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Abstract. We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of met-
ric diophantine approximation. To do so we reformulate the Subspace Theorem in the framework
of homogeneous dynamics by introducing and studying a slope formalism and the corresponding
notion of semistability for diagonal flows.

Keywords. Diophantine approximation, lattices, algebraic numbers

Introduction

In 1972, Wolfgang Schmidt formulated his celebrated subspace theorem [36, Lemma 7],
a far reaching generalization of results of Thue [41], Siegel [39], and Roth [31] on rational
approximations to algebraic numbers. Around the same time, in his work on arithmetic-
ity of lattices in Lie groups, Gregory Margulis [29] used the geometry of numbers to
establish the recurrence of unipotent flows on the space of lattices GLd .R/=GLd .Z/.
More than two decades later, a quantitative refinement of this fact, the so-called quantita-
tive non-divergence estimate, was used by Kleinbock and Margulis [25] in their solution
to the Sprindzuk conjecture regarding the extremality of non-degenerate manifolds in
metric diophantine approximation. As it turns out, these two remarkable results – the
subspace theorem and the Sprindzuk conjecture – are closely related and can be under-
stood together as statements about diagonal orbits in the space of lattices. In this paper we
prove a theorem that generalizes both results at the same time. We also provide several
applications. This marriage is possible thanks to a better understanding of the geometry
lying behind the subspace theorem, in particular the notion of Harder–Narasimhan filtra-
tion for one-parameter diagonal actions, which leads both to a dynamical reformulation
of the original subspace theorem and to a further geometric understanding of the family
of exceptional subspaces arising in Schmidt’s theorem. The proof blends the diophantine
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input of Schmidt’s original theorem with the dynamical input arising from the Kleinbock–
Margulis approach and refinements recently obtained in [2, 9].

We now formulate the main theorem. Let M D �.U / be a connected analytic sub-
manifold of GLd .R/ parametrized by an analytic map � W U ! GLd .R/, where U � Rn

is a connected open set and n 2 N. Let � be the push-forward in M of the Lebesgue
measure on U . The Zariski closure ofM is said to be defined over xQ if for .aij /ij 2 GLd
the ideal of polynomial functions in CŒaij ; det�1� that vanish on M can be generated by
polynomials with coefficients in xQ.

Theorem 1 (Subspace theorem for manifolds). Assume that the Zariski closure of M
in GLd is defined over xQ. Then there exists a finite family of proper subspaces V1; : : : ; Vr
of Qd with r D r.d/ such that, for �-almost everyL inM , for every " > 0, all but finitely
many integer solutions x 2 Zd to the inequality

dY
iD1

jLi .x/j � kxk�" (1)

lie in the union V1 [ � � � [ Vr .

Here the Li are the linear forms on Rd given by the rows of L 2 GLd .R/, and k � k is
the canonical Euclidean norm on Rd . Note that we only assume that the Zariski closure
of M is defined over xQ, so that the manifold M itself may well be transcendental. We
will in fact prove the theorem under a slightly weaker assumption on M requiring only
that what we call the Plücker closure of M be defined over xQ; see §1.8 for the definition
of Plücker closure.

Of course, the main motivation to derive the above theorem was the usual subspace
theorem and its numerous applications, for which the reader is referred to Schmidt [37],
Vojta [42], Edixhoven–Evertse [10], or Bombieri–Gubler [5]. And we recover the original
Schmidt subspace theorem as the special case of Theorem 1 when M is a singleton ¹Lº
(then nD 0 and � is the Dirac mass atL). However, since we shall use Schmidt’s result to
derive the above theorem, our approach does not yield a new proof of the subspace theo-
rem. The main interest of our statement is when the manifold M is positive-dimensional.
The theorem is then non-trivial even in the case whereM is defined over Q. Indeed, as we
shall see in Section 3.1, it recovers the main result of Kleinbock and Margulis regarding
the Sprindzuk conjecture.

The exceptional subspaces Vi are independent of ", as in Vojta’s refinement [38, 42],
and they depend only on the rational Zariski closure of M . In fact, they are determined
by what we call the rational Schubert closure ofM , that is, the intersection of all rational
translates ��g WD B�B containingM , where g 2 GLd .Q/ and �� is a standard Schubert
variety associated to a permutation � and a Borel subgroup B containing the diagonal
subgroup. Each Vi contains infinitely many solutions to .1/, regardless of ". The number r
of exceptional subspaces can be bounded by a number depending only on d (see Lemma 3
and the remark following it).
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The proof of Theorem 1 goes via the proof of a stronger result, a parametric sub-
space theorem for manifolds, Theorem 3 below. The idea behind parametric versions of
the subspace theorem, already present in Schmidt’s work [35, Theorem 3], is to study the
behavior of the successive minima of a lattice along the orbit of a one-parameter diagonal
subgroup .at /t2R in GLd .R/, i.e. at D etA for some diagonal matrix A. Former ver-
sions of the parametric subspace theorem, such as Faltings–Wüstholz [16, Theorem 9.1],
Evertse–Schlickewei [15] or Evertse–Ferretti [13, Theorem 2.1], essentially state that
short vectors in the lattices from the .at /-orbit are all contained in some fixed proper
subspace. We refine this statement and show that it is in fact possible to obtain a complete
description of the shape of the lattices along the diagonal orbit.

We may summarize the result informally as follows:

Theorem 2 (Parametric version). For �-almost every L inM the lattice atLZd assumes
a fixed asymptotic shape as t tends toC1.

By “fixed asymptotic shape” we mean two things. Firstly, the successive minima are
asymptotic to eƒk t for some real numbers ƒk , Lyapunov exponents of sorts, depending
only on M and a D .at /t>0 (the dependence on a is piecewise linear). In particular, as
t varies there can only be oscillations of subexponential size for successive minima. And
secondly, the successive minima determine a fixed partial flag in Zd . In other words,
there is a fixed (independent of L) partial rational flag W1 � � � � � Wd in Qd such that if
ƒk < ƒkC1, then the k first successive minima of atLZd are always realized by vectors
from Wk when t is large enough. The constants ƒk and the flag ¹Wkºk depend only
on a and on the rational Schubert closure of M . As a first example, it is instructive to
understand Theorem 2 in dimension 2, where it is equivalent to Roth’s theorem.

Example (Roth’s theorem and diagonal flows). In dimension 2, taking at D
�
1 0
0 et

�
and

L D
�
1 0
�˛ 1

�
, where ˛ is any real algebraic number, one can observe two different behav-

iors. If ˛ 2 Q, then ƒ1 D 0, ƒ2 D 1, and the first minimum is always attained on the
line generated by

�
1
˛

�
. If ˛ 62 Q however, given any non-zero v 2 Z2, katLvk grows at

the highest possible rate of et . Hence Theorem 2 forcesƒ1 D ƒ2 and this common value
must be 1

2
since ƒ1 Cƒ2 D 1. This is another way to formulate Roth’s theorem.

In general, this rational flag arises naturally as the Harder–Narasimhan filtration
associated to a certain submodular function on the rational grassmannian: the maximal
expansion rate of the subspace under the flow. We recall in §1.3 that any submodular
function on a grassmannian gives rise to a Grayson polygon, a notion of semistability, a
Harder–Narasimhan filtration and certain coefficients, the slopes of the polygon, which in
our case will correspond to the Lyapunov exponents ƒk mentioned above. This is the so-
called “slope formalism”, which arises in particular in the study of Euclidean lattices as
first described by Stuhler [40] and Grayson [17], and in many other subjects as well [6,30].
The family of exceptional subspaces Vi appearing in Theorem 1 is obtained by grouping
together the different Wi appearing when one varies the one-parameter subgroup a.

Although we have restricted to the current setting for clarity of exposition in this
introduction, the result will be proved for more general measures � than push-forwards
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of the Lebesgue measure by analytic maps; the exceptional subspaces then depend only
on the Zariski closure of the support of �. The right technical framework is that of good
measures, which are closely related to the friendly measures of [20]; see §1.9.

The paper is organized as follows. In Section 1 we begin by formulating the technical
version of Theorem 2 and then proceed to describe the slope formalism on the grassman-
nian associated to a one-parameter flow and in particular discuss the associated notion of
Harder–Narasimhan filtration. The proof of Theorems 1 and 2 is carried out in §1.5 and
§1.6 after a discussion of the Kleinbock–Margulis quantitative non-divergence estimates.
In Section 2 we formulate and sketch a proof of an extension of Theorem 1 to arbitrary
number fields, which is analogous to the classical extension of Schmidt’s subspace theo-
rem due to Schlickewei to multiple places and targets [5, 34, 43]. Finally, in Section 3 we
prove several applications of the main result.

For the sake of brevity we do not state these applications in the introduction and refer
the reader to Section 3 directly instead. Let us only briefly mention that there are five
main applications: (i) we explain how to recover the Sprindzuk conjecture (Kleinbock–
Margulis theorem) from Theorem 1; (ii) we establish a manifold version of the clas-
sical Ridout theorem regarding approximation by rationals whose denominators have
prescribed prime factors; (iii) we recover the main results of [2] regarding (weighted)
diophantine approximation on submanifolds of matrices showing that they also hold for
submanifolds defined over xQ (and not only over Q); (iv) we prove an optimal criterion
for strong extremality (Corollary 3), which answers in this case a question from [4, 21];
(v) we prove a Roth-type theorem for non-commutative diophantine approximation on
nilpotent Lie groups, extending to algebraic points what was done for Lebesgue almost
every point in our previous work with Aka and Rosenzweig [1, 2].

Further applications and an extension of some of the results of this paper to other
reductive groups and homogeneous varieties can be found in the second author’s forth-
coming work [33].

Notation. Given two variable quantities A and B in R, we use the Vinogradov notation
A� B to indicate that there exists a constant C � 0 such that A � CB . When we wish
to specify the dependence of the constant C involved on some parameter L, we write
A�L B .

1. The main result

1.1. Dynamical formulation

A lattice, that is, a discrete subgroup � of rank d in Rd , can be written as

� D Zu1 ˚ � � � ˚ Zud ;

where .ui /1�i�d is a basis of Rd . And the space � of lattices can be identified with the
homogeneous space

� ' GLd .R/=GLd .Z/:
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The position of a lattice � in the space �, up to a bounded error, is described by its
successive minima �1.�/ � � � � � �d .�/, defined by

�i .�/ D inf ¹� > 0I rk.� \ B.0; �// � iº;

where rk.A/ for A � � denotes the rank of the free abelian subgroup of � generated
by A, and B.0; �/ is the Euclidean ball of radius � centered at the origin in Rd .

Theorem 1 will be deduced from the following description of the asymptotic behavior
of the successive minima along a diagonal orbit of the latticeLZd , whereL is a�-generic
point of M . Here, as in Theorem 1, M D �.U / is the image of a connected open set in
some Euclidean space U � Rn under an analytic map � W U ! GLd .R/, and � is the
push-forward under � of the Lebesgue measure on U .

Theorem 3 (Strong parametric subspace theorem for manifolds). Assume that the Zariski
closure of M is defined over xQ. Let .at /t�0 be a diagonal one-parameter semigroup in
GLd .R/. Then there exist real numbers ƒ1 � � � � � ƒd such that for �-almost every
L 2M and each k 2 ¹1; : : : ; dº,

lim
t!C1

1

t
log�k.atLZd / D ƒk : (2)

Moreover, if 0 D d0 < d1 < � � � < dh D d in ¹0; : : : ; dº are chosen so that

ƒ1 D � � � D ƒd1 < ƒd1C1 D � � � D ƒd2 < � � � < ƒdh�1C1 D � � � D ƒd ;

then there exist rational subspaces V`, ` D 0; : : : ; h, in Qd such that

� dimV` D d` and ¹0º D V0 < V1 < � � � < Vh D Qd ,

� for �-almost every L 2M the first d` successive minima of atLZd are attained in V`
provided t is large enough.

In other words: for all " > 0, for �-almost every L 2 M , there is tL;" > 0 such that for
t > tL;", ` D 1; : : : ; h; and x 2 Zd ,

katLxk � et.ƒd`�"/ H) x 2 V`�1: (3)

In the proof of this result, we will make crucial use of the special case when M is
reduced to a singleton. In that case the theorem appears,1 albeit in a slightly different
but equivalent language, in a paper of Evertse and Ferretti [14, Theorem 16.1]. It is a
refinement of the parametric subspace theorem, often attributed to Faltings and Wüstholz
[16, Theorem 9.1]. As shown below, the case when M is a singleton can also be obtained
directly from Schmidt’s subspace theorem in its original form. The two results are really
equivalent. For convenience we will give a self-contained derivation of this special case
and we note that our argument shares many similarities with that of [14, Sections 15
and 16].

