
© 2024 European Mathematical Society
Published by EMS Press and licensed under a CC BY 4.0 license

J. Eur. Math. Soc. 26, 4191–4272 (2024) DOI 10.4171/JEMS/1402

Florian Ivorra · Sophie Morel

The four operations on perverse motives

Received March 1, 2021; revised July 20, 2023

Abstract. Let k be a field of characteristic zero with a fixed embedding � W k ,! C into the field
of complex numbers. Given a k-variety X , we use the triangulated category of étale motives with
rational coefficients on X to construct an abelian category M .X/ of perverse mixed motives. We
show that over Spec.k/ the category obtained is canonically equivalent to the usual category of
Nori motives and that the derived categories Db.M .X// are equipped with the four operations
of Grothendieck (for morphisms of quasi-projective k-varieties) as well as nearby and vanishing
cycles functors and a formalism of weights.

In particular, as an application, we show that many classical constructions done with perverse
sheaves, such as intersection cohomology groups or Leray spectral sequences, are motivic and there-
fore compatible with Hodge theory. This recovers and strengthens work by Zucker, Saito, Arapura
and de Cataldo–Migliorini and provides an arithmetic proof of the pureness of intersection coho-
mology with coefficients in a geometric variation of Hodge structures.
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Introduction

Let k be a field of characteristic zero with a fixed embedding � W k ,! C into the field of
complex numbers. A k-variety is a separated k-scheme of finite type. Unless otherwise
specified, we will only consider quasi-projective k-varieties.

In the present work, we construct the four operations of Grothendieck on the derived
categories of perverse Nori motives. In order to combine the tools provided by Ayoub [5,6]
and Beilinson [16, 17] in a most efficient way, we define the abelian category of perverse
Nori motives on a given k-variety as a byproduct of the triangulated category of con-
structible étale motives on the same variety. Over the base field the category obtained
still coincides with the usual category of Nori motives but now, as we show, it is possi-
ble to equip the derived categories of these abelian categories with the four operations
of Grothendieck as well as nearby and vanishing cycles functors. However, we leave the
construction of the tensor product and internal Hom operations on these categories to a
later paper.

In particular, as an application, we show that many classical constructions done with
perverse sheaves, such as intersection cohomology groups or Leray spectral sequences,
are motivic and therefore compatible with Hodge theory. This recovers and strengthens
works by Zucker [77], Saito [67], Arapura [2] and de Cataldo–Migliorini [26]. Moreover
it provides an arithmetic proof via reduction to positive characteristic and the Weil conjec-
tures of the pureness of the Hodge structure on intersection cohomology with coefficients
in a geometric variation of Hodge structures.
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Conjectural picture and some earlier works. Before going into more detail about the
content of this paper, let us discuss perverse motives from the perspective of perverse
sheaves and recall parts of the conjectural picture and related earlier works.

For someone interested in perverse sheaves, perverse motives can be thought of as
perverse sheaves of geometric origin. However, the classical definition of these perverse
sheaves as a full subcategory of the category of all perverse sheaves is not entirely sat-
isfactory. Indeed, this category contains too many morphisms and consequently, as we
take the kernels and cokernels of morphisms which should not be considered, too many
objects. For example, perverse sheaves of geometric origin should define mixed Hodge
modules and therefore any morphism between them should also be a morphism of mixed
Hodge modules. Therefore, one expects the category of perverse motives/perverse sheaves
of geometric origin to be an abelian category endowed with a faithful – but not full – exact
functor into the category of perverse sheaves.

According to Grothendieck, there should exist a Q-linear abelian category MM.k/

whose objects are called mixed motives. Given an embedding � W k ,! C, the category
MM.k/ should come with a faithful exact functor

MM.k/!MHS

to the category of (polarizable) mixed Q-Hodge structures MHS, called the realization
functor. The mixed Hodge structure on the i -th Betti cohomology group H i .X/ of a
given k-variety X should come via the realization functor from a mixed motive H i

M.X/.
The appealing beauty of this picture lies in the expected properties of this category, in
particular, the conjectural relations between extension groups and algebraic cycles (see
e.g. Jannsen [49]), or the relation with period rings and motivic Galois groups (see e.g.
Ayoub’s survey [11]).

As part of Grothendieck’s more general cohomological program, the category MM.k/

should underlie a system of coefficients. For any k-varietyX , there should exist an abelian
category MM.X/ of mixed motives along with a realization functor into the category
of mixed Hodge modules (or simply of sheaves of Q-vector spaces) on the associated
analytic space X an, and their derived categories should satisfy a formalism of (adjoint)
triangulated functors

Db.MM.X//
f M
�

// Db.MM.Y //

f �Moo
f ŠM //

Db.MM.X//;
f M
Š

oo

a formalism which has been at the heart of Grothendieck’s approach to every cohomology
theory. Then, for a k-variety a W X ! Spec k, the motive H i

M.X/ would be given as the
i -th cohomology of the image under aM

� of a complex of mixed motives QM
X that should

realize to the standard constant sheaf QX on X an. Grothendieck was looking for abelian
categories modeled after the categories of constructible sheaves, but as pointed out by
Beilinson and Deligne one could/should also look for categories modeled after perverse
sheaves (see e.g. Deligne [28]).
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Many attempts have been made to carry out Grothendieck’s program at least partially
but unconditionally.

The most successful attempt at constructing the triangulated category of mixed
motives (that is, conjecturally, the derived category of MM.X/) stems from Morel–
Voevodsky’s stable homotopy theory of schemes. The best candidate so far is the
triangulated category DAct.X/ of constructible étale motivic sheaves (with rational coef-
ficients) extensively studied by Ayoub [5, 6, 8]. The theory developed in [5, 6] provides
these categories with the Grothendieck four operations and, as shown by Voevodsky [75],
Chow groups of smooth algebraic k-varieties can be computed as extension groups in the
category DAct.k/.

On the abelian side, Nori has constructed a candidate for the abelian category of
mixed motives over k. The construction of Nori’s abelian category HM.k/ is tannakian
in essence, and since it is a category of comodules over some Hopf algebra, it comes
with a built-in motivic Galois group. Moreover, any Nori motive has a canonical weight
filtration and Arapura has shown in [3, Theorem 6.4.1] that the full subcategory of pure
motives coincides with the semisimple abelian category defined by André [1] using moti-
vated algebraic cycles (see also Huber and Müller-Stach [44, Proposition 10.2.1]). More
generally, attempts have been made to define Nori motives over k-varieties. Arapura has
defined a constructible variant in [3] and the first author a perverse variant in [47]. How-
ever, the Grothendieck four operations have not been constructed (at least in their full
extent) in those contexts. For example in [3], the direct image functor is only available
for structural morphisms or projective morphisms and no extraordinary inverse image is
defined.

Note that the two different attempts should not be unrelated. One expects the trian-
gulated category DAct.X/ to possess a special t -structure (called the motivic t -structure)
whose heart should be the abelian category of mixed motives. This is a very deep con-
jecture, even for X D Spec k, which implies for example the Lefschetz and Künneth
type standard conjectures (see Beilinson [15]). As of now, the extension groups in Nori’s
abelian category of mixed motives are known to be related to algebraic cycles only very
loosely.

Nonetheless, striking unconditional relations between the two different approaches
have been obtained. In particular, in [22], Gallauer–Choudhury have shown that the
motivic Galois group constructed by Ayoub [9, 10] using the triangulated category of
étale motives is isomorphic to the motivic Galois group obtained by Nori’s construction.

Content of this paper. Let us now describe more precisely the content of our paper. Given
a k-variety X , consider the bounded derived category Db

c.X;Q/ of sheaves of Q-vector
spaces with algebraically constructible cohomology on the analytic space X an associated
with the base change of X along � and the category of perverse sheaves P.X/ which
is the heart of the self-dual perverse t -structure on Db

c.X;Q/ introduced by Beilinson–
Bernstein–Deligne [18]. Let DAct.X/ be the triangulated category of constructible étale
motivic sheaves (with rational coefficients) which is a full triangulated subcategory of the
Q-linear counterpart of the stable homotopy category of schemes, SH.X/, introduced by
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Morel and Voevodsky (see [59, 74] and Jardine [50]). This category has been extensively
studied by Ayoub [5, 6, 8] and comes with a realization functor

Bti�X W DAct.X/! Db
c.X;Q/

(see Ayoub [7]) and thus, by composing with the perverse cohomology functor, with a
homological functor pH 0

P with values in P.X/.
The category of perverse motives considered in the present paper is defined (see [47])

as the universal factorization

DAct.X/
pH0M
���!M .X/

ratM
X
���!P.X/

of pH 0
P , where M .X/ is an abelian category, pH 0

M is a homological functor and ratMX
is a faithful exact functor. This kind of universal construction goes back to Freyd and is
recalled in Section 1. As we see in Section 6, `-adic perverse sheaves can also be used to
defined the category of perverse motives (see Definition 6.3 and Proposition 6.11).

Given a morphism of k-varieties f W X ! Y , the four functors

Db
c.X;Q/

fP
�

// Db
c.Y;Q/

f �Poo

f ŠP

// Db
c.X;Q/

fP
Šoo

(0.1)

were developed by Verdier [72] (see also Kashiwara–Schapira’s book [52]) on the model
of the theory developed by Artin, Grothendieck et al. [4] for étale and `-adic sheaves. The
nearby and vanishing cycles functors

‰g W Db
c.X�;Q/! Db

c.X� ;Q/; ˆg W Db
c.X;Q/! Db

c.X� ;Q/

associated with a morphism g WX !A1
k

were constructed by Grothendieck [30] (hereX�
denotes the generic fiber and X� the special fiber). By a theorem of Gabber, the functors
 g WD‰g Œ�1� and �g WDˆg Œ�1� are t -exact for the perverse t -structures and thus induce
exact functors

 g WP.X�/!P.X� /; �g WP.X/!P.X� /: (0.2)

In this work, we prove that M .k/ is canonically equivalent to the abelian category HM.k/

of Nori motives (see Proposition 2.11) and that the four operations (0.1) (for morphisms
of quasi-projective k-varieties) and the functors (0.2) can be canonically lifted along the
functors

Db.M .X//
ratM
X
���! Db.P.X//

real
��! Db

c.X;Q/;

where “real” is the realization functor of [18, Section 3.1.9], which has been shown to be
an equivalence by Beilinson [17], to (adjoint) triangulated functors

Db.M .X//
fM
�

// Db.M .Y //

f �Moo

f ŠM

// Db.M .X//

fM
Šoo
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and to exact functors

 M
f WM .X�/!M .X� /; �M

f WM .X/!M .X� /:

Relying on Ayoub’s work [5, 6] and on the compatibility of the Betti realization with
the four operations, our strategy consists in establishing enough of the formalism to show
that the categories Db.M .X// underlie a stable homotopical 2-functor in the sense of [5]
(see Theorem 5.1), so that the rest of the formalism is obtained from [5,6]. The existence
of the direct image by a closed immersion or the inverse image by a smooth morphism
are obtained immediately via the universal property (see Section 2). However, to construct
the inverse image by a closed immersion (see Section 4), we need to develop analogues,
for étale motives, of the functors and gluing exact sequences obtained by Beilinson [16].
This is done in Section 3 and uses derivators, and the logarithmic specialization system
of Ayoub [6, 8]. The proof of the main theorem is carried out in Section 5 and the most
important step is the proof of the existence of the direct image by the projection of the
affine line A1X onto its base X (see Proposition 5.2). We conclude this section by the
aforementioned applications to intersection cohomology and Leray spectral sequences.

In Section 6, we show that perverse motives can also be defined using `-adic per-
verse sheaves and that they admit a notion of weights. We deduce the existence of the
weight filtration from the properties of Bondarko’s Chow weight structure and from the
Weil conjectures (cf. Deligne [27, Théorème 1]). Then, using the strict support decom-
position of pure objects to reduce to the case of a point, we show that the category of
pure objects of a given weight is semisimple. As an application, we get the existence of
a weight structure on the derived category of M .X/ and an arithmetic proof of Zucker’s
theorem [77, Theorem, p. 416] for geometric variations of Hodge structures (see Theo-
rem 6.28 and Corollary 6.29).

1. Categorical preliminaries

Let us recall in this section a few universal constructions related to abelian and triangu-
lated categories. They date back to Freyd’s construction of the abelian hull of an additive
category, see his paper [35] and have been considered in many different forms in various
works (see e.g. Verdier [73], Krause [57], Prest [63] and Barbieri-Viale and Prest [14]).

Let S be an additive category. Let Mod.S/ be the category of right S-modules, that
is, the category of additive functors from Sop to the category Ab of abelian groups. The
category Mod.S/ is abelian and a sequence of right S-modules

0! F 0 ! F ! F 00 ! 0

is exact if and only if for every s 2 S the sequence of abelian groups

0! F 0.s/! F.s/! F 00.s/! 0

is exact.
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A right S-module F is said to be of finite presentation if there exist objects s; t in S

and an exact sequence
S.�; s/! S.�; t /! F ! 0

in Mod.S/.

