
varieties over F12 in the sense of Soulé12. The condition that restricts the elements of
HQ at the archimedean place is simple to formulate when one views the functor HQ

as assigning to a finite pointed set F the Q-valued divisors on F . The restriction is then
stated by writing that the sum of the absolute values of the involved rational numbers
is � 1. One checks that this condition is stable under push-forwards and products and
hence it defines a sub-S-algebra of HQ. This sub-S-algebra, defined using a norm,
also applies in the context of the adeles of a global field and allows one to transpose
the approach due to A. Weil of the Riemann–Roch theorem for function fields to the
number field Q [14].

A divisor D on Spec Z defines a compact subset K D
Q
Kv � AQ of the locally

compact ring of adeles. When p is a non-archimedean prime, each Kp � Qp is an
additive subgroup; in contrast, the compact subsetK1 � R is just a symmetric interval
whose lack of additive structure prevents one to use Weil’s original construction
involving the addition map  W Q �K ! AQ. On the other hand, one also quickly
notices that  retains its meaning in the context of S-modules, giving rise to a short
complex. Using the Dold-Kan correspondence in the context of S-algebras, one then
introduces a �-spaceH.D/ which encodes the homological information of the divisor
D and only depends upon the linear equivalence class of D (i.e. the divisor class
is unchanged under the multiplicative action of Q� on AQ). As a by-product, one
obtains a Riemann–Roch formula for Arakelov divisors on Spec Z of an entirely novel
nature that relies on the introduction of three new key notions: (integer) dimension,
cohomologies .H 0.D/;H 1.D// (attached to a divisor D), and Serre duality. More
precisely, the Riemann–Roch formula equates the integer-valued Euler characteristic
with a simple modification of the traditional expression (i.e. the degree of the divisor
plus log 2).

(12) Another convincing argument in favor of S-algebras is that the ad-hoc category we
introduced in [8] to simplify Soulé’s definition of varieties over F1 is naturally (see [13]) a full
subcategory of the category of S-algebras.
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Theorem 3.1 ([14]). Let D be an Arakelov divisor on Spec Z. Then

(3.2) dimSŒ˙1�H
0.D/ � dimSŒ˙1�H

1.D/ D ddeg3D C log3 2e � 1L:

Here, dxe denotes the odd function on R that agrees with the ceiling function on positive
reals, and 1L is the characteristic function of an exceptional set13 of finite Lebesgue
measure.

In (3.2), the Neperian logarithm that is traditionally used to define the degree of a
divisor

D D
X
j

aj ¹pj º C a¹1º

in Arakelov geometry is replaced by the logarithm in base 3. This alteration is equivalent
to the division by log 3; i.e. deg3.D/ WD deg.D/= log 3, log3 2 D log 2= log 3.

The number 3 appears unexpectedly in the computation of the dimension of the
cohomology of the SŒ˙1�-modules by determining their minimal number of linear
generators. For dimSŒ˙1�H

0.D/ one finds that the most economical way of writing
the elements of a symmetric interval Z\K1 involves writing integers as polynomials
of the form

(3.3)
X
j�0

j̨ 3
j ; j̨ 2 ¹�1; 0; 1º:

Similarly, in the case of dimSŒ˙1�H
1.D/, one finds that the best way to approximate

elements of the circle R=Z is to use Laurent polynomials of the form

(3.4)
X
j<0

j̨ 3
j ; j̨ 2 ¹�1; 0; 1º:

The key fact here is that the addition14 of polynomials P.X/ D
P
j�0 j̨ X

j , j̨ 2

¹�1; 0; 1º, with coefficients in SŒ˙1� is identical to the addition of (truncated) Witt
vectors for the finite field F3. One finds that the addition P CQ of two polynomials
of degree � n gives a polynomial of degree � nC 1, and that the only non-obvious
rule one has to prescribe is the sum: 1C 1 WD X � 1. Conceptually, the fundamental
point is that the image of the Teichmuller lift for F3 sits inside Z. At the same time,
the Witt vectors with only finitely many non-zero components form a subring of the
Witt ring, and this subring is Z!

(13) L � R is the union, for k � 0, of the intervals deg.D/ 2 .log 3
k

2
; log 3

kC1
2

/.
(14) Once the addition is defined, the product follows uniquely using Xj Xk D XjCk .
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4. The ring of integers as a ring of polynomials

There is another way to represent the integers as polynomials in one variable, and in
this description, the “coefficients” belong to the absolute base S. This representation is
known as the negabinary representation of numbers

(4.1) n D
X

j̨ .�2/
j ; j̨ 2 ¹0; 1º:

The number X D �2 is remarkably unique, making the representation of an integer
n possible as polynomial P.X/ with coefficients j̨ 2 ¹0; 1º. By following the same
steps that led us to Theorem 3.1, but working now over the absolute base S, one obtains
the following new and simplified version of the Riemann–Roch formula which now
involves the logarithm in base 2.

Theorem 4.2 ([15]). Let D be an Arakelov divisor on Spec Z. Then

(4.3) dimS H
0.D/ � dimS H

1.D/ D ddeg2De
0
C 1;

where dxe0 is the right continuous function which agrees with ceiling.x/ for x > 0
non-integer and with �ceiling.�x/ for x < 0 non-integer.

This version of the Riemann–Roch Theorem improves on Theorem 3.1 for the
following reasons:

(1) The term 1L involving the exceptional set L in the original statement (see [14])
has now disappeared from the formula.

(2) The formula (4.3) is in perfect analogy with the Riemann–Roch theorem for curves
of genus 0.

(3) The canonical divisor K D �2¹2º has integral degree deg2.K/ D �2.