1We thank the anonymous referee from whom we learned about this reference.
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An important point to make is that .2/ is a limit and not only a liminf or a limsup.
This can be understood as saying that the diagonal orbit of a lattice defined over xQ has
an asymptotic shape at infinity. Of course the �k can fluctuate, but only up to a small
exponential error. This is of course in sharp contrast with what happens for certain specific
values ofL. Indeed, it is possible to construct matricesL for which the successive minima
have an almost arbitrary behavior along a given diagonal orbit; see [32, Theorem 1.3] and
[8, Theorem 2.2].

Corollary 1 (Parametric subspace theorem for manifolds). Keep the same assumptions
as in Theorem 3. Let a D .at /t�0 be a one-parameter diagonal semigroup in SLd .R/.
There exists a proper subspace V.a/ of Qd such that given " > 0, for �-almost every
L 2M , there is tL;" > 0 such that if t > tL;" and x 2 Zd ,

katLxk � e�"t H) x 2 V.a/:

Proof. Here we have assumed that at is unimodular. By Minkowski’s theorem the product
of all d successive minima of atLZd is bounded above and below independently of t . In
view of .2/, this implies that

Pd
iD1ƒi D 0: Soƒd � 0. Hence we can take V.a/D Vh�1

in the notation of Theorem 3.

The rational subspaces Vi appearing in Theorem 3 depend only on .at /t�0 and on the
rational Zariski closure of M , namely the intersection of the closed algebraic subsets of
GLd defined over Q and containing M . This will be clear from the proof of Theorem 3
given below, where a more precise description of V.a/ and the Vi will be given. As we
will see, the filtration ¹Viºi is the Harder–Narasimhan filtration associated to M and
.at /t�0, and the ƒi are the slopes of the Grayson polygon. The next few subsections
contain preparations towards the proof of Theorem 3 given at the end of this section.

1.2. Expansion rate and submodularity

In this subsection M is an arbitrary subset of GLd .R/ and a D .at /t�0 a one-
parameter diagonal semigroup. We write at D diag.eA1t ; : : : ; eAd t / for some real
numbers A1; : : : ; Ad . For a non-zero subspace V � Rd we define its expansion rate
with respect to a by

�.V / WD lim
t!C1

1

t
log katvk (4)

where v represents V in an exterior power
Vk Rd . This quantity takes values in the finite

set of eigenvalues of log a1 in exterior powers. More precisely,

�.V / D max ¹I.a/I I � Œ1; d �; jI j D k; vI ¤ 0º (5)

where I.a/ D
P
i2I Ai and vI is the coordinate of v in the basis eI D ei1 ^ � � � ^ eik

of
Vk Rd , where I D ¹i1; : : : ; ikº, k D dimV . By convention we will also set �.¹0º/D 0.

We leave it to the reader to check that if A1 � � � � � Ad , then

�.V / D IV .a/ with IV WD ¹i 2 Œ1; d �I V \ Fi > V \ FiC1º (6)

where Fi D hei ; : : : ; ed i and .e1; : : : ; ed / is the canonical basis of Rd .
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For a subset M � GLd .R/, we set

�M .V / WD max
L2M

�.LV /: (7)

Similarly we see readily that

�M .V / D max ¹I.a/I I � Œ1; d �; jI j D dimV; .Lv/I ¤ 0 for some L 2M º: (8)

From this formula it is clear that for all subspaces V ,

�M .V / D �Zar.M/.V /

where Zar.M/ is the Zariski closure.

Lemma 1 (Submodularity of expansion rate). Let M � GLd .R/ and assume that its
Zariski closure is irreducible. Then the map V 7! �M .V / is submodular on the grass-
mannian, i.e. satisfies, for every pair of subspaces W1; W2,

�M .W1/C �M .W2/ � �M .W1 \W2/C �M .W1 CW2/: (9)

Proof. Given a subspace W in Rd , it is clear from .8/ that the Zariski closure of the
set ¹L 2M I �L.W / < �M .W /º is a proper subset of Zar.M/. By irreducibility, we may
choose L inM such that �M D �L on all four subspacesW1,W2,W1 \W2 andW1CW2.
It is therefore enough to prove the lemma forM D ¹Lº. Now let u be a vector representing
U DW1 \W2 in some exterior power of Rd . Let also w01 and w02 be such that u^w01 and
u^w02 representW1 andW2, respectively. The subspaceW1 CW2 is then represented by
u ^ w01 ^ w02, and moreover, for every t ,

katL.u ^ w01/k � katL.u ^ w02/k � katLuk � katL.u ^ w01 ^ w02/k:

Together with formula (4), this shows that �L is submodular. Note that this is compatible
with the convention �M .¹0º/ D 0.

1.3. Harder–Narasimhan filtration

Submodular functions on partially ordered sets give rise to a “slope formalism” as in
[6, 16, 17, 30, 40]. This is well known. In this subsection we recall the main facts we
need and for the reader’s convenience we give short proofs. The key to them is the
following submodularity lemma, which in implicit form goes back at least to Stuhler
[40] and Grayson [17] in the context of Euclidean sublattices and their covolume and
which we rediscovered in [2] in the present context (subspaces and their expansion rate).
Let k be a field and Grass.kd / the grassmannian of non-zero subspaces of kd . Let � W
Grass.kd / ! R be a submodular function, that is, one satisfying .9/ with � in place
of �M .

Lemma 2 (Submodularity lemma). There is a subspace V� 2 Grass.kd / achieving the
infimum of �.V /��.0/

dimV , V 2 Grass.kd /, and containing all other such subspaces.

Proof. Let I be that infimum. Without loss of generality, up to changing � to � � �.0/,
we may assume that �.0/D 0. We begin by observing that � is bounded below: if .Vn/n is
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a sequence of distinct subspaces of maximal dimension with �.Vn/! �1, pick a fixed
line L with L 6� Vn for infinitely many Vn; by submodularity infn �.Vn C L/ D �1,
contradicting the maximality of dimVn. So I is finite. For k � 1, we set Ik to be the same
infimum restricted to those subspaces V with dimV � k. There is a maximal k0 such that
I D Ik0 . If k0 D d , then we can take V� D kd and there is nothing to prove. Otherwise
let " > 0 be such that Ik0C1 > I C 2". If a subspace W satisfies

�.W / � .I C "/ dimW; (�)

then dimW � k0. By definition there is such a subspace with dimV� � k0; call it V� . If
Z is another subspace with (�), then

�.Z C V�/ � �.Z/C �.V�/ � �.Z \ V�/

� .I C "/.dimZ C dimV�/ � I dim.Z \ V�/

� I dim.Z C V�/C 2" dim.Z C V�/;

which forces dim.Z C V�/ � k0, and hence Z � V� , as desired.

Definition 1 (Semistability). We say that kd is semistable with respect to � if V� D kd .

Definition 2 (Grayson polygon). Let P� W Œ0; d � ! R be the convex piecewise linear
function that is the supremum of all linear functions whose graph in Œ0; d � �R lies below
all points .dim V; �.V //, V 2 Grass.kd / [ ¹0º. Its graph is called the Grayson polygon
of �.

0 1 2 3 4

V1

V2
V3

V4

Fig. 1. A Grayson polygon.

Let .di ; fi /, i D 0; : : : ; h, be the vertices of the Grayson polygon with d0 D 0 and
dh D d , that is, the angular points, where the slope changes, i.e. for i D 1; : : : ; h � 1,

si < siC1 where si WD
fi � fi�1

di � di�1
:

The main result is the following:

Proposition 1 (Harder–Narasimhan filtration). For each i D 0; : : : ; h, there is a unique
k-subspace Vi � kd such that dimVi D di and �.Vi / D fi . Moreover, the subspaces Vi
are nested, i.e. 0D V0 < V1 < � � � < Vh D kd , forming the so-called Harder–Narasimhan
filtration of �.
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In particular, we see that kd is semistable if and only if its Harder–Narasimhan filtra-
tion is the trivial one, ¹0º < kd .

Remark. Note that given any k-subspace V � kd the function �V . xW / WD �.W /� �.V /
defined on the quotient kd=V , where xW D W=V for any k-subspaceW containing V , is
submodular on Grass.kd=V /. It is clear from the proposition that Vi=Vi�1 is semistable
with respect to �Vi�1 for i D 1; : : : ; h, and that ¹Vi=V1ºi�1 is the Harder–Narasimhan
filtration of V=V1 with respect to �V1 .

Proof of Proposition 1. The existence and uniqueness of V1 is exactly what the submod-
ularity lemma tells us. Suppose Vi has been defined. We may apply the submodularity
lemma again to �Vi on the quotient kd=Vi and thus obtain a subspace ViC1 containing Vi
strictly and such that the function .�.V / � �.Vi //=.dimV � dimVi / reaches at ViC1 its
unique minimum `iC1 among subspaces V containing Vi . By construction, `i < `iC1 for
each i � 1.

We now need to show that the Grayson polygon coincides with the polygon P drawn
out of the points .dimVi ; �.Vi //. In other words, we have to prove that if V is a subspace
of kd and i is such that dimVi � dimV < dimViC1, then

�.V / � �.Vi / � `iC1.dimV � dimVi /: (10)

If Vi � V , this is by definition of ViC1. Otherwise V \ Vi < Vi and by induction we may
assume that .dim.V \ Vi /; �.V \ Vi // lies above P . So

�.Vi / � �.V \ Vi / � `i .dimVi � dim.V \ Vi //: (11)

Moreover, again by definition of ViC1 we have

�.Vi C V / � �.Vi / � `iC1.dim.Vi C V / � dimVi /: (12)

On the other hand, � is submodular, so �.Vi C V /C �.Vi \ V / � �.Vi /C �.V /. Com-
bining this with .11/ and .12/ we obtain

�.V / � �.Vi /C `iC1.dim.V / � dim.Vi \ V // � `i .dimVi � dim.V \ Vi //: (13)

But `iC1 � `i . So .10/ follows.
This shows the existence of the Vi and the fact that they are nested. To see the unique-

ness note that if dimV D dimVi and �.V / D �.Vi / but V ¤ Vi , then `i � `iC1 in view
of .13/, which is a contradiction.

In the following, we apply this general theory by taking k D Q and �.V / the expan-
sion rate �M .V / defined in .7/ on the grassmannian of rational subspaces. The above
definition of semistability reads:

Definition 3. A non-zero rational subspace V in Rd will be called M -semistable with
respect to a D .at /t�0 if for every rational subspace W � V ,

�M .W /

dimW
�
�M .V /

dimV
:
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Similarly this yields the notions of Grayson polygon and Harder–Narasimhan filtra-
tion of M with respect to a.

Remark (unstable subspace). When deta D 1, a subspace V with �.V / < 0 corresponds
to a point v in some

Vk Rd , which is unstable with respect to a in the terminology of
geometric invariant theory, i.e. its a-orbit contains 0 in its closure. So Rd isM -semistable
if and only if there are no unstable subspaces in the full grassmannian.

Next we make a remark about the dependence of the Harder–Narasimhan filtration
on the choice of a one-parameter semigroup. It is easy to see that the Grayson polygon
depends continuously on a. This is not so for the filtration, because new nodes can appear
under small deformations, but the following lemma shows that the subspaces involved
remain confined to a fixed finite family. Let b.n/ be the ordered Bell number, that is, the
number of weak orderings (i.e. orderings with ties) on a set with n elements.

Lemma 3. Let M � GLd .R/ with irreducible Zariski closure. There is a finite set SM
of rational subspaces of Rd with jSM j � b.2d / such that, as a D .at /t�0 varies among
all one-parameter diagonal semigroups of GLd .R/, the subspaces Vi .a/ arising in the
Harder–Narasimhan filtration all belong to SM .

Proof. For I � Œd �, letbI .a/D 1
jI j

P
i2I Ai , where at D diag.eA1t ; : : : ; eAd t /. We claim

that the entire Harder–Narasimhan filtration of M depends on a only via the ordering of
the various bI .a/ for I � Œd �: namely, if bI .a/ and bI .a0/ define the same weak ordering
on the family of subsets of Œd �, then the filtrations coincide. To see the claim, note that
every slope .�M .V /� �M .W //=.dimV � dimW / forW � V is equal tobI .a/ for some I
(because IW � IV as follows from .6/ and �M can be replaced by �L for some fixed L
as in the proof of Lemma 1), and Proposition 1 tells us that Vi .a/ is defined as the unique
solution to an extremal problem involving the comparison of slopes. So only their order
matters. Since there are at most b.2d / possible orders, we are done.

We also see from this proof that the slopes ƒi are continuous and piecewise linear in
loga and actually linear on each one of the cells cut out by the hyperplanesbI .a/ D bI 0.a/
for I; I 0 � Œ1; d �.

Remark. The ordered Bell number b.n/ grows superexponentially with n. This gives a
rather poor bound on the number of exceptional subspaces in Theorem 1, especially in
view of Schmidt’s bound d2d

2
from [38]. A more refined argument, which we do not

include here and which is based on the study of the set of permutations arising from the
Schubert closure of M (see §1.8), allows one to improve this to .2d/d .