Definition 1.1. Let S be an additive category. We denote by R.S/ the full subcategory of
Mod.S/ consisting of right S-modules of finite presentation.

The category R.S/ is an additive category with cokernels (the cokernel of a morphism
of right S-modules of finite presentation is of finite presentation) and the Yoneda functor

hS W S! R.S/

is a fully faithful additive functor. Recall that, given a morphism t ! s in S, a morphism
r ! t is called a pseudo-kernel if the sequence

S.�; r/! S.�; t /! S.�; s/

is exact in Mod.S/. The category R.S/ is abelian if and only if S has pseudo-kernels (see
[35, Theorem 1.4] and [57, Lemma 2.2]). It also satisfies the following universal property.

Proposition 1.2 ([57, Universal Property 2.1 and Lemma 2.6]). Let S be an additive cate-
gory. Let A be an additive category with cokernels and F W S! A be an additive functor.
Then there exists, up to a natural isomorphism, a unique right exact functor R.S/! A

that extends F . Moreover, if S and A admit pseudo-kernels, then this functor is exact if
and only if F preserves pseudo-kernels.

Note that the construction can be dualized so that there is a universal way to add
kernels to an additive category. One simply sets L.S/ WD R.Sop/op. The two constructions
can be combined to add both cokernels and kernels at the same time. Let S be an additive
category and let

Aad.S/ WD L.R.S//:

Then the functor h W S!Aad.S/ is a fully faithful additive functor and Aad.S/ is an abelian
category which enjoys the following universal property (this is Freyd’s abelian hull).

Proposition 1.3. Let A be an abelian category and F W S! A be an additive functor.
Then there exists, up to a natural isomorphism, a unique exact functor Aad.S/! A that
extends F .

Note also that the category Aad.S/ is canonically equivalent to R.L.S//.
This construction can be used to provide an alternative description of Nori’s category

(see Barbieri-Viale and Prest [14]). Let Q be a quiver, A be an abelian category and T W
Q ! A be a representation. Let P.Q/ be the path category and P.Q/˚ be its additive
completion obtained by adding finite direct sums. Then, up to natural isomorphisms, we
have a commutative diagram
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Q //

T
""

P.Q/˚ //

%T

��

Aad.P.Q/˚/ DW Aqv.Q/

�T
vv

A

where %T is an additive functor and �T an exact functor. The kernel of �T is a thick
subcategory of Aqv.Q/ and we define the abelian category Aqv.Q; T / to be the quotient of
Aqv.Q/ by this kernel. By construction, the functor �T has a canonical factorization

Aqv.Q/
�T
��! Aqv.Q;H/

rT
�! A

where �T is an exact functor and rT is a faithful exact functor. If we denote by T the
composition of the representation Q!Aqv.Q/ and the functor �T WAqv.Q/!Aqv.Q; T /,
it provides a canonical factorization of T :

Q
T
�! Aqv.Q; T /

rT
�! A

where T is a representation and rT is a faithful exact functor. It is easy to see that the
above factorization is universal among all factorizations of T of the form

Q
R
�! B

s
�! A

where B is an abelian category, R is a representation and s is a faithful exact functor.
In particular, whenever Nori’s construction is available, e.g. if A is Noetherian, Artinian
and has finite-dimensional Hom-groups over Q (see [47]), then the category Aqv.Q; T / is
equivalent to Nori’s abelian category associated with the quiver representation T .

Let us consider the case when Q is an additive category and T is an additive functor.
Then, up to natural isomorphisms, we have a commutative diagram

Q //

T
""

Aad.Q/

T �

��

A

where T � is an exact functor. The kernel of T � is a thick subcategory of Aad.Q/ and we
define the abelian category Aad.Q; T / to be the quotient of Aad.Q/ by this kernel.

Lemma 1.4. Let Q and A be additive categories. Then, for every additive functor T W
Q! A, the categories Aqv.Q; T / and Aad.Q; T / are canonically equivalent.

Proof. To see this, it suffices to check that the factorization

Q! Aad.Q; T /! A

satisfies the universal property that defines Aqv.Q; T /. Consider a factorization of the
representation T of the quiver Q,

Q
R
�! B

s
�! A;

where B is an abelian category,R is a representation and s is a faithful exact functor. Since
s is faithful, R must be an additive functor. Therefore, we get a commutative diagram (up
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to natural isomorphisms)
Q

T

((

R
��

// Aad.Q/

exact

||

T �

uu

B

s

��

A

The exactness and faithfulness of s imply that the above diagram can be further completed
to a commutative diagram (up to natural isomorphisms)

Q

T

''

R
��

// Aad.Q/

exact

{{

T �ll

��

B

s

��

Aad.Q; T /oo

zz
A

This shows the desired universal property.

Let us finally consider the special case when S is a triangulated category. In that case
the additive category S has pseudo-kernels and pseudo-cokernels, in particular, the cat-
egory Atr.S/ WD R.S/ is an abelian category.1 The Yoneda embedding hS W S! Atr.S/

is a homological functor and is universal for this property (see [62, Theorem 5.1.18]).
In particular, if A is an abelian category, any homological functor H W S! A admits a
canonical factorization

S
hS
��! Atr.S/

�H
��! A

where �H is an exact functor. This factorization of H is universal among all such factor-
izations.

The kernel of �H is a thick subcategory of Atr.S/ and we define the abelian category
Atr.S;H/ to be the quotient of Atr.S/ by this kernel. By construction, the functor �H has
a canonical factorization

Atr.S/
�H
��! Atr.S;H/

rH
��! A

where �H is an exact functor and rH is a faithful exact functor. Setting HS WD �H ı hS
provides a canonical factorization of H :

S
HS
��! Atr.S;H/

rH
��! A

where HS is a homological functor and rH a faithful exact functor. It is easy to see that
the above factorization is universal among all factorizations of H of the form

S
L
�! B

s
�! A

where L is a homological functor and s is a faithful exact functor.

1This is the abelian category denoted by A.S/ in Neeman’s book [62, Chapter V].
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We can also see the triangulated category S simply as a quiver (resp. an additive cate-
gory) and the homological functorH W S!A simply as a representation (resp. an additive
functor). In particular, we have at our disposal the universal factorizations of the repre-
sentation H :

S! Aqv.S;H/! A

and
S! Aad.S;H/! A

where the arrows on the right are exact and faithful functors.

Lemma 1.5. Let S be a triangulated category, A be an abelian category and H W S! A

be a homological functor. Then the three abelian categories Aqv.S; H/, Aad.S; H/ and
Atr.S;H/ are canonically equivalent.

Proof. We have seen in Lemma 1.4 that Aqv.S;H/ and Aad.S;H/ are canonically equiv-
alent. Let us prove that so do Aad.S; H/ and Atr.S; H/. It suffices to check that the
factorization

S! Atr.S;H/! A

satisfies the universal property that defines Aad.S; H/. Consider a factorization of the
additive functor H ,

Q
R
�! B

s
�! A;

where B is an abelian category, R is an additive functor and s is a faithful exact functor.
Since s is faithful, R must be homological. Therefore, we get a commutative diagram (up
to natural isomorphisms)

S

H

((

R
��

// Atr.S/

exact

||

uu

B

s

��

A

The exactness and faithfulness of s imply that the above diagram can be further completed
to a commutative diagram (up to natural isomorphisms)

S

H

''

R
��

// Atr.S/

exact

{{

ll

��

B

s

��

Atr.S; T /oo

{{
A

This shows the desired universal property.
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2. Perverse motives

We fix a field k that admits an embedding � W k! C. Unless otherwise specified, we will
only consider quasi-projective k-varieties in this article.

2.1. Definition

Let X be a quasi-projective k-variety. We denote by X an the complex analytic space
associated with the base change of X along � , by Db

c.X; Q/ the category of com-
plexes of sheaves of Q-vector spaces on X an with bounded algebraically constructible
cohomology, by P.X/ the heart of the perverse t-structure on Db

c.X;Q/ introduced by
Beilinson–Bernstein–Deligne [18, Section 2] for the self-dual perversity and by DAct.X/

the triangulated category of constructible étale motivic sheaves with rational coefficients
(see for example Ayoub [8, Section 3]). By [23, Theorem 16.2.18], this last category
is equivalent to the category of constructible Beilinson motives studied by Cisinski and
Déglise [23], and the equivalence commutes with the operations we will consider later
(direct and inverse images and tensor product). So we will refer to Ayoub’s articles or to
the book [23], as convenient.

To construct the abelian category of perverse motives M .X/ used in the present work,
we take S to be the triangulated category DAct.X/ and H to be the homological func-
tor pH 0

P obtained by composing the Betti realization

Bti�X W DAct.X/! Db
c.X;Q/

constructed by Ayoub [7] and the perverse cohomology functor pH 0 W Db
c.X; Q/

!P.X/.

Definition 2.1. Let X be a k-variety. The abelian category of perverse motives is the
abelian category

M .X/ WD Atr.S;H/ D Atr.DAct.X/;
pH 0

P/:

By construction the functor pH 0
P has a factorization

DAct.X/
pH0M
���!M .X/

ratM
X
���!P.X/

where ratMX is a faithful exact functor and pH 0
M is a homological functor. Let us recall

the two consequences (denoted by P1 and P2 below) of the universal property of the
factorization

DAct.X/
pH0M //M .X/

ratM
X //P.X/

77

pH0P

�� �X

Property P1 below is proved in [47, Proposition 6.6]. A proof of property P2 was given
by Ivorra–Yamazaki [48, Proposition 2.5].
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P1. For every commutative diagram

DAct.X/
pH0P //

F
�� �� ˛

P.X/

G
��

DAct.Y /
pH0P

//P.Y /

where F is a triangulated functor, G is an exact functor and ˛ W G ı pH 0
P !

pH 0
P ı F

is an invertible natural transformation, there exists a commutative diagram

DAct.X/

�
 ˇ

//

F
��

M .X/ //

E
�� �	 

P.X/

G
��

DAct.Y / //M .Y / //P.Y /

where E is an exact functor and ˇ W E ı pH 0
M !

pH 0
M ı F,  W G ı ratMX ! ratMY ı E

are invertible natural transformations such that the diagram

DAct.X/

F

��

pH0M((

t|
ˇ

+3�X

DAct.X/
pH0P

##F

�� t|
˛

M .X/ ratM
X
''

E

��
s{


P.X/

G

��

P.X/

G

��

DAct.Y /

pH0M

((
+3�Y

DAct.Y /
pH0P

##
M .Y /

ratM
Y

''

P.Y / P.Y /

is commutative.

P2. Let

DAct.X/
pH0P //

F1
'' �� ˛1

P.X/
G1
&&

�� �
DAct.Y /

pH0P //

�� �
P.Y /

DAct.X/ F2
''

pH0P //

�� ˛2
P.X/

G2
&&

DAct.Y /
pH0P //P.Y /

be a commutative diagram in which F1;F2 are triangulated functors, G1;G2 are exact
functors, ˛1 W G2 ı pH 0

P !
pH 0

P ı F1, ˛2 W G2 ı pH 0
P !

pH 0
P ı F2 are invertible

natural transformations and � W F1 ! F2, � W G1 ! G2 are natural transformations.
Let

DAct.X/

�
 ˇ1

//

F1
��

M .X/ //

E1
�� �	 1

P.X/

G1
��

DAct.Y / //M .Y / //P.Y /

DAct.X/

�
 ˇ2

//

F2
��

M .X/ //

E2
�� �	 2

P.X/

G2
��

DAct.Y / //M .Y / //P.Y /
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be commutative diagrams given in property P1, then there exists a unique natural
transformation � W E1 ! E2 such that the diagram

DAct.X/
pH0M //

F1
'' �� ˇ1

M .X/
E1
&&

ratM
X //

�� 1
P.X/

G1
&&

�� �
DAct.Y /

pH0M //

�� �
M .Y /

ratM
Y //

�� �
P.Y /

DAct.X/ F2
''

pH0M //

�� ˇ2

M .X/
E2
&&

ratM
X //

�� 2
P.X/

G2
&&

DAct.Y /
pH0M //M .Y /

ratM
Y //P.Y /

is commutative.

2.2. Lifting of 2-functors

As in [5, Section 1.1], in this work, we only consider strict 2-categories. However, as in
loc.cit., 2-functors are not necessarily strict (see also [29]).

Let .Sch=k/ be the category of quasi-projective k-varieties and C be a subcategory of
.Sch=k/. Properties P1 and P2 can be used to lift (covariant or contravariant) 2-functors.
Indeed, let F W C!TR be a 2-functor (say covariant to fix the notation), where TR is the
2-category of triangulated categories, such that F.X/ D DAct.X/ for every k-variety X
in C. Similarly, let Ab be the 2-category of abelian categories, and let G W C! Ab be
a 2-functor such that G.X/ DP.X/ for every k-variety X in C and G.f / is exact for
every morphism f in C.