Theorem 4.2 fits now perfectly with the tri-lingual text suggested by A. Weil, which
supports the analogy between Riemann’s transcendental theory of algebraic functions
of one variable in the first column, the algebraic geometry of curves over finite fields,
in the middle column, and the theory of algebraic number fields in the third column.
Indeed, according to Weil:

Mais on peut, je crois, en donner une idée imagée en disant que le mathématicien
qui étudie ces problèmes, a l’impression de déchiffrer une inscription trilingue.
Dans la première colonne se trouve la théorie riemannienne des fonctions
algébriques au sens classique. La troisième colonne c’est la théorie arithmétique
des nombres algébriques. La colonne du milieu est celle dont la découverte est
la plus récente : elle contient la théorie des fonctions algébriques sur un corps
de Galois. Ces textes sont l’unique source de nos connaissances sur les langues
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dans lesquels ils sont écrits; de chaque colonne, nous n’avons bien entendu que
des fragments ; la plus complète et celle que nous lisons le mieux, encore à
présent, c’est la première. Nous savons qu’il y a de grandes différences de sens
d’une colonne à l’autre, mais rien ne nous en avertit à l’avance. Á l’usage, on
se fait des bouts de dictionnaire, qui permettent de passer assez souvent d’une
colonne à la colonne voisine.

In Weil’s vision there is, in the middle column (that of function fields), a geometric
understanding of the zeta function as the generating function of the number of points
of the curve over extensions of the field of constants. In Section 2 we translated in this
dictionary the Hasse–Weil formula, thus leading one to the first encounter with the
“the curve” C and the action of R�C on C, analogous to a Galois action. Theorem 4.2
indicates that the role of the field of constants is played by the absolute coefficient
ring S. Since the boolean semifield B can be viewed as an S-algebra, this translation
suggests to descend the structures of the Arithmetic and Scaling Sites discussed in
Section 2 from B to S.

5. Rings of SŒ�n;C�-polynomials

Let n > 0 be an integer, �n the multiplicative group of n-th roots of 1, and SŒ�n;C� the
spherical S-algebra of the (pointed) monoid�n;CD�n[¹0º. We recall that morphisms
of S-algebras SŒ�n;C�! HR correspond (bĳectively) to group homomorphisms � W
�n!R� [10]. In this section, we introduce the notion of rings of SŒ�n;C�-polynomials
in one (Definition 5.1) and several variables (Remark 5.2) which might play a key role
in the search of the “absolute Descartes powers” among ordinary rings. We show that
the pair .R;X/ of a ring R and an SŒ�n;C�-generator of R is uniquely characterized,
up to isomorphism, by the map from �n to polynomials with coefficients in the pointed
monoid �n;C, which encodes the addition of 1 into elements of �n.

Definition 5.1. Let R be a ring and � W �n ! R� an injective group homomorphism.
An elementX 2 R is an SŒ�n;C�-generator ofR if and only if every element z 2 R can
be written uniquely as a polynomial z D

P
j �. j̨ /X

j with coefficients j̨ 2 �n [ ¹0º.

Remark 5.2. More generally, a finite set ¹Xi j i 2 ¹1; : : : ; kºº SŒ�n;C�-generates R
if and only if every element z 2 R can be written uniquely as a polynomial

z D
X
j

�. j̨ /X
j

with coefficients j̨ 2 �n [ ¹0º, where j is a multi-index j D .j1; : : : ; jk/ 2 Nk , and
Xj WD

Q
X
ji
i .
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Let P .�n/ be the subset of the set .�n [ ¹0º/N of sequences with only finitely
many non-zero terms. Let X 2 R; then the map � W P .�n/! R given by

(5.3) �
�
. j̨ /

�
WD

X
j

�. j̨ /X
j

is well defined since for ˛ D . j̨ / 2 P .�n/ the sum
P
j �. j̨ /X

j defines an element
of R. It follows from Definition 5.1 that if X is an SŒ�n;C�-generator, the map � is a
bĳection of P .�n/ with R.

The simplest instance of an SŒ�n;C� generator, with nC 1 a prime power q, is
provided by the following example.

Example 5.4. The ring R D FqŒX� of polynomials over the finite field Fq has the
variable X as F�q -generator.

The next proposition shows that them-th root of an SŒ�n;C�-generatorX of a ringR
is an SŒ�n;C�-generator of the R-algebra extension RŒY �=.Y m �X/, hence providing
an infinite source of examples.

Proposition 5.5. LetR be a ring, � W�n!R� an injective group homomorphism,X 2
R an SŒ�n;C�-generator ofR, andm 2N a positive integer. Then Y 2RŒY �=.Y m �X/
is an SŒ�n;C�-generator of RŒY �=.Y m �X/.

Proof. Any element z ofRŒY �=.Y m�X/ can be written uniquely as zD
Pm�1
jD0 ajY

j ,
with aj 2 R written uniquely as

aj D
X
j;k

�. j̨;k/X
k

where j̨;k 2 �n [ ¹0º. Since Y m D X , one obtains the unique finite decomposition

z D
X
j;k

�. j̨;k/Y
jCmk; j̨;k 2 �n [ ¹0º:

The following example is a straightforward generalization of the fact that 3 is an
SŒ˙1� D SŒ�2;C�-generator of the ring Z of integers.

Example 5.6. Letm 2 N be a positive integer, and " D ˙1. Then X D .3"/1=m is an
SŒ˙1�-generator of the subring R D ZŒX� of the number field Q..3"/1=m/.

Indeed, the polynomial Xm � 3" is irreducible; thus every element z 2 R can be
written uniquely as a sum

z D

m�1X
jD0

ajX
j ; aj 2 Z:



a. connes and c. consani 16

In turns, every aj can be uniquely written as aj D
P
j;k j̨;k .3"/

k , where j̨;k 2

¹�1; 0; 1º. Since 3" D Xm, one obtains the unique decomposition

z D
X
j;k

j̨;kX
jCmk; j̨;k 2 ¹�1; 0; 1º:

An interesting case is for m D 2 and " D �1 since then the ring R D ZŒ
p
�3� is an

order of the ring of integers of the imaginary quadratic field Q.
p
�3/.

