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Abstract. Given a surface M and a fixed conformal class c one defines ƒk.M; c/ to be the supre-
mum of the k-th nontrivial Laplacian eigenvalue over all metrics g 2 c of unit volume. It has been
observed by Nadirashvili that the metrics achievingƒk.M; c/ are closely related to harmonic maps
to spheres. In the present paper, we identifyƒ1.M; c/ andƒ2.M; c/ with min-max quantities asso-
ciated to the energy functional for sphere-valued maps. As an application, we obtain several new
eigenvalue bounds, including a sharp isoperimetric inequality for the first two Steklov eigenvalues.
This characterization also yields an alternative proof of the existence of maximal metrics realizing
ƒ1.M; c/, ƒ2.M; c/, and moreover allows us to obtain a regularity theorem for maximal Radon
measures satisfying a natural compactness condition.
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1. Introduction

1.1. Eigenvalues of the Laplacian

Let .M; g/ be a closed Riemannian surface, and let �g W C1.M/ ! C1.M/ be the
associated Laplace operator with positive spectrum

0 D �0.M; g/ < �1.M; g/ 6 �2.M; g/ 6 � � � % 1;

where eigenvalues are written with multiplicities. Multiplying eigenvalues by the area
Area.M; g/, one obtains the scale-invariant quantity

N�k.M; g/ D �k.M; g/Area.M; g/:

By results of Yang–Yau [57] for k D 1 and Korevaar [38] for k � 1 there exists a con-
stant C.M/ depending only on the topology of M such that for any metric g one has
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N�k.M; g/ 6 C.M/k. Given a conformal class c D Œg� D ¹g j g D fg0; f > 0º on M , it
therefore makes sense to consider the conformal supremum of N�k , denoted by

ƒk.M; c/ D sup
g2c

N�k.M; g/:

The quantities ƒk.M; c/ are often referred to as the conformal spectrum of .M; c/
(see [9]). Interest in the quantity ƒk.M; Œg�/ stems in large part from the connection
between extremal metrics for N�k and the theory of harmonic maps to spheres, as described
in the following theorem (see Section 2.1 for more details).

Theorem 1.1 (Nadirashvili [44], El Soufi–Ilias [12]; see also [13]). Let h 2 c D Œg� be a
metric such that

ƒk.M; c/ D N�k.M; h/: (1.1)

Then there exists a harmonic map ˆ W .M; g/! Sn such that the components of ˆ are
�k.M; h/-eigenfunctions.

As a result, the problem of exhibiting a metric g 2 c satisfying (1.1) is of inter-
est not only from the perspective of spectral theory, but also as a means for producing
a distinguished collection of harmonic maps from Riemann surfaces into spheres. Our
understanding of this problem has seen significant progress in the recent years: we refer
the reader to [32, 46, 48, 50], where two different approaches to this problem are devel-
oped; see also Section 2.1 below for details.

The connection between N�k-extremal measures and sphere-valued harmonic maps
hints at the possibility of a deeper relationship between the conformal spectrum and the
variational theory of the Dirichlet energy for sphere-valued maps. In the present paper,
we make this relationship explicit in the cases k D 1; 2, characterizing ƒ1.M; c/ and
ƒ2.M; c/ as the min-max energies associated to certain families of sphere-valued maps
on M .

1.2. Min-max characterization of ƒ1.M; c/ and applications

Let .M; g/ be a closed Riemannian surface. For the purposes of intuition, we introduce
the collection z�n.M/ of families

xBnC1 3 a 7! Fa 2 W
1;2.M;Sn/ such that Fa � a for a 2 Sn

continuous with respect to the weak topology on W 1;2. A motivating example comes
from composing a given map M ! Sn with the family of conformal dilations of Sn, as
described in Section 2.4 below.

By standard topological arguments, the boundary conditions imposed on F 2 z�n.M/

force the existence of a map Fy in the family with zero average,
R
M
Fy D 0 2 RnC1, so

that the Dirichlet energies E.Fy/ satisfy

sup
a
2E.Fa/ > �1.M; g/kFyk

2
L2.M;g/

D N�1.M; g/:
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In particular, since the Dirichlet energy is a conformal invariant, it follows that the maxi-
mal eigenvalue ƒ1.M; Œg�/ is bounded above by an associated min-max energy

zEn D inf
F 2z�n.M/

sup
a2BnC1

E.Fa/ > 1
2
ƒ1.M; Œg�/;

similar to the classical conformal volume bounds of Li and Yau [40]. For technical reasons
clarified below, we do not work directly with zEn, but introduce a related min-max energy
En 6 zEn, defined via a relaxation of Ginzburg–Landau type; see (3.1) below. For n > 5,
our first result confirms that these min-max energies En are achieved as the energies of
harmonic maps to Sn. Crucially, by virtue of the min-max construction, these maps also
come with natural bounds on their energy index—i.e., their Morse index as critical points
of the energy functional.

Theorem 1.2. Let n > 5. Then for any Riemannian surface .M; g/, there exists a har-
monic map ‰n WM ! Sn such that

En D E.‰n/ > 1
2
ƒ1.M; c/; (1.2)

whose energy index indE .‰n/ satisfies

indE .‰n/ 6 nC 1:

Note that the right hand side of (1.2) does not depend on n. Therefore, it makes sense
to study the behavior of this inequality as n becomes large. Our second result is the fol-
lowing, showing that (1.2) becomes an equality for n sufficiently large.

Theorem 1.3 (Min-max characterization of ƒ1.M; c/). Given a surface M and a con-
formal class c on M , there exists N D N.M; c/ such that for all n > N , the components
of ‰n lie in the first positive eigenspace of the Laplacian �g‰n for the conformal metric
g‰n D jd‰nj

2
gg .which may have conical singularities/. In particular,

En D E.‰n/ D
1
2
ƒ1.M; c/:

As an immediate consequence, one sees that our min-max procedure provides an alter-
native construction of conformally maximizing metrics for N�1.M;g/. While the existence
of maximizing metrics has been established in [32, 48] by other methods, the novel fea-
ture of Theorem 1.3 is the identification of the supremal eigenvalue 1

2
ƒ1.M; Œg�/ with

the min-max energies En for n sufficiently large. This characterization leads to a number
of new estimates relating ƒ1.M; Œg�/ to other spectral quantities, allowing us to refine
many known eigenvalue bounds involving the Li–Yau conformal volume Vc.M; Œg�/,
by replacing Vc.M; Œg�/ with 1

2
ƒ1.M; Œg�/. In several cases of interest—as we will see

below—these refined estimates in terms of ƒ1.M; Œg�/ turn out to be sharp.
Let us describe some of the applications of this min-max characterization. In [36],

Kokarev defined a natural analog of Laplacian eigenvalues �k.M; c; �/ associated to any
Radon measure � on a surface M endowed with a conformal class c, and noted that the
first normalized eigenvalue N�1.M; c; �/ is bounded from above by twice the conformal
volume. We are able to replace the conformal volume by En in this estimate, provided that
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the Radon measure satisfies a certain natural compactness condition (see Theorem 1.4).
We call such measures admissible. As a result, ƒ1.M; c/ is an upper bound for the first
normalized eigenvalue of any admissible Radon measure. Moreover, we are able to char-
acterize the equality case, arriving at a regularity theorem for N�1-maximal admissible
measures. This answers Question 1 in [36, Section 6.2].

Theorem 1.4 (Regularity theorem for N�1-maximal measures). Let � be a Radon measure
on .M; g/ such that the map

T W W 1;2.M; g/! L2.M;�/

is well-defined and compact. Then

N�1.M; Œg�; �/ 6 ƒ1.M; Œg�/: (1.3)

Suppose that � is N�1-maximal, i.e. (1.3) is an equality. Then there exists a harmonic map
ˆ W .M; g/! Sn such that

d� D
1

�1.M; Œg�; �/
jdˆj2g dvg D

1

�1.M; Œg�; �/
dvgˆ ;

where gˆ D jdˆj2g dvg , and the components of ˆ are the first eigenfunctions of the
Laplacian �gˆ . In particular, d� is smooth.

Remark 1.5. A year after the present paper was posted, in joint work with M. Nahon
and I. Polterovich [33], we used the min-max characterization to establish the stability of
metrics maximizing N�1 in a conformal class: we showed that any sequence of admissible
measures �j with N�1.M; Œg�;�j /!ƒ1.M; Œg�/ subsequentially converges in .W 1;2/� to
a (smooth) conformally N�1-maximizing measure.

Kokarev used his observation to obtain an upper bound for the first normalized Steklov
eigenvalue on surfaces with boundary, independent of the number of boundary com-
ponents of the surface [36, Theorem A1]. Recall that for a domain .�; g/ � .M; g/,
the Steklov eigenvalues �k.�; g/ are defined to be the eigenvalues of the Dirichlet-to-
Neumann operator Dg on @�, whose spectrum is discrete if � is e.g. Lipschitz; see [13,
14, 22] for surveys of recent results. The theory of maximal metrics for Steklov eigenval-
ues has strong parallels with that of Laplacian eigenvalues on closed surfaces, as discussed
in Section 5.1 below.

As a corollary of Theorem 1.4 we obtain the following.

Theorem 1.6. Let � �M be a Lipschitz domain. Then

�1.�; g/Length.@�; g/ < ƒ1.M; Œg�/: (1.4)

Remark 1.7. In [19], the authors use homogenization techniques to show that by making
many small holes in M one can find a sequence of domains �n �M such that

lim
n!1

�k.�n; g/Length.@�n; g/ D N�k.M; g/:

This means that inequality (1.4) is in fact sharp.
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Remark 1.8. In fact, Theorem 1.6 holds under much weaker assumptions on �-namely,
we show that (1.4) holds whenever the trace map W 1;2.M; g/! L2.@�/ is compact.

Remark 1.9. Several months after the present paper was posted, a nonstrict version
of (1.4) was re-proved in [18] using a direct approximation argument. In particular, it
was observed there that the same argument yields an analogous inequality for any index
of the eigenvalue, i.e.

�k.�; g/Length.@�; g/ 6 ƒk.M; Œg�/ for all k > 1.

In Section 5.2 we discuss some applications of Theorem 1.6 and of the results of [19]
to optimization of Steklov eigenvalues. In particular, we obtain the following result
(see [14] for related results).

Theorem 1.10. Let �
;b be an orientable surface of genus 
 with b boundary compo-
nents. Define

†1.
; b/ D sup
g
�1.�
;b; g/Length.@�
;b; g/:

Then there are infinitely many 
 > 0 such that for each such 
 there are infinitely many
b > 1 for which the quantity †1.
; b/ is achieved by a smooth metric. In particular, for
such .
; b/ there exists a free boundary minimal branched immersion f W �
;b ! Bn
;b

by the first Steklov eigenfunctions.

Remark 1.11. We remark that Theorem 1.6, together with the results of [19], provide
precise asymptotic description of the areas 1

2
†1.
;b/ of the associated free boundary min-

imal surfaces as b !1, showing that they approach the supremum ƒ1.
/ of N�1.M; g/
over all metrics on the closed surface of genus 
 . Indeed, roughly a year after the appear-
ance of the present paper and [19], we proved in [34] that the free boundary minimal
surfaces in the Euclidean ball realizing †1.
; b/ converge (e.g. as varifolds) to closed
minimal surfaces in the sphere realizing ƒ1.
/ as b !1, with areas converging at the
rate ƒ1.
/ �†1.
; b/ � .log b/=b.

1.3. Min-max characterization of ƒ2.M; c/ and applications

Using similar techniques, we are also able to give a min-max characterization of the max-
imal second eigenvalueƒ2.M;c/. Inspired by Nadirashvili’s computation [45] ofƒ2.S2/
and the subsequent works [20, 21, 49], we introduce a 2.nC 1/-parameter min-max con-
struction for harmonic maps to Sn, whose associated min-max energy En;2 satisfies

En;2 > 1
2
ƒ2.M; c/: (1.5)

This energy is achieved by a harmonic map to Sn, possibly together with a bubble, as
described in the following theorem.

Theorem 1.12. Let n > 9. Then one of the following two situations occurs:

(a) There exists a harmonic map ˆn;2 such that

En;2 D E.ˆn;2/ and indE .ˆn;2/ 6 2.nC 1/:
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(b) There exists a harmonic map ˆn;2 such that

En;2 D E.ˆn;2/C 4� and indE .ˆn;2/ 6 nC 4:

Moreover, for n sufficiently large, we show that equality holds in (1.5).

Theorem 1.13 (Min-max characterization of ƒ2.M; c/). Given .M; c/ there exists N D
N.M; c/ such that

En;2 D
1
2
ƒ2.M; c/ for all n > N:

As an application, one obtains a new proof of the existence of N�2-maximal metrics
and the analogs of Theorems 1.4 and 1.6 for k D 2.

Theorem 1.14 (Regularity theorem for N�2-maximal measures). Let � be a Radon mea-
sure on .M; g/ such that the map

T W W 1;2.M; g/! L2.�/

is well-defined and compact. Then

N�2.M; Œg�; �/ 6 ƒ2.M; Œg�/: (1.6)

Suppose that � is N�2-maximal, i.e. (1.6) is an equality. Then there exists a harmonic map
ˆ W .M; g/! Sn such that

d� D
1

�2.M; Œg�; �/
jdˆj2g dvg D

1

�2.M; Œg�; �/
dvgˆ ;

where gˆ D jdˆj2g dvg , and the components of ˆ are the second eigenfunctions of the
Laplacian �gˆ . In particular, d� is smooth.

Remark 1.15. In the subsequent paper [33] with M. Nahon and I. Polterovich, we were
also able to use the min-max characterization to obtain stability results for metrics maxi-
mizing the second eigenvalue N�2.

Theorem 1.16. Let � �M be a Lipschitz domain. Then

�2.�; g/Length.@�; g/ < ƒ2.M; Œg�/: (1.7)

Remark 1.17. Once again the results of [19] imply that inequality (1.7) is sharp.

1.4. Ideas of the proofs

Theorem 1.2 is proved using variational techniques. Rather than applying variational
methods directly to the Dirichlet energy on the space W 1;2.M;Sn/, we introduce a min-
max procedure for a family of relaxed functionals E� of Ginzburg–Landau type on the
spaceW 1;2.M;RnC1/ (formed by combining the Dirichlet energy with a nonlinear poten-
tial penalizing deviation from Sn � RnC1). Since these perturbed functionals are C 2

functions on the Hilbert space W 1;2.M;RnC1/ satisfying a Palais–Smale condition, it
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is easy to produce critical points via standard min-max methods, which (by the results
of [41]) converge as � ! 0 to a harmonic Sn-valued map, possibly with some bubbles.
Moreover, for the maps achieving the first min-max energy En.M/, the sum of energy
indices of the map and the bubbles is at most nC 1. We then use index bounds [30] in
conjunction with the eigenvalue rigidity estimate of Petrides [48] to show that, in this
case, there are no bubbles.

Theorem 1.12 is proved in essentially the same way. The only difference is that, in
the last step, one cannot rule out the possibility that En;2 is achieved by a harmonic map
together with a single totally geodesic bubble. Note that such bubbles can indeed occur for
a N�2-maximal metric (see e.g. [31,49]) so one cannot expect to rule out bubbling behavior
for maps realizing En;2.

Theorems 1.3 and 1.13 are proved using the following proposition, which could be
of independent interest. We say that the map ‰n W M ! Sn is linearly full if its image
linearly spans RnC1.

Proposition 1.18. For any closed surface .M;g/ and anyE0 <1, there exists an integer
N D N.Œg�; E0/ 2 N such that if ‰ W M ! Sn is a linearly full harmonic map with
E.‰/ 6 E0, then n 6 N .

In particular, given a family of harmonic maps‰n WM!Sn into spheres of increasing
dimension satisfying a uniform energy bound, Proposition 1.18 tells us that ‰n must take
values in a totally geodesic subsphere of Sn for n sufficiently large. The proposition is
proved using a variation on the bubble convergence argument for harmonic maps. Namely,
we show that (along a subsequence) the Schrödinger operators �g � jd‰nj2g associated
to ‰n converge in some sense to an operator with discrete spectrum. In particular, if
the space of coordinate functions h‰n; vi (v 2 RnC1) were of unbounded dimension,
then the limiting operator would have an eigenvalue of infinite multiplicity, which would
contradict the discreteness of the spectrum.