We have forgetful functors from TR and Ab to the 2-category of additive categories.
Assume that .‚; ˛/ W F! G is a 1-morphism of 2-functors, where we see F and G as
2-functors into the 2-category of additive categories via these forgetful functors, such that
‚X D

pH 0
P for every X 2 C and f̨ is invertible for every morphism f in C.

Let f W X ! Y be a morphism in C. By applying P1 to the square

DAct.X/
pH0P //

F.f /
�� �� f̨

P.X/

G.f /
��

DAct.Y /
pH0P

//P.Y /

we get a commutative diagram

DAct.X/

�
 f̌

//

F
��

M .X/ //

E.f /
�� �	 f

P.X/

G.f /
��

DAct.Y / //M .Y / //P.Y /

where E.f / is an exact functor and f̌ ; f are invertible natural transformations such that
the diagram
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DAct.X/

F.f /

��

pH0M

((

t|
f̌

+3�X

DAct.X/
pH0P

##F.f /

�� t|
f̨

M .X/ ratM
X
''

E.f /

��
s{
f

P.X/

G.f /

��

P.X/

G.f /

��

DAct.Y /

pH0M

((
+3�Y
DAct.Y /

pH0P

##
M .Y /

ratM
Y

''

P.Y / P.Y /

is commutative. LetX
f
�! Y

g
�!Z be morphisms in C. By applying P2 to the commutative

diagram

DAct.X/
pH0P //

F.gıf /

**
ks
˛gıf

P.X/
G.gıf /

))

��cF.f;g/
DAct.Z/

pH0P //

�� cG.f;g/

P.X/

DAct.X/
pH0P //

F.f /
(( ks

f̨

P.X/ G.f /
''

DAct.Y /
pH0P //

F.g/
(( ks

˛g

P.Y / G.g/
''

DAct.Z/
pH0P //P.Z/

there exists a unique natural transformation cE.f; g/ W E.g ı f /! E.g/ ı E.f / that fits
into the commutative diagram

DAct.X/
pH0M //

F.gıf /

**
ks
ˇgıf

M .X/
ratM
X //

E.gıf /

))
ks
gıf

P.X/
G.gıf /

))

��cF.f;g/
DAct.Z/

pH0M //

��cE.f;g/

M .Z/
ratM
Z //

�� cG.f;g/

P.X/

DAct.X/
pH0M //

F.f /
(( ks

f̌

M .X/
ratM
X //

E.f /
'' ks

f

P.X/ G.f /
''

DAct.Y /
pH0M //

F.g/
(( ks

ˇg

M .Y /
ratM
Y //

E.g/
'' ks

g

P.Y / G.g/
''

DAct.Z/
pH0M //M .Z/

ratM
Z //P.Z/

Using the uniqueness and the fact that the functors ratMX , for X in C, are faithful it is easy
to see that the morphisms cE satisfy the cocycle condition. Hence E W C ! Ab is a 2-
functor and .pH 0

M ; ˇ/, .ratM ; / are 1-morphisms of 2-functors, where again we see the
2-functors as functors into the 2-category of additive categories. As 1- and 2-morphisms
in Ab are the same as 1- and 2-morphisms in the 2-category of additive categories, the
morphism .ratM ; / is also a 1-morphism of 2-functors C! Ab.

2.3. Betti realization of étale motives

Let f W X ! Y be a morphism of quasi-projective k-varieties. Recall that the category
Db

c.X;Q/ is equivalent to the derived category of the abelian category of perverse sheaves
on X via the realization functor constructed in [18, Section 3.1.9] (it is known to be an
equivalence by [17, Theorem 1.3]). In particular, the four (adjoint) functors
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Db
c.X;Q/

fP
�

// Db
c.Y;Q/

f �Poo

f ŠP

// Db
c.X;Q/

fP
Šoo

can be seen as functors between the derived categories of perverse sheaves (for their
construction in terms of perverse sheaves see [17, 69]).

Let Bti�X W DAct.X/! Db
c.X;Q/ be the realization functor of [7]. If f W X ! Y is

a morphism of quasi-projective k-varieties, by construction, there is an invertible natural
transformation

�f W f
�

P ı Bti�Y ! Bti�X ı f
�

(see [7, Proposition 2.4]). Let � be the collection of these natural transformations, then
.Bti�; �/ is a morphism of stable homotopical 2-functors in the sense of [7, Definition 3.1].
Following the notation in [7], we denote by

f W Bti�Y ıf�! f P
� ıBti�X ; �f W f

P
Š ıBti�X ! Bti�Y ıfŠ; �f W Bti�X ıf

Š
! f ŠPıBti�Y

the induced natural transformations. By [7, Théorème 3.19] these transformations are
invertible.

2.4. Direct images under affine and quasi-finite morphisms

Let QAff.Sch=k/ be the subcategory of .Sch=k/ with the same objects but in which we
only retain the morphisms that are quasi-finite and affine. By [18, Corollaire 4.1.3], for
such a morphism f W X ! Y , the functors

f P
� ; f P

Š W D
b
c.X;Q/! Db

c.Y;Q/

are t -exact for the perverse t -structures. In particular, they induce exact functors between
categories of perverse sheaves and by applying property P1 to the canonical transforma-
tion f W Bti�Y ı f� ! f P

� ı Bti�X , we get a commutative diagram

DAct.X/
BJDA

f

//

f�
��

M .X/ //

fM
� ��

AIM
f

P.X/

fP
���

DAct.Y / //M .Y / //P.Y /

where f M
� is an exact functor and DA

f
; M
f

are invertible natural transformations such
that the diagram

DAct.X/

f�

��

pH0M((

4<DA
f

+3�X

DAct.X/
pH0P

##f�

��
4<f

M .X/ ratM
X
''

fM
�

��

3;M
f

P.X/

fP
�

��

P.X/

fP
�

��

DAct.Y /

pH0M

((
+3�Y

DAct.Y /
pH0P

##
M .Y /

ratM
Y

''

P.Y / P.Y /
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is commutative. Moreover, since the natural transformations f are compatible with the
composition of morphisms (that is, with the connection 2-isomorphisms), Section 2.2
provides a 2-functor

QAffHM
� W

QAff.Sch=k/! TR

with QAffHM
� .X/ D Db.M .X// and such that .pH 0

M ; DA/ and .ratM ; M / are 1-mor-
phisms of 2-functors. For every affine and quasi-finite morphism f W X ! Y we have a
natural transformation

M
f W ratMY f

M
� ! f P

� ratMX

compatible with the composition of morphisms.

2.5. Inverse image by a smooth morphism

Let f W X ! Y be a smooth morphism of k-varieties. Then �f is a locally free OX -
module of finite rank. Let df its rank (which is constant on each connected component
ofX ). Then df is the relative dimension of f (see Grothendieck’s EGA IV, more precisely
[39, (17.10.2)]) and if g W Y ! Z is a smooth morphism, then dgıf D dg C df with the
obvious abuse of notation (see [39, (17.10.3)]). By [18, Section 4.2.4], the functor

f �P Œdf � W D
b
c.Y;Q/! Db

c.X;Q/

is t -exact for the perverse t -structures. In particular, it induces an exact functor between
the categories of perverse sheaves and by applying property P1 to the canonical transfor-
mation �f W f �P ı Bti�Y ! Bti�X ı f

�, we get a commutative diagram

DAct.Y /

�
 �DA
f

//

f �Œdf �
��

M .Y / //

�� �	 �M
f

P.Y /

f �P Œdf �
��

DAct.X/ //M .X/ //P.X/

where the functor in the middle f �M Œdf � is an exact functor and �DA
f
; �M
f

are invertible
natural transformations such that the diagram

DAct.Y /

f �Œdf �

��

pH0M((

t|
�DA
f

+3�Y

DAct.Y /
pH0P

##f �Œdf �

�� t|
�f

M .Y / ratM
Y
''

f �M Œdf �

��
s{
�M
f

P.Y /

f �P Œdf �

��

P.Y /

f �P Œdf �

��

DAct.X/

pH0M

((
+3�X

DAct.X/
pH0P

##
M .X/

ratM
X

''

P.X/ P.X/

is commutative.

Remark 2.2. Note that f �MA, given A in M .Y /, is not yet defined. We define the func-
tion f �M by setting f �M WD .f

�
M Œdf �/Œ�df �.
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Let Liss.Sch=k/ be the subcategory of .Sch=k/ with the same objects but having as
morphisms only the smooth morphisms of k-varieties. Since the natural transformations
�f are compatible with the composition of morphisms (that is, with the connection 2-
isomorphisms), Section 2.2 provides a contravariant 2-functor

LissH�M W
Liss.Sch=k/! TR

with LissH�M .X/ D Db.M .X// and such that .pH 0
M ; �DA/ and .ratM ; �M / are 1-mor-

phisms of 2-functors. For every smooth morphism f W X ! Y we have a natural trans-
formation

�M
f W f �P ratMY ! ratMX f �M

compatible with the composition of morphisms.

2.6. Exchange structure

Let us denote by
ImmHM

� W
Imm.Sch=k/! TR

the restriction of the 2-functor obtained in Section 2.4 to the subcategory Imm.Sch=k/
of .Sch=k/ with the same objects but having as morphisms only closed immersions of
k-varieties. Exchange structures are defined in [5, Définition 1.2.1].

Proposition 2.3. The exchange structure Ex�� on .LissH�P ;
ImmHP

� / with respect to carte-
sian squares can be lifted to an exchange structure on the pair .LissH�M ; ImmHM

� /.

Proof. The proposition is a simple application of property P2. Consider a cartesian square

X 0
i 0 //

f 0

��

Y 0

f

��

X
i // Y

such that i is a closed immersion and f is a smooth morphism (more generally, i need not
be a closed immersion and can be any quasi-finite affine morphism). Note that, since the
morphism i 0��1

f
!�1

f 0
is an isomorphism, f and f 0 have the same relative dimension d .

Let Ex�� W f
�i�! i 0�f

0� and PEx�� W f
�

P i
P
� ! i 0P� f 0�P the exchange 2-isomorphisms in

DA.�/ and Db.P.�//. We have to construct a 2-isomorphism

Db.M .X//

f �M iM�
--

i 0M� f 0�M

11��
M Ex�� Db.M .Y 0//

which is compatible with PEx�� via the 2-isomorphisms M
g ; M

g0 and �M
f
; �M
f 0

. This
amounts to constructing a 2-isomorphism

M .X/

f �M Œd�iM�
,,

i 0M� f 0�M Œd�

22��
M Ex��Œd� M .Y 0/
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such that

M .X/
ratM
X //

iM�
'' ks

.M
i
/�1

P.X/ iP�
&&

M .Y / f �M Œd�
''

ratM
X //

ks
�M
f

P.Y / f �P Œd�
&&

��M Ex��Œd�

M .Y 0/
ratM
X0 //

�� PEx��Œd�

P.Y 0/

M .X/
ratM
X //

f 0�M Œd�
'' ks

�M
f 0

P.X/ f 0�P Œd�
&&

M .Y /
ratM
Y //

i 0M�
'' ks

.M
i0
/�1

P.Y / i 0P�
&&

M .Y 0/
ratM
Y 0 //P.Y 0/

is commutative. Note that such a 2-isomorphism is necessarily unique since the functors
ratMS , for S a k-variety, are faithful. For the same reason they will also be compatible with
the horizontal and vertical compositions of mixed squares (see [5, Définition 1.21]). The
proposition follows from property P2 applied to the commutative diagram

DAct.X/
pH0P //

i�
(( ks

.i /
�1

P.X/ iP�
''

DAct.Y / f �Œd�
((

pH0P //

ks
�f

P.Y / f �P Œd�
''

��Ex��Œd�

DAct.Y
0/

pH0P //

�� PEx��Œd�

P.Y 0/

DAct.X/
pH0P //

f 0�Œd�
(( ks

�f 0

P.X/ f 0�P Œd�
''

DAct.X
0/

pH0P //

i 0�
(( ks

.i0 /
�1

P.X 0/ i 0P�
''

DAct.Y
0/

pH0P //P.Y 0/:

The commutativity of this diagram follows from the compatibility of the Betti realization
with the exchange structures.

Remark 2.4. The application of property P2 ensures that the two exchange structures
M Ex�� and PEx�� are compatible with the canonical 2-isomorphisms �M . That is, the
diagram

f �P ratMY i
M
�

M
i //

�M
f

��

f �P i
P
� ratMX

PEx�� // i 0P� f 0�P ratMX

�M
f 0

��

ratMY 0 f
�

M iM�

M Ex�� // ratMY 0 i
0M
� f 0�M

M
i0 // i 0P� ratMX 0 f

0�
M

is commutative. This follows from the faithfulness of the functors ratM after applying the
shift functor .�/Œd �.