1.4. Dynamics of diagonal flows

We now describe the dynamical ingredient of the proof. Using the quantitative non-
divergence estimates (see Theorem 5 below), Kleinbock [19] showed the existence of
a well-defined almost sure diophantine exponent for analytic manifolds. As described in
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our previous work [2] with Menny Aka and Lior Rosenzweig, this holds for more general
measures and the exponent actually depends only on the Zariski closure of the support of
the measure, a property called inheritance in this paper, because the measure inherits its
exponent from the Zariski closure of its support. We will need the following version of
these results:

Theorem 4 (Inheritance principle). Let .at /t�0 be a one-parameter diagonal semigroup
in GLd .R/ and for L 2 GLd .R/, set

�k.L/ WD lim inf
t!C1

X
j�k

1

t
log�j .atLZd /:

Let U �Rn be a connected open set, � W U ! GLd .R/ an analytic map, and � the image
of the Lebesgue measure under �. Let M WD �.U / and let Zar.M/ be its Zariski closure
in GLd .R/. Then for �-almost every L in M and each k D 1; : : : ; d ,

�k.L/ D sup
L02Zar.M/

�k.L
0/:

Remark. When the Zariski closure of M is defined over xQ, this inheritance principle,
combined with Schmidt’s subspace theorem, will allow us to show that the suprema in
the above theorem are attained on some algebraic points of Zar.M/. In fact, there exists
L 2 Zar.M/ \ GLd .xQ \ R/ such that �k.L/ D supL02Zar.M/ �k.L

0/ for k D 1; : : : ; d ,
and in some sense, this is true for most elements L 2 Zar.M/ \ GLd .xQ \R/. This will
be of central importance in the proof of Theorem 3.

Proof of Theorem 4. A lemma of Mahler [28, Theorem 3], which is a simple consequence
of Minkowski’s second theorem in the geometry of numbers, asserts that �1.

Vk
gZd / is

comparable to
Q
j�k �j .gZd / to within multiplicative constants depending only on d .

Since the k-th wedge representation �k W GL.Rd / ! GL.
Vk Rd / is an embedding of

algebraic varieties, it maps Zar.M/ onto Zar.�k.M//. These observations allow us to
reduce the proof to the case where k D 1, which we now assume. To this end we first
recall the quantitative non-divergence estimates in a form established in [18]:

Theorem 5 ([18, Theorem 2.2]). Let M D �.U / and � be as in Theorem 4. There are
C; ˛ > 0 such that the following holds. Let � 2 .0; 1� and t > 0, and let B WD B.z; r/ be
an open ball such that B.z; 3nr/ is contained in U . Assume that for any v1; : : : ; vk in Zd

with w WD v1 ^ � � � ^ vk ¤ 0,

sup
y2B

kat�.y/wk > �k :

Then for every " 2 .0; ��, we have

j¹x 2 BI �1.at�.x/Z
d / � "ºj � C."=�/˛jBj:
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Given ˇ 2 R, we say that a subset S � GLd .R/ satisfies condition (Cˇ ) if

9c > 0; 8k 2 ¹1; : : : ; dº; 8t > 0; 8w D v1 ^ � � � ^ vk 2
Vk Zd n ¹0º;

sup
g2S

katgwk � cekˇt : (Cˇ )

And we set
ˇ.S/ WD sup ¹ˇ 2 RI S satisfies .Cˇ /º: (14)

Note that by construction, if S � S 0, then ˇ.S/ � ˇ.S 0/.

Claim 1. For all L 2 S , we have ˇ.S/ � �1.L/. If S D �.B/, where � and B are as in
Theorem 5, equality holds for �-almost every L 2 �.B/.

Proof of claim. If ˇ > ˇ.S/, then (Cˇ ) fails. This implies that there exists t arbitrarily
large such that supg2S katgwk� ekˇt for some w¤ 0. However by Minkowski’s theorem
applied to the sublattice represented by atgw, this means that supg2S �1.atgZd / � eˇt .
Hence �1.L/ � ˇ.

The opposite inequality for S D �.B/ will follow from the quantitative non-diver-
gence estimate combined with Borel–Cantelli. Let ˇ < ˇ.�.B//. Then (Cˇ ) holds and,
given ı > 0, Theorem 5 applies with � WD ceˇt and " D e.ˇ�ı/t so that

j¹x 2 BI �1.at�.x/Z
d / � e.ˇ�ı/tºj � Ce�˛ıt jBj:

Summing this over all t 2 N, we obtain by Borel–Cantelli that for almost every x 2 B ,
�1.at�.x/Zd / � e.ˇ�ı/t if t is a large enough integer. But this clearly implies that
�1.at�.x/Zd / � e.ˇ�2ı/t for all large enough t > 0. Hence �1.�.x// � ˇ � 2ı for
Lebesgue almost every x 2 B . Since ı > 0 is arbitrary, this proves the first claim.

Now we make the following key observation. For every bounded set S �GLd .R/ and
compact set K � S ,

ˇ.S/ D ˇ.Zar.S/ \K/ D ˇ.H .S/ \K/: (15)

Here H .S/ is the preimage in GLd .R/ under � of the linear span HS of all �.g/; g 2 S ,
where � is the linear representation with total space E D

Ld
kD1

Vk Rd . This follows
immediately from the following claim:

Claim 2. There is C D C.S/ > 0 such that for all w and t we have

sup
g2H.S/\K

katgwk � C sup
g2S

katgwk: (16)

Proof of claim. We note that HS D HZar.S/ D HZar.S/\K , because S and Zar.S/ \ K
have the same Zariski closure. Now consider the space L.HS ;E/ of linear maps from HS

to E. If X � HS is a bounded set that spans HS , then the quantity L 7! supA2X kL.A/k
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defines a norm j � jX on L.HS ; E/. Therefore for any two such sets X; X 0 there is a
constant CX 0;X > 0 such that for all L 2 L.HS ;

Vk Rd / we have

jLjX 0 � CX 0;X jLjX :

This applies in particular to the sets X WD �.S/ and X 0 WD �.Zar.S/\K/: Now .16/ fol-
lows by setting L W A 7! atAw, an element of L.HS ;E/. This ends the proof of Claim 2.

We may now finish the proof of Theorem 4. Since M is connected, it follows from
Claim 1 that the �-almost sure value of �1.L/ for L 2M is unique and well-defined and
equals ˇ.�.B// for any ball B as in Theorem 5. It is also equal to supL2M �1.L/ by the
first part of the claim. However, since � is analytic, the Zariski closure of �.B/ coincides
with Zar.M/. So .15/ entails ˇ.�.B// D ˇ.H .M/ \ K/ for any compact K � �.B/.
But Claim 1 applied to S D Zar.M/ \K implies that �1.L/ � ˇ.Zar.M/ \K/ for all
L 2 Zar.M/ \ K. Since K is arbitrary, we get supL2Zar.M/ �1.L/ � ˇ.Zar.M/ \ K/.
The right-hand side is the �-almost sure value of �1.L/, so this inequality is an equality.
This ends the proof of Theorem 4.

1.5. Proof of Theorem 3

Without loss of generality we may assume that A1 � � � � � Ad , where A D

diag.A1; : : : ; Ad / and at D exp.tA/. Let 0 D V0 < V1 < � � � < Vh D Qd be the Harder–
Narasimhan filtration associated to the submodular function �M on the grassmannian
of Qd . Let d` D dimV` and

ƒk D
�M .V`/ � �M .V`�1/

d` � d`�1
if d`�1 < k � d`:

We need to show that for each ` D 1; : : : ; h and for �-almost every L the limit .2/
holds when d`�1 < k � d` and that for t large enough the first d`�1 successive min-
ima of atLZd are attained in V`�1. Suppose this has been proved for all ` < i and let us
prove it for ` D i .

By Minkowski’s second theorem, for every L 2M ,

lim sup
t!C1

1

t

X
k�di

log�k.atLZd / � �L.Vi / � �M .Vi /:

On the other hand, we already know that for �-almost every L,

lim
t!C1

1

t

X
k�di�1

log�k.atLZd / D
X

k�di�1

ƒk D �M .Vi�1/: (17)

Hence
lim sup
t!C1

1

t

X
di�1<k�di

log�k.atLZd / � �M .Vi / � �M .Vi�1/:
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Therefore to prove .2/ it suffices to show that for �-almost every L,

lim inf
t!C1

1

t
log�di�1C1.atLZd / �

�M .Vi / � �M .Vi�1/

di � di�1
D ƒdi : (18)

This will also prove .3/ for ` D i as we now explain. By Minkowski’s theorem,

lim
t!C1

1

t

X
k�di�1

log�k.atLVi�1.Z// D �L.Vi�1/ � �M .Vi�1/:

In view of .17/ this quantity is actually equal to �M .Vi�1/. Therefore the di�1 first min-
ima of atLZd are attained in Vi�1, and .3/ follows from .18/. We now establish .18/
separating two cases.

First case: M D ¹Lº with L 2 GLd .xQ/. Fixing " > 0, we want to show that for t > 0
large enough, any integer solution v 2 Zd to

katLvk � e
t.ƒdi�"/ (19)

satisfies v 2 Vi�1. Argue by contradiction and suppose that for arbitrarily large t > 0

there are integer solutions v to (19) with v … Vi�1. Let V � Vi�1 be a subspace of Qd of
minimal dimension containing such solutions.

Consider the linear formsL1; : : : ;Ld on Rd given by the rows ofL. They are linearly
independent and have coefficients in xQ. Note that (19) implies

8k 2 ¹1; : : : ; dº; etAk jLk.v/j � e
t.ƒdi�"/: (20)

Recall the subsets of indices IV and IVi�1 defined as in .6/. For k … IVi�1 the restriction
LkjVi�1 of Lk to Vi�1 lies in the span of the L`jVi�1 for ` < k, ` 2 IVi�1 . Since the
linear forms ¹L`jVi�1º`2IVi�1 are linearly independent, there is a unique choice of scalars
˛k;` 2 xQ \R such that LkjVi�1 D

P
`2IVi�1 ; `<k

˛k;`L`jVi�1 . We define

Mk WD Lk �
X

`2IVi�1 ; `<k

˛k;`L`:

By construction Mk vanishes on Vi�1 and induces a linear form xMk on the quo-
tient V=Vi�1. Also by construction, the linear forms ¹ xMkºk2IV nIVi�1

have coefficients
in xQ \R and are linearly independent on V=Vi�1.

It follows from .20/ that

8k … IVi�1 ; etAk j xMk.xv/j �L e
t.ƒdi�"/: (21)

where xv D v mod Vi�1. But
P
k2IV nIVi�1

Ak D �L.V / � �L.Vi�1/, soˇ̌̌ Y
k2IV nIVi�1

xMk.xv/
ˇ̌̌
�L e

�.dimV�di�1/t";

because by definition of Vi and ƒdi we know that ƒdi �
�L.V /��L.Vi�1/

dimV�di�1
. On the other
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hand, jƒdi j � jAj WD max jAkj, and in view of .19/ we have kxvk � kvk �L e
2jAjt . So

setting "0 D "=.2d jAj/, we obtainˇ̌̌ Y
k2IV nIVi�1

xMk.xv/
ˇ̌̌
�L kvk

�"0 : (22)

We are thus in a position to apply Schmidt’s subspace theorem [37, Theorem 1F] and
conclude that all but finitely many integer solutions to this inequality lie in a finite union
of proper rational subspaces of V=Vi�1. This contradicts the minimality of V .

General case: Note that Zar.M/ is an irreducible algebraic variety, so �M is submodular.
In view of .5/, given any rational subspace V in Rd the set of elements L in M such that
�L.V / ¤ �M .V / is a proper closed subvariety of Zar.M/ that is defined over Q and of
bounded degree. By Lemma 4 below (applied to F D R\ xQ) we may choose a point L0
of Zar.M/ in GLd .xQ/ such that �L0.V / D �M .V / for all rational V . Then the Harder–
Narasimhan filtrations and the Grayson polygons of M and ¹L0º coincide. By the first
part of the proof,

lim inf
t!C1

1

t
log�di�1C1.atL0Z

d / � ƒdi : (23)

Now we may invoke Theorem 4. In view of .23/ and .17/ this implies .18/.

Lemma 4 (Countable unions of proper subvarieties). Let X be an irreducible algebraic
variety defined over a number field K. Let F be an algebraic extension of K of infinite
degree. Let k � 1 and suppose .Xj /j�1 is a countable family of proper closed subvarieties
of X of degree at most k, each defined over a field Kj of degree at most k over K. Then
X.F / is not contained in the union of the Xj .xQ/, j � 1.