Notice that in Example 5.6 the addition is specified by an equality of the following
form:

(5.7) 1C 1 D P.X/; P.X/ D
X
j

j̨ X
j ; j̨ 2 ¹�1; 0; 1º;

with P.X/ D "Xm � 1. A simple algebraic presentation of the form (5.7) holds when
working over �n;C for n D 1; 2.

The following result states the uniqueness of a similar polynomial presentation in
the general case.

Proposition 5.8. Let R be a ring, � W �n ! R� an injective group homomorphism,
and X 2 R an SŒ�n;C�-generator of R. For a polynomial decomposition

z D
X
j

�. j̨ /X
j
2 R;

let deg.z/ be the smallest integerm such that j̨ D 0 for all j > m. Then, the following
results hold:

(i) Letm 2 N, and let Jm D hXmi � R be the ideal generated byXm. Any element
z 2 R admits a unique decomposition as z D a C b where deg.a/ < m and
b 2 Jm.

(ii) The quotient Rm WD R=Jm is a finite ring whose elements are uniquely written
as
Pm�1
jD0 �. j̨ /X

j , with j̨ 2 �n;C D �n [ ¹0º.

(iii) The quotient R1 WD R=J1 is a finite field with nC 1 elements and � W �n;C! R

is a multiplicative section of the quotient map R! R1.

(iv) The canonical ring homomorphism � W R! lim
 �

Rm is injective.

(v) The pair .R;X/ is uniquely specified, up to isomorphism, by the map h W �n !
P .�n/ which is uniquely defined by the equality �.h.�// D �.�/C 1.

Proof. (i) Let z D
P
j �. j̨ /X

j . By writing z as

(5.9) z D

m�1X
jD0

�. j̨ /X
j
C

deg.z/X
jDm

�. j̨ /X
j
D aCXmc
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one obtains the required decomposition with b DXm c. The uniqueness of such decom-
position then follows from the uniqueness of the decomposition as in Definition 5.1.

(ii) Follows from (i). In particular, one easily checks thatRm has cardinality #.Rm/D
.nC 1/m.

(iii) By construction the map � W �n;C!R is a multiplicative section of the quotient
map R ! R1. It follows that the non-zero elements of R1 form the multiplicative
group �n so that R1 is a field with nC 1 elements.

(iv) The components of z D
P
j �. j̨ /X

j 2 R are uniquely determined by �.x/.
(v) Let .R0; X 0/ be a second pair corresponding to the same map h W �n ! P .�n/.

Let � W R! R0 be the bĳective map defined by

�
�X

j

�. j̨ /X
j
�
WD

X
j

�0. j̨ /X
0j ; j̨ 2 �n [ ¹0º:

One has by construction

(5.10) deg.a/ < m H) �.aCXmb/ D �.a/C .X 0/m�.b/; 8b:

In particular one also has �.Jm/ D J 0m for all m. Thus � induces a bĳection

�m W Rm ! R0m:

By (iii), to show that � is a ring homomorphism, it is enough to verify that each �m is
a ring homomorphism.

To show that �m is additive it is enough to show that one can compute all the
components of a sum

(5.11)
m�1X
jD0

j̨ X
j
C

m�1X
jD0

ǰ X
j
D

m�1X
jD0

j X
j

using only the map h W �n ! P .�n/. To do this one first determines a map F from
k-tuples of elements of �n;C to pairs .x;Z/ where x 2 �n;C and whereZ is a .k � 1/-
tuple of elements of P .�n/. The map h determines uniquely a symmetric map

H W �n;C � �n;C ! �n;C �P .�n/; H.�; �/ D .� C �; 0/ if �� D 0
H.�;�/D

�
H0.�;�/; P.�;�/

�
; H0.�;�/CXP.�;�/D� h.��

�1/ if �¤0:
(5.12)

To define F one proceeds by induction on k. For k D 1 one lets F.x/ D x. For
k D 2 one lets F2 D H . We denote the two components of Fk W �k�1n;C � �n;C !

�n;C �P .�n/
k�1 as F .1/

k
and F .2/

k
. To pass from k � 1 to k one lets

F
.1/

k
.˛; �/ WD

�
H0
�
F
.1/

k�1
.˛/; �

��
; F

.2/

k
.˛; �/ WD

�
F
.2/

k�1
.˛/; P

�
F
.1/

k�1
.˛/; �

��
;

where in the last expression we append the polynomial P.F .1/
k�1

.˛/; �/ to the list
F
.2/

k�1
.˛/, thus obtaining a list of k � 1 polynomials.
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To compute the components j of the sum (5.11), we build by induction on k, two
lists. The first R.k/ is the list of the coefficients already computed and it is the single
list given by .0; 1; : : : ; k�1/. The second C.k/ (called the carry-over) is a list of
polynomials with coefficients in �n;C and it is encoded as the list of their coefficients.
Each such list ` of coefficients hasm� k terms, all in�n;C. We denote by f .`/ 2 �n;C
the first term of the list ` and by t .`/ the list obtained by dropping the first element
of the list `; it has m � k � 1 terms. The step to obtain R.k C 1/; C.k C 1/ from
˛; ˇ;R.k/; C.k/ is

R.k C 1/ WD F .1/
�
˛k; ˇk;

�
f .`/

�
`2C.k/

�
and

C.k C 1/ WD
�
t .`/

�
`2C.k/

; F .2/
�
˛k; ˇk;

�
f .`/

�
`2C.k/

�
where one replaces each element of F .2/.˛k; ˇk; .f .`//`2C.k// by the list of its first
m � k coefficients.