1.5. Discussion

Recall that in [32,48,50] the authors prove the existence of a metric realizingƒk.M;c/. In
both proofs a sequence of metrics gm such that N�k.M;gm/! ƒk.M; c/ is carefully cho-
sen, and the convergence of the metrics gm asm!1 is studied. The key tool is the lower
bound on N�k.M; gm/, which gives control on how the sequence gm can degenerate. The
min-max characterization provides a different approach, where the sequence of metrics is
replaced by a sequence of harmonic maps ‰n, and the lower bound on the eigenvalue is
replaced by the upper bound on the energy index indE .‰n/, i.e. we use the index bound
to control possible degenerations of the sequence‰n. In the context of optimal eigenvalue
inequalities, the index bounds were first used in [14]. The method was further developed
by the first author in [30], where the index bounds are used to computeƒk.RP2/ for all k.
The guiding principle behind [30] and the present article is that the problem of optimal
eigenvalue inequalities is essentially equivalent to the problem of sharp upper bounds for
the energy index of harmonic maps. Indeed, the results of the present article show how
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index bounds lead to the existence of maximizers for optimal eigenvalue inequalities (with
the index bound indE .‰n/ � nC 1� 2n forcing the coordinate functions of ‰n to be
first eigenfunctions for a suitable Laplacian), whereas in [30] this existence is combined
with (almost) sharp energy index bounds in order to characterize the exact maximizers.

A natural question is whether the min-max characterization can be proved for
ƒk.M; c/ with k > 2. The answer is yes, provided one can produce a reasonably nat-
ural (nonempty) collection z�n;k of weakly continuous k.n C 1/-dimensional families
X .nC1/k 3 ˛ 7! F˛ 2 W

1;2.M;Sn/ such that

sup
˛
E.F˛/ > 1

2
ƒk.M; c/

for any F 2 z�n;k . Having that, the rest of the argument leading to the min-max char-
acterization carries over without significant changes. The applications would follow
immediately, including the regularity theorem for measures realizing ƒk.M; c/ and the
analogs of Theorems 1.6 and 1.16 for k > 2.

Remark 1.19. In practice, answering this question is equivalent to the problem of find-
ing a natural “nonlinear energy spectrum" for the Ginzburg–Landau functionals E� W
W 1;2.M 2;RnC1/ ! R for n � 3. Note that in the scalar-valued case n D 0, there is
a natural definition of nonlinear energy spectrum arising from the Z2 symmetry of the
functionals, which has recently been studied in detail by Gaspar and Guaraco [15, 16] in
connection with the volume spectrum for minimal hypersurfaces.

One should also note that any explicit construction of elements in z�n;k yields explicit
upper bounds for ƒk.M; c/, analogous in some sense to the classical Li–Yau bound
ƒ1.M; Œg�/ � 2Vc.M; Œg�/ for ƒ1 by the conformal volume. For example, in the course
of proving Theorem 1.12, we obtain the following upper bound for ƒ2.M; c/.

Proposition 1.20. For any conformal class Œg� on any surface M one has

ƒ2.M; Œg�/ 6 4Vc.M; Œg�/; (1.8)

where Vc.M; Œg�/ is the conformal volume of .M; Œg�/.

Remark 1.21. The fact that the higher conformal eigenvalues ƒk.MŒg�/ are bounded
purely in terms of the conformal volume was proved in [37], but the constants in [37] are
not explicit. At the same time, combining (1.8) with the bounds for the conformal volume
in [35, 37, 40] yields an explicit bound for ƒ2.M; Œg�/ in terms of the topology of M .
Similar bounds for ƒk.M; Œg�/ were recently proved in [32, Theorem 1.6].

Finally, it is worth mentioning that our take on Nadirashvili’s construction [45] forƒ2
differs from the ones in [20, 21, 49]. We combine ideas from all four papers and present a
version of the argument which appears to be simpler and completely avoids the issue of
uniqueness of a renormalizing point (see [39] for some recent results on renormalization).
Note that this issue recently came up in [20], where the authors extended Nadirashvili’s
construction to the Robin problem. The uniqueness of the renormalizing point turned out
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to be a rather delicate issue in that context, and the authors were not able to complete the
proof for a certain range of Robin parameters. We believe that our version of the argument
allows one to extend the range of Robin parameters for which the results of [20] hold; see
the discussion after Theorem 1 in [20].

1.6. Plan of the paper

Section 2 contains some preliminary material on eigenvalues of the Laplacian and their
connection to harmonic maps.

Section 3 is devoted to the proof of Theorem 1.3, the min-max characterization of
ƒ1.M; c/. In Sections 3.1 we define the min-max energies En. Theorem 1.2 is proved
in Section 3.2. We then prove Theorem 1.3 using Proposition 1.18. Finally, Section 3.4
contains the proof of the most technical result of the paper, Proposition 1.18.

In Section 4 we follow the same steps in order to show min-max characterization
of ƒ2.M; c/. In particular, Theorems 1.12 and 1.13 are proved in Sections 4.2 and 4.3
respectively.

Section 5 contains various applications of the min-max characterization, including
Theorems 1.6, 1.14 and 1.16.

Notation convention

In the following, we are primarily working on a fixed Riemannian surface .M; g/; as
a result, the mention of the metric g is often suppressed in the notation. For example,
integration over M is always with respect to the volume measure dvg unless stated oth-
erwise, the function spaces L2.M/ and W 1;2.M/ refer to L2.M; g/ and W 1;2.M; g/

respectively, etc.

2. Preliminaries

2.1. Harmonic maps to Sn

Recall that a map ˆ W .M; g/ ! .N; h/ between Riemannian manifolds is said to be
harmonic if it is a critical point of the energy functional

Eg.ˆ/ D
1

2

Z
M

jdˆj2g;h dvg :

When the domain is a surface .M; g/, the energy Eg.ˆ/ is conformally invariant with
respect to the metric g, and it follows that a map ˆ WM ! N which is harmonic for g is
also harmonic for any conformal metric Qg 2 Œg�. In the following we fix a conformal class
c D Œg� on a surface M and often suppress the metric in the notation of any conformally
invariant object.
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When the target .N; h/ is the unit sphere Sn � RnC1, a standard computation shows
that a map ˆ W .M; g/! Sn is harmonic if and only if it satisfies the equation

�gˆ D jdˆj
2
gˆ: (2.1)

In particular, letting gˆ D 1
2
jdˆj2gg, then using the conformal covariance of �g , equa-

tion (2.1) becomes
�gˆˆ D 2ˆ; (2.2)

i.e. the components of ˆ are eigenfunctions of �gˆ with eigenvalue 2.

Remark 2.1. Note that jdˆj2g can vanish at isolated points. At such points it is said
that gˆ has an isolated conical singularity. These are fairly mild singularities, and the
eigenvalues can be defined in the same way using the Rayleigh quotient; see Remark 2.11
below or [8].

Definition 2.2. For a harmonic map ˆ WM ! Sn, the spectral index indS .ˆ/ is defined
to be the minimal k 2 N such that �k.M; gˆ/ D 2. Equivalently, indS .ˆ/ is the index of
the quadratic form

QS .u/ D

Z
.jduj2g � jdˆj

2
gu

2/ dvg

over u 2 W 1;2.M;R/ for some (any) metric g 2 c.

Definition 2.3. Likewise, the spectral nullity nulS .ˆ/ is the multiplicity of eigenvalue 2
for the metric gˆ. Alternatively, nulS .ˆ/ is the nullity of the quadratic formQS for some
(any) metric g 2 c.

Note that with this definition one always has

N�indS .ˆ/.M; gˆ/ D 2E.ˆ/:

With this notation in place, we can now give a more precise statement of Theorem 1.1.

Theorem 2.4 (Nadirashvili [44], El Soufi–Ilias [12], see also [13]). Suppose that h 2 c
is such that N�k.M; h/ D ƒk.M; c/. Then there exists a harmonic map ˆ WM ! Sn such
that indS .ˆ/ D k and h D ˛gˆ, where ˛ > 0 is a constant.

The existence of a metric h 2 c realizing the supremum N�k.M; h/ D ƒk.M; c/ is not
always guaranteed. For example, there is no maximal metric for the second eigenvalue on
the sphere; see [31, 45, 49]. One obvious obstruction is provided in [9], where it is shown
that given k one can glue a sphere to any metric g onM , without changing the conformal
class, to obtain a metric g0 2 Œg� satisfying N�k.M; g0/ D N�k�1.M; g/C 8� . In particular,
setting ƒ0.M; c/ D 0, one has

ƒk.M; c/ > ƒk�1.M; c/C 8�; (2.3)

where the case of equality suggests the appearance of spherical ‘bubbles’ along a maxi-
mizing sequence. Fortunately, it turns out that equality in (2.3) is the only obstruction to
the existence of a maximizing metric.
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Theorem 2.5 (Petrides [48, 50], K.–Nadirashvili–Penskoi–Polterovich [31, 32]). If
inequality (2.3) is strict, then there exists h 2 c such that N�k.M; h/ D ƒk.M; c/. In par-
ticular, h D ˛gˆ for some harmonic map ˆ W .M; g/! Sn of spectral index k.

In fact, for k D 1 one can say more.

Theorem 2.6 (Petrides [48]). Suppose thatM is not a 2-dimensional sphere S2. Then for
any conformal class c on M one has

ƒ1.M; c/ > 8�;

i.e. inequality (2.3) is strict.

One of the byproducts of the min-max characterization is an alternative proof of The-
orem 2.5 for k D 1; 2.

2.2. Energy index

Given a harmonic map ˆ, the energy index indE .ˆ/ refers to the Morse index of ˆ as a
critical point of the energy functional. More concretely, we have the following definition.

Definition 2.7. Letˆ WM ! Sn � RnC1 be a harmonic map. Then for any metric g 2 c,
the energy index indE .ˆ/ is given by the index of the quadratic form

QE .V / D

Z
.jdV j2g � jdˆj

2
g jV j

2/ dvg

over sections of the pullback bundle

�.ˆ�.TSn// Š ¹V WM ! RnC1 j V.x/ ? ˆ.x/ for each x 2M º:

The first author has shown in [30] that the energy index and spectral index are closely
related. For the purposes of the present article, we only need the following two results
from [30].

Proposition 2.8. Letˆ WM ! Sn be a harmonic map and let in;m W Sn! Sm be a totally
geodesic embedding, m > n. Then

indE .in;m ıˆ/ D indE .ˆ/C .m � n/ indS .ˆ/:

Proposition 2.9. Let ˆ W S2 ! Sn be a nonconstant harmonic map. Suppose that ˆ is
not a totally geodesic embedding, i.e. it is not an embedding into an equatorial S2 � Sn.
Then

indE .ˆ/ >

´
nC 1 if n > 4;

2.nC 1/ if n > 8.

Proof. The proof is an easy application of results in [30]. Namely, in [30] it is shown that

indE .ˆ/ > .n � 2/.2d � Œ
p
8d C 1�odd C 2/;
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where d D E.ˆ/
4�

is the degree ofˆ and Œx�odd denotes the smallest odd number not exceed-
ing x. By a result of Barbosa [2], d 2 N. We claim that for d > 1 one has

2d � Œ
p
8d C 1�odd C 2 > 3:

Indeed, if d > 4 then 8d C 1 < 16.d � 3=2/ so that

2d � Œ
p
8d C 1�odd � 1 > 2d � 4

p
d � 3=2 � 1 D 2.

p
d � 3=2 � 1/2 > 0:

If d D 2; 3, then an explicit computation shows that 2d � Œ
p
8d C 1�odd C 2 equals 3.

At the same time, d D 1 iff ˆ is a totally geodesic embedding S2 ! Sn. Therefore,
if ˆ is not totally geodesic, then

indE .ˆ/ > 3.n � 2/:

The proof is completed by noting that 3.n� 2/ > nC 1 for n> 4 and 3.n� 2/ > 2.nC 1/
for n > 8.

Finally, we recall the following result of El Soufi.

Proposition 2.10 (El Soufi [11]). Letˆ WM ! Sn be a nonconstant harmonic map. Then

indE .ˆ/ > n � 2:

2.3. Eigenvalues of Radon measures

In the paper [36], Kokarev defines a natural analog �k.M; c; �/ of Laplacian eigenvalues
associated with a surfaceM , a conformal class c, and a Radon measure � onM . If g 2 c,
then the “eigenvalue” �k.M; c; �/ is defined via the Rayleigh quotient, by

�k.M; c; �/ WD inf
FkC1

sup
u2FkC1n¹0º

R
M
jruj2g dvgR
M
u2 d�

; (2.4)

where the infimum is taken over all .kC 1/-dimensional subspaces FkC1 � C1.M/ that
remain .k C 1/-dimensional in L2.M;�/.

Note that for the standard volume measure � D dvg , the associated eigenvalues
�k.M; Œg�; dvg/D �k.M;g/ coincide with the classical Laplacian eigenvalues. However,
there are several other classes of measures � whose associated eigenvalues �k.M; c; �/
are of geometric interest; in Section 5.1, for example, we will be particularly interested in
the case when � is the length measure � D H1j� associated to a closed curve � in M .
This definition also makes sense ifM is replaced by a surface�with nonempty boundary.
In this case �k.�; Œg�; dvg/ are the Neumann eigenvalues of � and �k.�; Œg�;H1j@�/

are the Steklov eigenvalues.

Remark 2.11. Consider a degenerate conformal metric hD fg, where f 2 C1.M/ sat-
isfies f > 0 outside of possibly finitely many isolated zeroes, as in Remark 2.1. Then we
can take the quantities �k.M; Œg�; f dvg/ given by (2.4) as the definition of the Laplacian
eigenvalues for the degenerate metric h; see [36, Example 1.1].
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In [36] Kokarev studied extremal properties of the eigenvalues �k.M; c; �/ over the
space of Radon probability measures, and was able to prove partial regularity results for
maximizers under a certain mild regularity assumption on the measures �. Below we
follow the exposition in [18, Section 3]. Let L be a completion of C1.M/ with respect
to the norm

kuk2L D

Z
u2 d�C

Z
jduj2g dvg D kuk

2
L2.M;�/

C kruk2
L2.M;g/

:

Definition 2.12. We call a Radon measure � admissible if the identity map on C1.M/

extends to a compact map T W W 1;2.M; g/! L2.M;�/.

Proposition 2.13. Let � be an admissible measure. Then the identity map on C1.M/

extends to a bounded isomorphism between L and W 1;2.M; g/. Furthermore, one has

0 D �0.M; Œg�; �/ < �1.M; Œg�; �/ 6 �2.M; Œg�; �/ 6 � � � % 1I

i.e. the first eigenvalue is positive, the multiplicity of each eigenvalue is finite, and the
eigenvalues tend to C1. Moreover, each eigenvalue �i .M; Œg�; �/ has an associated
eigenfunction �i 2 L satisfyingZ

hr�i ;rui dvg D �i .M; Œg�; �/

Z
�iud� (2.5)

for all u 2 L.

Proof. See [18, Section 3] for the proof.

Proposition 2.14. Let� be an absolutely continuous Radon measure d�D f dvg , where
f 2 Lp.M; g/, f > 0, p > 1. Then � is admissible.

Proof. One can find a proof in [36, Example 2.1]. We provide a simpler proof for com-
pleteness. For any u 2 C1.M/, an easy application of Hölder’s inequality gives

kuk2
L2.M;�/

D

Z
u2f dvg 6 kuk2

L2q.M;g/
kf kLp.M;g/;

where q is the Hölder conjugate of p. Hence, the identity map on C1.M/ extends
to a bounded map L2q.M; g/ ! L2.M; �/, and since the embedding W 1;2.M; g/ !

L2q.M; g/ is compact by Rellich’s theorem, the admissibility of � follows.

2.4. Conformal volume

Our min-max construction is inspired in large part by the notion of conformal volume
introduced by P. Li and S.-T. Yau [40], which we briefly review. Recall that the group
of conformal automorphisms of Sn modulo O.n C 1/ is homeomorphic to the open
ball BnC1. To each a 2 BnC1 there corresponds a conformal automorphism Ga given
by

Ga.x/ D
1 � jaj2

jx C aj2
.x C a/C a;
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Let � WM ! Sn be a conformal immersion. Then one successively defines

Vc.n; �/ D sup
a
E.Ga ı �/ D sup

a
Area.Ga ı �/;

Vc.n;M; Œg�/ D inf
�
Vc.n; �/;

Vc.M; Œg�/ D lim
n!1

Vc.n;M; Œg�/ D inf
n
Vc.n;M; Œg�/:

One of the applications of conformal volume obtained in [40] is the following.