Proof. Looking at a finite cover by affine varieties, we may assume that X is affine. Then
by Noether’s normalization theorem, there is a finite morphism f W X ! Ad defined
over xQ, where d D dimX . So again without loss of generality, we may assume that
X D Ad , the d -dimensional affine space. But we can of course find elements xi 2 F ,
i D 1; : : : ; d , such that xi has degree> k2 overK.x1; : : : ; xi�1/. ThenKj .x1; : : : ; xi / has
degree> k overKj .x1; : : : ; xi�1/ for all j , so .x1; : : : ; xd / will not belong to anyXj .

1.6. The subspace theorem

We are now ready for the proof of Theorem 1.

Proof of Theorem 1. Without loss of generality, we may assume that M is a bounded
subset of GLd .R/. In particular, there is C D C.M/ � 1 such that kLxk � Ckxk for
every x 2 Rd and L 2 M . We are going to show that there is a finite set P with jP j �
.2Cd2"�1/d of one-parameter unimodular diagonal semigroups a D .at /t�0 with the
following property. If L 2 M and x 2 Zd is a solution to .1/ such that the integer part t
of "

4d
log kxk is at least 1, then there is a 2 P such that

katLxk � de�t : (24)
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To see this, let `i D log jLi .x/j. By .1/ we have `1 C � � � C `d � �4dt . Note
that `i � log kxk C log C � .8d=" C log C/t . Let `0i D max ¹`i ; �Dtº, where D D
5d.log C C 8d="/. If there is an index i such that `i ¤ `0i , then `01 C � � � C `

0
d
�

�Dt C .d � 1/.D=5d/t � �4dt . We conclude that `01 C � � � C `
0
d
� �4dt always. Now

define bi WD 1
d
.`01 C � � � C `

0
d
/ � `0i . Then b1 C � � � C bd D 0, and for each i ,

`i C bi � `
0
i C bi � �4t:

On the other hand, j`0i j � Dt , so jbi j � 2Dt . Let B be set of integers points in Zd with
coordinates in Œ�3D; 3D�. Choose .n1; : : : ; nd / 2 B such that jbi=t � ni j � 1=2 for
all i . In particular, j

Pd
nD1 ni j � d=2. Changing some ni to the next or previous integer

if needed, we may ensure that
Pd
nD1 ni D 0 and jbi=t � ni j � 3=2. Then we set at D

diag.en1t ; : : : ; end t / and let P be the finite set of such diagonal semigroups. Note that
jP j � .6D/d . Clearly `i C ni t � �t and .24/ follows.

Now we may apply Corollary 1 and conclude that for �-almost every L 2 M , if x is
a large enough solution of .1/, it must lie inside V.a/ for some a in P . This shows that
the number of exceptional rational subspaces is finite. However, by Lemma 3 above the
subspace V.a/ can take at most b.2d / possible values as a varies among all unimodular
diagonal semigroups. This ends the proof.

Remark. Note that conversely, each V.a/, and hence each Vi in Theorem 1, contains
infinitely many solutions to .1/ for every " > 0.

Remark. Furthermore, the rational subspaces V1 [ � � � [ Vr depend only on the rational
Zariski closure ofM and not on the choice ofL. And because they are defined by a simple
slope condition, their height is effectively bounded in terms of the height of Zar.M/. On
the other hand, the finite set of exceptional solutions lying outside the Vi depends on L
and " and there is no known bound on their height or number; see [12, Proposition 5.1].
When M is a single point it is however possible to group together the finitely many
exceptional solutions into another set of proper subspaces whose number, but not height,
can be effectively bounded; see [11].

1.7. Varieties defined over R

What happens if we remove the assumption in Theorem 3 that the Zariski closure of M
is defined over xQ? Without this assumption, diagonal flow trajectories may not behave
as nicely and typically no limit shape is to be expected. However, we may give a simple
upper and lower bound on the almost sure value of �k.L/ for k D 1; : : : ; d , which exists
by Theorem 4, in terms of the rational and real Grayson polygons, as we now discuss. So
far we have only considered the rational Harder–Narasimhan filtration ¹V Q

i º
hQ
iD0 and its

rational polygon G Q with slopes sQ
i , because we have restricted ourselves to considering

the grassmannian of rational subspaces. But we may also take kDR in §1.3 with the same
submodular function �M . This yields a new Harder–Narasimham filtration ¹V R

i º
hR
iD0 for

the real field and a new Grayson polygon G R with slopes sR
i , which obviously lies below

the rational polygon.
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Let as before M D �.U / be the image of a connected open set U � Rn under an
analytic map � WU !GLd .R/ and � the measure onM that is the image of the Lebesgue
measure on U . In this subsection we no longer assume that Zar.M/ is defined over xQ. Let
�k be the �-almost sure value of �k.L/ as given by Theorem 4 and �sup

k
the supremum

over allL 2M of�sup
k
.L/, where�sup

k
.L/ is defined by the same formula as�k.L/with a

limsup in place of the liminf. Consider the points .k;�k/ for k D 1; : : : ; d and interpolate
linearly between them, so as to form a polygon G� as in Fig. 1. Similarly form G

sup
� with

.k; �
sup
k
/. Note that G

sup
� is convex (being a supremum of convex polygons), but G� may

not be.

Proposition 2 (“Sandwich theorem”). The polygons G�; G
sup
� lie between the rational

Grayson polygon G Q and the real Grayson polygon G R. In other words, for each k D
1; : : : ; d , X

i�k

sR
mi
� �k � �

sup
k
�

X
i�k

sQ
ni
;

where mi ; ni defined by dimV R
mi�1

� i < dimV R
mi

and dimV
Q
ni�1
� i < dimV Q

ni
.

0 1 2 3 4

V
Q
1

V
Q
2

V
Q
3

V
Q
4 D V

R
5

V R
1

V R
2 V R

3

V R
4

Fig. 2. G� lies between the rational and the real polygons.

Proof. The upper bound follows from Minkowski’s theorem: the first di successive min-
ima in atLZd are smaller than those attained in V Q

i , so

�k.L/ � lim sup
t!C1

1

t

X
k�di

log�k.atLZd / � �L.V
Q
i / � �M .V

Q
i /:

Since this holds for each i D 0; : : : ; hQ, and the polygons are convex, we conclude that
G

sup
� lies below G Q.

The lower bound follows from a modified version of the proof of Theorem 4 that uses
instead the refined quantitative non-divergence estimates for successive minima already
mentioned and established in [33, Chapter 6] or [27, Theorem 5.3]. We now explain this
briefly and refer to [33, Theorem 7.3.1] for the details of a more general statement. Let
B be a small ball around some x 2 U . Note that �.B/ is Zariski dense in M and thus
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�M D ��.B/. Let ˇk be the infimum of all �M .W /, whereW ranges among real subspaces
with dimension k. In view of .8/ this implies that there is I with I.a/ � ˇk such that
.Lw/I ¤ 0 for some L 2 M . By compactness of the grassmannian of k-dimensional
subspaces there is c > 0 such that maxI; I.a/�ˇk supL2M k.Lw/Ik � ckwk for all W . It
follows in particular that supL2M katLwk � etˇk uniformly in t > 0 and in non-zero
integer-valued w. Now let 
k � ˇk be the largest such function of k that is convex in k.
Then the exact same Borel–Cantelli argument used in the proof of Claim 1 in Theorem 4,
using instead the refined quantitative non-divergence in the form of [27, Theorem 5.3],
shows that for �-almost every L in B , �k.L/ � 
k . Since ˇdi D �M .V

R
i /, we have

shown that G� lies above G R.

This proposition also holds for measures � on GLd .R/ which are good in the sense
of §1.9 below; see [33, Theorem 7.3.1].

If Zar.M/ is defined over Q, then by uniqueness of the Harder–Narasimhan filtration,
we see that the real and rational filtrations coincide. In particular, in this case all three
polygons coincide. If Zar.M/ is defined over xQ, then the filtration over R is in fact defined
over xQ, and Theorem 3 asserts that G� coincides with G Q. However, G R may be different.

Similarly:

Corollary 2. Let M be as in Theorem 1, except we no longer assume that Zar.M/ is
defined over xQ. Let a D .at D exp.tA//t be a diagonal flow. Assume that Rd is M -
semistable with respect to a .see Def. 3/. Then for �-almost every L 2M ,

lim inf
t!C1

�1.atLZd / �
1

d
Tr.A/:

1.8. Plücker closure

In this subsection we define the notion of Plücker closure of a subset M � GLd .R/ and
we explain why in Theorems 1 and 3 instead of assuming that Zar.M/ is defined over xQ,
it is enough to assume that the Plücker closure of M is defined over xQ.

Let M � GLd .R/ be a subset and .E; �/ be the direct sum of the exterior power
representations of GLd , namely E D

Ld
kD1

Vk Rd . We denote by HM the R-linear
span in End.E/ of all �.g/; g 2 M . We further define the Plücker closure H .M/ of M
as the inverse image of HM under � in GLd .R/. Note that H .M/ contains the Zariski
closure Zar.M/ of M . We say that H .M/ is defined over xQ if HM has a basis with
coefficients in xQ in the canonical basis of E. An obvious sufficient condition for this to
hold is to ask for Zar.M/ to be defined over xQ.

We also say that M is Plücker irreducible if �.M/ is not contained in a finite union
of proper subspaces of HM in End.E/. Clearly Zariski irreducibility implies Plücker
irreducibility. It is clear that Plücker irreducibility ofM is enough to guarantee that �M is
submodular by the argument of Lemma 1. It is also clear that �M D �H.M/.

For simplicity of exposition, we have chosen to state the assumptions in our main
theorems in terms of the Zariski closure ofM , but in fact Theorems 1 and 3 hold assuming
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only that the Plücker closure is defined over xQ. The proof is verbatim the same, except
that in Theorem 4 we get the following slightly stronger statement: for �-almost every L
in M and each k,

�k.L/ D sup
L02H.M/

�k.L
0/:

Again the proof of this equality is exactly the one of Theorem 4 when k D 1. However,
the reduction to the case k D 1 via Mahler’s lemma no longer works here, because H .M/

may differ from H .�.M//. Instead one may use the enhanced version of the quantitative
non-divergence estimates already mentioned in the proof of Proposition 2, namely [33,
Chapter 6] or [27, Theorem 5.3] in place of Theorem 5, which enables one to run the
argument simultaneously for all k. This shows that the almost sure value of each �k.L/,
and thus the polygon G� defined in the previous subsection, depend only on the Plücker
closure of M .

There is another notion of envelope of M that is also natural to consider, namely the
intersection Sch.M/ of all translates ��g of Schubert varieties �� D B�B containingM .
Here B is one of the dŠ Borel subgroups containing the diagonal subgroup and the clo-
sure is the Zariski closure. This Schubert closure contains the Plücker closure. It is easy
to see from .6/ that the submodular function �M depends only on Sch.M/. Restricting
to rational translates ��g with g 2 GLd .Q/ one obtains the rational Schubert closure
SchQ.M/. The asymptotic shape and the exceptional subspaces appearing in Theorems 1
and 3 depend only on SchQ.M/. A natural question we could not answer is whether or not
the main theorem remains valid under the (weaker) assumption that Sch.M/ is defined
over xQ. The answer is clearly yes when Sch.M/ is defined over Q as follows readily from
Proposition 2.

1.9. More general measures

In this subsection, we define a class of measures called good measures, which is wider
than the family considered so far of push-forwards of the Lebesgue measure under ana-
lytic maps, and for which Theorems 1, 3 and 4 continue to hold. This class is very closely
related to the so-called friendly measures of [20, 24]: instead of being expressed in terms
of an affine span, the non-degeneracy condition is defined in terms of local Plücker clo-
sures.

First we need to recall some terminology. We fix a metric on GLd .R/, say induced
from the euclidean metric on the matrices Md .R/. Given two positive parameters C and
˛, a real-valued function f on the support of � is called .C; ˛/-good with respect to � if
for any ball B in GLd .R/ and all " > 0,

�.¹x 2 BI jf .x/j � "kf k�;Bº/ � C"
˛�.B/;

where kf k�;B D supx2B\supp� jf .x/j. The measure � is doubling on a subset X �
GLd .R/ if there exists a constant C 0 such that for every ball B.x; r/ � X ,

�.B.x; 2r// � C 0�.B.x; r//:
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Then we say that a Borel measure � is locally good atL 2GLd .R/ if there exists a ball B
around L and positive constants C; ˛ such that

(i) the measure � is doubling on B;

(ii) for every k 2 ¹1; : : : ; dº, for every pure k-vector w D v1 ^ � � � ^ vk in
Vk Rd , and

every a 2 GLd .R/, the map y 7! kay � wk is .C; ˛/-good on B with respect to �.

Recall next that given a subset S � GLd .R/ and a point x 2 S , the local Plücker clo-
sure Hx.S/ of S at x is the intersection over r > 0 of the Plücker closures of S \B.x; r/:

Hx.S/ D
\
r>0

H .S \ B.x; r//:

We may now define the class of good measures.