2.7. Adjunction

Let f W X ! Y be an affine and étale morphism. In that case the exact functors f� W
P.X/!P.Y / and fŠ WP.X/!P.Y / are respectively right and left adjoint to the
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exact functor f �P WP.Y /!P.X/. We can use property P2 to lift these adjunctions to
the functors f M

Š
; f �M ; f M

� .

Proposition 2.5. Let f W X ! Y be an affine and étale morphism.

(1) There exist unique natural transformations Id! f M
� f �M and f �Mf M

� ! Id such
that the squares

ratMY
//

��

ratMY f
M
� f �M

��

f P
� f �P ratMY

// f P
� ratMX f �M

ratMX f �Mf M
�

// ratMX

f �P ratMY f
M
�

OO

// f �Pf
P
� ratMX

OO

are commutative. With these natural transformations, the functors .f �M ; f M
� / form

a pair of adjoint functors.

(2) There exist unique natural transformations Id! f �Mf M
Š

and f M
Š
f �M ! Id such

that the squares

ratMX
//

��

ratMX f �Mf M
Š

f �Pf
P
Š ratMX

// f �P ratMY f
M
Š

OO
ratMY f

M
Š f �M

// ratMY

f P
Š ratMX f �M

OO

f P
Š f �P ratMX

OO

oo

are commutative. With these natural transformations, the functors .f M
Š ; f �M / form

a pair of adjoint functors.

Proof. Just as for Proposition 2.3, the proof is a simple application of property P2. The
details are left to the reader.

2.8. Duality

The result in this subsection will be used in the proof of Proposition 5.3. Let DP
X be

the duality functor for perverse sheaves and "PX W Id! DP
X ı DP

X be the canonical 2-
isomorphism. Recall that, given a smooth morphism f W X ! Y of relative dimension d ,
there is a canonical 2-isomorphism

"Pf W D
P
X ı f

�
P.�/.d/Œd �! f �P.�/Œd � ıDP

Y :

Proposition 2.6. Let X; Y be k-varieties and f W X ! Y be a smooth morphism of
relative dimension d .

(1) There exist a contravariant exact functor DM
X W M .X/ ! M .X/ and 2-isomor-

phisms
�M
X W D

P
X ı ratMX ! ratMX ıDM

X ; "MX W Id! DM
X ıDM

X
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such that the diagram

DP
X ıDP

X ı ratMX

�M
X

��

ratMX

"P
X

88

"M
X &&

DP
X ı ratMX ıDM

X

�M
X

��

ratMX ıDM
X ıDM

X

is commutative.

(2) There exists a 2-isomorphism

"Mf W D
M
X ı f

�
M .�/.d/Œd �! f �M .�/Œd � ıDM

Y

such that the diagram

DP
X ı f

�
P.�/.d/Œd � ı ratMY

"P
f
// f �P.�/Œd � ıDP

Y ı ratMY

�M
Y

��

DP
X ı ratMX ı f

�
M .�/.d/Œd �

�M
X

��

�M
f

OO

f �P.�/Œd � ı ratMY ıDM
Y

�M
f

��

ratMX ıDM
X ı f

�
M .�/.d/Œd �

"M
f
// ratMX ı f

�
M .�/Œd � ıDM

Y

is commutative.

Proof. Again, the proof is a simple application of property P2, once we know the exis-
tence and properties of the Verdier duality functor on motives. We give references for
these properties and leave the rest of the details to the reader.

By [5, Théorème 2.3.75] and [6, Section 4.5] (see also [23, Théorème 3 and Théo-
rème 7 in the introduction]), the categories DAct.X/ are symmetric monoidal closed and
we have Verdier duality functors DX such that, for f W X ! Y a morphism of quasi-
projective k-varieties, there is a canonical isomorphism f � ı DY ' DX ı f Š. If f is
smooth of relative dimension d , the functor f Š is defined in [5, Section 1.5.3] as the com-
position Th.�f / ı f �, where Th.�f / is the Thom equivalence associated with the locally
free OX -module �f . As �f has rank d , we get an isomorphism f Š ' f �.d/Œ2d � by [8,
Corollaire 2.14] (see also [23, Section A.5.1, property 4]). Hence, we get an isomorphism
f �Œd � ı DY ' DX ı f �.d/Œd �. Moreover, the Betti realization functors BtiX are sym-
metric monoidal unital (see [7, Remarque 3.3]), and they commute with internal Homs
on constructible objects by [7, Théorème 3.19]; so it commutes with the Verdier duality
functor on constructible objects, as that functor is constructed using the four operations
and the internal Hom (see for example [23, Theorem A.5.2]). The last crucial observa-
tion is that Verdier duality on Db

c.X;Q/ restricts to an exact contravariant functor on the
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subcategory of perverse sheaves (see for example the beginning of [18, Section 4]).

2.9. Perverse motives as a stack

Let S be a quasi-projective k-variety. Let us denote by AffEt=S the category of affine étale
schemes over S endowed with the étale topology. As in [70, Tag 02XU], the 2-functor

AffEt=X ! Ab; U 7!M .U /; u 7! u�M ;

can be turned into a fibered category M ! AffEt=S such that the fiber over an object U
of AffEt=X is the category M .U /.

Proposition 2.7. The fibered category M ! AffEt=S is a stack for the étale topology.

Proof. Let U be a k-variety, I be a finite set and U D .ui W Ui ! U/i2I be a covering of
U by affine and étale morphisms. If J � I is a nonempty subset of I , we denote by UJ
the fiber product of the Uj , j 2 J , over U and by uJ W UJ ! U the induced morphism.
Given an object A 2M .U /, and k 2 Z, we set

C k.A;U / WD

´
0 if k < 0,L
J�I; jJ jDkC1.uJ /

M
� .uJ /

�
MA if k � 0.

We make C �.A;U / into a complex using the alternating sum of the maps obtained
from the unit of the adjunction in Proposition 2.5. The unit of this adjunction also pro-
vides a canonical morphism A! C �.A;U / in Cb.M .U //. This morphism induces a
quasi-isomorphism on the underlying complex of perverse sheaves and so is a quasi-
isomorphism itself since the forgetful functor to the derived category of perverse sheaves
is conservative.

By [70, Tag 0268], to prove the proposition we have to show the following:

(1) if U is an object in AffEt=S and A; B are objects in M .U /, then the presheaf
.V �! vU / 7! HomM .V /.v

�
MA; v�MB/ on AffEt=U is a sheaf for the étale topology;

(2) for any covering U D .ui W Ui ! U/i2I of the site AffEt=S , any descent datum is
effective.

We already know that similar assertions are true for perverse sheaves by [18, Proposition
3.2.2, Théorème 3.2.4]. Let U D .ui W Ui ! U/i2I be a covering in the site AffEt=S .
Given i; j 2 I , we denote by uij W Uij WD Ui �U Uj ! U the fiber product and by pij W
Uij ! Ui , pj i W Uij ! Uj the projections.

Let us first prove (1). Let A; B be objects in M .U / and K; L be their underlying
perverse sheaves. Consider the canonical commutative diagram

Hom.A;B/ //

��

Q
i2I Hom..ui /�MA; .ui /

�
MB/

//

//

��

Q
i;j2I Hom..uij /�MA; .uij /

�
MB/

��

Hom.K;L/ //
Q
i2I Hom..ui /�PK; .ui /

�
PL/

//

//

Q
i;j2I Hom..uij /�PK; .uij /

�
PL/
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The lower row is exact and the vertical arrows are injective. We only have to
check that the upper row is exact at the middle term. Let c be an element inQ
i2I Hom..ui /�MA; .ui /

�
MB/ which belongs to the equalizer of the two maps on the

right-hand side. Then it defines (by adjunction) a morphism c0 and a morphism c1 such
that the square

C 0.A;U /
d0 //

c0

��

C 1.A;U /

c1

��

C 0.B;U /
d0 // C 1.B;U /

(2.1)

is commutative. Since A! C �.A;U / and B! C �.B;U / are quasi-isomorphisms, A is
the kernel of the upper map in (2.1) and B is the kernel of the lower map. Hence, c0 and
c1 induce a morphism A! B in M .U / which maps to c.

Now we prove (2). Consider a descent datum. In other words, consider, for every
i 2 I , an object Ai in M .Ui / and, for every i; j 2 I , an isomorphism �ij W .pij /

�
MAi !

.pj i /
�
MAj in M .Uij / satisfying the usual cocycle condition. Let A be the kernel of the

map M
i2I

.ui /
M
� Ai !

M
i;j2I

.ui /
M
� .pij /

M
� .pij /

�
MAi D

M
i;j2I

.uij /
M
� .pij /

�
MAi

given on .ui /M� Ai by the difference of the maps obtained by composing the morphism
induced by adjunction

.ui /
M
� Ai ! .ui /

M
� .pij /

M
� .pij /

�
MAi

with either the identity or the isomorphism �ij . Using the fact that descent data on per-
verse sheaves are effective, it is easy to see thatAmakes the given descent datum effective.

2.10. A simpler generating quiver

Let X be a k-variety. Consider the quiver Pairseff
X defined as follows. A vertex in Pairseff

X

is a triple .a W Y ! X;Z; n/ where a W Y ! X is morphism of k-varieties, Z is a closed
subscheme of Y and n 2 Z is an integer.

� Let .Y1; Z1; i/ and .Y2; Z2; i/ be vertices in Pairseff
X . Then every morphism of X -

schemes f W Y1 ! Y2 such that f .Z1/ � Z2 defines an edge

f W .Y1; Z1; i/! .Y2; Z2; i/: (2.2)

� For every vertex .a W Y ! X;Z; i/ in Pairseff
X and every closed subschemeW � Z, we

have an edge
@ W .a W Y ! X;Z; i/! .az W Z ! X;W; i � 1/ (2.3)

where z W Z ,! Y is the closed immersion.
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The quiver Pairseff
X admits a natural representation in Db

c.X;Q/. If c D .a W Y ! X;Z; i/

is a vertex in the quiver Pairseff
X and u W U ,! Y is the inclusion of the complement of Z

in Y , then we set
B.c/ WD aP

Š u
P
� KU Œ�i �

where KU is the dualizing complex of U .

Remark 2.8. There is a difference between the representation pH 0 ı xB used here and
the representation used in [47, 7.2–7.4] (see [47, Remark 7.8]). In loc.cit. the relative
dualizing complex uŠPa

Š
PQX is used instead of the absolute dualizing complexKU . If X

is smooth, then the two different choices lead to equivalent categories.

On vertices the representation B is defined as follows. Let c1 WD .a1 W Y1! X;Z1; i/

and c2 WD .a2 W Y2! X;Z2; i/ be vertices in Pairseff
X and f W c1! c2 be an edge of type

(2.2). The morphism f maps Z1 to Z2 and therefore U WD f �1.U2/ is contained in U1.
Let u W U ,! U1 be the open immersion. Then we have a morphism

f P
Š uP

1�KU1
adj.
��! f P

Š .u1u/
P
� KU ! uP

2�f
P
Š KU D u

P
2�f

P
Š f ŠPKU2

adj.
��! uP

2�KU2

where the arrow in the middle is given by the exchange morphism. By taking the image
of this morphism under a2ŠŒ�i �, we get a morphism

B.f / W B.c1/ WD a
P
1Š u

P
1�KU1 Œ�i �! B.c2/ WD a

P
2Š u

P
2�KU2 Œ�i �:

Let c D .Y
a
�! X;Z; i/ be a vertex in Pairseff

X , and W � Z be a closed subset. Consider
the commutative diagram

U WD Y nZ
j

//

u

''
Y nW

vY // Y
a // X

V WD Z nW

�

v //

zV

OO

Z

z

OO

b

??

where v; vY ; j are the open immersions, z the closed immersion and a; b the structural
morphisms. The localization triangle

.zV /
P
Š .zV /

Š
P ! Id! jP

� j
�
P

C1
��!;

applied to KY nW , provides a morphism

jP
� KU ! .zV /

P
Š KV Œ1�:

As z and zV are closed immersions, applying .vY /�, yields a morphism

uP
� KU ! zP

Š v
P
� KV Œ1�:
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Applying aŠŒ�i �, we obtain a morphism

B.@/ W B.c/ WD aP
Š u

P
� KU Œ�i �! B.az W Z ! X;Z; i � 1/ WD bP

Š v
P
� KV Œ1 � i �:

The category of perverse Nori motives considered in [47] is defined as follows.