Proposition 2.15 (Li–Yau [40]). One has

ƒ1.M; Œg�/ 6 2Vc.M; Œg�/ <1:

Remark 2.16. Li and Yau obtained an upper bound for the conformal volume for
orientable surfaces; see [35, 37] for the nonorientable case. Notably, the quantity
Vc.n; M; Œg�/ is also bounded above by the Willmore energy of conformal immersions
.M; g/! Sn, making the conformal volume an important tool in the study of the Will-
more functional, in addition to their role as a source of eigenvalue estimates.

Our definition of the min-max energy En.M; Œg�/ below may be regarded as a maximal
possible relaxation of the notion of Vc.n;M; Œg�/ so that the proof of Proposition 2.15 still
holds.

3. The min-max construction for the first eigenvalue

When producing harmonic maps M ! N via variational methods, instead of working
directly with the Dirichlet energy on the spaceW 1;2.M;N /, it is often simpler to first pro-
duce critical points for a sequence of perturbed functionals on different function spaces
(with better regularity and compactness properties), which then limit to a harmonic map
up to bubbling phenomena. The first example of this approach comes from the work
of Sacks and Uhlenbeck [53], who produced harmonic maps from closed surfaces into
higher-dimensional targets by applying variational methods to a family of perturbed func-
tionals (essentially theLp norm of the gradient) on the spacesW 1;p.M;N /� C 0.M;N /

for p > 2.
Since the families of maps to which we wish to apply min-max methods are not

continuous in the C 0 or W 1;2 topologies, the classical Sacks–Uhlenbeck perturbation—
which penalizes bubbling behavior with infinite energy—is not quite suitable for our
needs. Instead, we employ a relaxation of the harmonic map problem via functionals
of “Ginzburg–Landau” type, building on the analysis of [5, 6, 41].

More precisely, for small positive � > 0, we consider the functionals

E� W W
1;2.M;RnC1/! R

defined on vector-valued maps u WM ! RnC1 by

E�.u/ WD

Z
M

�
1

2
jduj2 C

1

4�2
.1 � juj2/2

�
:
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Note that for a map u W M ! Sn � RnC1 taking values in the unit sphere, the func-
tional E� recovers the Dirichlet energy E�.u/ D E.u/ D 1

2

R
M
jduj2, while for general

maps to RnC1, the nonlinear potential term .1�juj2/2

4�2
penalizes deviation from Sn, with

increasing severity as � ! 0.
In the following proposition, we note that the functionalsE� satisfy all requisite prop-

erties for the construction of critical points via classical min-max methods.

Proposition 3.1. The functionals E� are C 2 functionals on W 1;2.M;RnC1/, with first
and second derivatives given by

hE 0�.u/; vi D

Z
M

�
hdu; dvi � ��2.1 � juj2/hu; vi

�
;

hE 00� .u/; vi D

Z
M

�
�gv C 2�

�2
hu; viu � ��2.1 � juj2/v

�
:

Moreover, the second derivative E 00� .u/ defines a Fredholm operator at critical points u
of E� , and the functionals E� satisfy the standard Palais–Smale compactness condition:
for any sequence uj 2 W 1;2.M;RnC1/ such that

sup
j

E�.uj / <1 and lim
j!1

kE 0�.uj /k.W 1;2/� D 0;

there exists a subsequence ujk that converges strongly in W 1;2.M;RnC1/.

The proof of these properties is a standard exercise; for details, the reader may consult,
e.g., [24, Section 4] and [55, Section 7], and references therein.

3.1. Definition and estimates for the first min-max energies

Given a closed Riemannian surface .M; g/ and n � 2, we will denote by �n.M/ the
collection of all families

F 2 C 0. xBnC1; W 1;2.M;RnC1// such that Fa � a for a 2 Sn:

Then, for � > 0, we define the min-max energy

En;�.M; g/ WD inf
F 2�n.M/

max
a2 xBnC1

E�.Fa/: (3.1)

Noting that the energies En;� are decreasing functions of �, we also define the limit

En.M; g/ WD sup
�>0

En;�.M/ D lim
�!0

En;�.M/: (3.2)

Observe that, while the perturbed min-max energies En;� are not conformally invari-
ant, the limiting energy En.M; g/ is independent of the conformal representative g 2 Œg�.
This follows from the simple observation that, for any fixed metrics g; Qg 2 Œg�, we have
dvg � C

2dv Qg for some positive constant C D C.g; Qg/, and since the Dirichlet energy is
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conformally invariant, it follows from the definition of the functionals E� that

E�.u; g/ � E�=C .u; Qg/ for all u 2 W 1;2.M;RnC1/:

In particular, we have En;�.M; g/ � En;�=C .M; Qg/, and taking the limit as � ! 0 gives

En.M; g/ � En.M; Qg/

for arbitrary conformal metrics g; Qg 2 Œg�. Henceforth we write

En.M; Œg�/ WD En.M; g/:

Remark 3.2. In the scalar-valued (n D 0) and complex-valued (n D 1) cases, the
min-max energies En;� and the associated critical points have previously been studied
in [24, 56]. Though formally identical, these constructions are qualitatively quite different
from the case n � 2 considered here, with energy blowing up as � ! 0, and associated
critical points exhibiting energy concentration along (generalized) minimal submanifolds
in M of codimension 1 and 2, respectively.

In the following proposition, we show that the limiting min-max energies En.M; Œg�/

are finite (for n� 2), and in particular are bounded above by the Li–Yau conformal volume
Vc.n;M; Œg�/.

Proposition 3.3. For each n � 2, we have

En.M; Œg�/ � Vc.n;M; Œg�/ <1:

Proof. As in Section 2.4, let � W .M 2; g/! Sn be a branched conformal immersion, and
for a 2 xBnC1, let Ga W Sn ! Sn be the conformal map

Ga.x/ D
1 � jaj2

jx C aj2
.x C a/C a:

Denote by Fa WM ! Sn by composition

Fa WD Ga ı �: (3.3)

The maximum Dirichlet energy of Fa over a 2 xBnC1 is then given by

Vc.n; �/ D sup
jaj�1

E.Fa/ D sup
jaj�1

Area.Fa.M//: (3.4)

The family a 7! Fa is only continuous with respect to the weak topology onW 1;2.M;Sn/
as jaj ! 1, but we can mollify it to produce a continuous family in the strong topology
on W 1;2.M;RnC1/.

To this end, denote by Kt .x; y/ the heat kernel on M , and for t > 0, consider the
mollifying map

ˆt W L1.M;RnC1/! C1.M;RnC1/
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given by

.ˆtF /.x/ WD

Z
M

F.y/Kt .x; y/ dy:

Note that ˆt fixes the constant maps, and by the smoothness of Kt , ˆt is continuous as a
map from L1 to C 1, since for any maps F1; F2 2 L1.M;RnC1/,

jd.ˆtF1/.x/ � d.ˆ
tF2/.x/j D

ˇ̌̌̌Z
M

.F1.y/ � F2.y//dxKt .x; y/ dy

ˇ̌̌̌
� jKt jC1kF1 � F2kL1 :

In particular, since the family BnC1 3 a 7! Fa given by (3.3) is continuous as a map
into L1.M;RnC1/, it follows that the mollified family

F ta.x/ WD .ˆ
tFa/.x/ D

Z
M

Fa.y/Kt .x; y/ dy

defines a continuous family inW 1;2.M;RnC1/, which belongs moreover to �n.M/, since

.ˆtFa/ � Fa � a for a 2 Sn:

Moreover, since t 7! F ta solves the heat equation @F ta
@t
D �F ta with initial data F 0a D Fa,

it follows immediately thatZ
M

1

2
jdF ta j

2
�

Z
M

1

2
jdFaj

2
� Vc.n; �/ (3.5)

for all t � 0.
Next, we claim that

ı.t/ WD max
a2 xBnC1

Z
M

.1 � jF ta j
2/2 ! 0 as t ! 0: (3.6)

Indeed, if this were false, then we could find sequences tj ! 0 and aj 2 xBnC1 such that

lim
j!1

Z
M

.1 � jF
tj
aj j

2/2 > 0:

But, passing to a subsequence, we also have aj ! a for some a 2 xBnC1, and it follows
readily from the definition of the families F ta that F tjaj ! Fa in Lp as j !1 for any
p 2 Œ1;1/. Since jFaj � 1 pointwise, it then follows that

lim
j!1

Z
M

.1 � jF
tj
aj j

2/2 D 0

after all, confirming the claim (3.6).
For any fixed � > 0, it now follows from the observations above that

En;�.M; g/ � lim
t!0

max
jaj�1

E�.F
t
a/ � Vc.n; �/; (3.7)
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as desired. Taking the infimum over all branched conformal immersions � WM ! Sn, we
obtain the upper bound

En;�.M; g/ � Vc.n;M; Œg�/:

Finally, taking the supremum over all � > 0 gives

En.M; Œg�/ � Vc.n;M; Œg�/;

as desired.

Next, we come to the key lower bound for the min-max energies En.M; c/, showing
that they dominate the normalized first Laplacian eigenvalue of any conformal metric
g 2 c. Later, in Theorem 5.1, we obtain a strengthened version of the following inequality,
showing that 2En provides an upper bound for the first eigenvalue for a more general class
of probability measures.

Proposition 3.4. If Area.M; g/ D 1, then

2En;�.M; g/ � .1 � 2�E
1=2
n;� /�1.M; g/: (3.8)

In particular,
2En.M; Œg�/ � ƒ1.M; Œg�/:

Proof. The proof follows from a standard trick, essentially equivalent to that used by Li–
Yau [40]. Given F 2 �n.M/, consider the continuous map f W xBnC1 ! RnC1 given by
taking the average

f .a/ D

Z
M

Fa:

By definition of �n.M/, we then see that f j@BnC1 D Id W Sn ! Sn is homotopically
nontrivial on the boundary sphere @BnC1, and it follows thatZ

M

Fa D 0 2 RnC1 (3.9)

for some a 2 BnC1. By the variational characterization of the first eigenvalue �1.M/, we
then have

�1.M/

Z
M

jFaj
2
�

Z
M

jdFaj
2
� 2 max

a2 xBnC1
E�.Fa/ (3.10)

for a 2 BnC1 satisfying (3.9) holds. Moreover, it follows from the definition of E� thatZ
M

jFaj
2
� 1 �

Z
M

j1 � jFaj
2
j � 1 � 2�E�.Fa/

1=2

� 1 � 2� max
a2 xBnC1

E�.Fa/
1=2:

Putting this together with (3.10), we arrive at the desired estimate by choosing families
F 2 �n.M/ such that maxa E�.Fa/ is arbitrarily close to En;� . The estimate

2En.M; Œg�/ � ƒ1.M; Œg�/

then follows by taking � ! 0, and invoking the conformal invariance of En.M; Œg�/.
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3.2. Existence and properties of the min-max harmonic maps

Since the functionals E� satisfy the technical requirements laid out in Proposition 3.1,
and the collection �n.M/ of .nC 1/-parameter families in W 1;2.M;RnC1/ is evidently
preserved by the gradient flow of E� , we can appeal to standard results in critical point
theory (see, e.g., [17, Chapter 10], in particular Corollary 10.16) to arrive at the following
existence result for each � > 0.

Proposition 3.5. There exists a critical point ‰� W .M; g/! RnC1 for E� of energy

E�.‰�/ D En;�; (3.11)

satisfying the Morse index bound

indE� .‰�/ � nC 1: (3.12)

Our goal now is to deduce the existence of a harmonic map ‰ WM ! Sn, of energy-
index indE .‰/� nC 1, given as the strongW 1;2-limit of the critical points constructed in
Proposition 3.5. To this end, we introduce the following technical lemma, combining the
bubbling analysis of [41] with a lower semicontinuity result for the Morse index, modeled
on analogous results (cf. [43]) for the Sacks–Uhlenbeck perturbation.

Lemma 3.6. Let ¹‰�º be a family of critical points ‰� WM ! RnC1 for the energy E� ,
satisfying

ƒ WD lim
�!0

E�.‰�/ <1 (3.13)

and the Morse index bound
indE� .‰�/ � m: (3.14)

Then for a subsequence �j ! 0, there exists a collection ¹a1; : : : ; a`º � M of points,
a harmonic map ‰ WM ! Sn, and harmonic maps �1; : : : ; �k W S2 ! Sn such that

‰�j ! ‰ in C 2loc.M n ¹a1; : : : ; a`º/ and weakly in W 1;2.M;RnC1/;

for which we have the energy identity

ƒ D E.‰/C

kX
jD1

E.�j / (3.15)

and the energy-index bound

indE .‰/C
kX

jD1

indE .�j / � m: (3.16)

Proof. The existence of the limiting harmonic map‰ WM!Sn and bubbles �j WS2!Sn

satisfying the energy identity (3.15) is contained already in the work of Lin and Wang [41,
Theorem A], so the only point that requires comment is the statement (3.16) concerning
lower semicontinuity of the index along the bubble tree.
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Most of the details of the proof of (3.16) can be borrowed directly from the proof
of the identical statement for the Sacks–Uhlenbeck perturbation of the harmonic mapping
problem (see, e.g., [43, Theorem 6.2]). In the interest of completeness, we review the main
technical ingredient (restricting variational vector fields to the complement of bubbling
regions) in our setting, proving the following claim.

Claim 3.7. Given a family of maps ‰� WM 2! RnC1, a collection ¹a1; : : : ; akº �M of
points, and a vanishing sequence of radii r� ! 0 such that

�2�‰� D .1 � j‰�j
2/‰� on M n

k[
jD1

Dr� .aj /; (3.17)

suppose that there exists a harmonic map ‰ W M ! Sn such that ‰� ! ‰ in
C 2loc.M n ¹a1; : : : ; akº/ as �! 0. Then theE�-index indE� .‰�/ of‰� with respect to vari-
ations supported in M n

Sk
jD1Dr� .aj / is at least as large as the energy-index indE .‰/

of ‰ on M , for � > 0 sufficiently small.

Once this claim is in place, we can argue exactly as in [43], applying the claim at each
node in the bubble tree for the family ¹‰�º, to complete the proof of (3.16).

To prove the claim, recall that the second variation QE .‰/ of energy about the har-
monic map ‰ is given by

QE .‰/.V; V / WD

Z
M

.jdV j2 � jd‰j2jV j2/

for maps V WM ! RnC1 with h‰;V i � 0 on M . Likewise, as we have seen in Proposi-
tion 3.1, for an RnC1-valued map V supported in the domain of ‰� , the second variation
QE� .‰�/ of E� at ‰� is given by

QE� .‰�/.V; V / D

Z
M

�
jdV j2 C 2��2h‰�; V i

2
� ��2.1 � j‰�j

2/jV j2
�
:

Let p D indE .‰/; then there exists a p-dimensional subspace V � �.‰�.TSn// and
ˇ > 0 such that

QE .‰/.V; V / < �ˇkV k
2
L2

for every 0 ¤ V 2 V : (3.18)

As in [43], we employ logarithmic cutoff functions to perturb this subspace V to a new
subspace zV of variations vanishing on the disks Dr .a1/ [ � � � [Dr .ak/ for r > 0 suffi-
ciently small, such that

QE .‰/.V; V / < �
ˇ

2
kV k2

L2
for every 0 ¤ V 2 zV : (3.19)

Specifically, for ı > 0, define �ı W R! R by

�ı.t/ D 2 �
log t
log ı

for t 2 Œı2; ı�;
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while �ı.t/ D 0 for t � ı2 and �ı.t/ D 1 for t � ı. Then define the cutoff functions
 ı 2 Lipc.M n

Sk
jD1Dı2.aj // by

 ı.x/ WD min
1�j�k

�ı.dist.x; aj //;

and observe as in [43] (or [7]) thatZ
jd ı j

2
�

C

jlog ıj
! 0

as ı ! 0. As a consequence, it is not hard to see that

max ¹QE .‰/. ıV; ıV / j V 2 V ; kV kL2 D 1º ! max
0¤V 2V

QE .‰/.V; V /

kV k2
L2

< �ˇ

as ı ! 0. In particular, since linear independence is an open condition, we conclude that
the space zV D ¹ ıV j V 2 Vº is a p-dimensional subspace of �.‰�.TSn//, supported
away from ¹a1; : : : ; akº, and satisfying (3.19), for ı > 0 sufficiently small.