Definition 4. A locally finite Borel measure � on GLd .R/ will be called a good measure
if supp� is Plücker irreducible and for �-almost every L,

(1) the measure � is locally good at L;

(2) the local Plücker closure of supp� at L is equal to that of supp�.

Of course, the most important example of a good measure is that of the push-forward
of the Lebesgue measure under an analytic map.

Proposition 3 (Analytic measures are good). Let n 2 N, let U be a connected open set
in Rn, and let ' W U ! GLd .R/ be a real-analytic map. Then the push-forward under '
of the Lebesgue measure on U is a good measure on the Zariski closure M of '.U /.

Proof. Note that the maps of the form u 7! ka'.u/ � wk2 are linear combinations of
products of matrix coefficients of '.u/ and hence belong to a finite-dimensional lin-
ear subspace of analytic functions on U depending only on '. So [19, Proposition 2.1]
applies.

Theorem 4 holds for all good measures � on GLd .R/ with the same proof (suitably
modified via the enhanced quantitative non-divergence estimates as mentioned in the pre-
vious subsection). In fact, the definition of good measures has been tailored precisely for
Theorem 4 to hold. Thus the subspace theorem for manifolds and the parametric subspace
theorem, Theorems 1 and 3, hold for good measures � such that the Plücker closure of
supp� is defined over xQ.

2. A generalization to number fields

Schmidt himself observed in [36] that his theorem for Q implied a more general ver-
sion for any number field K, and this was generalized shortly after by Schlickewei [34],
who gave a statement allowing also finite places. In this section, we formulate a similar
generalization of Theorems 1 and 3.
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For a place v of a number field K, the completion of K at v is denoted by Kv . As
in Bombieri–Gubler [5, §§1.3–1.4] we use the following normalization for the absolute
value j � jv on Kv .

jxjv WD NKv=Qv .x/
1=ŒKWQ�;

where Qv is the completion of Q at the place v restricted to Q andNKv=Qv .x/ is the norm
of x in the extensionKv=Qv . The product formula then reads

Q
v jxjv D 1 for all x 2 K.

If S is a finite set of places of K containing all archimedean ones, the ring OK;S � K of
S -integers is the set of x 2K such that jxjv � 1 for all places v lying outside S . Elements
of its group of units are called S -units.

Let d be a positive integer. The d -dimensional space Kdv will be endowed with
the supremum norm k � kv , i.e. for an element x D .x

.v/
1 ; : : : ; x

.v/

d
/ in Kdv , kxkv D

max1�i�d jx
.v/
i jv . More generally, we let KS D

Q
v2S Kv be the product of all com-

pletions of K at the places of S , and if x D .x.v//v2S is an element of KdS , we define its
norm kxk, its content c.x/ and height H.x/ by

kxk D max
v2S
kx.v/kv; c.x/ D

Y
v2S

kx.v/kv; H.x/ D
Y
v2S

max ¹1; kx.v/kvº:

It is clear that c.x/ � H.x/ and kxk � H.x/ � max ¹1; kxkjS jº. It follows from the
product formula that kxk � 1 if 0 ¤ x 2 OK;S . The image of OK;S in KS under the
diagonal embedding is discrete and cocompact inKS [26, Chapter VII], and norm-closed
balls in KS are compact. Furthermore, it is easily seen from Dirichlet’s unit theorem that
there is a constant C D C.K; S/ > 0 such that for all x 2 KdS with c.x/ ¤ 0, there is an
S -unit ˛ 2 OK;S such that

e�C k˛xkjS j � c.x/ � k˛xkjS j: (25)

For each v 2 S , we denote by GLd .Kv/ the group of invertible d � d matrices with
coefficients in Kv , and we set

GLd .KS / D
Y
v2S

GLd .Kv/:

A product measure �D
N
v2S �v on GLd .KS / will be called a good measure if each

�v is a good measure on GLd .Kv/. The definition of a good measure given in §1.9 for
Kv D R extends verbatim to other local fields Kv .

Examples of good measures are provided by push-forwards of Haar measure under
strictly analytic maps. Indeed, Proposition 3 continues to hold for analytic maps � W
U ! GLd .Kv/ whose coordinates are defined by convergent power series on a ball
U WD B.x; r/ D ¹y 2 Knv I maxniD1 jyi � xi j � rº in Knv . This is because, on the one
hand the push-forward of Haar measure on Kv under � will be locally good everywhere
by [24, Proposition 4.2], and on the other hand, the Plücker closure of the image of a ball
B � U of positive radius is independent of the ball, because convergent power series that
vanish on an open ball must vanish everywhere.
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Let Ev WD
L
k�d

Vk
Kdv . We will say that the Plücker closure of � is defined over xQ

if for each v 2 S , the subspace Hsupp�v of End.Ev/ (see §1.8) is defined over xQ, i.e.
is the zero set of a family of linear forms on End.Ev/ with coefficients in xQ \ Kv .
Clearly this is the case if for each v 2 S , the Zariski closure of supp �v in GLd .Kv/
is defined over xQ. We will also denote by H .�/ the cartesian product of all H .�v/,
where H .�v/ WD ¹g 2 GLd .Kv/I �v.g/ 2 Hsupp�v º.

We are now ready to state:

Theorem 6 (Subspace theorem for manifolds, S -arithmetic version). Let K be a number
field, S a finite set of places including all archimedean ones, OK;S its ring of S -integers,
and d in N. Let � be a good measure on GLd .KS / whose Plücker closure is defined
over xQ. Then there are proper subspaces V1; : : : ; Vr of Kd , with r D r.d; jS j/, such that
for �-almost every L and for every " > 0, the inequality

Y
v2S

dY
iD1

jL
.v/
i .x/jv �

1

c.x/"
(26)

has only finitely many solutions x 2 Od
K;S n .V1 [ � � � [ Vr / up to multiplication by an

S -unit.

Here L D .L.v//v2S 2 GLd .KS / and each L.v/i denotes the i -th row of the matrix
L.v/ 2 GLd .Kv/. Note that the left- and right-hand sides of .26/ are unchanged if x is
changed to ˛x for some S -unit ˛, so we will focus on the equivalence classes of solutions.
The bound on the number r of exceptional subspaces depends only on d and jS j, and each
subspace contains infinitely many (classes of) solutions to .26/.

If � is a Dirac mass at a point L D .L.v//v2S with L.v/ 2 GLd .xQ/\GLd .Kv/, then
the theorem is exactly the S -arithmetic Schmidt subspace theorem as stated in [5, §7.2.5].

2.1. Parametric version

Theorem 6 is deduced from Theorem 7 below, which is a parametric version analogous to
Theorem 3. To formulate it, we need to define the S -arithmetic analogues of a lattice and
its successive minima. A family of vectors x1; : : : ; xk in KdS is said to be linearly inde-
pendent if it spans a freeKS -submodule of rank k. Equivalently, the vectors x.v/1 ; : : : ;x.v/

k

are linearly independent over Kv for each place v.

Definition 5 (Lattice in a number field). For any positive integers k � d , we define a
sublattice inKdS of rank k to be a discrete free OK;S -submodule of rank k inKdS . In other
words, it is a subgroup � � KdS that can be written as

� D OK;Sx1 ˚ � � � ˚OK;Sxk

for some linearly independent elements xi D .x.v/i /v2S in KdS . If k D d we say that � is
a lattice in KdS .
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If L is any element of GLd .KS /, then � D LOk
K;S is a sublattice of rank k in KdS .

Conversely, they are all of this form. Note that if x1; : : : ; xk are vectors from a lattice �,
they are linearly independent if and only if x.v/1 ; : : : ;x.v/

k
are linearly independent for some

place v.

Definition 6 (Successive minima). If � is a sublattice in KdS and k 2 Œ1; d �,

�k.�/ D inf ¹� > 0I 9x1; : : : ; xk 2 � linearly independent with 8j; c.xj / � �º

is its k-th successive minimum, where c.xj / is the content defined earlier.

It follows from .25/ that we may have defined the successive minima using kxj kjS j

in place of c.xj / without much difference. In particular, either definition will suit the
theorem below.

The analogue of Theorem 3 now reads as follows. Fix a diagonal element a D
diag.a.v/i / in GLd .KS /, and consider the flow at D a

t for every t 2 N.

Theorem 7 (S -arithmetic strong parametric subspace theorem). Let K be a number field
and S a finite set of places containing all archimedean ones. Let .at /t2N be a diagonal
flow in GLd .KS / and � a good measure on GLd .KS / whose Plücker closure is defined
over xQ. Then there are K-subspaces 0 D V0 < V1 < � � � < Vh D Kd and real numbers
s1 < : : : < sh such that for each i D 1; : : : ; h and for �-almost every L,

(1) if dimVi�1 < k � dimVi , then limt!C1
1
t

log�k.atL.OK;S /d / D si ;

(2) for all t > 0 large enough, the first dim Vi successive minima of atL.OK;S /d are
attained in Vi .

In other words, for every " > 0 and �-almost every L, there is t";L such that if t > t";L,
` D 1; : : : ; h; and x 2 .OK;s/d ,

c.atLx/ � et.s`�"/ H) x 2 V`�1: (27)

The K-subspaces Vi , i D 1; : : : ; h, appearing in Theorem 7 are the terms of the
Harder–Narasimhan filtration associated to M WD supp � � GLd .KS / and the quanti-
ties si are its slopes. We describe this filtration in the next subsection.

2.2. Harder–Narasimhan filtrations for KdS

In this subsection we define a submodular function on the grassmannian Grass.Kd / that
generalizes the expansion rate �M defined earlier in §1.2. Given aKS -submodule V inKdS
we define its expansion rate as follows:

�.V / WD lim
t!C1

1

t
log c.atv/

where v 2
V�

KdS D
Q
v2S

V�
Kv and c.v/ is the content as defined earlier. Here we

identify
Vk

Kv withKNv ,N D
�
d
k

�
and use the standard basis ei1 ^ � � � ^ eik to define the

norm, and note that V D
Q
v Vv , where each Vv is a Kv-vector subspace represented by
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an element vv 2
V�

Kv . So �.V / is just the sum of the expansion rates of Vv in Kdv over
all places v 2 S . For a subset M � GLd .KS / we also define

�M .V / D max
L2M

�.LV /:

As in .8/ above, we see that if V represented by v 2
V�

KdS , then

�M .V / D max ¹I.a/I I D .Iv/v2S ; 9L 2M; 8v 2 S; .L.v/v.v//Iv ¤ 0º;

where Iv � Œ1; d �, jIvj D dim Vv , I.a/ D
P
v2S Iv.a/ and Iv.a/ D

P
i2Iv

log ja.v/i j,
and wI is defined by the expression w D

P
jI jDk wI eI , where eI D ei1 ^ � � � ^ eik when

I D ¹i1; : : : ; ikº.
We will say that M is Plücker irreducible if its projection to GLd .Kv/ is Plücker

irreducible for each v 2 S . Under this assumption we see by the same argument as in
Lemma 1 that �M is submodular on the set of all KS -submodules of KdS .

If we restrict �M to the set of K-subspaces of Kd , i.e. the grassmannian Grass.Kd /,
then we obtain a well-defined notion of Harder–Narasimhan filtration, Grayson polygon
and slopes. This gives what we will call the rational Grayson polygon GK . And aK-linear
space V will be M -semistable for the semigroup .at / if for every K-subspace W < V ,

�M .W /

dimW
�
�M .V /

dimV
:

But we may also consider �M as a function on the set of all KS -submodules of KdS .
Since the dimension of each projection to Kv may not be the same for all v, we use the
following definition for the dimension of a submodule V D

Q
v Vv:

dimV D
1

jS j

X
v2S

dimKv Vv:

Then dim V is a modular function on the “full grassmannian”, i.e. the set of all KS -
submodules of KdS . Thus Proposition 1 and its proof are still valid and we obtain a “full”
Harder–Narasimhan filtration and a “full” Grayson polygon GKS , whose nodes now have
x-coordinates in 1

jS j
N.

2.3. Inheritance principle and proofs

In this section we discuss the proof of Theorems 6 and 7. A basic ingredient is the S -
arithmetic version of Minkowski’s second theorem, which without paying attention to
numerical constants takes the following form:

Theorem 8 (Minkowski’s second theorem). Let � be a sublattice in KdS as in .5/. Then

c.x1 ^ � � � ^ xk/1=ŒKWQ� � �1.�/ � : : : � �k.�/� c.x1 ^ � � � ^ xk/1=ŒKWQ�;

where the constant involved in the Vinogradov notation� depends only on K, S and d ,
but not on �.
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The content c.x1 ^ � � � ^ xk/ is proportional to the covolume of� in itsKS -span. See
[5, Theorem C.2.11, p. 611] for a proof when S has no non-archimedean places and [23]
in the general case with the caveat that the normalizations used in the latter paper differ
from ours especially at the complex place, leading to a slightly different definition of the
successive minima.