More concretely one first obtains 0 D F .1/2 .˛0; ˇ0/ while the carry-over delivers
the polynomial P.˛0; ˇ0/ D F .2/2 .˛0; ˇ0/. Thus R.1/ D .0/, C.1/ has one element
which is the list of the firstm� 1 coefficients ofP.˛0; ˇ0/. One then trims the elements
˛; ˇ and considers the sum

(5.13)
m�1X
jD1

j̨ X
j
C

m�1X
jD1

ǰ X
j
CXP.˛0; ˇ0/:

All terms in (5.13) are divisible by X and one can use F3 to compute the sum of the
three terms ˛1; ˇ1; p0 where p0 is the constant term of P.˛0; ˇ0/. This operation
delivers the next term

1 D F
.1/
3 .˛1; ˇ1; p0/

of (5.11) and adjoins the two polynomials of the list F .2/3 .˛1; ˇ1; p0/ to the list of
carry-over consisting of the single polynomial P.˛0; ˇ0/ with its first term p0 deleted.
The carry-over list consists now of three terms `1; `2; `3. One then uses F5 to compute
the sum of the 5 terms : ˛2; ˇ2 and the three terms f .`1/; f .`2/; f .`3/ from the
carry-over. This adds 4 terms to the list of carry-over which has now 7 terms, where the
three previous ones have been trimmed by deleting their lowest term. After k such steps
the carry-over list has 2k � 1 elements and one proceeds as follows. One uses F2kC1
to compute the sum of the 2k C 1 terms given by ˛k; ˇk together with the terms f .`/
of the carry-over list. This operation delivers k and adjoins 2k terms to the carry-over
list which now consists of 2kC1 � 1 terms. This process terminates when k D m and
R.m/ delivers universal formulas for the terms j , 0 � j � m� 1 using only ˛; ˇ and
the map h.
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The fact that the coefficients j can be computed using only ˛; ˇ and the map h
proves that � is additive since one can use the same formula to compute ˛ C ˇ in
Rm and �m.˛/C �m.ˇ/ in R0m. The multiplicativity of � follows by bilinearity from
�.˛Xn � ˇXm/D �.˛Xn/�.ˇXm/. This shows that � WR!R0 is a ring isomorphism
and by construction one has �.X/ D X 0.

Definition 5.14. The map

(5.15) h W �n ! P .�n/; �
�
h.�/

�
D �.�/C 1

which characterizes the pair .R;X/ (by Proposition 5.8) is called the hold of the pair
.R;X/.

Corollary 5.16. Let n be such that there exists a polynomial ring in one generator
over SŒ�n;C�; then nC 1 is a prime power.

Proof. This follows from Proposition 5.8 (iii).

Remark 5.17. The proof of Proposition 5.8 (v) is stated so that one can, by following it,
write a computer program which can be used to test the additive structure of the ringRm.
This will be relevant in Section 6 to determine in the various examples the rings Rm.

The map h W �n ! P .�n/ of (5.15) determines the addition H W �n;C � �n;C !
�n;C � P .�n/, (5.12), of pairs of elements of �n;C using the compatibility with
multiplication by elements of �n.

Proposition 5.8 shows that a pair .R;X/, where X is an SŒ˙1�-generator of R, i.e.
n D 2, is uniquely characterized by the polynomial P.X/ as in (5.7). The polynomial
P.X/ D �1 produces the pair .F3ŒX�; X/, while P.X/ D X � 1 determines the pair
.Z; 3/.

When nD 2, the constant term of the polynomial P.X/ in (5.7) is necessarily equal
to �1. Indeed, had the constant term be 0 or 1, one would contradict the uniqueness of
the decomposition of Definition 5.1 by the equality 1 D P.X/ � 1. This also shows
that R1 D F3.

Remark 5.18. It is not true that a random choice of a polynomial with coefficients
in SŒ˙1� and constant coefficient �1 corresponds to a pair. A simple case is with
P.X/D�1CX CX2. Indeed, in the following lines we show that 5 is not represented
by any polynomial. With this rule, one has 1C 1C 1C 1 D 1CX CX2. Adding 1
to both sides gives

1C 1C 1C 1C 1 D �1CX CX2 CX CX2

D �1CX.�1CX CX2/CX2.�1CX CCX2/

D �1 �X CX3 CX3 CX4
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D �1 �X CX3.�1CX CX2/CX4

D �1 �X �X3 CX4 CX4 CX5:

Then, when working in Rn (i.e. modulo Xn) the number 5 is represented by

5 D �1 �X �X3 �X4 �X5 � � � � �Xn�1 2 Rn

and this expression is of degree n� 1 for any n and thus does not correspond to a finite
sum of powers of X .

6. Examples

In this section we give examples of polynomial rings .R;X/ in one generator X over
SŒ�n;C� where R is of characteristic zero. The ring R is embedded as a subring of C

by solving for X 2 C the equations �.h.�// D �.�/C 1, � 2 �n, using the canonical
embedding �n;C � C. The projective limit lim

 �
Rn is, in these examples, a finite

extension of the ring of p-adic integers Zp. While one can use the axiom of choice
to show the existence of an embedding of the p-adic field Qp in the field of complex
numbers, such embeddings have the status of a chimera. Indeed, the continuity of
measurable characters of compact groups applied to the additive group Zp shows that
an embedding of the p-adic field Qp in the field of complex numbers is automatically
non-measurable. On the other hand, the next examples will show that polynomial rings
.R;X/ in one generator X over SŒ�n;C� provide instances of explicit interactions of
p-adic fields (and their finite extensions) with the complex numbers. These interactions
are given by pairs of embeddings with dense ranges