We have now shown that there exists r0 > 0 and a p-dimensional space V �

�.‰�.TSn// of Lipschitz variation fields such that, for every V 2 V ,

max
0¤v2V

QE .‰/.V; V /

kV k2
L2

< �ˇ=2 < 0 (3.20)

and

supp.V / �M n
k[

jD1

Dr0.aj /: (3.21)

Now, by assumption, we know that‰� ! ‰ in C 2.M n
Sk
jD1Dr0.aj /;R

nC1/ as �! 0.
For � > 0 and V 2 V , we can therefore define

V� WD V � j‰�j
�2
hV;‰�i‰�;

and observe that V� ! V in Lip.M;RnC1/ as �! 0. In particular, the space V� WD ¹V� j

V 2 Vº remains p-dimensional for � > 0 sufficiently small, and since V� ?‰� pointwise,
direct computation gives

QE� .‰�/.V�; V�/ D

Z
M

.jdV�j
2
� ��2.1 � j‰�j

2/jV�j
2/

(by (3.17)) D

Z
M

.jdV�j
2
� j‰�j

�2
h‰�; �‰�ijV�j

2/

! QE .‰/.V; V /

as �! 0, where in the last line we have used the Lipschitz convergence V� ! V , the C 2

convergence ‰� ! ‰ away from
Sk
jD1Dr0.aj /, and the harmonic map equation

�‰ D jd‰j2‰:
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Since the convergenceQE� .‰�/.V�; V�/!QE .‰/.V; V / is uniform on the compact
set ¹V 2 V j kV kL2 D 1º, it follows that, for � > 0 sufficiently small, V� defines a p-
dimensional space of variations, supported away from

Sk
jD1Dr0.aj /, on whichQE� .‰�/

is negative definite. This completes the proof of the claim, and therefore of Lemma 3.6.

By combining the existence result of Proposition 3.5 with the compactness analysis of
Lemma 3.6, we can deduce the existence of a harmonic map and a collection of bubbles
which together realize the min-max energy En. For general min-max constructions of this
type, we cannot improve on this conclusion; however, for this special .nC 1/-parameter
construction associated to the first eigenvalue, we can appeal to geometric information to
rule out the occurrence of bubbles, arriving at the following existence theorem.

Theorem 3.8. Let .M; g/ be a surface of positive genus, and let n > 5. Then there exists
a harmonic map ‰n WM ! Sn of energy

1
2
ƒ1.M; Œg�/ � E.‰n/ D En.M; g/ � Vc.n;M; Œg�/ (3.22)

and index
indE .‰n/ � nC 1: (3.23)

Proof. Combining the results of Proposition 3.5 and Lemma 3.6, for n � 2, we know that
there exist harmonic maps ‰n WM ! Sn and �1; : : : ; �k W S2 ! Sn such that

En D E.‰n/C

kX
jD1

E.�j / (3.24)

and

nC 1 � indE .‰n/C
kX

jD1

indE .�j /: (3.25)

The lower and upper bounds on En in (3.22) are an immediate consequence of Proposi-
tions 3.4 and 3.3, respectively.

Since nC 1 < 2.n � 2/ for n > 5, Proposition 2.10 implies that one of the following
two possibilities must hold: either there are no nontrivial bubbles �j , or there is exactly
one bubble �1, and the map ‰ is constant.

Assume the latter. Then, by Propostion 2.9, �1 has to be an equatorial bubble, and
by (3.24), one has En D 4� . At the same time, combining (3.22) with Theorem 2.6 one
has

4� < 1
2
ƒ1.M; Œg�/ � En.M; Œg�/ D 4�;

a contradiction. Therefore, there are no bubbles and the theorem is proved.

Remark 3.9. In lower dimensions 3 � n � 5, we may also rule out bubbles to arrive at
the same conclusion whenever we have the energy bound En.M; Œg�/ < 8� .
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3.3. Stabilization

To complete the proof of Theorem 1.3, our goal now is to show that the inequality
En.M; c/ �

1
2
ƒ1.M; c/ becomes an equality for n sufficiently large; in particular, we

wish to show that the maps produced by Theorem 3.8 stabilize in an appropriate sense as
n!1. As a first step, we observe in the following proposition that the energies En are
nonincreasing in n.

Proposition 3.10. For every n � 2, En.M; Œg�/ � EnC1.M; Œg�/.

Proof. Let BnC1 � BnC2 be defined by xnC2 D 0. Then

BnC2 D ¹.x0; xnC2/ j jx
0
j
2
C jxnC2j

2 6 1º:

If F 2 �n.M/, then one constructs NF 2 �nC1.M/ by the formula

NF.x0;xnC2/ D .

q
1 � x2nC2 Fx0=

q
1�x2

nC2

; xnC2/

for xnC2 ¤˙1, and NF.0;˙1/ D .0;˙1/. Let ˛ D
q
1 � x2nC2 < 1. Then it easy to see that

NF 2 �nC1.M/ and

E�. NF.x0;xnC2// D

Z
M

�
˛2

2
jdFx0=˛j

2
C
˛4

4�2
.1 � jFx0=˛j

2/2
�

6 ˛2E�.Fx0=˛/:

Now, let Cn be the set of all harmonic maps ‰n W .M; g/! Sn satisfying

indE .‰n/ 6 nC 1

and
E.‰n/ D En.M; Œg�/:

Theorem 3.8 tells us that Cn ¤ ¿ for n > 5. To prove Theorem 1.3, our first observation
is that if there exists ‰n 2 Cn such that indS .‰n/ D 1, then the inequality

ƒ1.M; Œg�/ 6 2En.M; Œg�/ (3.26)

becomes an equality. Indeed, if indS .‰n/ D 1, then

ƒ1.M; Œg�/ 6 2En.M; Œg�/ D �1.M; g‰n/Area.M; g‰n/ 6 ƒ1.M; Œg�/:

In particular, Em.M; Œg�/ D En.M; Œg�/ for all m > n. Thus Theorem 1.3 follows from
the following proposition.

Proposition 3.11. There exist n 2 N and ‰ 2 Cn such that indS .‰/ D 1.

Proof. We need the following theorem, which is a slightly stronger version of Propos-
tion 1.18 in the introduction.
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Theorem 3.12. Let ‰n W .M; g/! SNn be a collection of harmonic maps to spheres of
varying dimensions. If E.‰n/ is uniformly bounded, then nulS .‰n/ is uniformly bounded
as well.

Indeed, since the components of any harmonic map ‰ are eigenfunctions of �gˆ
with eigenvalue 2, a uniform bound on nulS .‰/ implies a uniform bound on the number
of linearly independent components of ‰. Assuming ‰ is linearly full, this results in an
upper bound on the dimension of the target sphere as in Proposition 1.18.

We postpone the proof of Theorem 3.12 until Section 3.4. To prove Proposition 3.11,
we apply Theorem 3.12 to sequences ¹‰nº with ‰n 2 Cn to conclude that there exists
N.M; Œg�/ 2 N such that

nulS .‰/ 6 N C 1 for all ‰ 2
[
n2N

Cn:

It follows that for anym > N and any ‰m 2 Cm the image ‰m lies in the N -dimensional
totally geodesic subsphere of Sm. To obtain a contradiction, assume now that the conclu-
sion of Proposition 3.11 is not valid, i.e. indS .‰m/ > 1. Then by Proposition 2.8,

indE .‰m/ > .m �N/ indS .‰m/ > 2.m �N/ > mC 1

oncem> 2N C 1. As a result, form> 2N C 1 the space Cm is empty, which contradicts
Theorem 3.8.

3.4. Proof of Theorem 3.12

The proof is based on an analysis of the limiting behavior of the energy densities jd‰nj2g
of the maps ‰n, modeled on the bubble tree convergence for harmonic maps to a fixed
target (cf. [47]). The key difference in our case is that the target spaces SNn of ‰n vary
with n, so one cannot, a priori, expect a compactness result for the maps themselves.
Nevertheless, we are able to establish convergence of energy densities in an appropriate
“bubble” sense, described in Lemma 3.13 below. In what follows, we let

Nm WDM t S21 t � � � t S2m

denote the disjoint union of M with m copies of the unit sphere. We endow Nm with a
metric equal to g on M and the standard metric gS2 on each sphere component.

Lemma 3.13. Let‰n W .M;g/! SNn be a sequence of harmonic maps withE.‰n/�K.
After passing to a subsequence, there exists m 2 ¹0º [ N, a finite collection of points
p1; : : : ; pk 2 Nm, and a sequence of neighborhoods

¹p1; : : : ; pkº � Bn � Nm

converging in the Hausdorff sense to ¹p1; : : : ; pkº, such that on the complement of Bn,
there exist surjective conformal maps

ˆn W Nm nBn !M
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whose restriction to each componentM nBn;S21 nBn; : : : ;S2m nBn is a diffeomorphism
onto its image. Moreover, these images have disjoint interiors, and there exist p > 1 and
� 2 Lp.Nm/ such that

�n WD jd.‰n ıˆn/j
21NmnBn ! � in Lp.Nm/:

The key point in Lemma 3.13 is the Lp convergence of the conformally rescaled
energy densities to a limit density � 2 Lp.Nm/. In what follows, we will often write
�k.M;�/ WD �k.M; Œg�; �dvg/ for � 2 L1.M/. With Lemma 3.13 in place, we can estab-
lish the following lower-semicontinuity result for the eigenvalues �k.M; jd‰nj2/ of the
energy density measures, from which Theorem 3.12 will follow.

Proposition 3.14. In the setting of Lemma 3.13, we have

lim inf
n!1

�k.M; jd‰nj
2/ � �k.Nm; �/:

Proof. To begin, consider a normalized collection 1p
2E.‰n/

D �n;0; : : : ; �n;k 2 C
1.M/

of first k C 1 eigenfunctions for the measure jd‰nj2gdvg on M , satisfyingZ
M

hd�n;i ; d�n;j i dvg D �i .M; jd‰nj
2/

Z
M

�n;i�n;j jd‰nj
2
g dvg

D �i .M; jd‰nj
2
g/ � ıij

(see (2.5)). Now, consider the functions  n;i WD �n;i ıˆn 2 C1.Nm nBn/ on Nm nBn

given by composition with the conformal maps ˆn. Since ˆn is a conformal diffeomor-
phism away from the boundary @.Nm nBn/, it is then clear that  n;i 2 W 1;2.Nm nBn/

with Z
NmnBn

jd n;i j
2
D

Z
M

jd�n;i j
2
� �k.M; jd‰nj

2/

and (since supp.�n/ � Nm nBn)Z
Nm

 n;i n;j�n D

Z
NmnBn

Œ.�n;i�n;j / ıˆn�jd.‰n ıˆn/j
2
D

Z
M

�n;i�n;j jd‰nj
2
D ıij :

(3.27)

Next, extend the functions  n;i 2 C1.Nm nBn/ harmonically to Bn, to obtain func-
tions

x n;i 2 W
1;2.Nm/

agreeing with  n;i on Nm nBn. By [52, Example 1, p. 40] these extensions satisfyZ
Nm

jd x n;i j
2
� C

Z
NmnBn

jd n;i j
2: (3.28)

Now, while (3.28) provides a uniform bound on the Dirichlet energies of the functions
x n;i 2W

1;2.Nm/, it remains to show that these functions are bounded inL2.Nm/ as well,
to extract a subsequence. But this follows in a straightforward way from the following
theorem.
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Theorem 3.15 ([1, Lemma 8.3.1]). Let .M; g/ be a Riemannian manifold. Then there
exists a constant C > 0 such that for all L 2 W �1;2.M/ with L.1/ D 1 one has

ku � L.u/kL2.M/ 6 CkLkW�1;2.M/

�Z
M

jruj2g dvg

�1=2
(3.29)

for all u 2 W 1;2.M/.

We apply the theorem forLn. /D 1
k�nkL1

R
Nm

 �n dvg . SinceLp.Nm/ embeds into

W �1;2.Nm/ for p > 1 (by the dual form of the Sobolev embedding theorem), we know
that

k�nkW�1;2.Nm/ � Cpk�nkLp.Nm/ � C

for some constant C independent of n, and by Theorem 3.15 one hasZ
Nm

�
x n:i �

1

k�nkL1

Z
x n;i�n dvg

�2
dvg 6 C

Z
M

jr x n;i j
2 6 C�k.M; jd‰nj

2/:

In particular, since i > 0, by (3.27) one hasZ
Nm

x n;i�n dvg D
p
2E.‰n/

Z
Nm

x n;i x n;0�n dvg D 0:

It follows that the functions x n;1; : : : ; x n;k are bounded in W 1;2.Nm/ by
C�k.M; jd‰nj

2/. If lim infn!1 �k.M; jd‰nj2/ D 1, then the statement of Proposi-
tion 3.14 is obvious. Otherwise, for each i D 1; : : : ; k we can extract a subsequence (not
relabelled) such that

x n;i !  i 2 W
1;2.Nm/

weakly in W 1;2.Nm/ and strongly in Ls.Nm/ for every s 2 Œ1;1/. We can assume the
same for i D 0 since x n;0 are constant functions. In particular, since �n ! � in Lp.Nm/

and x n;i !  i strongly in L2p
0

.Nm/, where p0 is the Hölder conjugate of p, it’s clear
that Z

Nm

 i j� D lim
n!1

Z
Nm

 n;i n;j�n D ıij :

Moreover, since �g x n;i D �i .M; jd‰nj
2/ n;i�n on Nm n Bn, then for any � 2

C1c .Nm n ¹p1; : : : ; pkº/ supported away from the points ¹p1; : : : ; pkº, the weak con-
vergence x n;i !  i of the eigenfunctions in W 1;2.Nm/ easily givesZ

Nm

hd i ; d�i D
h

lim
n!1

�i .M; jd‰nj
2/
i Z

Nm

 i��; (3.30)

and since the set ¹p1; : : : ; pkº has capacity zero, it follows that (3.30) holds for any
� 2W 1;2.Nm/. In particular, taking �D i , we see that 0; : : : ; k define an orthonormal
collection of functions in L2.Nm; �/ withZ

Nm

jd i j
2
� lim
n!1

�k.M; jd‰nj
2/;
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and it follows from the definition of �k.M; �/ that

�k.M; �/ � lim
n!1

�k.M; jd‰nj
2/;

as desired.

We can now complete the proof of Theorem 3.12 in a few lines.

Proof of Theorem 3.12. Let ‰n W .M 2; g/! SNn be a sequence of harmonic maps, and
suppose that E.‰n/ is uniformly bounded. To obtain a contradiction, suppose that

nulS .‰n/!1 as n!1:

By definition of nulS , there exist nulS .‰n/ linearly independent eigenfunctions for
jd‰nj

2
g corresponding to the eigenvalue 1, so in particular,

�nulS .‰n/.M; jd‰nj
2
g/ � 1:

Thus, if nulS .‰n/!1, then we have

lim
n!1

�k.M; jd‰nj
2
g/ � 1 for every k 2 N.

Passing to a further subsequence if necessary, it follows from Lemma 3.13 and Propo-
sition 3.14 that there exists a function � 2 Lp.Nm/ for somem 2 ¹0º [N and p > 1 such
that Z

Nm

� D lim
n!1

E.‰n/ > 0

and
�k.Nm; �/ � lim

n!1
�k.M; jd‰nj

2
g/ � 1

for every k 2 N. On the other hand, it follows from Propositions 2.13 and 2.14 that

�k.Nm; �/!1 as k !1,

giving us the desired contradiction.

In the following subsection, we complete the argument by proving Lemma 3.13, estab-
lishing the Lp-compactness of the energy densities after conformal rescalings.

3.5. Proof of Lemma 3.13

The starting point for our bubbling analysis is the following lemma, in which we observe
that the constants in the standard small-energy regularity theorem for harmonic maps
to Sn are independent of the dimension n of the target sphere.