Definition 2.9. Let X be a k-variety. The category of effective perverse Nori motives is
the abelian category

N eff.X/ WD Aqv.Pairseff
X ;

pH 0
ı B/:

Recall that the category M .X/ can also be obtained by considering DAct.X/ simply
as a quiver, that is, it is canonically equivalent to the abelian category Aqv.DAct.X/;

pH 0 ı

Bti�X / (see Lemma 1.5). The Grothendieck six operations formalism constructed in
[5, 6] and its compatibility with its topological counterpart on the triangulated categories
Db

c.X;Q/ shown in [7] imply that the quiver representation B can be lifted via the real-
ization functor Bti�X to a quiver representation

xB W Pairseff
X ! DAct.X/:

In particular, since the diagram

DAct.X/
Bti�
X // Db

c.X;Q/

Pairseff
X

xB

OO

B

99

is commutative (up to natural isomorphisms), there exists a canonical faithful exact func-
tor

N eff.X/!M .X/: (2.4)

Let us explain now how Tate twists can be defined in the categories N eff.X/

and M .X/. In the category DAct.X/, the Tate twist .�/.1/ is defined to be the endofunc-
tor Th.OX /.�/Œ�2� where Th.OX / is the Thom equivalence associated with the trivial
locally free sheaf OX (see [5, Section 1.5.3]). This construction, being compatible with
the usual Tate twist via the Betti realization, induces an exact functor .�/.1/ on the cate-
gory M .X/. Note that this functor is an equivalence by construction.

In the category N eff.X/ Tate twists can be defined using the following observation:
if S is a k-variety, q W Gm;S ! S is the structural morphism and v W V ,! Gm;S is the
complement of the unit section, then qŠv�v�qŠK D K.1/Œ1� for every K 2 Db

c.S;Q/. In
particular, if Q W Pairseff

X ! Pairseff
X is the morphism of quivers which maps .Y; Z; n/ to

.Gm;Y ;Gm;Z [ Y; nC 1/ (here Y is embedded in Gm;Y via the unit section), then one has
a natural isomorphism between B.Q.Y;Z; n// and B.Y;Z; n/.1/. As a consequence, the
Tate twist on the category of effective perverse Nori motives can be defined as the exact
functor induced by the morphism of quivers Q (and the usual Tate twist).

This last construction does not yield an equivalence and one defines N .X/ to be the
category obtained from N eff.X/ by inverting the Tate twists (see [47, Section 7.6] for



Operations on perverse mixed motives 4215

details). By construction, the category HM.k/ of Nori motives (see [32]) coincides with
N .k/.

Lemma 2.10. The functor (2.4) extends to a faithful exact

N .X/!M .X/: (2.5)

Proof. To prove the lemma it is enough to observe that there is a natural isomorphism in
DAct.X/ between xB.Q.Y;Z; n// and xB.Y;Z; n/.1/.

Proposition 2.11. The category M .k/ is canonically equivalent to the abelian cate-
gory HM.k/ of Nori motives. More precisely, the functor (2.5) is an equivalence when
X D Spec.k/.

Proof. (See also Barbieri-Viale, Huber and Prest [13, Proposition 4.12].) Consider the
triangulated functor RN;s W DAct.X/! Db.HM.k// constructed by Choudhury–Gallauer
[22, Proposition 7.12]. Up to a natural isomorphism, the diagram

DAct.k/

Bti�
k

((

RN;s

// Db.HM.k//
forgetful

// Db.Q/

is commutative. In particular, it provides a factorization of the cohomological functor
H 0 ı Bti�k ,

DAct.k/
H0ıRN;s
������! HM.k/

forgetful
����! Vec.Q/:

This implies the existence of a canonical faithful exact functor M .k/! HM.k/ such
that

DAct.k/
pH0M

//

H0ıRN;s

&&

M .k/ // HM.k/

is commutative up to a natural isomorphism. Using the universal properties, it is easy to
see that it is a quasi-inverse to (2.5).

The following conjecture seems reasonable and reachable via our current technology.

Conjecture 2.12. Let X be a smooth k-variety. Let N .X/ be the category of perverse
motives constructed in [47] and

RLN
X W DAct.X/! Db.N .X//

be the triangulated functor constructed in [46]. Then the Betti realization Bti�X is isomor-
phic to the composition

DAct.X/! Db.N .X//
forgetful
����! Db.P.X//

real
��! Db

c.X;Q/:
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If Conjecture 2.12 holds then the same proof as the one of Proposition 2.11 implies
the following.

Conjecture 2.13. Let X be a smooth k-variety. Then the functor (2.5) is an equivalence.

3. Unipotent nearby and vanishing cycles

In [16], Beilinson has given an alternative construction of unipotent vanishing cycles func-
tors for perverse sheaves and has used it to explain a gluing procedure for perverse sheaves
(see [16, Proposition 3.1]). In this section, our main goal is to obtain similar results for
perverse Nori motives. Later on, the vanishing cycles functors for perverse Nori motives
will play a crucial role in the construction of the inverse image functor (see Section 4).

Given the way the abelian categories of perverse Nori motives are constructed from the
triangulated categories of étale motives, our first step is to carry out Beilinson’s construc-
tions for perverse sheaves within the categories of étale motives or analytic motives (the
latter categories being equivalent to the classical unbounded derived categories of sheaves
of Q-vector spaces on the associated analytic spaces). This is done in Sections 3.2 and 3.4.
Our starting point is the logarithmic specialization system constructed by Ayoub [6].
However, by working in triangulated categories instead of abelian categories as Beilin-
son did, one has to face the classical functoriality issues, one of the major drawbacks
of triangulated categories. To avoid these problems and ensure that all our constructions
are functorial we will rely heavily on the fact that the triangulated categories of motives
underlie a triangulated derivator.

Only then, using the compatibility with the Betti realization, will we be able to obtain
in Section 3.5 the desired functors for perverse Nori motives.

3.1. Reminder on derivators

Let us recall some features of triangulated (also called stable) derivators D needed in
the construction of the motivic unipotent vanishing cycles functor and the related exact
triangles. For the general theory, originally introduced by Grothendieck [40], we refer to
Ayoub [5, 6], Cisinski–Neeman [24], Groth [37, 38] and Maltsiniotis [58].

We will assume that our derivator D is defined over all small categories. In our applica-
tions, the derivators considered will be of the form D WD DA.S;�/ for some k-variety S .
Given a functor � W A! B , we denote by

�� W D.B/! D.A/; �� W D.A/! D.B/; �] W D.A/! D.B/

the structural functor and its right and left adjoint. Note that in the literature on derivators,
the notation �Š is used instead of �]. We follow here the notation used in [5, 6].

Notation. We let e be the punctual category reduced to one object and one morphism.
Given a small category A, we denote by pA W A! e the projection functor, and if a is an
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object in A, we denote by a W e! A the functor that maps the unique object of e to a.
Given n 2 N, we let n be the category

n � � �  1 0:

If one thinks of functors in Hom.Aop;D.e// as diagrams, then an object in D.A/ can
be thought as a “coherent diagram”. Indeed, every object M in D.A/ has an underlying
diagram called its A-skeleton and defined to be the functor Aop ! D.e/ which maps an
object a in A to the object a�M of D.e/. This construction gives the A-skeleton functor

D.A/! Hom.Aop;D.e//

which is not an equivalence in general (coherent diagrams are richer than simple dia-
grams). We say that M 2 D.A/ is a coherent lifting of a given diagram of shape A if its
A-skeleton is isomorphic to the given diagram.

We will not give here the definition of a stable derivator (see e.g. [5, Definition 2.1.34]
or [38, Section 1 and Definition 4.1]), but instead recall a few properties which will be
constantly used.

(1) Let � W A! B be a functor and b be an object in B . Denote by jA=b W A=b ! A

and jbnA W bnA! A be the canonical functors where A=b and bnA are respectively the
slice and coslice categories. The exchange 2-morphisms (given by adjunction)

b��� ! .pA=b/�j
�
A=b; .pbnA/]j

�
bnA ! b��]

are invertible (see [5, Définition 2.1.34] or the base change axiom Der 3 of [24, Defini-
tion 1.11]).

(2) If a small category A admits an initial object o (resp. a final object o), then the
2-morphism o� ! .pA/] (resp. the 2-morphism .pA/� ! o�) is invertible too (see [5,
Corollaire 2.1.40]).

(3) Let A and B be small categories. Given an object a 2 A we denote by a W B !
A�B the functor which maps b 2 B to the pair .a; b/. The A-skeleton of an objectM in
D.A � B/ is defined to be the functor Aop ! D.B/ which maps an object a in A to the
object a�M of D.B/. This construction gives the A-skeleton functor

D.A � B/! Hom.Aop;D.B//:

This functor is conservative. Moreover if A D 1, it is full and essentially surjective. (See
axioms Der 2 and Der 5 of [24, Definition 1.11].)

We denote by ��� D 1 � 1 the category

.1; 1/ .0; 1/oo

.1; 0/

OO

.0; 0/

OO

oo

(3.1)
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We denote by ppp the full subcategory of ��� that does not contain the object .0; 0/ and by
i
ppp
W ppp! ��� the inclusion functor. We denote by .�; 1/ W 1! ppp the fully faithful functor

which maps 0 to .0; 1/ and 1 to .1; 1/. Similarly we denote by yyy the full subcategory of ���
that does not contain the object .1; 1/ and iyyy W yyy!��� the inclusion functor. We denote by
.0;�/ W 1! yyy the fully faithful functor that maps 0 and 1 respectively to .0; 0/ and .0; 1/

An object M in D.���/ is said to be cocartesian (resp. cartesian) if the canonical
morphism .i

ppp
/].ippp/

�M ! M (resp. M ! .i
ppp
/�.ippp/

�M ) is an isomorphism. Since D is
stable, a square M in D.���/ is cartesian if and only if it is cocartesian.

Let ��� be the category

.2; 1/ .1; 1/oo .0; 1/oo

.2; 0/

OO

.1; 0/

OO

oo .0; 0/

OO

oo

(3.2)

There are three natural ways to embed ��� in ���, and an object M 2 D.���/ is said to be
cocartesian if the squares in D.���/ obtained by pullback along those embeddings are
cocartesian. A coherent triangle is a cocartesian object M 2 D.���/ such that .0; 1/�M
and .2; 0/�M are zero. For such an object, we have a canonical isomorphism .0; 0/�M '

.2; 1/�MŒ1� and the induced sequence

.2; 1/�M ! .1; 1/�M ! .1; 0/�M ! .2; 1/�MŒ1� (3.3)

is an exact triangle in D.e/.
One of the main advantages of working in a stable derivator is the possibility to asso-

ciate with a coherent morphism M 2 D.1/ functorially a coherent triangle. Let us briefly
recall the construction of this triangle. Let U be the full subcategory of ��� that does not
contain .0; 0/ and .1; 0/. Denote by v W 1! U the functor that maps 0 and 1 respectively
to .1; 1/ and .2; 1/ and by u W U !��� the inclusion functor. The image under the functor

u]v� W D.A � 1/! D.A ����/

of a coherent morphism M in D.A � 1/ is a coherent triangle. Using properties (1)–(2)
recalled above, we see that (3.3) provides an exact triangle

1�M ! 0�M ! Cof.M/! 1�MŒ1� (3.4)

where the cofiber functor Cof is defined by

Cof WD .1; 0/�u]v� W D.1/! D.e/: (3.5)

Using properties (1)–(3) recalled above, it is easy to see that this functor is also given by

Cof D .0; 0/�.i
ppp
/].�; 1/�:

In the exact triangle (3.4), the canonical morphism 0�M ! Cof.M/ is the 1-skeleton of
the coherent morphism .1;�/�u]v�M where .1;�/ W 1! ��� is the fully faithful functor
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that maps 0 and 1 respectively to .1; 0/ and .1; 1/. Note that we have an isomorphism of
functors

.1;�/�u]v�M ' .0;�/
�.iyyy/

�.i
ppp
/].�; 1/� W D.1/! D.1/:

Similarly the boundary morphism Cof.M/! 1�MŒ1� is the 1-skeleton of the coherent
morphism .�; 0/�u]v�M where .�; 0/ W 1! ��� is the fully faithful functor that maps 0
and 1 respectively to .0; 0/ and .1; 0/.

The construction of the cofiber functor Cof and the cofiber triangle (3.4) can be dual-
ized to get a fiber functor Fib and a fiber triangle. Let us recall the following lemma.

Lemma 3.1. Let M 2 D.���/. Then we have a morphism of exact triangles

Fib..�; 1/�M/ //

u

��

.1; 1/�M //

��

.0; 1/�M
C1
//

��

Fib..�; 0/�M/ // .1; 0/�M // .0; 0/�M
C1
//

which is functorial in M . Furthermore, M is cartesian if and only if the canonical mor-
phism

u W Fib..�; 1/�M/! Fib..�; 0/�M/

is an isomorphism.

Proof. The first statement follows from the fact that we have functorially defined fibers,
as we just recalled. The second statement is Proposition 15.1.10 of Moritz Groth’s unpub-
lished book Introduction to the theory of derivators. Let us recall its proof. We have a
commutative cube

.1; 0/�M //

��

.0; 0/�M

��

Fib..�; 0/�M/ // 0

.1; 1/�M
&&

//

��

.0; 1/�M
##

��

Fib..�; 1/�M/
u &&

// 0

##

The front and back squares are cartesian by definition of an exact triangle. By [38, Propo-
sition 4.6], the top square is cartesian if and only if the bottom square is cartesian. But
the top square isM and the bottom square is cartesian if and only if u is an isomorphism,
hence the result.