The derivation of Theorem 6 from Theorem 7 goes verbatim as that of Theorem 1
from Theorem 3 given in §1.6. One replaces d with d jS j and treats all linear forms L.v/i
on an equal footing. The constant D needs to be increased appropriately, and at non-
archimedean places v the exponential used in the definition of the flow will be replaced
by a power of a uniformizer �v of Kv , namely a.v/t D diag.�n1;v tv ; : : : ; �

nd;v t
v / for inte-

gers ni;v . One also needs to recall that in view of .25/, for each T > 0 there are only
finitely many classes of x 2 Od

K;S with c.x/ � T , so we may assume that c.x/ is large.
The number r of distinct Vi ’s obtained is bounded by b.2d jS j/ similarly to Lemma 3.

Now the proof of Theorem 7 is again verbatim as that of Theorem 3, treating all L.v/i
on an equal footing and keeping the argument unchanged. One needs to invoke the S -
arithmetic subspace theorem (in the form of Theorem 6 for a single point, or as in [5,
Corollary 7.2.5]) in place of the ordinary subspace theorem. For the dynamical ingredient
at the end, one applies instead the following generalization of Theorem 4.

Theorem 9 (Inheritance principle). Let K be a number field, S a finite set of places
containing all archimedean places, and d in N. Let .at / be a diagonal one-parameter
semigroup in GLd .KS /, and � a good measure on GLd .KS / with H .�/D

Q
v2S H .�v/

the Plücker closure of its support. For k 2 Œ1; d � let

�k.L/ WD lim inf
t!1

1

t

X
i�k

log�i .atLOd
K;S /

for each L 2 GLd .KS /. Then, for �-almost every L,

�k.L/ D sup
L02H.�/

�k.L
0/:

Sketch of proof. When k D 1 the proof is identical to the proof of Theorem 4 with the
following adjustments. Theorem 5 was extended to this context by Kleinbock–Tomanov
[24, §8.4] (technically speaking only for K D Q, but the general case is entirely analo-
gous). The norm there and in the definition (Cˇ ) of ˇ must be replaced by the content
of the corresponding vector. Theorem 8 must be used in place of the original Minkowski
theorem to prove the first claim. Also .16/ continues to hold with the content in place of
the norm for subsets of GLd .KS / that are cartesian products of subsets of GLd .Kv/ for
v 2 S , which is the case for supp.�/ by definition of a good measure. So Claim 2 also
holds. The case k > 1 is analogous, but as in the proof of Proposition 2, one needs to use
the refined quantitative non-divergence estimate proved in [33, Chapter 6] and [27, Theo-
rem 5.3] instead of Theorem 5.

We end this section by stating the analogue of Proposition 2 in the S -arithmetic con-
text. The following describes what is left of Theorem 7 if we remove the assumption that
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the Plücker closure of the good measure � is defined over xQ. In §2.2 we have defined
two Grayson polygons: the rational one GK coming from Grass.Kd / and the full one
GKS coming from the full grassmannian of all KS -submodules. And of course we have
as before the polygon G� with nodes .k; �k/, k 2 Œ1; d �, where �k is the �-almost sure
value of �k.L/ provided by Theorem 9 and the polygon G

sup
� with nodes .k;�sup

k
/, where

�
sup
k

is the supremum of �sup
k
.L/ over L 2 M , and �sup

k
.L/ is defined as �k.L/ with

limsup in place of liminf.

Proposition 4 (S -arithmetic sandwich theorem). The polygons G�;G
sup
� lie between GK

and GKS , i.e.
GKS � G� � G sup

� � GK :

Again the proof is mutatis mutandis that of Proposition 2.

3. Examples and applications

In this last section we present a number of applications of the main theorem.

3.1. Sprindzuk conjecture

We begin by the demonstration of how the main result of Kleinbock and Margulis [25,
Conjectures H1, H2], namely the Sprindzuk conjecture, can be easily deduced from The-
orem 1. Let us recall this result. For q 2 Zd we define …C.q/ WD

Qd
iD1 jqi jC, where

jxjC WD max ¹1; jxjº for all x 2 R. A point y 2 Rn is said to be very well multiplica-
tively approximable (or VWMA for short) if for some " > 0 there are infinitely many
.p;q/ 2 Z � Zd such that

jp C q � yj �…C.q/ � …C.q/�": (28)

A manifoldM � Rd is said to be strongly extremal if Lebesgue almost every point onM
is not VWMA.

Theorem 10 (Kleinbock–Margulis [25]). Let U � Rn be a connected open set and let
f1; : : : ; fd W U ! R be real analytic functions, which together with 1, are linearly inde-
pendent over R. Write f D .f1; : : : ; fd /. ThenM WD ¹f .x/I x 2 U º is strongly extremal.

As often with applications of the subspace theorem, proofs proceed by induction on
dimension. The induction hypothesis will be as follows: if g D .g0; : : : ; gd / is a tuple of
linearly independent analytic functions on U and b1; : : : ; bd 2ZdC1 are linearly indepen-
dent, then for almost every x 2 U and every " > 0, there are only finitely many solutions
v 2 ZdC1 to the inequalities

0 <

dY
iD0

jLi .v/j �
1

kvk"
; (29)
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where kvk Dmax jvi j, L0.v/D g.x/ � v and Li .v/D bi � v for i � 1. It is straightforward
that this statement implies Theorem 10, by letting v D .p;q/, g D .1; f / and b1; : : : ; bd
the standard basis of ¹0º � Zd .

Let �.x/ be the matrix whose rows are L0=g0; L1; : : : ; Ld . The linear independence
assumption implies that �.x/ 2 GLdC1.R/ on an open subset U 0 � U , and without loss
of generality we may assume that U 0 D U . The equations defining the Plücker closure
of �.U / are linear combinations of k � k minors of �.x/. Since those are linear combi-
nations of the gi=g0, the Plücker closure of �.U / is the Plücker closure of the set of all
matrices in GLdC1.R/ whose first row is .1; y/ with y 2 Rd arbitrary and whose other
rows are L1; : : : ; Ld . So it is defined over Q.

We may thus apply Theorem 1 and conclude that there are a finite number of proper
rational hyperplanes V such that for almost every x, the large enough solutions v to .29/
are contained in some V .

Now pick one such V , and consider the restriction of L0 to V . For v 2 V we can write
vD

Pd
iD1 kivi for kD .k1; : : : ; kd / 2 Zd , where v1; : : : ; vd is a basis of V \ZdC1. Set

L00.k/ WD L0jV .v/D v � g D k � h, where hD .h1; : : : ; hd / and hi D vi � g. And for i � 1,
L0i .k/ WD Li jV .v/ D v � bi D k � ci , where ci D .bi � v1; : : : ; bi � vd /. The Li are linearly
independent, so the .L0i /

d
iD0 have rank at least d on Rd , and thus .c1; : : : ; cd / has rank at

least d � 1. Up to reordering, we may assume that c1; : : : ; cd�1 are linearly independent.
Similarly we see that h1; : : : ; hd are linearly independent.

Finally observe that a solution v 2 V to .29/ yields a k 2 Zd such that

0 <

dY
iD0

jL0i .k/j �
1

kkk"
:

But L0
d
.k/D v � bd 2 Z n ¹0º. Thus 0 <

Qd�1
iD0 jL

0
i .k/j � 1=kkk" and thus, by induction

hypothesis, k belongs to a finite set of points. Hence so does v. This ends the proof.

3.2. Ridout’s theorem for manifolds

Ridout’s theorem [5, 43] is an extension of Roth’s theorem where p-adic places are
allowed. This improves the exponent in Roth’s theorem from 2 to 1 in case the ratio-
nal approximations have denominators with prime factorization in a fixed subset. In this
subsection, we present one possible similar variant of the Kleinbock–Margulis theorem
(Theorem 10). This will rely on the S -arithmetic subspace theorem for manifolds (Theo-
rem 6).

Theorem 11. Let S be a finite set of primes. Let U � Rn be a connected open subset
and f1; : : : ; fd W U ! R be real analytic functions, which together with 1 are linearly
independent over R. Then for every " > 0 and for Lebesgue almost every u 2 U , we have

max
1�i�d

jqfi .u/ � pi j � q
�" (30)

for all .q; p1; : : : ; pd / 2 ZdC1 with all but finitely many prime factors of q in S .
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This is in contrast with the same result [25] without the restriction on the denomina-
tor q, where the right-hand side of .30/ needs to be replaced by the weaker bound q�1=d�".
We have chosen simultaneous approximation for a change, but a similar statement with
similar proof also holds for linear forms. Moreover, the theorem holds under the weaker
assumption that the subspace of RdC1 spanned by all vectors .1; f1.u/; : : : ; fd .u//,
u 2 U , is defined over xQ.

Proof of Theorem 11. The proof is similar to the one we gave of Theorem 10 in §3.1,
but it is convenient to formulate things projectively. Let x 2 Pd�1 denote the point with
homogeneous coordinates Œ1 W f1.u/ W � � � W fd .u/�, let v 2 Pd�1.Q/ be the line containing
v D .q; p1; : : : ; pd /, and denote by d.x; v/ the usual distance on Pd�1.R/. We want to
show that if x is chosen randomly on an analytic submanifold not contained in any proper
rational subspace, and if � is a non-zero integer linear form on Qd , then almost surely the
conditions

d.x; v/ � kvk�1�" and �.v/ D
Y
p2S

pmp ; mp 2 N�; (31)

have only finitely many solutions v 2 Zd n ¹0º. Define linear forms

L
.1/
u;0 .v/ D �.v/ and L

.1/
u;i .v/ D qfi .u/ � pi if i > 0

and if p 2 S ,
L
.p/
u;0.v/ D �.v/ and L

.p/
u;i .v/ D �i .v/;

where �i , i � 1, are chosen arbitrarily so that .�;�1; : : : ;�d / is a basis of Hom.ZdC1;Q/.
We note that if v WD .q; p1; : : : ; pd / 2 ZdC1 satisfies (31) and kvk is large enough thenY

0�i�d

Y
p2¹1º[S

jL
.p/
u;i .v/jp � kvk

�d"=2;

so Theorem 6 applies and if q is large enough, v belongs to a finite family of proper
rational subspaces. But since such a subspace almost surely does not contain x, it can
contain only finitely many solutions to (31).

3.3. Submanifolds of matrices: extremality and inheritance

In this subsection, we describe the extension of the Kleinbock–Margulis theorem to the
case of submanifolds of matrices and we show how to recover from the subspace theorem
for manifolds one of the main results of [2], which is a criterion for extremality in terms
of so-called constraining pencils and an explicit computation of the exponent.

In what follows, E and V are two finite-dimensional real vector spaces with a Q-
structure. We fix a lattice� in V , which defines the rational structure. For x in Hom.V;E/,
we define

ˇ.x/ D inf ¹ˇ > 0I 9c > 0; 8v 2 � n ¹0º; kx.v/k � ckvk�ˇ º:

Note that ˇ.x/ only depends on the subspace ker x in V .
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Given a subspace W in V and an integer r , we define the pencil of endomorphisms
PW;r by

PW;r D ¹x 2 Hom.V;E/I dim x.W / � rº:

We say that PW;r is constraining if dimW=r < dimV= dimE, and rational ifW is so. In
the case of algebraic sets defined over Q, the following theorem was proved in joint work
with Menny Aka and Lior Rosenzweig [2, Theorem 1.2]. The approach taken here yields
a different proof of that result, and allows us to generalize it to subsets defined over xQ.

Theorem 12 (Diophantine exponent for submanifolds of matrices). Let U � Rn a con-
nected open set and � W U ! Hom.V; E/ an analytic map. Assume that the Zariski
closure of M D �.U / is defined over xQ. Then, for Lebesgue almost every u in U , setting
x D �.u/,

ˇ.x/ D max
²

dimW

r
� 1I W a rational subspace such that M � PW;r

³
:

Remark. For any sublattice �0 � �, one may define

r.�0/ D max ¹dim spanRx.�
0/I x 2M º:

Then the formula in the above theorem is simply, for almost every x in M ,

ˇ.x/ D ˇ WD max
²

rk�0

r.�0/
� 1I �0 � �

³
:

Proof of Theorem 12. We prove the theorem by induction on d D dimV , using the sub-
space theorem.

d D 1: The result is clear because, for every x, the subgroup x.�/ is a discrete subgroup
of E.

d � 1 ! d : Suppose the result has been proven for d � 1 � 1. Let m D dimE and
d D dim V . Fixing bases for E and �, we identify Hom.V; E/ with m � d matrices.
Given x inM , we denote by xi , 1 � i � d , its columns, which are vectors in E. The rank
of x is almost everywhere constant, and taking a coordinate projection if necessary, we
assume that this rank is m � d and that for almost every x in M , the vector space E is
spanned by the first m columns xi , 1 � i � m. We want to show that, for almost every x
in M , for all " > 0, the set of inequalities

jv1xi1 C v2xi2 C � � � C vdxid j � kvk
�ˇ��; 1 � i � m; (32)

has only finitely many solutions v D .v1; : : : ; vd / in Zd . For 1 � i � m, define a linear
form on V ' Rd by

Li .v/ D v1xi1 C v2xi2 C � � � C vdxid ;

and for m < i � d ,
Li .v/ D vi :
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Since .xi /1�i�m spans E, the family .Li /diD1 of linear forms is linearly independent.
Moreover, as ˇ � rk�

r.�/
� 1 D d�m

m
, condition (32) certainly implies

dY
iD1

jLi .v/j � kvk��:

We may therefore apply Theorem 1: there exists a finite family V1; : : : ; Vh of hyperplanes
in Qk such that, for almost every x in M , all but finitely many integer solutions to (32)
lie in the union V1 [ � � � [ Vh. It now suffices to check that in each Vi , there can only be
finitely many solutions. This follows from the induction hypothesis applied to V 0 D Vi ,
�0 D Vi \� and to the manifold M 0 that is the image of M under restriction to V 0.