Lemma 3.16. Let ‰ W M ! Sn be a harmonic map. There exist "0 > 0 and r0 > 0

independent of n such that, for all x 2M and r < r0, ifZ
B2r .x/

jd‰j2g dvg < "0;
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then
r2 sup
Br .x/

jd‰j2g 6 C"0: (3.31)

Proof. For a fixed target manifold, this is simply the classical �-regularity theorem—
see e.g. [53]. The key claim we make here is that for sphere-valued harmonic maps, the
constants "0, r0, and C will not depend on the dimension n of the target sphere Sn. To
see that, one could, for example, examine the proof in [10, pp. 149–151], noting that the
energy density jd‰j2 of a sphere-valued harmonic map ‰ W M ! Sn satisfies the same
Bochner identity

�g
1
2
jd‰j2g D �jHess.‰/j2 �KM jd‰j2 C jd‰j4 (3.32)

for any n 2 N.

Lemma 3.16 yields the following preliminary compactness result for the energy den-
sities.

Lemma 3.17. Let ‰n W M ! SNn be a sequence of harmonic maps with E.‰n/ � K.
After passing to a subsequence, there exists a nonnegative function e1 2 L1.M/, a col-
lection P D ¹p1; : : : ; plº �M and weights wi > "0, i D 1; : : : ; l , such that

jd‰nj
2
g dvg *

� e1 dvg C

lX
iD1

wiıpi ; (3.33)

and
jd‰nj

2
! e1 strongly in Lq.�/ (3.34)

for any q 2 Œ1;1/ and any domain � b M n P .

Proof. With Lemma 3.16 in place, the proof of (3.33) is identical to that of analogous
energy concentration results for harmonic maps to a fixed target (cf., e.g., Lemma 1.2
in [47]).

To prove (3.34) let � b M n P , then by Lemma 3.16 there exists C� such that
jd‰nj

2
g 6 C�. Moreover, formula (3.33) implies that jd‰nj2g ! e1 in L1.�/ and, in

particular, je1j 6 C�, dvg -a.e. Therefore, for any q 2 Œ1;1/ one hasZ
�

ˇ̌
jd‰nj

2
g � e1

ˇ̌q
dvg 6 .2C�/

q�1

Z
�

ˇ̌
jd‰nj

2
g � e1

ˇ̌
dvg ! 0:

Suppose now that ‰n WM ! SNn is a sequence of harmonic maps with E.‰n/ � K
satisfying the conclusions of Lemma 3.17. In order to better understand the behavior of
energy densities in the neighborhood of the bubble points pi , we rescale the measures
and repeat the procedure. To this end we fix a bubble point pi and omit the subscript i for
convenience.

In the following we use the notation ın � "n whenever ın="n ! 0 as n! 1. In
particular, ın � 1 means that ın ! 0.
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There exists a neighborhood U of p such that the metric g on U is conformally flat,
g D fpgp , where gp is flat. In the following, when we are working in a neighborhood
of p, the neighborhood is always a subset of U and the distance is measured with respect
to gp . Let r1 > 0 be such that B2r1.p/ � U contains no bubble points other than p.

We define now a sequence of scales "n > 0 by setting

"2n WD inf
®
r > 0

ˇ̌ 

jd‰nj2 � e1

L1.B2r1 .p/nBr .p// < r¯: (3.35)

Since jd‰nj2 ! e1 in L1.B2r1.p/ n Br .p// for any fixed r > 0 by Lemma 3.17, it
follows that

"n � 1:

In particular, by the definition of "n, we have

jd‰nj2g � e1

L1.B2r1 .p/nB"2n .p// � "2n � 1: (3.36)

In what follows, without loss of generality, we identifyB2"n.p/with a ballB2"n.0/ in R2.
Now, fix a normalization constant

0 < CR < "0;

and define a function
˛ W B"n.p/! Œ0; 2"n�

implicitly by requiring thatZ
B"n .p/nB˛.x/.x/

jd‰nj
2
g dvg D CR:

It is easy to see that ˛ is continuous, and therefore achieves a minimum in B"n.p/; we
then define

˛n WD min
x2B"n .p/

˛.x/; (3.37)

and let cn 2 B"n.p/ be a point such that

˛.cn/ D ˛n > 0; (3.38)

where the inequality follows from the fact that CR < "0 6 wp . A similar choice of ˛n, cn
in the context of bubbling construction appears in [10, p. 188]. We record the following
useful properties of ˛n and cn, necessary for the rescaling procedure.

Lemma 3.18. For a sequence of points cn 2 B"n.p/ satisfying (3.38), we have

lim
n!1

dist.cn; p/
"n

D lim
n!1

˛n

"n
D 0;

and Z
B"n .cn/

jd‰nj
2
g dvg D wp C o.1/ as n!1. (3.39)
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We also have

jd‰nj
21Br1 .p/nB"n .cn/ ! e1 in L1.M/ as n!1, (3.40)

and
B2�1"n.p/ � B"n.cn/ � B2"n.p/:

Proof. First, note that by definition (3.35) of "n, and since e1 2 L1.M/, we have

lim
n!1

Z
B"n .p/nB"2n

.p/

jd‰nj
2
g dvg � lim

n!1

�
"2n C

Z
B"n .p/

e1

�
D 0I

in particular, Z
B"n .p/nB"2n

.p/

jd‰nj
2
g dvg < CR (3.41)

for n sufficiently large, so it follows that

˛n � ˛.p/ � "
2
n � "n as n!1.

Next, it also follows from (3.41) and the definition of ˛n D ˛.cn/ that

B˛n.cn/ \ B"2n.p/ ¤ ¿

for n sufficiently large. In particular, we see that

dist.cn; p/ � "2n C ˛n � 2"
2
n � "n as n!1.

Having shown that ˛n� "n and dist.cn;p/� "n as n!1, the remaining statements
follow easily from (3.36).

In addition to the properties outlined in Lemma 3.18, it will be useful to note the
following: for any sequence xn 2 B2�1"n.p/, we claim that

lim
n!1

Z
B˛n .xn/

jd‰nj
2
g dvg � wp � CR: (3.42)

Indeed, this follows easily from the fact that ˛n � ˛.xn/ by definition, sinceZ
B˛n .xn/

jd‰nj
2
g dvg �

Z
B˛.xn/.xn/

jd‰nj
2
g dvg D

Z
B"n .p/

jd‰nj
2
g dvg � CR

! wp � CR as n!1:

With these preparations in place, Lemma 3.18 allows us to do the following rescaling.
Let � W R2! S2 be the inverse stereographic projection. We consider the conformal map

Rn W B"n.p/! S2; Rn.x/ D �.˛
�1
n .x � cn//;

and denote the image by �n.p/ � S2. By Lemma 3.18, ˛n � "n, and it follows that
the domains �n.p/ exhaust S2 n ¹Sº, where S is the south pole. Thus, for any compact
K b S2 n ¹Sº one has K b �n.p/ for large enough n.
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Denote by z‰n W �n.p/ � S2 ! SNn the compositions

z‰n WD ‰n ıR
�1
n :

By the conformal invariance of harmonic maps, z‰n are harmonic, with energies

E.z‰nj�n/ D wp C o.1/:

Thus, we can apply Lemma 3.17 to restrictions z‰njK and pass to a diagonal subsequence
over a compact exhaustion ¹Kj º of S2 n ¹Sº to arrive at

jd z‰nj
2
g dvg1�n *

�
z� D ze1 dvg C

zlX
iD1

w zpi ı zpi C �SıS ; (3.43)

where g is the round metric on S2, �S 6 CR and "0 6 w zpi . The points zpi 2 S2 n S are
called secondary bubbles.

We can repeat this rescaling process at the secondary bubbles zpi to arrive at new
bubbles, and iterate. We observe now that this process terminates after finitely many steps.

Lemma 3.19. The massw zpi of each secondary bubble zpi is at mostwp �CR. As a result
there are no more bubbles after bw=CRc steps.

Proof. For any domain Ka � S2 given by the image

Ka D �.B1.a//

of a unit disk B1.a/ in R2 under stereographic projection, it follows from (3.42) and the
definition of the maps Q‰n that

z�.Ka/ D lim
n!1

Z
�.B1.a//

jd z‰nj
2
g dvg D lim

n!1

Z
Rn.B˛n .xn//

jd z‰nj
2
g dvg

� wp � CR:

In particular, every secondary bubble Qpi 2 S2 n ¹Sº has an open neighborhood U on
which Q�.U / � wp � CR, and the lemma follows.

Let m 2 N denote the total number of bubbles arising from this process, and recall
that Nm denotes the disjoint union

Nm WDM t S21 t � � � t S2m

of M with m copies of the unit 2-sphere. We are now in a position to define the sets
Bn � Nm and maps ˆn W Nm n Bn ! M of Lemma 3.13 as follows. For each bubble
points p1; : : : ; pl 2M , we define the scales "in D "n.pi / and ˛in D ˛n.pi / by (3.35) and
(3.37) as before, and choose cin D cn.pi / 2 B"n.pi /.pi / satisfying (3.38); we then set

Bn \M WD
[̀
iD1

Bp
˛in
.cin/;
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while defining
ˆnjMnBn WD Id WM nBn !M:

Next, on the sphere S2pi � Nm associated to the bubble at pi , consider the sets

„n.pi / D Rn.Bp
˛in
.cn.pi ///

exhausting S2 n ¹Sº, and at each secondary bubble Qp1; : : : ; QpQl 2 S2 n ¹Sº, let ˛n. Qpi / and
cn. Qpi / be given by (3.35) and (3.38). We then define

Bn \ S2pi WD .S
2
n„n.pi // [

Ql[
jD1

Bp
˛n. Qpj /

.cn. Qpj //;

and set
ˆnjS2pi nBn

WD R�1n W S
2
pi
nBn !M:

The definition of Bn andˆn on the spheres associated to secondary bubbles is analogous,
with ˆn now given by the composition

ˆn WD R
�1
n;pi
ıR�1n; zpi ;

and we carry on this way to extend the definition of Bn and ˆn to all of Nm.
Now, we define the limiting density function � 2 L1.Nm/ by setting

�jM WD e1 and �jS2
i
D ze1;

where e1 and ze1 are the absolutely continuous parts of the limiting energy measures
in Lemma 3.17 and (3.43). To prove Lemma 3.13, we need to check that the restricted
energy densities

�n WD jd.‰n ıˆn/j
21NmnBn

converge strongly to � inLq.Nm/ for some q > 1. Thus, it remains to check the following
proposition.

Proposition 3.20. In the setting of Lemma 3.17 and (3.43), there exists q > 1 for which
we have the strong convergences

jd‰nj
2
g1
Mn

Sl
iD1B
p
˛in

.cin/
! e1 in Lq.M/

and
jd z‰nj

2
g1
„nn

SQl
jD1B

p
˛n. zpj /

.cn. zpj //
! ze1 in Lq.S2/:

The proof rests largely on the following estimate, whose proof we postpone to the end
of the section.

Lemma 3.21. At a bubble point p 2 M .or a secondary bubble Qp 2 S2/, for every r >p
˛n.p/, denote by Ar;n.cn.p// the annulus

Ar;n.cn/ WD Br .cn/ n Br�1˛n.cn/:
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For an appropriate choice of normalization constant CR 2 .0; "0/ in the definition of ˛n,
there exist �0 > 0, � > 0, and C <1 such that

lim
n!1

sup
�0>r>

p
˛n

r��
Z
Ar;n

jd‰nj
2
g dvg < C:

With this estimate in place, we prove Proposition 3.20 as follows.

Proof of Proposition 3.20. By Lemma 3.17, we already know that �n ! � strongly in
Lq.K/ for any q <1 ifK b Nm n ¹p1; : : : ; pkº is a compact set away from the singular
points ¹piº. Thus, to complete the proof of the lemma, it is enough to show that for any
bubble point p 2M (or secondary bubble Qp 2 S2), there exists a neighborhood Vp �M
of p and a neighborhood WS � S2p of the south pole in S2 such that

en WD jd‰nj
2
g1MnBp˛n .cn/ ! e1 in Lq.Vp/ (3.44)

and
zen WD jd z‰nj

2
g1„n ! ze1 in Lq.WS / (3.45)

for some q > 1.
We begin with (3.44). Recall that, by definition (3.37) of the scales ˛n, we haveZ

B"n .p/nB˛n .cn/

jd‰nj
2
g dvg � CR < "0;

while it follows from (3.36) that

lim
n!1

Z
Br .p/nB"n .p/

jd‰nj
2
g dvg D

Z
Br .p/

e1 dvg (3.46)

for any fixed 0 < r < 2r1. In particular, since we can make the right hand side of (3.46)
as small as we like by taking r sufficiently small, it follows that we can choose some
r2 2 .0; r1/ such that Z

B2r2 .p/nB˛n .cn/

jd‰nj
2
g dvg < "0: (3.47)

As a consequence, for n sufficiently large, and any x 2 Br2.cn/ n Bp˛n.cn/, writing

dcn.x/ WD dist.x; cn/;

we see that Bdcn .x/=2.x/ � B2r2.p/ n B˛n.cn/; so in particularZ
Bdcn .x/=2.x/

jd‰nj
2
g dvg < "0:

Thus, we can apply Lemma 3.16 in the balls Bdcn .x/=2.x/ to conclude that

dcn.x/
2
jd‰nj

2
g.x/ � C for all x 2 Br2.p/ n Bp˛n.cn/;

i.e.,
dcn.x/

2en.x/ � C on Br2.cn/: (3.48)
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Next, note that by Lemma 3.21, for every r >
p
˛n we have the estimateZ

Br .cn/

en D

Z
Br .cn/nBp˛n .cn/

jd‰nj
2
g dvg

�

Z
Br .cn/nBr�1˛n

.cn/

jd‰nj
2
g dvg < Cr

�

for some fixed C <1 and � > 0. In particular, since
R
Bp˛n .cn/

en D 0 by definition of en,
it follows that Z

Br .cn/

en < Cr
� for all r > 0. (3.49)

We claim now that (3.48) and (3.49) together imply uniform bounds for
kenkLq.Br2=2.p//

for every q < 1C �=2. To see this, simply note that Br2=2.p/� Br2.cn/
for n sufficiently large, and estimateZ

Br2 .cn/

eqn D

1X
jD0

Z
B
2�j r2

nB
2�j�1r2

eq�1n � en

by (3.48) �

1X
jD0

.C r�12 2jC1/2.q�1/
Z
B
2�j r2

nB
2�j�1r2

en

by (3.49) �

1X
jD0

.C r�12 2jC1/2.q�1/ � C.2�j r2/
�

D C 0
1X
jD0

.2j /2.q�1/�� :

Since q < 1C �=2, the geometric series converges, and we see that

kenkLq.Br2=2.p//
� Cq <1;

as claimed. It follows immediately that the limit density e1 is in Lq.Br2=2.p// as well,
and since we already know from Lemma 3.17 that en ! e1 in Lqloc.Br2.p/ n ¹pº/, we
easily conclude that the desired convergence (3.44) holds for every 1 � q < 1C �=2.

The argument for Lq convergence (3.45) near the south pole of S2 is similar, once
we express our estimates in an appropriate coordinate system near S . Denoting by �S W
R2 ! S2 n ¹N º the stereographic projection based at the south pole S 2 S2, we write

Br .S/ WD �S .Br .0//;

so that, e.g., B1.S/ denotes the southern hemisphere in S2. In this notation, the image
under Rn W Br1.p/! S2 of any annulus about cn in M is given by

Rn.Bs.cn/ n Bt .cn// D �.B˛�1n s.0/ n B˛�1n t .0// D Bt�1˛n.S/ n Bs�1˛n.S/:

In particular,
„n D Rn.Bp˛n.cn// D S2 n Bp˛n.S/;

so that
zen D jd z‰nj

2
g1S2nBp˛n .S/

on B1=2.S/:
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Moreover, for r >
p
˛n, the image under Rn of the annulus Ar;n D Br .cn/ n

Br�1˛n.cn/ is given by

Rn.Ar;n/ D Br .S/ n Br�1˛n.S/;

so that the estimate of Lemma 3.21 has the identical formZ
Br .S/nBr�1˛n

.S/

jd z‰nj
2
g dvg < Cr

�

in terms of the local geometry near S 2 S2. In particular, since zen � 0 on Bp˛n.S/, it
follows exactly as it did for en thatZ

Br .S/

zen < Cr
� for all r > 0: (3.50)

Likewise, the energy estimate (3.47) yields a bound of the formZ
B1.S/nBC˛n .S/

jd z‰nj
2
g dvg < "0

in our local coordinates near S , and we can appeal to Lemma 3.16 as we did for en to
obtain the pointwise bound

dS .x/
2
zen.x/ � C on B1=2.S/: (3.51)

With the density bound (3.50) and the pointwise bound (3.51) in hand, we can now argue
exactly as we did for en to conclude that

kzenkLq.B1=2.S// � Cq for every q < 1C �=2I

and again, since we know from Lemma 3.17 that zen ! ze1 in Lqloc.B1=2.S/ n ¹Sº/, the
desired convergence (3.45) follows.