There is also a functorial version of the octahedron axiom in D (see e.g. [37, proof of
Theorem 4.20] or [38, proof of Theorem 4.15]), that is, there is a functor D.2/! D.O/
which associates to a coherent sequence of morphisms a coherent octahedron diagram.
Here the category O � 4 � 2 is the full subcategory that does not contain the objects
.4; 0/ and .0; 2/. In other words, O is the category
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.4; 2/ .3; 2/oo .2; 2/oo .1; 2/oo

.4; 1/

OO

.3; 1/oo

OO

.2; 1/oo

OO

.1; 1/oo

OO

.0; 1/oo

.3; 0/

OO

.2; 0/oo

OO

.1; 0/oo

OO

.0; 0/oo

OO

Let W be the full subcategory of O that does not contain the objects .1; 1/, .2; 1/,
.3; 1/, .0; 0/, .1; 0/ and .2; 0/. Denote by ! W 2 ! W the fully faithful functor which
maps 0, 1 and 2 respectively on .2; 2/, .3; 2/ and .4; 2/ and by w W W ! O the inclusion
functor. The octahedron diagram functor is defined to be the functor

w]!� W D.2/! D.O/:

Denote by sm W 1! 2 the fully faithful functor that maps 0 and 1 respectively to 0
and 1 and by fm W 1 ! 2 the fully faithful functor that maps 0 and 1 respectively to 1
and 2. Denote also by cm W 1! 2 the functor which maps 0 and 1 respectively to 0 and 2.
Consider the fully faithful functor fsq W���! O which maps the square (3.1) to the square

.4; 2/ .3; 2/oo

.4; 1/

OO

.3; 1/

OO

oo

Similarly we denote by ssq W���! O (resp. csq W���! O) the fully faithful functor which
maps the square (3.1) to the square

.3; 2/ .2; 2/oo

.3; 0/

OO

.2; 0/

OO

oo

(resp. .4; 2/ .2; 2/oo

.4; 1/

OO

.2; 1/)

OO

oo

We have the following lemma.

Lemma 3.2. We have canonical isomorphisms

fsq�w]!� ' .ippp/].�; 1/�fm
�; ssq�w]!� ' .ippp/].�; 1/�sm�

and
csq�w]!� ' .ippp/].�; 1/�cm�:

Proof. Let i W ppp!W be the fully faithful functor that maps .0;1/, .1;0/ and .1;1/ respec-
tively to .3; 2/, .4; 1/ and .4; 2/. Since ! ı fmD i ı .�; 1/, we get a natural transformation
i�!� ! .0; 1/�fm�. Using properties Der1–3, it is easy to see that this natural transfor-
mation is invertible. Similarly, since w ı i D fsq ı i

ppp
, there is a natural transformation



Operations on perverse mixed motives 4221

.i
ppp
/]i
� ! fsq�w]. Again, using properties Der1–3, we see that it is invertible. This pro-

vides invertible natural transformations

.i
ppp
/]i
�!�

��

// .i
ppp
/].�; 1/�fm

�

fsq�w]!�

The other invertible natural transformations are constructed similarly.

In particular, it follows from Lemma 3.2 that .3; 1/�w]!� is isomorphic to Cof ı fm�,
.2; 0/�w]!� is isomorphic to Cof ı sm� and .2; 1/�w]!� is isomorphic to Cof ı cm�.
Since the inverse image of w]!� along the fully faithful functor ���! O that maps the
square (3.1) to the square

.3; 1/ .2; 1/oo

.3; 0/

OO

.2; 0/

OO

oo

is a cocartesian square, by Lemma 3.2 and [5, Définition 2.1.34], we get a natural exact
triangle

Cof.fm�.�//! Cof.cm�.�//! Cof.sm�.�//
C1
��! : (3.6)

Let us recall [5, Lemma 1.4.8]. Note that the functors j � W DA.X; I/! DA.U; I/ and
j� W DA.U; I/! DA.X; I/ used below are induced by the functoriality of the categories
of presheaves on diagrams of schemes (see [6, Section 4.5] for details).

Lemma 3.3. Let I be a small category and j W U ,! X be an open immersion. Assume
that we have an exact triangle

M ! j�j
�M ! C.M/

C1
��!

for every given objectM 2 DA.X; I/. Then for every morphism ˛ WM ! N in DA.X; I/
there exists a unique morphism C.M/! C.N/ such that the square

C.M/ //

C.˛/

��

MŒ1�

˛Œ1�

��

C.N/ // NŒ1�

is commutative. Moreover, the whole diagram

M //

˛

��

j�j
�M

j�j
�˛

��

// C.M/ //

C.˛/

��

MŒ1�

˛Œ1�

��

N // j�j
�N // C.N/ // NŒ1�

is commutative.
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Note that in loc.cit. the lemma is stated only in the case I D e. However, its proof
works in the more general situation considered here.

We will need the following technical lemma.

Lemma 3.4. Let I be a small category and f W Y ! X be a morphism of separated k-
schemes of finite type. There exists a functor ��

f
W DA.X; I/! DA.X; 1 � I/ such that,

for every M 2 DA.X; I/, the 1-skeleton of ��
f
.M/ is M ! f�f

�M .

Proof. Consider the diagram of k-varieties .F ;1� I/ W 1� I! .Sch=k/ that maps .0; i/
to Y and .1; i/ to X , and the canonical morphisms of diagrams of k-varieties

.F ; 1 � I/

˛

��

ˇ
// .X; 1 � I/

.X; I/

The functor ��
f
WD ˇ�˛

� satisfies the desired property.

Remark 3.5. Assume I D e. Given M in DA.X/, we have an exact triangle

M ! j�j
�M ! Cof.��j .M//

C1
��!

functorial inM . It follows from [5, Lemme 1.4.8] that the functor iŠi Š.�/Œ1� is isomorphic
to Cof ı��j .�/

Similarly we will need the following lemma. Its proof is completely similar to the one
of Lemma 3.4 and will be omitted.

Lemma 3.6. Let I be a small category and f W Y ! X be a smooth morphism of sepa-
rated k-schemes of finite type. There exists a functor�Š

f
W DA.X; I/! DA.X; I� 1/ such

that for every A 2 DA.X; I/ the 1-skeleton of �Š
f
.A/ is f]f �A! A.

Remark 3.7. Assume I D e. Given M in DA.X/, as in Remark 3.5, we have an exact
triangle

jŠj
ŠM !M ! Cof.�Šj .M//

C1
��!

functorial in M . It follows from (the dual statement of) [5, Lemme 1.4.8] that the functor
i�i
�.�/ is isomorphic to Cof ı�Šj .�/.

3.2. Motivic unipotent vanishing cycles functor

Let f W X ! A1
k

be a morphism of k-varieties. We consider the following diagram of
k-varieties:

X�

f�

��

//

�

X

f

��

X�

f�

��

�

oo

Gm;k
j
// A1
k

Spec.k/ioo
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where i denotes the zero section of A1
k

and j the open immersion of the complement.
We denote also by i the closed immersion of the special fiber X� in X and by j the open
immersion of the generic fiberX� inX . Let Logf be the logarithmic specialization system
constructed in [6, Section 3.6] (see also [8, pp. 103–109]). It is defined by

Logf WD �f ..�/˝ f
�
� Log_/ DW i�j�..�/˝ f �� Log_/

where Log_ is the commutative associative unitary algebra in DA.Gm;k/ constructed in
[6, Définition 3.6.29] (see also [8, Définition 11.6]). The monodromy triangle

Q.0/! Log_
N
�! Log_.�1/

C1
��! (3.7)

(see [6, Corollaire 3.6.21] or [8, (116)]) in the triangulated category DA.Gm;k/ induces
an exact triangle

�f .�/! Logf .�/! Logf .�/.�1/
C1
��! :

To construct the motivic unipotent vanishing cycles functor, we shall use the fact that the
1-skeleton functor

DA.A1k ; 1/! Hom.1op;DA.A1k//

is full and essentially surjective. This allows us to choose an object L in DA.A1
k
; 1/

that lifts the morphism Q.0/! j�Log_ obtained as the composition of the adjunction
morphism Q.0/ ! j�Q.0/ and the image under j� of the unit Q.0/ ! Log_ of the
commutative associative unitary algebra Log_. Moreover, using the monodromy triangle
(3.7), we can fix an isomorphism between Log_.�1/ and the cofiber of j �L such that
the diagram

Q.0/ // Log_ // Log_.�1/

��

C1
//

Q.0/ // Log_ // Cof.j �L /
C1
//

is commutative.
Consider the object Q WD��j .L / in DA.A1

k
;���/ obtained by applying the functor��j

of Lemma 3.4. Its ���-skeleton is the commutative square

Q.0/ //

��

j�Log_

j�Q.0/ // j�Log_

Let xxx be the full subcategory of ��� that does not contain .0; 1/. Denote by ixxx W xxx! ���
the inclusion and by p���;xxx W���! xxx the unique functor which is the identity on xxx and maps
.0; 1/ to .0; 0/. Consider the functor

‚f .�/ WD .p���;xxx/
�.ixxx/

���j ..p1/
�.�/˝ f �L / W DA.X/! DA.X;���/:
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By construction, ‚f .�/ is a coherent lifting of the commutative square

Id.�/ //

��

j�.j
�.�/˝ f �� Log_/

j�j
�.�/ // j�.j

�.�/˝ f �� Log_/

By pulling back along the closed immersion i W X� ,! X we get the functor

i�‚f .�/ W DA.X/! DA.X� ;���/

which is a coherent lifting of the commutative square

i�.�/ //

��

Logf .j
�.�//

�f .j
�.�// // Logf .j

�.�//

Let .�; 1/ W 1!��� be the fully faithful functor that maps 0 and 1 respectively to .0; 1/
and .1; 1/. In particular, the 1-skeleton of .�; 1/�i�‚f .�/ is the morphism

i�.�/! Logf .j
�.�//:

Definition 3.8. The motivic unipotent vanishing cycles functor f̂ W DA.X/! DA.X� /
is defined as the composition of .�; 1/�i�‚f .�/ and the cofiber functor:

f̂ WD Cof ı .�; 1/�i�‚f .�/:

By construction, we get a natural transformation can W Logf .�/ ı j
� ! f̂ .�/ and

an exact triangle

i� ! Logf .�/ ı j
� can
��! f̂

C1
��! : (3.8)

We also get a natural transformation

var W f̂ .�/! Logf .j
�.�//.�1/

such that var ı canDN . Indeed, let .�; 0/ W 1!��� be the fully faithful functor that maps
0 and 1 respectively to .0; 0/ and .1; 0/.

The chosen isomorphism between Log_.�1/ and the cofiber of j �L induces an
isomorphism between Logf .j

�.�//.�1/ and the cofiber of .�; 0/�i�‚f .�/ such that the
diagram

�f .j
�.�// // Logf .j

�.�//
N // Logf .j

�.�//.�1/
C1

//

�f .j
�.�// // Logf .j

�.�// // Cof..�; 0/�i�‚f .�//

OO

C1
//
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is commutative. On the other hand, the canonical morphism .�; 1/�‚f .�/ !

.�; 0/�‚f .�/ in DA.X; 1/ induces a commutative diagram

�f .j
�.�// // Logf .j

�.�// // Cof..�; 0/�i�‚f .�//
C1
//

i�.�/ //

OO

Logf .j
�.�//

can //
f̂ .�/

OO

C1
//

By applying the coherent triangle functor u]v� to the object i�‚f .�/ of the category
DA.X� ;���/ D DA.X� ; 1 � 1/, we get a functor

DA.X/! DA.X� ; 1 ����/

which is a coherent lifting of the commutative diagram

�f .j
�.�// //

��

Logf .j
�.�// //

N

��

0

��

0 // Logf .j
�.�//.�1/ // �f .j

�.�//Œ1�

i�.�/
&&

//

��

Logf .j
�.�// //

can

��

0

))

��

0

&&

//
f̂ .�/ var

((

// i�.�/Œ1�
))

The category 1 ���� is given by

.1; 2; 1/ .1; 1; 1/oo .1; 0; 1/oo

.1; 2; 0/

OO

.1; 0; 1/

OO

oo .1; 0; 0/

OO

oo

.0; 2; 1/

ee

.0; 1; 1/oo

ee

.0; 1; 0/oo

ee

.0; 2; 0/

OO

ee

.0; 1; 0/

OO

oo

ee

.0; 0; 0/

OO

oo

ee

and we consider the functor sq W���! 1 ���� which maps (3.1) to the square

.1; 0; 1/ .1; 0; 0/oo

.0; 1; 0/

OO

.0; 0; 0/oo

OO

inside 1 ����. In the next subsection, we will be mainly focusing on the functor

sq�u]v�i
�‚f W DA.X/! DA.X;���/

which is a coherent lifting of the commutative square

f̂ .�/ //

var

��

i�.�/Œ1�

��

Logf .j
�.�//.�1/ // �f .j

�.�//Œ1�
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Remark 3.9. The square sq�u]v�i�‚f is cartesian. This can be deduced from the basic
properties of cartesian squares (for example from [38, Proposition 4.6]).