Fq
�

� W.Fq/ ,! W.Fq/Œ��  - RŒX�1� ,! C

of the ring of Laurent polynomialsRŒX�1�. The left embedding in the above diagram is
in a finite algebraic extensionW.Fq/Œ�� of the Witt ringW.Fq/. The field of fractions of
the ringW.Fq/Œ�� is a finite extension of the p-adic field. Most of these examples come
from known number systems and have their origin in the search of optimal manners of
encoding numbers [21]. In each case, the quotient R1 D R=.XR/ is the finite field Fq ,
q D nC 1, and the multiplicative semi-group isomorphism

j W Fq � �n;C � C

serves as a guide, using the addition in the finite field Fq , for the terms of degree 0 in
the construction of the map h. Note that the choice of j for xFq plays a key role in the
construction by Quillen [25] of the relation between the algebraic K-theory of Fq and
the Adams operations.
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6.1. Polynomial rings in one generator over S D SŒ�1;C�

When working over S D SŒ�1;C� there is no cancelation since there is no minus sign
available. Thus starting from two non-zero elements x; y the equality x C y D 0 can
only be verified in the projective limit lim

 �
Rm. We compute this projective limit in the

next examples.

6.1.1. The polynomial ring .Z;�2/

The ring Z admits the generatorX D�2 over S. The hold is given by 1C 1D P.X/D
X CX2. The values of the polynomials of degree n at X D �2 are reported for the
first values of n in the following table:

n ¹p.�2/ W degp D nº
0 Œ0; 1� \ Z

1 Œ�2;�1� \ Z

2 Œ2; 5� \ Z

3 Œ�10;�3� \ Z

4 Œ6; 21� \ Z

5 Œ�42;�11� \ Z

6 Œ22; 85� \ Z

Let us look, for example, at the computation of 1C 1CX . One gets

1C 1CX D X CX2 CX D X.1C 1CX/

and iterating this step one gets that 1C 1CX 2 Jm D hXmiR, 8m. This shows that
1C 1CX D 0 in lim

 �
Rm. Next we relate the degree of the polynomial p.X/ with the

absolute value of the integer p.�2/. Let

(6.1) j.n/ WD
1

3
.�2/n �

1

2
.�1/n C

1

6
n 2 N:

The degree n of a polynomial p.X/ with coefficients in ¹0; 1º specifies the sign of the
integer p.�2/ as .�1/n and provides lower and upper bounds on the modulus jp.�2/j
as follows: ˇ̌

j.n � 1/
ˇ̌
<
ˇ̌
p.�2/

ˇ̌
�
ˇ̌
j.nC 1/

ˇ̌
:

Given an integerm 2 Z, the first inequality provides the following bound, on the degree
of the polynomial p such that p.�2/ D m:

deg.p/ � log2
�
3jmj C 2

�
C 1:
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Figure 2. Gaussian integers as S-polynomials in degree � 12.

The projective limit lim
 �

Rm is here the ring Z2 of 2-adic integers, and the elements
of Z inside Z2 are characterized by the fact that their sequence of digits is eventually
constant.

Next, we turn to quadratic fields for which the study of number systems in [19, 20]
provides an exhaustive list of examples. One easily deduces from op. cit. the following.

Proposition 6.2. The quadratic fieldsK whose ring of integers admit an S-generator
are
• Q.

p
�1/ with generator X D �1C

p
�1 of the ring ZŒ

p
�1� of integers of K.

• Q.
p
�2/ with generator X D

p
�2 of the ring ZŒ

p
�2� of integers of K.

• Q.
p
�7/ with generator X D 1

2
.1C

p
�7/ of the ring of integers of K.

Proof. The norm N.˛/ of an S-generator is equal to 2; thus the set

N0.˛/ WD
®
0; : : : ; N.˛/ � 1

¯
defining a canonical number system in the sense of [19, 20] is ¹0; 1º and the result
follows from [20, Theorem 1] in the complex case and Satz 1 of [19] in the real case.

6.1.2. The polynomial ring .ZŒi �;�1C i/

Here, we consider the ring R D ZŒi � of Gaussian integers (sometimes called binarions;
see [5]) with X D �1C i as SŒ�1;C� D S-generator. Indeed, every Gaussian integers
can be written uniquely as a finite sum of powers of X ([17,26] and Figure 2). One has
the equality 1C 1 D P.X/ D X2 CX3, which allows one to compute the sum of any
pair of polynomials with coefficients in ¹0; 1º.
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Proposition 6.3. Let R D ZŒi �, X D �1C i .

(i) The ideal of R D ZŒi � generated by X2 is the same as the ideal generated by 2.

(ii) The ring Rm for m D 2k is Z=.2kZ/ŒX� where X2 D �2 � 2X .

(iii) The ring Rm for mD2kC1 is Z=.2kC1Z/˚Z=.2kZ/X where X2D�2�2X .

(iv) The projective limit lim
 �

Rm is the ring Z2Œi � � Z2ŒX� where X2 D �2 � 2X .

Proof. (i) The element U D .1CX/ 2 R is a unit since U 4 D 1 and one has

X2 D �2 � 2X 2 2R; 2 D �.1CX/�1X2 2 X2R:

(ii) By (i) the ideal X2kR is equal to 2kR. One has R D ZŒi � and R=.2kR/ D
Z=.2kZ/Œi � D Z=.2kZ/ŒX� with X2 D �2 � 2X ; thus one gets (ii).

(iii) LetmD 2kC 1. Any element ofR is of the form zD aC bX where a;b 2Z. In
R one has 2kC1 2X2kC2R� Jm and 2kX 2X2kC1RD Jm. Thus the homomorphism
ZŒX�! Rm induces a surjective homomorphism from Z=.2kC1Z/˚ Z=.2kZ/ X

to Rm. It is bĳective since the cardinalities are equal.
(iv) The extension Q2Œi � is totally ramified of index e D 2 (see [26, Chapter 2, Sec-

tion 4.2, Example 1]). The polynomial X2C2XC2 is an Eisenstein polynomial which
defines Q2Œi � as its splitting field. The valuation ofX is one half of the valuation of 2.