All that remains now is to prove Lemma 3.21, establishing the desired energy decay
bounds on the annuli Ar;n D Ar .cn/ n Ar�1˛n.cn/.

Proof of Lemma 3.21. First, we recall the suspension procedure used by Parker [47,
pp. 607–608] (see also [23, 28, 54]). Recall that r1 > 0 is such that gp is defined
onB2r1.p/. For the harmonic map‰n WM ! SNn the Hopf differential H .‰n/ is defined
in local coordinates by

H .‰n/ D .@z‰n; @z‰n/ D j@x‰nj
2
� j@y‰nj

2
� 2ih@x‰n; @y‰ni:

The Hopf differential is holomorphic and is equal to 0 iff ‰n is weakly conformal.
The suspension procedure associates to each ‰n a weakly conformal harmonic map
‡n WB2r1.p/! SNn �C, so that H .‡n/� 0. Namely, we select a holomorphic function
�n W B2r1.p/! C satisfying

@z�n D �H .‰n/;
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and set in local complex coordinates

‡n.z/ WD .‰n.z/; Nz C �n/:

Then

H .‡n/ D H .‰n/C @z. Nz C �n/@z. Nz C �n/ D H .‰n/ �H .‰n/ D 0

Furthermore, kH .‰n/kL1.B2r1.p//
< CE.‰njB2r1 .p/

/ by the definition of H .‰n/,
and since H .‰n/ is holomorphic, it follows that

kH .‰n/kL1.Br1 .p// < CE.‰njB2r1 .p/
/ < C:

Moreover, the differential d. Nz C �n/ satisfies

1
2
jd. Nz C �n/j

2
D @z. Nz C �n/@z. Nz C �n/C @ Nz. Nz C �n/@ Nz. Nz C �n/ D jH .‰n/j

2
C 1;

so that on Br1.p/ one has 0 < 1
2
jd. NzC �n/j

2 < C . In particular, it follows that‡n defines
a conformal immersion into SNn �C.

As a result, for any domain A � Br1.p/ one has

E.‡njA/ D
1

2

Z
A

�
jd‰nj

2
C jd. Nz C �n/j

2
�

6 E.‰njA/C C Areagp .A/: (3.52)

The utility of the suspension trick stems from the well-known fact that the images of
conformal harmonic maps from two-dimensional domains are minimal surfaces. In par-
ticular, we will make use of the following fact, which follows, e.g., from the classical
isoperimetric inequalities of Hoffman and Spruck [27].

Theorem 3.22. Let† be a minimal surface in SN�C. Then there are constants "1; c0 >0
independent of N such that if Area.†/ < "1 then Area.†/ 6 c0 Length2.@†/.

Remark 3.23. To see that the constants "1 and c0 in Theorem 3.22 do not depend on the
dimension N of the target sphere, it is enough to note that the injectivity radius and sec-
tional curvature of SN are the same for all N . Alternatively, one can realize the minimal
surfaces † � SN � C as surfaces of mean curvature H � 2 in RNC3, and appeal to the
isoperimetric inequalities for surfaces of constant mean curvature in Euclidean space.

Now, let r < min ¹r1=2; 1=2º so that Ar;n D Br .cn/ n Br�1˛n.cn/ � Br1.p/. Since
for conformal maps, energy coincides with area, by (3.52) one has

Area.‡n.Ar;n// 6 E.‰njAr;n/C C Areagp .Ar;n/

6
Z
Ar;nnB"n.cn/

1
2
jd‰nj

2
g dvg C

Z
B"n.cn/nB2˛n .cn/

1
2
jd‰nj

2
g dvg C C�r

2

6
Z
Ar;nnB"n.cn/

1
2

�ˇ̌
jd‰nj

2
g � e1

ˇ̌
C e1

�
dvg C CR C C�r

2

6 "2n C

Z
B2r .p/

e1 dvg C CR C C�r
2:
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In the third line we have used the definition of ˛n and the fact that B"n.cn/ n B2˛n.cn/ �
B2"n.p/ n B˛n.cn/; and in the fourth line we have used (3.36).

We now choose our normalization constant CR < "0, by requiring that CR < "1=3,
where "1 is the constant from Theorem 3.22. Then, choosing 0 < r2 < min ¹r1=2; 1=2º
such that Z

B2r2 .p/

e1 dvg C C�r
2
2 < "1=3;

it follows from the preceding estimates that

Area.‡n.Ar;n// < "1

for all r 2 .0; r2/. In particular, we can apply Theorem 3.22 to the images ‡n.Ar;n/ for
r 2 .0; r2/ to conclude that

E.‰njAr;n/ 6 Area.‡n.Ar;n// 6 c0 Length2.@‡n.Ar;n//: (3.53)

Next, we estimate the right hand side of (3.53) in terms of the energy of ‰n. Let
r < r2; then by the mean value inequality, there exists t 2 Œr; 2r� such that

t

Z
@Bt .cn/

jd‡nj
2 dH1

gp
6 2r

Z
@Bt .cn/

jd‡nj
2 dH1

gp

6 2

Z 2r

r

�Z
@Bt .cn/

jd‡nj
2 dH1

gp

�
dt

D

Z
B2r .cn/nBr .cn/

jd‡nj
2 dvgp :

In particular, in polar coordinates around cn one has

Length2.‡n.@Bt .cn/// 6 2�

Z 2�

0

j@�‡n.t; �/j
2d�

D 2�t

Z 2�

0

ˇ̌̌̌
1

t
@�‡n.t; �/

ˇ̌̌̌2
t d�

6 2�t

Z
@Bt .cn/

jd‡nj
2 dH1

gp

6 16�

Z
B2r .cn/nBr .cn/

jd‡nj
2 dvgp

6 16�

Z
B2r .cn/nBr .cn/

jd‰nj
2
C Cr2;

where we have used (3.52) in the last step.
Similarly, there exists r 6 t2 6 2r such that

Length2.‡n.@Bt�1
2
˛n
.cn/// 6 16�

Z
B
r�1˛n

.cn/nB.2r/�1˛n
.cn/

jr‰nj
2
C C.r�1˛n/

2:
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Note that r�1˛n 6 r , since we are only considering r >
p
˛n (so that Ar;n ¤ ¿). Thus,

the previous inequality becomes

Length2.‡n.@Bt�1
2
˛n
.cn/// 6 16�

Z
B
r�1˛n

.cn/nB.2r/�1˛n
.cn/

jr‰nj
2
C Cr2:

As a result, by (3.53) one has

E.‰njAr;n/ 6 E.‰njBt .cn/nB
t�1
2
˛n
.cn// 6 CE.‰njA2r;nnAr;n/C Cr

2:

Adding CE.‰njAr;n/ to both sides we find that for all r < r2 one has

E.‰njAr;n/ 6 �.E.‰njA2r;n/C r
2/; (3.54)

where
� WD

C

C C 1
< 1:

Since we can increase � if necessary, we assume without loss of generality that � > 3=4.
Let k be the number so that 2kr < r2 6 2kC1r . Applying inequality (3.54) k C 1

times one obtains

E.‰njAr;n/ 6 �kC1E.‰njA
2kC1r;n

/C

kC1X
iD1

r2

4
.4�/i

At the same time, log2.r2=r/ 6 k C 1 and since � < 1, one has

�kC1 6 � log2.r2=r/ D .r=r2/
jln � j=ln2

and additionally

kC1X
iD1

.4�/i D 4�
.4�/kC1 � 1

4� � 1
6 .4�/kC1

4�

4� � 1
6 2.4�/kC1;

where we have used � > 3=4.
As a result,

E.‰njAr;n/ 6
�
r

r2

�jln � j=ln2

E.‰njA2r2;n/C
�kC1

2
.2kC1r/2

6 r�
�
E.‰n/

r�2
C 2r2��2

�
6 Cr� ;

where � D jln � j= ln 2 > 0.

Remark 3.24. Note that throughout this subsection, we have invoked the spherical geom-
etry of the target manifolds Sn only twice: to establish uniformity of the constants in the
�-regularity theorem (Lemma 3.16), and to obtain uniform constants in the isoperimetric
inequality for minimal surfaces in Sn �C (Theorem 3.22). We therefore expect the con-
clusion of Lemma 3.13 to hold in greater generality, giving a compactness result for the
energy densities associated to harmonic maps from surfaces into a larger class of target
manifolds of varying dimension with suitably bounded geometry.
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4. The min-max construction for the second eigenvalue

4.1. Definition and main properties of the second min-max energy

As before, let .M;g/ be a fixed Riemannian surface. For the min-max construction corre-
sponding to the conformal maximization of the second Laplacian eigenvalue, we consider
for each n � 2 a collection

�n;2.M/ � C 0.Œ xBnC1�2; W 1;2.M;RnC1//

of 2.nC 1/-parameter families of maps

Œ xBnC1�2 3 .a; b/ 7! Fa;b 2 W
1;2.M;RnC1/

satisfying the boundary conditions

Fa;b � a if jaj D 1 (4.1)

and
Fa;b D �b ı F�b.a/;�b if jbj D 1; (4.2)

where �b 2 O.nC 1/ denotes reflection through the hyperplane perpendicular to b 2 Sn.
Note that both conditions (4.1) and (4.2) are preserved by the gradient flow of the ener-
gies E� , since E� is invariant under the action of O.nC 1/.

This definition is motivated by Nadirashvili’s computation of ƒ2.S2/ in [45]. The
construction was later revisited in [20, 21, 48], but always in the context of spheres or
planar domains.

For n � 2 and � > 0, setting �n;2 WD . xBnC1/2, we then define the second min-max
energy

En;2;�.M; g/ WD inf
F 2�n;2.M/

max
.a;b/2�n;2

E�.Fa;b/; (4.3)

and the limit
En;2.M/ WD sup

�>0

En;2;�.M/ D lim
�!0

En;2;�.M/: (4.4)

As with the first min-max energy En.M; g/ defined in Section 3, it is easy to see that the
second limiting min-max energy

En;2.M; g/ D En;2.M; Œg�/

is a conformal invariant. In what follows, we will show that it gives an upper bound for
(half of) the conformal supremum ƒ2.M; Œg�/ of the second Laplacian eigenvalue

ƒ2.M; Œg�/ WD sup
g2Œg�

N�2.M; g/: (4.5)

Proposition 4.1. If Area.M; g/ D 1, then

2En;2;�.M; g/ � .1 � 2�E
1=2
n;2;�/�2.M; g/;

and in particular
2En;2.M; g/ � ƒ2.M; Œg�/: (4.6)
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The proof follows much the same lines as that of Proposition 3.4, with the aid of the
following topological lemma.

Lemma 4.2. Let ˆ W S2nC1 ! S2nC1 be a self-map of S2nC1 satisfying

ˆ.a; b/ D .a=jaj; 0/ when jaj � jbj (4.7)

and
ˆ.�b.a/;�b/ D .�b � �b/.ˆ.a; b// when jbj > 0; (4.8)

where �b 2 O.nC 1/ denotes reflection through the hyperplane orthogonal to b. Then ˆ
has nonzero degree deg.ˆ/ ¤ 0.

Proof. The idea is to show that ˆ has odd degree, by applying the Lefschetz fixed point
theorem to the map x̂ D�ˆ. Thus, for a suitable perturbation ofˆ preserving the relevant
symmetries, we are interested in understanding the structure of the set

F�.ˆ/ WD ¹.a; b/ 2 S2nC1 j ˆ.a; b/ D �.a; b/º

comprising the fixed points of x̂ D �ˆ. Our arguments are closely modeled on the proof
of [48, Claim 3], suitably modified to fit our situation.

As a first step, we claim that we may take ˆ to be smooth without loss of generality.
To begin, we may deform ˆ via a simple mollification procedure to a smooth map ˆ1 2
C1.S2nC1;S2nC1/ such that

ˆ1.a; b/ D ˆ.a; b/ D
.a; 0/

jaj
on ¹jaj �

p
3=2º b ¹jaj � jbjº

and
kˆ1 �ˆkC0 < ı (4.9)

for ı > 0 arbitrarily small. Then ˆ1 automatically satisfies the symmetry (4.8) on the set
¹1 > jaj �

p
3=2º, while in general for jbj > 0, it follows from (4.8) and (4.9) that

jˆ1.a; b/ � .�b � �b/.ˆ1.�b.a/;�b//j � 2ı whenever jbj > 0:

In particular, if ı < 1, we obtain a well-defined smooth mapˆ2 2 C1.S2nC1;S2nC1/ by
setting

ˆ2.a; b/ WD
ˆ1.a; b/C .�b � �b/.ˆ1.�b.a/;�b//

jˆ1.a; b/C .�b � �b/.ˆ1.�b.a/;�b//j
for jbj > 0

and ˆ2.a; 0/ D ˆ1.a; 0/ D .a; 0/=jaj. The map ˆ2 then satisfies

ˆ2.a; b/ � .a; 0/=jaj for jaj �
p
3=2

as well as the symmetry (4.8). Moreover, by choosing ı > 0 sufficiently small in (4.9), it
is clear that ˆ2 must be C 0-close—and in particular, homotopic—to the original map ˆ.
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So, suppose now that ˆ 2 C1.S2nC1; S2nC1/ is a smooth map satisfying the sym-
metry (4.8) as well as

ˆ.a; b/ � .a; 0/=jaj for jaj �
p
3=2: (4.10)

We wish to deform ˆ to a map ‰ 2 C1.S2nC1;S2nC1/ satisfying a transversality con-
dition on the set

F�.‰/ WD ¹.a; b/ 2 S2nC1 j ‰.a; b/ D �.a; b/º; (4.11)

while continuing to satisfy the symmetry (4.8) near F�.‰/. Namely, to apply the Lef-
schetz fixed-point theorem to the map x‰ D �‰, we need to ensure the nondegeneracy of
the linear map

d‰x C I W Hx ! Hx

at each point x 2 F�.‰/, where we denote by Hx D TxS2nC1 the hyperplane in R2nC2

perpendicular to x. To this end, following [48], we write our map ˆ W S2nC1! S2nC1 as

ˆ.x/ D Xˆ.x/C �ˆ.x/x;

where hXˆ.x/; xi D 0. Note that a point x 2 F�.ˆ/ is characterized by the conditions
Xˆ.x/ D 0 and �ˆ.x/ D �1, and it is easy to see that

dˆx C I D d.Xˆ/x for x 2 F�.ˆ/:

Now, define for each k D 0; : : : ; 2nC 1 and ˛ > 0 the set

C˛k WD ¹.a; b/ 2 S2nC1 j jbj � ˛; hb; eki � ˛jbjº;

where we denote by e0; : : : ; en the standard unit vectors in RnC1. By choosing ˛D ˛.n/ 2
.0; 1=8/ sufficiently small, we may arrange that

2nC1[
jD0

C2˛j [ .�C2˛j / D ¹.a; b/ 2 S2nC1 j jbj � 2˛º:

Starting from the vector field X0 WD Xˆ on S2nC1, note (appealing, as in [48], to Sard’s
theorem in appropriate coordinate charts) that one may easily deform X0 via a perturba-
tion supported in C˛0 to a smooth vector field X1 which is transverse to the zero section
in C2˛0 b C˛0 . We may then define X1 on �C˛0 by setting

X1.a; b/ D .�b � �b/.X1.�b.a/;�b// for .a; b/ 2 C˛0 ;

and set X1 D X0 on S2nC1 n ŒC˛0 [ �C˛0 �, to obtain a new, smooth tangent vector field
on S2nC1 such that

X1 D X0 on S2nC1 n Œ˙C˛0 �;

X1 is transverse to the zero section in˙C2˛0 ;

X1.�b.a/;�b/ D .�b � �b/.X1.a; b// when jbj > 0;
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and we may also ask that X1 remains arbitrarily close to X0 D Xˆ in C 1. Repeating the
process, we obtain inductively a sequence of tangent vector fields X1; : : : ; X2nC2 such
that

XjC1 D Xj on S2nC1 n Œ˙C˛j �;

XjC1 is transverse to the zero section on
j[
kD0

Œ˙C2˛k �;

XjC1.�b.a/;�b/ D .�b � �b/.XjC1.a; b// when jbj > 0;

and
kXjC1 �Xj kC1 < �j

for some �j > 0which we can take arbitrarily small. Finally, provided each �j > 0 is taken
sufficiently small, we define a map ‰ 2 C1.S2nC1;S2nC1/ by

‰.a; b/ WD
X2nC2.a; b/C �.a; b/.a; b/

jX2nC2.a; b/C �.a; b/j
;

and readily check that this map satisfies the symmetry

‰.�b.a/;�b/ D .�b � �b/.‰.a; b// for jaj < 1 (4.12)

as well as the transversality condition

d‰x C I W Hx ! Hx is invertible for every x 2 F�.‰/;

where we use the fact that F�.‰/ \ ¹jaj D 1º D ¿. Therefore, x‰ D �‰ satisfies the
desired transversality condition at its fixed point set. Since ‰ is C 1-close to the map ˆ, it
is evidently homotopic to ˆ, so once we have shown that ‰ is homotopically nontrivial,
we will complete the proof of the lemma.