3.3. Maximal extension functor

Let us now construct Beilinson’s maximal extension functor„f (see [16]) and the related
exact triangles in the triangulated categories of étale motives. This will be essential when
proving Theorem 3.15 and for gluing perverse motives. By applying the coherent triangle
functor u]v� to the object ‚f .�/ in DA.X;���/ D DA.X; 1 � 1/, we get a functor

u]v�‚f W DA.X/! DA.X; 1 ����/

which is a coherent lifting of the commutative diagram

j�j
�.�// //

��

j�.j
�.�/˝ f �� Log_/ //

��

0

��

0 // j�.j
�.�/˝ f �� Log_.�1// // j�j

�.�/Œ1�

Id.�/
&&

//

��

j�.j
�.�/˝ f �� Log_/ //

��

0

))

��

0

&&

// �

((

// Id.�/Œ1�
((

(Here � is some motive which we do not need to specify.) The category 1 ���� is given by

.1; 2; 1/ .1; 1; 1/oo .1; 0; 1/oo

.1; 2; 0/

OO

.1; 0; 1/

OO

oo .1; 0; 0/

OO

oo

.0; 2; 1/

ee

.0; 1; 1/oo

ee

.0; 1; 0/oo

ee

.0; 2; 0/

OO

ee

.0; 1; 0/

OO

oo

ee

.0; 0; 0/

OO

oo

ee

Let yyy be the full subcategory of ��� that does not contain .1; 1/. Then 1 � yyy is the category

.1; 0; 1/

.1; 1; 0/ .1; 0; 0/oo

OO

.0; 0; 1/

ff

.0; 1; 0/

ff

.0; 0; 0/oo

ff OO
(3.9)

We denote by ˛ W 1 � yyy! ��� � 1 the functor which maps (3.9) to

.1; 0; 1/

.1; 0; 0/

OO

.0; 1; 1/ .0; 1; 0/oo

ee

.0; 1; 0/

OO

.0; 0; 0/

OO

oo

ee
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Then ˛�u]v�‚f .�/ W DA.X/! DA.X; 1 � yyy/ is a coherent lifting of the commutative
diagram

0

++��

j�.j
�.�/˝ f �� Log_/ //

N ,,

0

++

Id.�/Œ1�
��

j�.j
�.�/˝ f �� Log_.�1// // j�j �.�/Œ1�

and .0 � Idyyy/�˛�u]v�‚f .�/ D .iyyy/�sq�u]v�‚f .�/. Let ˇ W 1 � yyy! 1 � 1 � yyy be the
fully faithful functor defined by

.0; 0; 0/ 7! .0; 0; 0; 0/.1; 0; 0/ 7! .0; 1; 0; 0/;

.0; 0; 1/ 7! .0; 0; 0; 1/.1; 0; 1/ 7! .0; 1; 0; 1/;

.0; 1; 0/ 7! .0; 0; 1; 0/.1; 1; 0/ 7! .1; 1; 1; 0/:

The 1 � yyy-skeleton of the functor

†f .�/ WD ˇ
�
ı�Šj ı ˛

�u]v�‚f .�/ W DA.X/! DA.X; 1 � yyy/

is now the commutative diagram

0

++��

jŠ
�
j �.�/˝ f �� Log_

�
//

++

0

++

Id.�/Œ1�

��

j�
�
j �.�/˝ f �� Log_.�1/

�
// j�j

�.�/Œ1�

where the nonzero diagonal morphism is obtained via the canonical morphism jŠ ! j�
and the monodromy operator. Note that

.0 � Idyyy/�†f D .0 � Idyyy/�˛�u]v�‚f .�/ D .iyyy/�sq�u]v�‚f .�/:

In particular, we have canonical isomorphisms .0; 0; 0/�†f .�/ D j�j �.�/Œ1� and
.0; 0; 1/�†f .�/ D Id.�/Œ1�.

Definition 3.10. Let „f W DA.X/! DA.X/ be the functor defined by

„f .�/ WD .1; 0/
�Cof.†f .�//:

We also define �f W DA.X/! DA.X/ to be the functor

�f .�/ WD .1; 1/
�.iyyy/�Cof.†f .�//:

By construction, we have an exact triangle

�f .�/! „f .�/˚ .0; 1/
�Cof.†f .�//! .0; 0/�Cof.†f .�//

C1
��! : (3.10)
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Since the canonical morphisms

Id.�/Œ1� D .0; 0; 1/�†f .�/! .0; 1/�Cof.†f .�//

and
j�j
�.�/Œ1� D .0; 0; 0/�†f .�/! .0; 0/�Cof.†f .�//

are isomorphisms, the exact triangle (3.10) can be rewritten as

�f .�/! „f .�/˚ Id.�/Œ1�! j�j
�.�/Œ1�

C1
��! :

On the other hand, we have an exact triangle

.1; 1; 0/�†f .�/! .0; 1; 0/�†f .�/! „f .�/
C1
��!

that is an exact triangle

jŠ.j
�.�/˝ f �� Log_/! j�.j

�.�/˝ f �� Log_.�1//! „f .�/
C1
��! : (3.11)

Proposition 3.11. There are exact triangles

i�Logf .j
�.�//! „f ! j�j

�.�/Œ1�
C1
��! (3.12)

and
jŠj
�.�/Œ1�! „f ! i�Logf .j

�.�//.�1/
C1
��! : (3.13)

Proof. Let us first construct (3.12) using the functorial version of the octahedron axiom
(see Section 3.1). Recall that by definition

„f .�/ WD .1; 0/
�Cof.†f .�// D Cof..�; 1; 0/�†f .�//:

Let us set

†0f .�/ WD �
Š
j ı ˛

�u]v�‚f .�/ W DA.X/! DA.X; 1 � 1 � yyy/

so that †f .�/ D ˇ�†0f .�/. Now let  W 2! 1 � 1 � yyy be the fully faithful functor that
maps 0, 1 and 2 respectively to .0;0;1;0/, .0;1;1;0/ and .1;1;1;0/. Recall that cm W 1! 2
is the fully faithful functor that maps 0 and 1 respectively to 0 and 2. Then ˇ ı .�; 1; 0/D
 ı cm. In particular,

.�; 1; 0/�†f .�/ D cm��†0f .�/:

Using the exact triangle (3.6) given by the functorial octahedron axiom, we get an exact
triangle

Cof.fm��†0f .�//! „f .�/! Cof.sm��†0f .�//
C1
��! :

However, by construction, we have an exact triangle

jŠ.j
�.�/˝ f �� Log_/! j�.j

�.�/˝ f �� Log_/! Cof.fm��†0f .�//
C1
��! :
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Using Remark 3.7, we see that Cof.fm��†0
f
.�// is isomorphic to

i�Logf .j
�.�// WD i�i

�j�.j
�.�/˝ f �� Log_/:

On the other hand, sm��†0
f
.�/D .0; 1;�/�u]v�‚f .�/, so that we get an isomorphism

Cof.fm��†0f .�// D .0; 0; 0/
�u]v�‚f .�/ D j�j

�.�/Œ1�:

This constructs the exact triangle (3.12). Consider now the localization triangle

jŠj
�„f .�/! „f .�/! i�i

�„f .�/
C1
��! :

To obtain (3.13) it is enough to check that j �„f .�/ is isomorphic to j �.�/Œ1� and that
i�„f .�/ is isomorphic to Logf .j

�.�//. The first isomorphism is obtained by applying
j � to (3.12) and the second isomorphism is obtained by applying i� to (3.11).

Proposition 3.12. There are exact triangles

i�Logf .j
�.�//! �f ! Id.�/Œ1�

C1
��! (3.14)

and
jŠj
�.�/Œ1�! �f ! i� f̂ .�/

C1
��! : (3.15)

Proof. Using (3.12), the exact triangle (3.14) is obtained by applying Lemma 3.1 to the
cartesian square .iyyy/�Cof.†f .�//.

Since j �i� D 0, (3.14) provides an isomorphism between j ��f .�/ and j �.�/Œ1�.
Now, consider the localization triangle

jŠj
��f ! �f ! i�i

��f .�/
C1
��! :

To construct (3.15), it is enough to obtain an isomorphism between i��f .�/ and f̂ .�/.
By definition

i��f .�/ D .1; 1/
�.iyyy/�Cof.i�†f .�//:

However, since i�jŠ D 0, the canonical morphism

.0 � Idyyy/�i�†f .�/! Cof.i�†f .�//

is an isomorphism. Given that

.0 � Idyyy/�†f D .0 � Idyyy/�˛�u]v�‚f .�/ D .iyyy/�sq�u]v�‚f .�/;

we get isomorphisms

.1; 1/�.iyyy/�.0 � Idyyy/�i�†f .�/
' // .1; 1/�.iyyy/�Cof.i�†f .�// D i��f .�/

.1; 1/�.iyyy/�.iyyy/
�sq�u]v�‚f .�/

By Remark 3.9, the canonical morphism

f̂ .�/ D .1; 1/
�sq�u]v�‚f .�/! .1; 1/�.iyyy/�.iyyy/

�sq�u]v�‚f .�/

is an isomorphism. This concludes the proof.
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3.4. Betti realization

Let X be a complex algebraic variety. Let AnDA.X/ be the triangulated category of
analytic motives. This category is obtained as the special case of the category SHan

M.X/

considered in [7] when the stable model category M is taken to be the category of
unbounded complexes of Q-vector spaces with its projective model structure. Recall that
the canonical triangulated functor

i�X W D.X/! AnDA.X/ (3.16)

is an equivalence of categories (see [7, Théorème 1.8]). Here D.X/ denotes the (un-
bounded) derived category of sheaves of Q-vector spaces on the associated analytic
space X an. The functor

AnX W .Sm=X/! .AnSm=X an/

which maps a smooth X -scheme Y to the associated X an-analytic space Y an induces a
triangulated functor

An�X W DA.X/! AnDA.X/: (3.17)

The Betti realization Bti�X of [7] is obtained as the composition of (3.17) and a quasi-
inverse to (3.16).

Let Log_P be the image under the Betti realization of the motive Log_ and consider
the specialization system it defines,

LogP
f .�/ WD i

�
Pj

P
� ..�/˝ .f�/

�
PLog_P/ W D.X�/! D.X� /:

Recall that in Section 3.2 we fixed an object L in DA.A1
k
; 1/ that lifts the morphism

Q.0/!j�Log_ obtained as the composition of the adjunction morphism Q.0/!j�Q.0/
and the image under j� of the unit Q.0/!Log_ of the commutative associative unitary
algebra Log_.

Let LP be the image in D.X; 1/ of L . Using this object, we can perform the same
constructions as in Sections 3.2 and 3.3 using the derivator D.X;�/ to obtain functors

„P
f .�/;�

P
f .�/ W D.X/! D.X/ and ˆP

f .�/ W D.X/! D.X� /

and four exact triangles: the two triangles

iP� LogP
f j

�
P ! „P

f ! jP
� j

�
P Œ1�

C1
��!; jP

Š j �P Œ1�! „P
f ! iP� LogP

f .�1/
C1
��!

and the two triangles

iP� LogP
f j

�
P ! �P

f ! IdŒ1�
C1
��!; jP

Š j �P Œ1�! �P
f ! iP� ˆ

P
f

C1
��! :

Moreover, we have canonical natural transformations

Bti� ı Logf ! LogP
f ı Bti�; Bti� ı f̂ ! ˆP

f ı Bti�

and
Bti� ı„f ! „P

f ı Bti�; Bti� ı�f ! �P
f ı Bti�
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which are isomorphisms when applied to constructible motives (see [7, Théorème 3.9])
and are also compatible with the various exact triangles.

As proved in [7, Théorème 4.9], the Betti realization is compatible with the (total)
nearby cycles functors for constructible motives. In this subsection, we will need the
compatibility of the Betti realization with the unipotent nearby cycles functors.

Lemma 3.13. The functor LogP
f
.�/ is isomorphic to the unipotent nearby cycles func-

tor  un
f
.�/.

Let e W C ! C�, z 7! exp.z/, be the universal cover of the punctured complex
plane C�. The group of deck transformations is identified with Z by mapping k 2 Z
to the deck transformation z 7! z C 2i�k.

Let En be the unipotent rational local system on C� of rank n C 1 with (nilpotent)
monodromy given by one Jordan block of maximal size. It underlies a variation of Q-
mixed Hodge structures described e.g. by Saito [66, Section 1.1].

Let us recall the description of this local system and relate it to Ayoub’s logarithmic
motive Log_n . The following description was given by Saito [65, 2.3. Remark]. Let En be
the subsheaf of e�QC annihilated by .T � Id/nC1 where T is the automorphism of e�QC

induced by the deck transformation corresponding to 1 2 Z. The restriction of T to En is
unipotent and we denote by N D logT the associated nilpotent endomorphism.