6.1.3. The polynomial ring .ZŒ
p
�2�;
p
�2/

The element X WD
p
�2 is an SŒ�1;C� D S-generator of the ring of integers ZŒ

p
�2�

of the imaginary quadratic field Q.
p
�2/. This follows directly from Section 6.1.1

and Proposition 5.5. The hold is given by the polynomial P.X/ D X4 C X2. A
straightforward analogue of Proposition 6.3 holds.

6.1.4. The polynomial ring .O.Q.
p
�7//; 1

2
.1C

p
�7//

The elementX WD 1
2
.1C
p
�7/ is an SŒ�1;C�DS-generator of the ring O.Q.

p
�7// of

integers of the imaginary quadratic field Q.
p
�7/. The hold is given by the polynomial

P.X/ D X3 C X . Let F be the fundamental domain of O.Q.
p
�7// given by the

parallelogram with vertices 0; 1;X;X C 1. Figure 3 shows the neighborhood of 0 2 C

obtained as the union of the translations F C p.X/ by polynomials p.X/ of degree
� 11.

Proposition 6.4. Let R D O.Q.
p
�7//, X D 1

2
.1C

p
�7/.

(i) The ring Rm is Z=.2mZ/.

(ii) The projective limit lim
 �

Rm is the ring Z2.

(iii) The element X 2 lim
 �

Rm D Z2 is the only solution divisible by 2 in the ring Z2
for the equation 2CX CX2 D 0.
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X 11

X 10

X 9

Figure 3. Polynomials of degree � 11 for X D 1
2
.1C

p
�7/.

Proof. The hold is given by P.X/ D X3 CX and one has

P.X/ � 2 D .X � 1/.X2 CX C 2/:

By Hensel’s Lemma, the equation 2C X C X2 D 0 admits a unique solution ˛ in
Z2 of the form ˛ D 1C 2" and a unique solution of the form ˇ D 2.1C 2"0/. In fact
one has ˛ˇ D 2 and ˛ C ˇ D �1. The homomorphism � W ZŒ1

2
.1C

p
�7/�! Z2

given by �.1
2
.1C

p
�7// D ˇ is well defined since ˇ is a solution of the equation

2 C X C X2 D 0. Moreover ˇ is the product of 2 by a unit of Z2 (but this fails
in R D O.Q.

p
�7//). The projection Xm of ˇ in Z2=.2mZ2/ D Z=.2mZ/ fulfills

P.Xm/ D 2 and Xm is the product of 2 by a unit. Thus the ideals generated by powers
of Xm are the same as those generated by powers of 2. This proves the three assertions
(i), (ii), and (iii).

6.2. Polynomial rings in one generator over SŒ˙1�

6.2.1. The polynomial ring .Z; 3/

The case of the SŒ˙1�-generator 3 2Z is particularly relevant because, as shown in [14],
the addition coincides with that of the Witt vectors in W.F3/ D Z3.

Proposition 6.5. Suppose R D Z, X D 3 is an SŒ˙1�-generator of R. The hold is
P.X/ D �1CX .

(i) The ring Rm is Z=.3mZ/.

(ii) The projective limit lim
 �

Rm is the ring W.F3/ D Z3.

(iii) The set of Witt vectors with only finitely many non-zero components forms a
subring of W.F3/ isomorphic to Z.
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In order to organize the next examples we give the list of imaginary quadratic field
extensions of Q generated by rings of SŒ˙1�-polynomials in one variable.

Proposition 6.6. The imaginary quadratic fields K generated by rings of SŒ˙1�-
polynomials in one variable are
• Q.

p
�2/ with generator X D 1C

p
�2 of the ring ZŒ

p
�2� of integers of K.

• Q.
p
�3/ with generator X D

p
�3 of ZŒ

p
�3� (not a UFD).

• Q.
p
�11/ with generator X D 1

2
.1C

p
�11/ of the ring of integers of K.

Proof. Let P.X/ D �1C
Pn�1
jD1 a.j /X

j C "Xn, " 2 ¹˙1º, a.j / 2 ¹�1; 0; 1º, be
the carry-over leading to an imaginary quadratic extension. The roots of the polynomial
P.X/ � 2 are algebraic integers, and we assume that one of them, say ˛, is quadratic
imaginary. Let q.x/ D x2 � bx C c be its minimal polynomial. It has integral coef-
ficients so b; c 2 Z, and by definition, it divides P.X/ � 2. The constant coefficient
c must be equal to 3. Indeed it divides the constant coefficient �3 of P.X/ � 2, and
since b2 � 4c < 0, it is positive. It cannot be equal to 1 since in that case one would get
b 2 ¹�1; 0; 1º, and ˛ 2 ¹i; j;�j º which contradicts the injectivity of the map � . For
c D 3 the possible values of b are b D 0 which gives the solution ˛ D

p
�3, b D ˙1

which gives the solutions ˛ D 1
2
.˙1 ˙ i

p
11/, b D ˙2 which gives the solutions

˛ D ˙1˙ i
p
2, and finally b D ˙3. We shall now show that this last choice which

gives ˛ D 1
2
.˙3˙ i

p
3/ does not give a solution. To prove this it is enough to show

that the polynomial 3C 3X CX2 cannot divide a polynomial P.X/ � 2 with P of
the above form. We thus assume an equality of the form

.3C 3X CX2/

 
n�2X
jD0

b.j /Xj

!