The converse inequality ˇ.x/ � ˇ is true for all x inM , as is easily seen by using the
classical Dirichlet argument.

It is also worth observing the following relation between the notions of extremality
and semistability. In [21,25] an analytic submanifoldM ofMm;n.R/ is said to be extremal
if for almost every Y 2 M and every " > 0 there are only finitely many vectors q 2 Zn

and p 2 Zm such that kYq � pk � kqk�.n=mC"/. Now consider the matrix

LY WD

�
Im Y

In

�
:

The image zM of M under Y 7! LY defines a submanifold of GLnCm.R/. Using Propo-
sition 2 and Theorem 3, it is then easy to see the following:

Proposition 5 (Extremality vs. semistability). If RnCm is zM -semistable with respect to
the unimodular flow

at D .e
tn; : : : ; etn; e�tm; : : : ; e�tm/;

then M is extremal. If the Zariski .or Plücker/ closure of M is defined over xQ, then the
almost sure diophantine exponent ˇ from Theorem 12 can be read off from the rational
Grayson polygon of zM by the formula

1C ˇ D
nCm


 Cm
;

where 
 is the smallest slope of the rational Grayson polygon. In particular, QnCm is
zM -semistable if and only if M is extremal.

3.4. Multiplicative approximation and strong extremality

Following the suggestion of Baker [3, p. 96] to study the multiplicative diophantine
properties of the Mahler curve, Kleinbock and Margulis introduced the notion of strong
extremality for manifolds in Rn. This was later generalized in [4,21] to the context of dio-
phantine approximation on matrices, but in that generalized setting the optimal criterion
for strong extremality remained to be found [4, 21]. The method of the present paper can
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be used to answer this problem. Below we apply Theorem 1 and give a complete solution
when the Zariski closure of the manifold is defined over xQ.

Let m and n be positive integers, and Mm;n.R/ the space of m � n matrices with
real entries. Following Kleinbock and Margulis [25], we say that a matrix Y 2Mm;n.R/
is very well multiplicatively approximable (VWMA) if there exists " > 0 such that the
inequality

mY
iD1

jYiq � pi j �
nY

jD1

jqj j
�1�"
C

has infinitely many solutions .p; q/ 2 Zm � Zn. In the above inequality, Yi denotes the
i -th row of Y , for i D 1; : : : ; m, and jqjC D max.jqj; 1/. More generally, we define as in
[9, §1.4] the multiplicative diophantine exponent of Y 2Mm;n.R/ as

!�.Y / D sup
°
! > 0I

mY
iD1

jYiq � pi j �
nY

jD1

jqj j
�!
C for infinitely many .p;q/

±
:

With this definition, we see that a matrix Y is VWMA if and only if !�.Y / > 1. Using the
Borel–Cantelli lemma, it is not difficult to check that for the Lebesgue measure, almost
every Y in Mm;n.R/ satisfies !�.Y / D 1. It is therefore natural to ask what other mea-
sures � on Mm;n.R/ have this property.

We now set up some notation to formulate our criterion for strong extremality. Given
a matrix Y in Mm;n.R/, with rows Y1; : : : ; Ym, we let

LY D

�
�I Y

0 I

�
;

and denote by Li , i D 1; : : : ; mC n, the linear forms on RmCn given by the rows of the
matrix LY :

Li .p;q/ D

´
Yiq � pi for i 2 ¹1; : : : ; mº;

qi�m for i 2 ¹mC 1; : : : ; mC nº:

If W is a linear subspace of RnCm, and I a non-empty subset of ¹1; : : : ; mC nº, we let

sI;W D rk.Li jW /i2I :

Definition 7 (Multiplicative pencils). Let I; J be proper subsets of ¹1; : : : ; mC nº such
that I � ¹1; : : : ; mº � J , and r; s non-negative integers. Given a subspace W � RnCm,
we define a subvariety of endomorphisms PI;J;r;s;W �Mm;n.R/ by

PI;J;r;s;W D ¹Y 2Mm;n.R/I sI;W � r and sJ;W � sº:

To justify the relevance of this definition to our problem, we start by an easy propo-
sition, which is a consequence of Minkowski’s first theorem or Dirichlet’s pigeonhole
principle.
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Proposition 6 (Dirichlet’s principle). Fix Y 2 Mm;n.R/, and denote by Li , i D 1; : : : ;
mC n, the rows of the matrix LY . Assume that W is a k-dimensional rational subspace
of RmCn and that ; ¤ I � ¹1; : : : ; mº � J ¨ ¹1; : : : ; mC nº are such that

r D rk.Li jW /i2I and s D rk.Li jW /i2J :

Then

!�.Y / �
.k � s/jI j

r.nCm � jJ j/
:

Remark. By convention, if r D 0, the ratio is equal to C1. Note that one can always
take W D RmCn, I D J D ¹1; : : : ; mº, and r D s D m, in which case the ratio is equal
to 1.

Proof of Proposition 6. If r D 0, then one must have Yiq�pi D 0 for some integer vector
.p; q/ in ZmCn. It is then clear that !�.Y / D 1. So we may assume that r ¤ 0. Since
by definition !�.Y / � 0, we may also assume that s < k, otherwise there is nothing to
prove.

Assuming that Y 2 PI;J;r;s;W , we shall prove that there exists a constant C > 0

depending only on Y and W such that the inequality

mY
iD1

jLi .v/j � C

nY
jD1

jLmCj .v/j
�

.k�s/jI j
r.nCm�jJ j/

has infinitely many solutions v in W . This will yield the desired lower bound on !�.Y /.
LetQ>0 be a large parameter. Pick i1; : : : ; ir in I such thatLi1 jW ; : : : ;Lir jW are linearly
independent, pick irC1; : : : ; is in J such that Li1 jW ; : : : ; Lis jW are linearly independent,
and complete with isC1; : : : ; ik such that Li1 jW ; : : : ;Lik jW are linearly independent. The
symmetric convex body in W defined by8̂̂<̂

:̂
jLi`.v/j � Q

�.k�s/ for 1 � ` � r;

jLi`.v/j � 1 for r < ` � s;

jLi`.v/j � Q
r for s < ` � k;

has volume� 1 and therefore, by Minkowski’s first theorem, it contains a non-zero point
v in W \ ZnCm. By our choice of the indices i`, 1 � ` � k, such a point satisfies8̂̂<̂

:̂
jLi .v/j � Q

�.k�s/ for i 2 I;

jLi .v/j � 1 for i 2 J n I;

jLi .v/j � Q
r for i 62 J;

and therefore
mY
iD1

jLi .v/j � Q�jI j.k�s/ �

nY
jD1

jLmCj .v/j
�

.k�s/jI j
r.nCm�jJ j/ :
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Now, as in the introduction, let M D �.U / be a connected analytic submanifold of
Mm;n.R/ endowed with the measure � equal to the push-forward of the Lebesgue mea-
sure under the analytic map � W U !Mm;n.R/. When the Zariski closure ofM is defined
over xQ – for example when � is given by a polynomial map with coefficients in xQ – the
above proposition actually provides a formula for !�.Y / when Y is a �-generic point
of M . In other words:

Theorem 13 (Formula for the multiplicative exponent). Assume that the Zariski closure
of M is defined over xQ. Then for �-almost every Y in M ,

!�.Y / D max
M�PI;J;r;s;W
W rational

.dimW � s/jI j

r.mC n � jJ j/
:

We stated the result for analytic submanifolds for convenience, but it holds with the
same proof for all good measures � in the sense of §1.9 provided the Zariski closure of
the support of � is defined over xQ. We shall say that a multiplicative pencil PI;J;r;s;W is
constraining if

.dimW � s/jI j

r.mC n � jJ j/
> 1:

Our criterion2 for strong extremality immediately follows from the above formula.

Corollary 3 (Criterion for strong extremality). If M is an analytic submanifold of
Mm;n.R/ whose Zariski closure is defined over xQ, then M is strongly extremal if and
only if it is not contained in any rational constraining pencil.

The proof of Theorem 13 is inspired by Schmidt’s proof of an analogous result on
products of linear forms [37, §12, p. 242].

Proof of Theorem 13. Let ! > 0 be such that for Y in a set of positive measure inM , the
inequality

mY
iD1

jYiq � pi j �
mY
jD1

jqj j
�!
C (33)

has infinitely many solutions .p; q/ in ZmCn. We want to show that M is included in a
pencil PI;J;r;s;W such that

.dimW � s/jI j

r.mC n � jJ j/
� !:

LetW be a rational subspace of minimal dimension k containing infinitely many solutions
to (33). If k D 1, then there must exist i 2 ¹1; : : : ; mº and .p; q/ 2 ZmCn such that
Yiq� pi D 0, and one can take I D ¹iº, J D ¹1; : : : ;mº, r D 0, and s D 1. So we assume

2We were informed by David Simmons (private communication) that he and Tushar Das also
obtained a similar criterion for strong extremality of submanifolds defined over R.
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k � 2. Reordering the indices if necessary, we may assume that W contains infinitely
many solutions to (33) satisfying

0 < jY1q � p1j � � � � � jYmq � pmj (34)

and
jq1j � � � � � jqnj: (35)

Define i1 < � � �< if �m inductively so that each i` is minimal with rk.Li1 jW ; : : : ;Li` jW /
D `, and then m < j1 < � � � < jg � m C n such that j` is minimal with
rk.Li1 jW ; : : : ; Lif jW ; Lj1 jW ; : : : ; Lj` jW / D f C `. Note that in our notation, f C g D
k D dimW .

Given a large solution vD .p;q/ to (33) inW , choose numbers c1;v; : : : ; cf;v such that

jLi`.v/j D kvk
�c`;v for ` D 1; : : : ; f

and d1;v; : : : ; dg;v such that

jLj`.v/j D kvk
d`;v for ` D 1; : : : ; g:

Extracting a subsequence of solutions v if necessary, we may assume that c`;v and d`;v
converge to some limits c` and d`.

By (34), one has c1 � � � � � cf � 0. By (35) and the fact that always jLj`.v/j � kvk,
one finds 0 � d1 � � � � � dg � 1. Moreover, by minimality of W , the subspace theorem
applied in W to the set of linear forms

Li1 jW ; : : : ; Lif jW ; Lj1 jW ; : : : ; Ljg jW

shows that �c1 C � � � � cf C d1 C � � � C dg � 0. In conclusion, one sees that the k-tuple
.c1; : : : ; cf ; d1; : : : ; dg/ belongs to the convex polytope .P / defined by

.P /

8̂̂<̂
:̂
c1 � � � � � cf � 0;

0 � d1 � � � � � dg � 1;

d1 C � � � C dg � c1 C � � � C cf :

Now inequality (33) implies

c1.i2 � i1/C � � � C cf .m � if / � !Œd1.j1 �m/C � � � C dg.mC n � jg/� � 0:

The linear map

f .c;d/ D c1.i2 � i1/C � � � C cf .m � if / � !Œd1.j1 �m/C � � � C dg.mC n � jg/�

is non-negative at some point in the convex polytope .P /, so it must be non-negative at
one of its vertices. The polytope (P) has gf vertices, given by

pa;b W

´
0 D d1 D � � � D da < daC1 D � � � D dg D 1;
g�a
b
D c1 D � � � D cb > cbC1 D � � � D cf D 0;

where

´
a D 0; : : : ; g � 1;

b D 1; : : : ; f:



A subspace theorem for manifolds 4307

Choose .a; b/ such that f .pa;b/ � 0, and let8̂̂̂̂
<̂
ˆ̂̂:
I D ¹1; : : : ; ibº;

J D ¹1; : : : ; jaº;

r D b;

s D f C a:

We then obtain
0 � f .pa;b/ D

g � a

b
jI j � !.mC n � jJ j/;

whence
.k � s/jI j

r.mC n � jJ j/
� !:

Remark. Strong extremality also relates to semistability in a similar way to Proposi-
tion 5. We leave it to the reader to check that in the setting of Theorem 13, M is strongly
extremal if and only if QmCn is semistable for ¹LY I Y 2M º with respect to all unimod-
ular flows at D .etA1 ; : : : ; etAnCm/ with

A1 � � � � � Am � 0 � AmC1 � � � � � AmCn:

See [21] where the relevance of this family of flows for strong extremality was uncovered.