Finally, it is an easy consequence of the Lefschetz–Hopf fixed point theorem that for a
self-map x‰ of the sphere S2nC1 satisfying the natural transversality condition at its fixed
point set Fix.x‰/ D ¹x 2 S2nC1 j x‰.x/ D xº, the degree deg.x‰/ satisfies

deg.x‰/ � # Fix.x‰/C 1 mod 2: (4.13)

Now, taking x‰D�‰ for the map‰ W S2nC1! S2nC1 obtained above, it follows from the
symmetry (4.12) that .a;b/2 Fix.x‰/ if and only if .�b � �b/.a;b/D .�b.a/;�b/2 Fix.x‰/
as well. In particular, it follows that # Fix.x‰/ must be even, so by (4.13), x‰ must have
odd degree. Thus,‰ and our initial mapˆmust have odd degree as well, and in particular
must be homotopically nontrivial.

With this topological lemma in place, we turn now to the proof of Proposition 4.1.

Proof of Proposition 4.1. Suppose Area.M; g/ D 1, and let

Œ xBnC1�2 3 .a; b/ 7! Fa;b 2 W
1;2.M;RnC1/
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be a family in �n;2.M/. Now, let �1 be an eigenfunction for the Laplacian �g on .M; g/
corresponding to the first (nonzero) eigenvalue, and consider the map I W Œ xBnC1�2 !

R2.nC1/ given by

I.a; b/ WD

�Z
M

Fa;b;

Z
M

�1Fa;b

�
:

We claim now that I.a; b/ D 0 for some .a; b/ 2 Œ xBnC1�2.
Suppose, to the contrary, that I is nowhere vanishing; then we may define a continuous

map

P W Œ xBnC1�2 ! S2nC1; P.a; b/ WD
I.a; b/

jI.a; b/j
:

In particular, restricting P to the boundary of Œ xBnC1�2 and identifying the boundary
with S2nC1 in the obvious way, we see that the resulting map

ˆ W S2nC1 ! S2nC1; ˆ.a; b/ WD P

�
.a; b/

max ¹jaj; jbjº

�
; (4.14)

must be homotopically trivial.
On the other hand, since F 2 �n;2.M/, it follows from (4.1) and (4.2) and the defini-

tion of I that
P.a; b/ D .a; 0/ for .a; b/ 2 Sn � xBnC1

and
P.�b.a/;�b/ D .�b � �b/.P.a; b//;

since the averaging mapsW 1;2.M;RnC1/!RnC1 given by u 7!
R
M
u and u 7!

R
M
�1u

commute with linear transformations of RnC1. In particular, we easily deduce that the
map ˆ W S2nC1 ! S2nC1 given by (4.14) satisfies the hypotheses of Lemma 4.2, and
therefore must be homotopically nontrivial, by the lemma. Thus, we see that the map
I W Œ xBnC1�2 ! R2.nC1/ must have a zero somewhere.

We have now shown that for any family F 2 �n;2.M/, there exists some .a; b/ 2
xB2.nC1/ for which the map u D Fa;b 2 W 1;2.M;RnC1/ satisfiesZ

M

u D

Z
M

�1u D 0 2 RnC1:

That is, each scalar component uj of u D Fa;b is L2 orthogonal to 1 and �1, from which
it follows that Z

M

jduj j2 � �2.M; g/

Z
M

.uj /2 for each j D 0; : : : ; n;

where �2.M; g/ denotes the second nontrivial eigenvalue of the Laplacian �g . In partic-
ular, summing from j D 0 to n, we have the lower boundZ

M

jduj2 � �2.M; g/

Z
M

juj2 (4.15)
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for the full energy of the map u D Fa;b . On the other hand, recalling the definition of the
functionals E� , we see thatZ

M

juj2 � 1 �

Z
M

ˇ̌
1 � juj2

ˇ̌2
� 1 � 2�E�.u/

1=2
� 1 � 2�

h
max
.a;b/

E�.Fa;b/
i1=2

;

and combining this with the preceding estimate gives

2max
a;b

E�.Fa;b/ �

Z
M

jduj2 � �2.M; g/
�
1 � 2�

h
max
a;b

E�.Fa;b/
i1=2�

:

Applying the preceding inequality to a sequence of families F j 2 �n;2.M/ with

max
.a;b/

E�.F
j

a;b
/! En;2;�.M; g/;

we obtain the desired estimate

2En;2;�.M; g/ �
�
1 � 2�En;2;�.M; g/

1=2
�
�2.M; g/:

Moreover, recalling that

En;2.M; g/ D sup
�>0

En;2;�.M; g/

is a conformal invariant, taking the limit as � ! 0 yields the bound

2En;2.M; g/ � ƒ2.M; Œg�/; (4.16)

completing the proof of the proposition.

Next, we use a variant of a construction of Nadirashvili [45] to provide uniform upper
bounds for the min-max energies En;2;�.M; g/ as � ! 0, giving the finiteness of the lim-
iting min-max energies En;2.M/.

Proposition 4.3. For any conformal class Œg� on M , we have the upper bound

En;2.M; Œg�/ WD sup
�>0

En;2;�.M; g/ � 2Vc.n;M; Œg�/:

Proof. Similar to the proof of Proposition 3.3, we will first construct a weakly continuous
family of conformal maps from M to Sn satisfying the requisite symmetry assumptions
and desired energy bounds, then produce strongly continuous approximationsM !RnC1

via mollification.
To this end, consider the family of maps BnC1 3 a 7! Ta 2 Lip.Sn; Sn/ defined as

follows:

Ta D Id on the spherical cap Ca WD ¹x 2 Sn j hx; ai � jaj � jaj2º

and on the complementary cap Sn n Ca, Ta is the unique conformal reflection

Ta D Rfa W S
n
n Ca ! Ca
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which acts as the identity on the boundary @Ca. Note that

T0 � Id W Sn ! Sn;

since C0 D Sn is the whole sphere, and when jaj D 1, note that Ca defines the hemisphere
opposite a 2 Sn, and Ta acts on Sn n Ca by linear reflection �a through the hyperplane
perpendicular to a.

Now, as in Proposition 3.3, we consider the family of conformal maps

BnC1 3 � 7! G�.x/ WD
1 � j�j2

jx C �j2
.x C �/C �;

and we define a new family

ŒBnC1�2 3 .a; b/ 7! ‡a;b 2 Lip.Sn;Sn/

by the composition
‡a;b WD Ga ı Tb (4.17)

of the two .nC 1/-parameter families.
For n � 2, fix now a branched conformal immersion

� WM ! Sn

from our Riemann surface .M 2; g/ into Sn, and consider the family of maps

ŒBnC1�2 3 .a; b/ 7! Fa;b WD ‡a;b ı � WM ! Sn: (4.18)

Though the family .a; b/ 7! Fa;b will not define a strongly continuous family in
W 1;2.M; Sn/ (indeed, we expect Fa;b to exhibit some energy concentration both as
jaj ! 1 and as b ! 0), it is not difficult to see that the energy E.Fa;b/ can be bounded
above in terms of the conformal volume Vc.n; �/. Indeed, it follows from the definition
of the maps ‡a;b that

E.Fa;b/ D

Z
��1.Cb/

1
2
jd.Ga ı �/j

2
C

Z
��1.SnnCb/

1
2
jd.Ga ıRfb ı �/j

2

� E.Ga ı �/CE.Ga ıRfb ı �/ � Vc.n; �/C Vc.n; �/;

sinceGa andGa ıRfb are both conformal automorphisms of Sn (unless jaj D 1, in which
case Fa;b � a is constant). In particular, it follows that

sup
.a;b/2ŒBnC1�2

E.Fa;b/ � 2Vc.n; �/: (4.19)

Moreover, note thatGa � a when jaj D 1, and when jbj D 1, it follows from the definition
of Ga and Tb that

G�b.a/ ı T�b D G�b.a/ ı �b ı Tb D �b ıGa ı Tb

for any a 2 BnC1. Hence, by definition of Fa;b , we have

Fa;b � a if jaj D 1 and Fa;b D �b ı F�b.a/;�b if jbj D 1: (4.20)
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To produce families in �n;2.M/ satisfying the desired energy bounds, we will once
again mollify the weakly continuous family Fa;b D‡a;b ı � to obtain strongly continuous
families in W 1;2.M;RnC1/ satisfying the same symmetries and energy bound. Namely,
let Kt .x; y/ again denote the heat kernel on .M; g/, and denote by

ˆt W L1.M;RnC1/! C 2.M;RnC1/

the mollification map

.ˆtF /.x/ WD

Z
M

F.y/Kt .x; y/ dy

for t > 0. Then, letting F 2 C 0. xB2.nC1/; L1.M; Sn// be a family of the form Fa;b WD

‡a;b ı � for some branched conformal immersion � W M ! Sn, it is easy to see—as in
the proof of Proposition 3.3—that the mollified families

F ta;b WD ˆ
tFa;b WD ˆ

t .‡a;b ı �/

define strongly continuous assignments xB2.nC1/ ! W 1;2.M;RnC1/, and inherit from
Fa;b the symmetries (4.20).

In particular, it follows that F t 2 �n;2.M/ for each t > 0. Since F t
a;b

is obtained from
the heat flow with initial data Fa;b , we also have the energy boundZ

M

1
2
jdF ta;bj

2
�

Z
M

1
2
jdFa;bj

2;

while arguments identical to those in the proof of Proposition 3.3 show that

lim
t!0

max
.a;b/2 xB2.nC1/

Z
M

.1 � jF ta;bj
2/2 D 0:

Recalling that the initial family Fa;b satisfies the energy bound (4.19), we deduce that, for
any � > 0,

En;2;�.M; g/ � inf
t>0

max
a;b

E�.F
t
a;b/ � max

a;b

Z
M

1
2
jdFa;bj

2
� 2Vc.n; �/:

Since the bound holds for arbitrary � > 0, it follows that

En;2.M; Œg�/ D sup
�>0

En;2;�.M; g/ � 2Vc.n; �/;

and taking the infimum over all branched conformal immersions � W M ! Sn gives the
desired estimate En;2.M; Œg�/ � 2Vc.n;M; Œg�/.

4.2. Existence of min-max harmonic maps

We have already seen in Proposition 3.1 that the functionals E� are C 2 functionals on
the Hilbert space W 1;2.M;RnC1/, satisfying the technical conditions needed to produce
critical points with index bounds via classical min-max techniques. Moreover, since the
functionalsE� are invariant under the action ofO.nC 1/ on RnC1, we see that the collec-
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tion of .2nC 2/-parameter families �n;2.M/ is preserved under the gradient flow of E� ,
so we can again appeal to standard results in critical point theory (again, see [17, Chap-
ter 10]) to arrive at the following existence result.

Proposition 4.4. For each � > 0, there exists a nontrivial critical point‰� WM 2!RnC1

of E� on .M; g/, of energy
E�.‰�/ D En;2;�.M; g/ (4.21)

and Morse index
indE� .‰�/ � 2nC 2: (4.22)

Finally, combining this basic existence result with Propositions 4.1 and 4.3, and invok-
ing the bubbling analysis of Lemma 3.6, we take the limit of these maps as �! 0, arriving
at the following conclusion.

Theorem 4.5. For any closed Riemannian surface .M; Œg�/ of positive genus and any
n > 2, there exists a harmonic map ‰n W M ! Sn and harmonic maps �1; : : : ; �k W
M ! Sn such that

1
2
ƒ2.M; Œg�/ 6 En;2.M; Œg�/ D E.‰n/C

kX
jD1

E.�j / 6 2Vc.n;M; Œg�/

and

indE .‰/C
kX

jD1

indE .�j / 6 2nC 2:

Moreover, if n � 9, then we have k D 0 or 1, and if k D 1, then �1 W S2! Sn is a totally
geodesic embedding.

Proof. The proof is similar to the proof of Theorem 3.8. The first part easily follows
from Proposition 4.4 and Lemma 3.6. Assume n > 9. Since 2.n C 1/ < 3.n � 2/ for
n > 9, Propositions 2.10 and 2.9 imply that one of the following three possibilities must
hold: either ‰n is constant, k D 2, and �1; �2 are equatorial bubbles; or k D 1, �1 is an
equatorial bubble; or k D 0.

The first case, in which the energy En;2 is achieved by two equatorial bubbles, can be
ruled out using Theorem 2.6. Indeed, by (2.3) applied to ƒ2.M; Œg�/ one has ƒ2.M; c/
> 16� ; thus, if En;2 is achieved by two equatorial bubbles, then

8� < 1
2
ƒ2.M; Œg�/ 6 En;2 D E.�1/CE.�2/ D 8�;

which is a contradiction.

4.3. Stabilization for En;2

Similarly to Section 3.3 we will conclude that the inequality

ƒ2.M; Œg�/ 6 2En;2.M; g/ (4.23)

is an equality for large n.
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The proof of the following proposition is identical to that of Proposition 3.10.

Proposition 4.6. The quantity En;2.M; Œg�/ is nonincreasing in n.

Next, note that one of the two cases in the conclusion of Theorem 4.5 must hold for
infinitely many n 2 N. Thus, for any .M; Œg�/, we know that at least one of the following
must hold:

Case 1: There exists a sequence nk ! 1 such that Enk ;2.M; Œg�/ D E.‰nk / C 4� ,
where ‰nk W .M; Œg�/! Snk is a harmonic map with indE .‰nk / 6 nk C 4.

Case 2: There exists a sequence nk ! 1 such that Enk ;2.M; Œg�/ D E.‰nk /, where
‰nk W .M; Œg�/! Snk is a harmonic map with indE .‰nk / 6 2nk C 2.

Assuming Case 1, the same arguments as in Section 3.3 yield the existence of‰n such
that En;2 D E.‰n/C 4� and indS .‰n/ D 1. Then

ƒ2.M; Œg�/ 6 2En;2.M; Œg�/ D N�1.M; g‰n/C 8� 6 ƒ1.M; Œg�/C 8� 6 ƒ2.M; Œg�/:

In particular, inequality (4.23) is an equality.
Assuming Case 2, the arguments of Section 3.3 yield the existence of ‰n such that

En;2 D E.‰n/ and indS .‰n/ 6 2. If indS .‰n/ D 1, then

ƒ2.M; Œg�/ 6 2En;2.M; Œg�/ D N�1.M; g‰n/ 6 ƒ1.M; Œg�/;

which is a contradiction. If indS .‰n/ D 2, then

ƒ2.M; Œg�/ 6 2En;2.M; Œg�/ D N�2.M; g‰n/ 6 ƒ2.M; Œg�/:

In particular, inequality (4.23) is an equality.
As a result, we obtain

Theorem 4.7. For any .M; Œg�/ there exists N such that for all n > N one has

1
2
ƒ2.M; Œg�/ D En;2.M; Œg�/:

5. Applications

The starting point for the geometric applications of our min-max characterization for
ƒk.M;c/ is the following theorem, showing that for k D 1; 2, the supremumƒk.M;c/ of
the eigenvalue N�k.M; g/ over the conformal class c D Œg� is an upper bound for the gen-
eralized eigenvalues �k.M; c; �/ (recall the definition in (2.4)) associated to any Radon
probability measure �.