D �3C

n�1X
jD1

a.j /Xj C "Xn; " 2 ¹˙1º; a.j / 2 ¹�1; 0; 1º:

Since the coefficients of P � 2 are integers and the leading coefficient of 3C 3X CX2

is 1, the coefficients b.j / are integers. We get b.0/ D �1, 3b.1/ � 3 D a.1/, but
a.1/ 2 ¹�1; 0; 1º and thus working modulo 3 one gets a.1/ D 0 and hence b.1/ D 1.
Considering the coefficient of X2 we get 3b.1/ C 3b.2/ � 1 D a.2/ which gives
a.2/D�1 and b.2/D�b.1/D�1. We can now work by induction to show that b.j /D
.�1/jC1. Indeed the coefficient of Xj is b.j � 2/C 3b.j � 1/C 3b.j / D a.j / and
if we know that b.j � 2/ D .�1/j�1 and b.j � 1/ D .�1/j we get a.j / D b.j � 2/
and 3b.j � 1/C 3b.j / D 0 so that b.j / D .�1/jC1. This works for j � n � 2. The
coefficient ofXn�1 is b.n� 3/C 3b.n� 2/D a.n� 1/ and this gives a contradiction
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1

2
(1+ 11 )

1

Figure 4. Fundamental domain of the lattice O.

since one gets a.n � 1/ D b.n � 3/ (working modulo 3) which contradicts the fact
that b.n � 2/ ¤ 0.

6.2.2. The polynomial ring .O.QŒ
p
�11�/; 1

2
.1C

p
�11//

This section is dedicated to a detailed proof that X WD 1
2
.1C

p
�11/ is an SŒ˙1�-

generator of the ring of integers of the number field Q.
p
�11/. The reason for providing

the details of the proof is that we want to emphasize that in such a case, and unlike
working over S, one can explicitly control the cancelations in the computations.

Proposition 6.7. Let O be the ring of integers of the number field Q.
p
�11/.

(i) X WD 1
2
.1C

p
�11/ is an SŒ˙1�-generator of O. The hold of .O;X/ is P.X/D

�1CX �X2.

(ii) The projective limit lim
 �

Rm is the ring W.F3/ D Z3.

The proof requires a preliminary lemma. We first recall some classical results
concerning the ring of integers O of the imaginary quadratic field K D Q.

p
�11/.

The discriminant of K is d D �11. Thus since �11 � 1 modulo 4, the lattice O is
ZC ZX where X WD 1

2
.1C

p
�11/. By construction one has

(6.8) 1C 1 D P.X/; P.X/ D �1CX �X2:

One wants to show that every element z 2 O can be written uniquely as a polynomial
z D

P
j j̨ X

j , with j̨ 2 ¹�1; 0; 1º. Figure 4 shows the translates of the fundamental
domain of the lattice, while the next figures provide a sketch of a few steps of the
process of representing elements of O in terms of polynomials of degree � n, showing
those described by polynomials of degreeD n with a new color.

By comparing Figures 5 (a), 5 (b), 6 (a), 6 (b), 7 (a), and 7 (b), one notices that the
translation z 7! z C 1 does not increase the degree of the polynomial by more than 2
units. The next lemma provides a formal proof of this fact.
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-1 0 1

(a) First step, polynomials of degree 0

-1 0 1

(b) Second step, polynomials of degree � 1

Figure 5. The first two steps.

-1 0 1

(a) Third step, polynomials of degree � 2

-1 0 1

(b) Fourth step, polynomials of degree � 3

Figure 6. The third and fourth steps.

-10 1

(a) Fifth step, polynomials of degree � 4

X 7 X 6

X5

(b) Eighth step, polynomials of degree � 7

Figure 7. The fifth and eighth steps.
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Lemma 6.9. Let z D
Pn
jD0 j̨X

j 2 O, j̨ 2 ¹�1; 0; 1º. Then there exist coefficients
ǰ 2 ¹�1; 0; 1º, with 0 � j � nC 2, such that z C 1 D

PnC2
jD0 ǰX

j .

Proof. We proceed by induction on the integer n. For n D 0, the result follows from
(6.8). Let us assume that the result is proved up to n � 1; then there exist coefficients
j 2 ¹�1; 0; 1º such that

z D

 
n�1X
jD0

j̨X
j

!
C ˛nX

n
H) z C 1 D

 
nC1X
jD0

jX
j

!
C ˛nX

n:

Let us consider a sum such as nXn C nC1XnC1 C ˛nXn and express it without
going beyond XnC2. If nC1 D 0, this follows again from (6.8). We can thus assume
that nC1 D ˙1 and also that both n and ˛n are non-zero and equal since otherwise
the sum nX

n C ˛nX
n would have degree at most n. The only case to exclude then is

when n, ˛n, and nC1 are all equal (and non-zero) since only in that case would one
get a term in XnC3 from the sum

Xn CXn CXnC1 D Xn.1C 1CX/ D Xn.�1CX CX �X2/

D Xn.�1 �X CX2 �X2 �X3/

D �Xn �XnC1 �XnC3:

To exclude this case, one adds to the induction hypothesis the condition that if the last
term ˇnC2 of the polynomial of degree nC 2 representing z C 1 is non-zero, then the
term ˇnC1 is zero or of the opposite sign. This condition is fulfilled for n D 0, and
if we assume it for n � 1, it holds also for n. Indeed, the only cases when ˇnC2 ¤ 0
arise when either nC1 D 0, in which case ˇnC1 and ˇnC2 have opposite signs, or
nC1 D " D ˙1, in which case n D ˛n D �", which gives

nX
n
C nC1X

nC1
C ˛nX

n
D �"Xn.1C 1 �X/ D "Xn C "XnC2;

implying that ˇnC1 D 0 in this case. Thus the induction hypothesis still holds for n,
and this concludes the proof.