3.5. Roth’s theorem for nilpotent Lie groups

Diophantine approximation on nilpotent Lie groups was studied in [1, 2]. In this subsec-
tion we continue this study and derive an analogue of Roth’s theorem [31] in this context.
In doing so we extend Theorem 12 to approximation with quasi-norms.

Diophantine approximation in nilpotent Lie groups. In this subsection G will denote a
simply connected nilpotent Lie group, endowed with a left-invariant riemannian metric.
We identify it with its Lie algebra g under the exponential map, so that its Haar measure
is given by the Lebesgue measure on g. For a finite symmetric subset S ofG and � D hSi
the subgroup it generates, the diophantine exponent of � in G is

ˇ.�/ D inf ¹ˇI 9c > 0; 8n 2 N�; 8x 2 Sn n ¹1º; d.x; 1/ � cn�ˇ º;

where Sn denotes the set of elements of � that can be written as a product of at most n
elements of S . Because � is nilpotent, this definition does not depend on the choice of S .
The following theorem was proved in [2, Theorem 7.4].

Theorem 14 (Existence of the exponent). Let G be a connected and simply connected
real nilpotent Lie group endowed with a left-invariant riemannian metric d . For each
k � 1, there is ˇk 2 Œ0;1� such that for almost every k-tuple gD .g1; : : : ; gk/ 2 Gk with
respect to the Haar measure, the subgroup �g generated by g1; : : : ; gk satisfies

ˇ.�g/ D ˇk :
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We also showed in [2] that when G is rational, i.e. when its Lie algebra g admits a
basis with rational structure constants, ˇk can be explicitly computed and in particular is
rational. In fact, ˇk D F.k/ for some rational function F 2Q.X/when k is large enough.
Using the subspace theorem for manifolds (Theorem 1), we can now show the following.

Theorem 15 (Roth’s theorem for nilpotent groups). Let G be a connected simply con-
nected nilpotent Lie group and k a positive integer. Assume that the Lie algebra g of G
admits a basis with structure constants in a number field K. Then

ˇk 2 Q:

Moreover, for every k-tuple g 2 g.xQ/k we have ˇ.�g/ 2 Q. Furthermore, there is C D
C.dim g/ > 0 and a countable union U of proper algebraic subsets of gk defined over K
and of degree at most C such that

ˇ.�g/ D ˇk for every g 2 gk.xQ/ nU.

The case when k D 2 and G D .R;C/ is exactly Roth’s theorem. In this case ˇ2 D 1
and U is the family of lines in R2 with rational slopes.

The basic idea for the proof of Theorem 15, developed in [2], is to reduce the problem
to a question of diophantine approximation on submanifolds. For that, we introduce the
free Lie algebra Fk over k generators x1; : : : ; xk . Inside Fk , the ideal of laws Lk;g on the
Lie algebra g of G is the set of elements r in Fk such that r.X1; : : : ; Xk/ D 0 for every
X1; : : : ; Xk in g, and the ideal of rational laws Lk;g;Q is the real span of the intersection
of Lk;g with Fk.Q/, the natural Q-structure on Fk . The Lie algebra Fk;g;QDFk=Lk;g;Q

has a graded structure
Fk;g;Q D

sM
iD1

F
Œi�

k;g;Q;

where F
Œi�

k;g;Q is the homogeneous part of Fk;g;Q consisting of brackets of degree i . For

r D
P

ri with ri 2 F
Œi�

k;g;Q, we let
jrj WD max

iD1;:::;s
krik

1=i ; (36)

where k � k is a fixed norm on Fk;g;Q. Endowed with this quasi-norm, the Lie algebra
Fk;g;Q is quasi-isometric to the group of word maps onG, endowed with the word metric
[2, Proposition 7.2]. This yields the following characterization for the above diophantine
exponent ˇ.�g/ proved in [2, Proposition 7.3]. We say that �g is relatively free in G if
the only relations satisfied by g are the laws of G. This holds for all g outside a countable
union of proper algebraic subvarieties of bounded degree defined over Q, and in particular
for Lebesgue almost every g 2 Gk .

Proposition 7. Let G be a simply connected nilpotent Lie group with Lie algebra g.
Let g D .eX1 ; : : : ; eXk / be a k-tuple in G such that �g is relatively free in G. Then the
exponent ˇ.�g/ defined above is also the infimum of all ˇ > 0 such that

kr.X1; : : : ; Xk/k � jrj
�ˇ (37)

for all but finitely many r 2 Fk;g;Q.Z/.
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Below, we show how Theorem 1 yields a formula for diophantine exponents defined
with quasi-norms, as in the above proposition.

Weighted diophantine approximation. We now generalize the results of §3.3 to diophan-
tine approximation with quasi-norms, also called weighted diophantine approximation
(see e.g. [22, §1.5] and references therein). Again, E and V are two finite-dimensional
real vector spaces, and � is a lattice in V , defining a rational structure.

We fix a norm k � k on E. On V , we measure the size of vectors using a quasi-norm
j � j given by the formula

jvj D max
1�i�d

jhv; u�i ij
1=˛i ; (38)

where ˛ D .˛1; : : : ; ˛d / is a d -tuple of positive real numbers and .u�i /1�i�d a basis of
Hom.V;R/. Given x in Hom.V;E/, define the diophantine exponent of x by

ˇ˛.x/ D inf ¹ˇ > 0I 9c > 0; 8v 2 �; kxvk � cjvj�ˇ º:

Definition 8 (Growth rate for a quasi-norm). LetW be a linear subspace in V . The growth
rate of balls in W for the quasi-norm j � j is given by

˛.W / D lim
R!1

1

logR
log Vol ¹v 2 W I jvj � Rº:

Remark. It is not hard to see that this limit exists and equals
P
i2IW

˛i for a certain
subset IW � Œ1; d �. Indeed, the restriction of j � j to W is itself comparable up to multi-
plicative constants to a quasi-norm with exponents ˛i , i 2 IW , where IW D ¹i1; : : : ; ikº
is defined as follows. Choose i1 minimal such that the restriction of u�i1 to W is non-
zero, then inductively choose ij minimal such that the linear forms u�i1 jW ; : : : ; u

�
ij
jW are

linearly independent.

This gives us a lower bound for the diophantine exponent, using a standard Dirichlet
type argument:

Lemma 5. Let V and j � j be as above. For any x in Hom.V;E/,

ˇ˛.x/ � max
²

˛.W \ ker x/
dimW � dimW \ ker x

I W � V a rational subspace
³
:

Proof. Let R > 0 be some large parameter. The number of points v in W \� such that
jvj � R is roughly R˛.W /, and their images in x.W / ' W=.W \ kerx/ lie in a distorted
ball of volume O.R˛.W /�˛.W\kerx//. Comparing volumes, we find that balls of radius "
around those points cannot be disjoint if "� R�

˛.W\kerx/
dimW�dimW\kerx .

It turns out that this lower bound is in fact attained almost everywhere on analytic
submanifolds of Hom.V; E/ whose Zariski closure is defined over xQ. This is the content
of the next theorem. As earlier, we endow M WD �.U / with the push-forward � of the
Lebesgue measure on the connected open subset U � Rd via the analytic map � W U !
Hom.V;E/.



E. Breuillard, N, de Saxcé 4310

Theorem 16 (Diophantine exponent for quasi-norms). Assume that V and j � j are as
above, and the Zariski closure Zar.M/ of M is defined over xQ. Then, for almost every x
in M ,

ˇ˛.x/ D max
²

min
y2M

˛.W \ kery/
dimW � dimW \ kery

I W � V a rational subspace
³
: (39)

This equality is also true for every xQ-point of Zar.M/ outside a union of proper algebraic
subsets of M defined over Q and of bounded degree.

Remark. Note that ˛ can take only finitely many values, so the maximum and minimum
in the above formula are indeed attained.

Remark. The theorem implies that ˇ˛.x/ � ˇ for almost every x on M if and only if
ˇ˛.y/� ˇ for every y onM , if and only if there exists a rational subspaceW such thatM
is included in the (closed) algebraic subset of all y 2Hom.V;E/ such that ˛.W \ kery/�
ˇ.dimW � dimW \ kery/.

Proof of Theorem 16. Since we can always reorder the u�i , 1 � i � d , we may assume
without loss of generality that 0 < ˛1 � � � � � ˛d . Then, for x in Hom.V;E/, let

m D dim x.V / and n D dim ker x:

and define inductively a subset Ix D ¹i1;x ; : : : ; in;xº in ¹1; : : : ; dº by

i1;x D min ¹i I u�i jkerx ¤ 0º;

ijC1;x D min ¹i I .u�i1;x jkerx ; : : : ; u
�
ij;x
jkerx ; u

�
i jkerx/ is linearly independentº:

Now suppose Lx is an element of GL.d;R/ with rows Lj;x satisfying

(1) ker x D
Tm
jD1 kerLj;x ,

(2) 8j 2 ¹1; : : : ; nº; LmCj;x D u�ij;x .

Then ˇ˛.x/ is the minimal ˇ > 0 such that, for all " > 0, for Q large enough, the set of
inequalities ´

jLj;x.v/j � Q
�ˇ�" for 1 � i � m;

jLmCj;x.v/j � Q
˛ij for 1 � j � n;

(40)

has no non-zero solution v in �.
Let ˇ be the right-hand side of .39/. We want to show that for �-almost every x, for

all " > 0 and forQ> 0 large enough, the inequalities (40) have no non-zero solution in�.
We prove this by induction on d , using our subspace theorem (i.e. Theorem 1).

d D 1: There is not much to prove in this case, since ker x is equal to ¹0º or V , for
�-almost every x.

d � 1! d : Assume the result is already proven for d � 1. The map x 7! Ix is constant
on a dense Zariski open subset of Zar.M/; we denote by I D ¹i1; : : : ; inº its value on
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this dense open subset, and by zM the set of all Lx , for x in that subset and in M . Since
ˇ � ˛.V /=m D

Pn
jD1 ˛ij =m, the solutions v to (40) satisfy

dY
iD1

jLi;x.v/j � Q
�mˇ�m"C

Pn
jD1 ˛ij � kvk�"

0

;

and therefore, by Theorem 1, there exist proper subspaces V1; : : : ; V` in Qd containing
all but a finite number of solutions. All we need to check is that in each Vi , there can
only be finitely many solutions. But this follows from the induction hypothesis, applied
to V 0 D Vi , �0 D � \ Vi , j � j D j � jV 0 (the restriction of a quasi-norm to a subspace is
comparable to a quasi-norm [2, §4.1]), and to the submanifold M 0 D ¹xjV 0 I x 2 zM º.

Indeed, the almost sure diophantine exponent of a point in M 0 is

ˇ0 WD max
²

min
y2M 0

˛.W \ kery/
dimW � dimW \ kery

I W � V 0 a rational subspace
³
;

which satisfies ˇ0 � ˇ.

We can now easily derive our theorem about nilpotent groups.

Proof of Theorem 15. Let

V D Fk;g;Q; � D Fk;g;Q.Z/ and E D g:

For each k-tuple gD .eX1 ; : : : ; eXk / inGk , we obtain an element xg in Hom.V;E/ given
by evaluation at .X1; : : : ; Xk/:

xg.r/ D r.X1; : : : ; Xk/:

The map Gk ! Hom.V; E/, g 7! xg, is a polynomial map with coefficients in K. In
particular, the Zariski closure of its image is defined over xQ. When �g is relatively free,
Proposition 7 shows that ˇ.�g/ D ˇ.xg/, where ˇ.xg/ is the diophantine exponent with
respect to the quasi-norm j � j on V defined in .36/. By Theorem 16,

ˇ.xg/ D max
²

min
h2Gk

˛.W \ ker xh/

dimW � dimW \ ker xh
I W � V a rational subspace

³
for Lebesgue almost every g 2 Gk . This shows that ˇk is well defined, and since ˛ takes
rational values, this formula shows that ˇk 2 Q. For each rational W � V , the set of
all h 2 Gk such that ˛.W \ ker xh/ > ˇk dim.W=.W \ ker xh/ is a proper algebraic
subset of Gk defined by equations of bounded degree with coefficients in K. The union
of those subsets forms a proper subset of Gk by Lemma 4, and Theorem 16 implies that
ˇ.�g/ D ˇk for every g outside this union.
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