Theorem 5.1. Let � be an admissible Radon measure of unit mass, �.M/ D 1. Then

�1.M; c; �/ 6 ƒ1.M; c/;

with equality if and only if

�1.M; c; �/� D jduj
2
g dvg
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for some harmonic map u W .M; g/! Sn of spectral index 1. Furthermore,

�2.M; c; �/ 6 ƒ2.M; c/;

with equality if and only if

�2.M; c; �/� D jduj
2
g dvg

for some harmonic map u W .M; g/! Sn of spectral index 2.

We postpone the proof to Section 5.3. This theorem has a nice application to the study
of Steklov eigenvalues, which we describe in the following section.

5.1. Steklov eigenvalues

Given a sufficiently regular (e.g. Lipschitz) domain � � M (or any surface with bound-
ary) the Steklov eigenvalues �k.�; g/ are defined via Rayleigh quotients, as

�k.�; g/ D inf
GkC1

sup
u2GkC1n¹0º

R
�
jruj2g dvgR
@�
u2 dsg

; (5.1)

where the infimum is taken over .k C 1/-dimensional subspaces GkC1 � C1.�/ that
remain .k C 1/-dimensional in L2.@�/. It is not difficult to check that the eigenvalues
�k.�; g/ defined by (5.1) correspond to the spectrum of the Dirichlet-to-Neumann map

C1.@�/ 3 ' 7!
@ O'

@�
2 C1.@�/, where � O' D 0 in �; O'j@� D ':

Similar to the normalized Laplacian eigenvalues, one defines the normalized Steklov
eigenvalues by

N�k.�; g/ D �k.�; g/Length.@�; g/:

The theory of optimal eigenvalue inequalities for N�k is very much parallel to that of N�k ,
and has received considerable attention in recent years, in connection with the study of
free boundary minimal surfaces in Euclidean balls; see [14, 22] for some recent surveys.

Let�D�@� be the length density sg of @�. Let��M and assume the measure�@�
is admissible, i.e. the trace map W 1;2.M; g/! L2.@�; g/ is compact. This is satisfied,
for example, provided � is Lipschitz. Comparing (2.4) and (5.1) one easily sees that

�k.�; g/ 6 �k.M; Œg�; �@�/:

Since the measure �@� cannot have full support, Theorem 5.1 has the following corollary.

Theorem 5.2. For any � � M such that the trace map W 1;2.M; g/ ! L2.@�; g/ is
compact and for k D 1; 2 one has

N�k.�; g/ < ƒk.M; c/ for every g 2 c.

Theorem 5.2 gives a sharp bound, independent of the number of boundary components
of @�. See e.g. [14, 25, 29] for other bounds on Steklov eigenvalues.
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5.2. Applications to the existence of maximal metrics for Steklov eigenvalues

As discussed in the introduction, the following result—obtained in the recent
preprint [19]—implies that Theorem 5.2 above is sharp.

Theorem 5.3 (Girouard–Lagacé [19]). Given a surface .M; g/, there exists a sequence
of smooth domains �n �M such that for all k one has

lim
n!1

N�k.�n; g/! N�k.M; g/:

In this section we explore further applications of Theorems 5.2 and 5.3. Some of these
statements also appear in [19]. Let us first introduce the notation

†k.�; c/ D sup
g2c
N�k.�; g/:

The following theorem is an analog of Theorem 2.5 for Steklov eigenvalues.

Theorem 5.4 (Petrides [51]). Assume that

†k.�; c/ > †k�1.�; c/C 2�: (5.2)

Then there exists a metric g 2 c such that N�k.�; g/ D †k.�; c/.

The following proposition states that condition (5.2) is satisfied for many conformal
classes.

Proposition 5.5. Let .M; c0/ be a surface with a fixed conformal class c0. Then for any
0 < k 6 3 there exists b0 > 0 such that for any b > b0 there exists .�b; cb/� .M;c0/ such
that � has exactly b boundary components and condition (5.2) is satisfied for .�b; cb/.

Proof. For any .�; c/ � .M; c0/ by Theorem 5.2 one has

†k�1.�; c/ < ƒk�1.M; c/ 6 ƒk.M; c/ � 8�;

where in the last inequality we have used (2.3). Let g 2 c be a metric with the property
that N�k.M; g/C 2� > ƒk.M; c/. By Theorem 5.3 there exists �0 �M such that

N�k.�0; g/ > N�k.M; g/ � 2� > ƒk.M; c/ � 4�:

Combining the previous two inequalities one has

†k.�0; c/ > N�k.�0; g/ > †k�1.�0; c/C 4�:

Set b0 to be the number of boundary components of �0. If b > b0, then by the results
of [3] (which continue to hold in the manifold setting, see the proof of [19, Lemma 3.1])
one can cut out several holes in �0 to obtain �b such that

N�k.�b; g/ > N�k.�0; g/ � 2�:

For such �b one has

†k.�b; c/ > N�k.�b; g/ > †k�1.�b; c/C 2�:
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Let us further introduce the following notation: let

ƒk.
/ D sup
c
ƒk.M
 ; c/;

denote the supremum of N�k.M; g/ over all metrics on the closed, orientable surface M


of genus 
 . Similarly, for Steklov eigenvalues we define

†k.
; b/ D sup
c
†k.�
;b; c/;

where �
;b is an orientable surface of genus 
 with b boundary components.

Theorem 5.6 (Petrides [48, 51]). Assume that

ƒ1.
/ > ƒ1.
 � 1/; (5.3)

where ƒ1.�1/ is set to be 0 by definition. Then there is a metric g on M
 such that
N�1.M
 ; g/ D ƒ1.
/, induced by a branched minimal immersion, by first eigenfunctions,
into some sphere Sn. Assume that

†1.
; b/ > max ¹†1.
; b � 1/;†1.
 � 1; b C 1/º: (5.4)

Then there exists a metric g on �
:b such that N�1.�
;b; g/ D †1.
; b/, induced by a
.branched/ free boundary minimal immersion, by first Steklov eigenfunctions, into some
Euclidean ball Bn.

Remark 5.7. The nonstrict versions of inequalities (5.3), (5.4) are always satisfied.

It follows from the lower bound (proved in [4])

ƒ1.
/ �
3
4
�.
 � 1/ (5.5)

that inequality (5.3) holds for infinitely many values of 
 .
The following proposition also appears in [19, Corollary 1.6].

Proposition 5.8. For k D 1; 2 one has

lim
b!1

†k.
; b/ D ƒk.
/:

Proof. Theorem 5.3 implies that for all k > 0,

lim
b!1

†k.
; b/ > ƒk.
/:

At the same time, for any conformal class c on �
;b one can glue in the holes to obtain a
conformal class Nc on M
 such that .�
;b; c/ � .M
 ; Nc/. Then by Theorem 5.2, for any b
and k D 1; 2,

†k.
; b/ D sup
c
†k.�
;b; c/ 6 sup

Nc

ƒk.M
 ; Nc/ D ƒk.
/:
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Theorem 5.9. Let 
 be such that the condition (5.3) is satisfied. Then

†1.
; b/ < ƒ1.
/ (5.6)

and there are infinitely many b such that inequality (5.4) holds.

Proof. The nonstrict version of (5.6) follows from the proof of Proposition 5.8.
We start with the second statement. Let 
 be fixed. Combining (5.3) and Proposi-

tion 5.8 yields
lim
b!1

†1.
; b/ > lim
b!1

†1.
 � 1; b/:

Therefore, for large b,
†1.
; b/ > †1.
 � 1; b C 1/:

Hence, it only remains to establish that, for infinitely many of these large b,

†1.
; b/ > †1.
; b � 1/:

Assume the contrary. Then by Remark 5.7, for large enough b,

ƒ1.
/ D †1.
; b/;

which would also violate the claimed strict inequality (5.6). Then there exists b0 such that

ƒ1.
/ D †1.
; b0/ > †1.
; b0 � 1/:

We claim that †1.
; b0/ > †1.
 � 1; b0 C 1/. Indeed, otherwise by Remark 5.7 one has
equality †1.
; b0/ D †1.
 � 1; b0 C 1/, and thus, by Remark 5.7,

ƒ1.
 � 1/ D lim
b!1

†1.
 � 1; b/ > †1.
 � 1; b0 C 1/ D †1.
; b0/ D ƒ1.
/;

which contradicts (5.3). As a result, condition (5.4) is satisfied for .
; b0/, i.e. there exists
a metric g on �
;b0 such that

N�1.�
;b0 ; g/ D †1.
; b0/ D ƒ1.
/:

Let .M
 ; Ng/ be obtained by gluing in the holes in .�
;b0 ; g/ so that .�
;b0 ; g/� .M
 ; Ng/.
Then, by Theorem 5.2,

ƒ1.
/ D N�1.�
;b0 ; g/ < ƒ1.M
 ; Œ Ng�/ 6 ƒ1.
/;

which is a contradiction.

Finally, we recall the connection to free boundary minimal surfaces; see e.g. [13, 14].

Theorem 5.10. There are infinitely many values of 
 > 0 satisfying

ƒ1.
/ > ƒ1.
 � 1/;

whereƒ1.�1/ is set to be 0. For each such 
 there are infinitely many b > 1 such that the
value †1.
; b/ is achieved by a smooth metric. In particular, there exists a free boundary
minimal branched immersion f W �
;b ! Bn
;b by the first Steklov eigenfunctions.
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Remark 5.11. We expect that the results of this section extend to nonorientable surfaces.
However, to the best of the authors’ knowledge, the analogs of condition (5.4) for nonori-
entable surfaces or of the lower bound (5.5) have not appeared in the literature, so we
refrain from stating the nonorientable version of Theorem 5.9 here. Note that the nonori-
entable analog of (5.3) can be found in [42].

5.3. Proof of Theorem 5.1

In light of the min-max characterization provided by Theorem 1.3, Theorem 5.1 is an
immediate consequence of the following proposition.

Proposition 5.12. Let � 2 ŒC 0.M/�� be an admissible probability measure on M , and
fix a conformal class of metrics c D Œg� on M . Then

�1.�; c/ � 2En.M; c/;

with equality if and only if

�1.M; c; �/� D jduj
2
g dvg

for some harmonic map u W .M; g/! Sn of spectral index 1.
If in addition �1.M; c; �/ > 0, then

�2.�; c/ � 2En;2.M; c/;

with equality only if
�2.M; c; �/� D jduj

2
g dvg

for a harmonic map u W .M; g/! Sn of spectral index 2.

The proof follows roughly the same lines as those of Propositions 3.4 and 4.1 for the
volume measures, with some aid from the following technical lemma.

Lemma 5.13. Let � be an admissible probability measure, with associated map T W
W 1;2.M;g/! L2.M;�/. For any sequence 'j which is bounded inW 1;2 and converges
weakly to ' 2 W 1;2, we also have the convergence

T .'j /! T .'/ in L2.�/:

Proof. Since 'j is bounded in W 1;2, it follows from the definition of admissibility that,
after passing to a subsequence, the functions T .'j / converge strongly:

T .'j /!  in L2.�/:

Now, for any � 2 L2.�/, the continuity of T implies that the linear functional

W 1;2
3 f 7! hT �.�/; f i WD

Z
M

T .f /� d�
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defines an element T �.�/2 .W 1;2/� of the dual space toW 1;2; thus, since 'j ! ' weakly
in W 1;2, it follows thatZ

M

T .'/� D hT �.�/; 'i D lim
j!1
hT �.�/; 'j i D lim

j!1

Z
M

T .'j /� d� D

Z
M

 �d�:

It follows that T .'/ D  , as desired.

The proof of Proposition 5.12 is now fairly straightforward.

Proof of Proposition 5.12. By definition of En.M;g/, we can find a sequence �j ! 0 and
a sequence of families F j 2 �n.M/ such that

lim
j!1

max
y2BnC1

E�j .F
j
y / D En.M; c/:

Since the map T W W 1;2.M; g/! L2.�/ is continuous, we see that the map

BnC1 3 y 7!

Z
M

T .F jy / d� 2 RnC1

is continuous and coincides with the identity Sn ! Sn on the boundary @BnC1. Thus, it
follows as before that there exists yj 2 BnC1 such that the maps uj D F

j
yj satisfyZ

M

T .uj / d� D 0 2 RnC1;

while

lim sup
j!1

Z
M

�
jduj j

2
C

1

2�2j
.1 � juj j

2/2
�
� 2En.M; c/: (5.7)

Passing to a subsequence, by Banach–Alaoglu, we can find a map u2W 1;2.M;RnC1/
such that

uj ! u weakly in W 1;2 and strongly in L2.M/:

By Lemma 5.13, it also follows that

T .uj /! T .u/ strongly in L2.�/;

and since
R
M
.1 � juj j

2/2 D O.�2j /, the limit map u must satisfy

juj � 1 in L2.M/; jT .u/j � 1 in L2.�/:

Combining all this information, we see that

�1.�; c/ �

Z
M

jduj2 � lim inf
j!1

Z
M

jduj j
2
� 2En.M; c/; (5.8)

from which the desired estimate follows.
In the case of equality �1.�; c/D 2En.M; c/, we see that each inequality in the chain

above is an equality, from which it follows that

uj ! u strongly in W 1;2.M; g/
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and the nonzero components ui 2 W 1;2.M;R/ of u minimize the Rayleigh quotient
among functions with �-average 0. In particular, it follows thatZ

M

hdu; dvig dvg D �1.�; c/

Z
M

hT .u/; T .v/i d� (5.9)

for all v 2 W 1;2.M;RnC1/.
Now, if v 2 W 1;2.M;RnC1/ \ L1 satisfies hu; vi � 0 in W 1;2.M; g/, it is easy to

see that
hT .u/; T .v/i � T .hu; vi/ � 0

inL2.�/ as well. As a consequence, for any map v 2W 1;2.M;RnC1/\L1, testing (5.9)
with the map w D v � hv; uiu (which is pointwise perpendicular to u) givesZ

M

hdu; d.v � hv; uiui/ig dvg D

Z
M

hdu; dvi �

Z
M

jduj2hv; ui D 0:

In particular, u W .M; g/! Sn is weakly harmonic, and setting v D 'u, we see that

�1.�; c/

Z
M

' d� D

Z
M

hdu; dvi D

Z
M

jduj2' dvg ;

so that
�1.�; c/� D jduj

2 dvg ;

as claimed.
The proof of the second inequality �2.M; c; �/ � 2En;2.M; c/ follows similar lines.

Assume now that � admits a “first eigenfunction” � 2 W 1;2.M; g/ minimizing the
Rayleigh quotient

R
M
jd�j2=kT .�/k2

L2.�/
among all � with

R
M
T .�/ d� D 0, so thatZ

M

hd�; d ig dvg D �1.�; c/

Z
M

T .�/T . / d�

for all  2 W 1;2.M; g/.
As before, consider a sequence of families F j 2 �n;2.M/ such that

lim
j!1

max
y2ŒBnC1�2

E�j .F
j
y / D En;2.M; c/:

By appealing to Lemma 4.2 and the continuity of the map T W W 1;2.M; g/! L2.M;�/,
we see that the averaging maps

Œ xBnC1�2 3 .a; b/ 7!

�Z
M

Fa;b d�;

Z
M

�Fa;b d�

�
2 R2.nC1/

must have a zero. In particular, we can extract from the families F j a sequence of maps

uj D F
j

aj ;bj
WM ! RnC1

such that Z
M

uj d� D

Z
M

�uj d� D 0 2 RnC1 (5.10)
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while
lim sup
j!1

Z
M

jduj j
2
C

1

2�2j
.1 � juj j

2/2 � 2En;2.M; c/:

Once again, by appealing to Banach–Alaoglu and Lemma 5.13, we can pass to a
subsequence to find a weak limit u of the sequence uj such that

uj ! u strongly in L2.M/; T .uj /! T .u/ in L2.�/;

and
juj � jT .u/j � 1:

Now, it follows from (5.10) thatZ
M

ud� D

Z
M

�ud� D 0 2 RnC1;

so we see that each nonzero component ui of u satisfiesZ
M

jdui j2 dvg � �2.�; c/

Z
M

.ui /2 d�;

and summing over i D 1; : : : ; nC 1 givesZ
M

jduj2 dvg � �2.�; c/:

In particular,

�2.�; c/ �

Z
M

jduj2g dvg � lim inf
j!1

Z
M

jduj j
2
g dvg � 2En;2.M; c/:

This gives the desired estimate for the case k D 2, and the proof of the rigidity result in
the case of equality follows exactly the same lines as the proof of the corresponding result
for k D 1.
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