Proof of Proposition 6.7. Lemma 6.9 holds for the abstract law of addition defined
using (6.8) on the projective limit of the Rn. The proof shows that the elements of this
limit, which have only a finite number of non-zero coordinates, are stable under the
addition of 1. Using (5.10), it follows that they are also stable under the addition of
any monomial and hence that they form an additive group A. Thus, it remains to show
that the map � W A! C defined by

�
�X

j

j̨X
j
�
WD

X
j

j̨ z
j ; z D

1

2
.1C

p
�11/
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is injective. Let
P
j j̨X

j 2 ker �; then
P
j j̨ z

j D 0 and thus z fulfills an equation
E.z/D 0with integral coefficients whose leading coefficient is 1 and the constant term
is˙1. The polynomial E is thus a multiple of the minimal polynomial z2 � z C 3 of
the field extension. The quotient polynomial has integral coefficients; thus, one gets a
contradiction using the product of constant terms.

6.2.3. The polynomial ring .ZŒ
p
�3�;
p
�3/

The element X WD
p
�3 is an SŒ�2;C� D SŒ˙1�-generator of the ring ZŒ

p
�3� and

the latter is a maximal order in the ring of integers of the imaginary quadratic field
Q.
p
�3/. This follows directly from Section 6.1.1 and Proposition 5.5. The hold is

given by the polynomial P.X/D �1�X2. A straightforward analogue of Proposition
6.3 holds.

6.2.4. The polynomial ring .O.Q.
p
�2//; 1C

p
�2/

One obtains similarly that P.X/ D �1 �X CX2 �X3 is the hold associated with
the SŒ˙1� generator 1C

p
�2 of the ring of integers of the imaginary quadratic field

Q.
p
�2/.

Proposition 6.10. Let O be the ring of integers of the number field Q.
p
�2/.

(i) X WD 1C
p
�2 is an SŒ˙1�-generator of O. The hold of .O; X/ is P.X/ D

�1 �X CX2 �X3.

(ii) The projective limit lim
 �

Rm is the ring W.F3/ D Z3.

Figure 8 reproduces the pattern obtained by inputting polynomials of degree � 9.
In this case, the analog of Lemma 6.9 holds with the bound nC 3 instead of nC 2.

6.3. Polynomial rings in one generator over SŒ�3;C�

In the next proposition/example, the field R1 is the finite field F4. One lets �3;C � C

be the solutions of x.x3 � 1/ D 0, j D exp.2�i=3/, and Z.j / � Q.j / the ring of
integers of the quadratic imaginary field Q.j /.

Proposition 6.11.

(i) The number �2 2 Z.j / is an SŒ�3;C�-generator of the ring R D Z.j /.

(ii) The hold is given by

h.1/ D X CX2; h.j / D j 2X C j 2; h.j 2/ D jX C j:

(iii) The field R1 is the finite field F4.

(iv) The projective limit lim
 �

Rm is the Witt ringW.F4/ and the ringRm is the quotient
of W.F4/ by 2mW.F4/.
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X8
X9

Figure 8. Polynomials of degree � 9 for X D 1C i
p
2.

Proof. Let J D 2Z.j / � Z.j /; then J n is the ideal generated byXn whereX D �2.
Let � W P .�3/! R D Z.j / be the map defined by (5.3). For each n the composition
�n ı � , from the subset P n�1.�3/ � P .�3/ formed of polynomials of degree < n to
the quotient ring Rn D R=J n, is surjective and hence injective since the cardinalities
of source and target are the same. It follows that the map � W P .�3/! R D Z.j / is
injective. To show that it is surjective one uses the general method involving the limit
of the subsets

Zn WD .�2/
�n
�
�
�
P n.�3/C F

��
� C;

where F is a fundamental domain for Z.j /. One observes that passing from n to nC 1
only alters Zn on its boundary and that Zn contains an open disk centered at 0 (cf.
Figure 9).

6.4. Polynomial rings in one generator over SŒ�4;C�

In this case, we have the following.

Proposition 6.12.

(i) The number X D 1C 2i is an SŒ�4;C�-generator of the ring R D Z.i/.

(ii) The hold is given by h.0/ D 1 and

h.1/ D i � i X; h.i/ D �i CX; h.�i/ D �1 � i X:

(iii) The field R1 is the finite field F5.
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Figure 9. Polynomials of degree � 7 for X D �2.

Figure 10. Polynomials of degree � 4 for X D 1C 2i .

(iv) The projective limit lim
 �

Rm is the Witt ring W.F5/ D Z5 and the ring Rm is the
quotient of W.F5/ by 5mW.F5/.

Proof. In the p-adic field Z5 there exists a unique square root of �1 equal to 2
modulo 5 (see [26, Section 6.7]). Let � W Z.i/! Z5 be the unique morphism such that,
modulo 5, one has �.i/ D 2. Then �.X/ D 5u where u is a unit in Z5. The morphism
� restricted to �4;C D ¹0; 1; i;�1;�iº gives a multiplicative section of the quotient
map R! R=XR. One has Z5=�.X/mZ5 D Z=5mZ and the morphism � induces an
isomorphism

Rm ' Z5 D Z=5mZ:

Statements (iii) and (iv) follow, as well as the injectivity of the map � W P .�4/!
R D Z.i/. One can prove the surjectivity of � as for Proposition 6.11 using Figure 10.
Statements (i) and (ii) follow.
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Figure 11. Polynomials of degree � 2 for X D 5
2
�
i
p
3
2

.

6.5. Polynomial rings in one generator over SŒ�6;C�

The following proposition holds (see also Figure 11).

Proposition 6.13.

(i) The number X D 2 � j is an SŒ�6;C�-generator of the ring R D Z.j /.

(ii) The hold is given by h.j / D j C 1, h.j 2/ D j 2 C 1, h.0/ D 1, and

h.1/ D X C j; h.�j 2/ D �j 2X C j 2; h.�j / D �1CX:

(iii) The field R1 is the finite field F7.

(iv) The projective limit lim
 �

Rm is the Witt ring W.F7/ D Z7 and the ring Rm is the
quotient of W.F7/ by 7mW.F7/.

The proof can be easily deduced from [26, Section 4.6].

Funding. – The research was supported in part by the Simons Foundation Collabora-
tion grant no. 691493.
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