The sheaf En is a local system on C� of rank nC 1. Let .En/1 be its fiber over 1. We
have an inclusion

.En/1 � .e�QC/1 D
Y
k2Z

.QC/2i�k D
Y
k2Z

Q:

Note that the automorphism T acts by mapping a sequence .ak/k2Z to .akC1/k2Z. Let
�n be the element in .En/1 given by �n D .kn=nŠ/k2Z. The family .1; �1; : : : ; �n/ is a
basis of .En/1 such that T .�r /D

Pr
kD0 �k=.r � k/Š for every r 2 ŒŒ1; n��. The matrix with

respect to the basis .1; �1; : : : ; �n/ of the unipotent endomorphism T of .En/1 is thus given
by
Pn
kD0.Jn/

k=kŠ where Jn is the nilpotent Jordan block of size nC 1 and therefore N
is given by the Jordan block Jn in the basis .1; �1; : : : ; �n/.

The multiplication e�QC ˝ e�QC ! e�QC induces a morphism of local systems
Ek ˝ E` ! EkC`. In particular, for n 2 N�, we have a canonical morphism E˝n1 ! En
which defines a morphism

SymnE1 ! En: (3.18)

If � WD �1, then �n D �n=nŠ and the above description of En implies that (3.18) is an
isomorphism.

Let us consider the Kummer natural transformation eK W Id.�/.�1/Œ�1�! Id.�/ in
Betti cohomology (see [6, Définition 3.6.22]). By [69, proof of Lemma 5.1], the local
system E1 fits into an exact triangle

Q.�1/Œ�1�
eK
��! Q! E1

C1
��! :

By [7, Théorème 3.19] the Betti realization is compatible with the Kummer transforma-
tion (for constructible motives). In particular, we have a natural isomorphism Bti�K!E1
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where K 2 DA.Gm/ is the motivic Kummer extension, that is, the cone of the Kummer
natural transformation for étale motives (see [6, Lemme 3.6.28]). Since the Betti realiza-
tion Bti� is a symmetric monoidal functor, it induces an isomorphism

Bti�Log_n D Bti�SymnK
'
�! SymnBti�K

'
�! SymnE1

(3.18)
���! En

for every n 2 N. Therefore, we get an isomorphism

Log_P WD Bti�Log_
'
�! E (3.19)

where E is the ind-local system given by E D colimn2N� En.
Let K 2 Db

c.X;Q/, the unipotent nearby cycles functor  un
f

is given by

 un
f .K/ D i

�
Pj

P
� .K ˝ .f�/

�
PE /

(see [65, (2.3.3)], Beilinson [16] or Reich [64]). With this description, Lemma 3.13 is an
immediate consequence of (3.19).

Corollary 3.14. The functors

pLogP
f .�/ WD LogP

f .�/Œ�1�;
pˆP

f .�/ WD ˆ
P
f .�/Œ�1�;

p„P
f .�/ WD „

P
f .�/Œ�1�

and
p�P

f .�/ WD �
P
f .�/Œ�1�

are t -exact for the perverse t -structure.

Proof. Since the functor  un
f
.�/Œ�1� is t -exact for the perverse t -structure, the corollary

is an immediate consequence of Lemma 3.13 and the exact triangles relating the various
functors.

3.5. Application to perverse motives

Now, we can apply the universal property of the categories of perverse motives to obtain
four exact functors

pLogM
f .�/ WM .X�/!M .X� /;

pˆM
f .�/ WM .X/!M .X� /

and
p„M

f .�/ WM .X/!M .X/; p�M
f .�/ WM .X/!M .X/:

Moreover, we have four canonical exact sequences obtained from the exact triangles relat-
ing the four functors used in the construction: two exact sequences

0! iM�
pLogM

f .j �M .�//! p„M
f ! jM

� j �M .�/! 0

and
0! jM

Š j �M .�/! p„M
f ! iM�

pLogM
f .�/.�1/! 0;
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as well as two exact sequences

0! iM�
pLogM

f .j �M .�//! p�M
f .�/! Id.�/! 0 (3.20)

and
0! jM

Š j �M .�/! p�M
f .�/! iM�

pˆM
f .�/! 0:

These four functors and the associated exact sequences are compatible with the various
functors and exact triangles constructed in Sections 3.2–3.4.

Now we can prove the following theorem.

Theorem 3.15. Let i W Z ,! X be a closed immersion of k-varieties. Then the functor

iM� WM .Z/!M .X/

is fully faithful and its essential image is the kernel, denoted by MZ.X/, of the exact
functor

j �M WM .X/!M .U /

where j W U ,! X is the open immersion of the complement of Z in X .

We first consider the case of the immersion of a special fiber.

Lemma 3.16. Let X be a k-variety and f W X ! A1
k

be a morphism. Let i W X� ,! X be
the closed immersion of the special fiber in X and Z be a closed subscheme of X� . Then
the exact functor

iM� WMZ.X� /!MZ.X/

is an equivalence of categories.

Proof. We may assume Z D X� . Indeed, let u W X nZ ,! X and v W X� nZ ,! X� be
the open immersion. By Proposition 2.3 applied to the cartesian square

X� nZ
i 0 //

�v

��

X nZ

u

��

X�
i // X

we get an isomorphism u�M iM� ' i 0M� v�M . Since the functor i 0M� is conservative (it is
faithful exact), we see that an object A in M .X� / belongs to Ker v�M if and only if iM� A

belongs to Keru�M . Hence, it is enough to show that

iM� WM .X� /!MX� .X/

is an equivalence.
Let us show that the functor pˆM

f
is a quasi-inverse. Let X� be the generic fiber

and j W X� ,! X be the open immersion. The exact triangle (3.8) provides an isomor-
phism of endomorphisms of DA.X� / between i�i� and f̂ Œ�1�i�. By composing with
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the isomorphism of functors i�i� ! Id, we get an isomorphism of functors between the
identity of DA.X� / and p f̂ Œ�1�i�.

Similarly, we get an isomorphism between the identity of D.X� ;Q/ and the func-
tor ˆP

f
Œ�1�iP� . Since these isomorphisms are compatible with the Betti realization,

property P2 ensures that pˆM
f
iM� is isomorphic to the identity functor of the cate-

gory M .X� /.
An isomorphism between the identity of MX� .X/ WDKerj �M and i�M

p
f̂ is provided

by the exact sequences

0! iM�
pLogM

f .j �M .�//! p�M
f .�/! Id.�/! 0

and
0! jM

Š j �M .�/! p�M
f .�/! iM�

pˆM
f .�/! 0

(the first terms vanish for objects in the kernel of j �M ). This concludes the proof.

Proof of Theorem 3.15. Using Proposition 2.7, we may assume that X is an affine
scheme. Let U be the open complement of Z in X and let f1; : : : ; fr be elements in
O.X/ such that U D D.f1/[ � � � [D.fr /. Let ZrC1 D X and set Zk D ZkC1 nD.fk/
for k 2 ŒŒ1; r��. Let ik W Zk ,! ZkC1 be the closed immersion. We have Z1 D Z and
i D ir ı ir�1 ı � � � ı i1, so that the functor iM� WM .Z/ !MZ.X/ is obtained as the
composition

M .Z/
.i1/

M
�

����!MZ.Z2/
.i2/

M
�

����!MZ.Z3/! � � � !MZ.Zk/
.ik/

M
�

����!MZ.X/:

By Lemma 3.16, all these functors are equivalences. This concludes the proof.

4. Inverse images

The purpose of this section is to extend the (contravariant) 2-functor LissH�M constructed
in Section 2.5 to a (contravariant) 2-functor

H�M W .Sch=k/! TR; X 7! Db.M .X//; f 7! f �M :

To do this, we first use the vanishing cycles functor to show that the (covariant) 2-functor
ImmHM

� admits a global left adjoint ImmH�M (we recall that a global left adjoint is unique
up to unique isomorphism and refer to [5, Définition 1.1.18] for the definition). Then, we
show that the 2-functors LissH�M and ImmH�M can be glued into a 2-functor H�M .

4.1. Inverse image by a closed immersion

By [5, Proposition 1.1.17], to show that ImmHM
� admits a global left adjoint ImmH�M it

suffices to show that for every closed immersion i W Z ,! X the functor iM� admits a left
adjoint; this in turn is proved in Proposition 4.2.
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Theorem 4.1. Let i W Z ,! X be a closed immersion. Then the functor

iM� W D
b.M .Z//! Db.M .X//

is fully faithful and its essential image is the kernel, denoted by Db
Z.M .X//, of the exact

functor
j �M W D

b.M .X//! Db.M .U //

where j W U ,! X is the open immersion of the complement of Z in X .

Proof. We know that the essential image of iM� W Db.M .Z// ! Db.M .X// is con-
tained in Db

Z.M .X// by Theorem 3.15. We now want to prove that the functor iM� W
Db.M .Z// ! Db

Z.M .X// is an equivalence of categories. Note that the obvious t -
structure on Db.M .X// induces a t -structure on Db

Z.M .X//, whose heart is the thick
abelian subcategory MZ.X/ of M .X/. By Theorem 3.15, the functor iM� WM .Z/!

M .X/ induces an equivalence of categories M .Z/!MZ.X/. So, by [17, Lemma 1.4],
the functor iM� W D

b.M .Z//! Db
Z.M .X// is an equivalence of categories if and only

if, for any A; B in MZ.X/ and i � 1, and any class u 2 ExtiM .X/
.A; B/, there exists a

monomorphism B ,! B 0 in MZ.X/ such that the image of u in ExtiM .X/
.A;B 0/ is 0.

Suppose that j W V ,! X is an affine open immersion, that A is an object of M .X/

and that B is an object of M .V /. Let i � 1. Then we have

ExtiM .X/.A; j
M
� B/ D ExtiM .V /.j

�
MA;B/

by Proposition 2.5, and, if u 2 ExtiM .V /
.j �MA; B/ and B ,! B 0 is a monomorphism

of M .V / such that the image of u in ExtiM .V /
.j �MA; B 0/ is 0, then the image in

ExtiM .X/
.A; jM

� B 0/ of the element of ExtiM .X/
.A; jM

� B/ corresponding to u is also 0.
Applying this to an open cover j1 W U1 ,!X; : : : ; jn W Un ,!X ofX by affine subsets and
using the fact that the canonical map B!

Ln
rD1.jr /

M
� .jr /

�
MB given by Proposition 2.5

is a monomorphism for every objectB of M .X/, we reduce to the case whereX is affine.
If X is affine, then, as in the proof of Theorem 3.15, we write i D ir ı � � � ı i1, where

Z1 D Z, ZrC1 D X , and, for every k 2 ¹1; : : : ; rº, ik W Zk ! ZkC1 is the immersion of
the complement of an open set of the formD.f /, with f 2 O.ZkC1/. It suffices to show
that each .ik/M� WD

b.M .Zk//!Db
Zk
.M .ZkC1// is an equivalence of categories. So we

may assume that there exists f 2 O.X/ such that i is the immersion of the complement
of D.f /. In that case, we showed in the proof of Lemma 3.16 that the trivial derived
functor of the exact functor pˆM

f
WM .X/ !M .Z/ induces a quasi-inverse of iM� W

Db.M .Z//! Db
Z.M .X//.

Proposition 4.2. Let i W Z ,! X be a closed immersion. Then the functor

iM� W D
b.M .Z//! Db.M .X//

admits a left adjoint.
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Proof. By Theorem 4.1, it suffices to show that the inclusion functor

Db
Z.M .X//! Db.M .X// (4.1)

admits a left adjoint C �. Let j W U ,! X be the open immersion of the complement of Z
in X . Let us first assume that U is affine. In that case, given A in Cb.M .X//, we define
C �.A/ as the mapping cone of the canonical morphism jM

Š
j �MA! A given by Proposi-

tion 2.5. This construction induces a triangulated functor C � W Db.M .X//! Db.M .X//

and there is a canonical exact triangle jM
Š
j �MA! A! C �.A/! jM

Š
j �MAŒ1�, which

shows that C � takes its values in the full subcategory Db
Z.M .X//. Let B 2 Db

Z.M .X//.
Using the long exact sequence associated with this triangle and Proposition 2.5 which
ensures that

HomDb.M .X//.j
M
Š j �MA;BŒn�/ D HomDb.M .U //.j

�
MA; j �MBŒn�/ D 0;

we get a functorial isomorphism

HomDb.M .X//.C
�.A/; B/

'
�! HomDb.M .X//.A;B/

as desired.
In the general case, the adjoint C � can be constructed by considering a finite set I and

an affine open covering U D .ji W Ui ! U/i2I . For every J � I , let jJ be the inclusionT
i2J Ui ,! X . We define an exact functor C � WM .X/! Cb.M .X// in the following

way. Let A be an object of M .X/. We set

C i .A/ D

8<: 0 if i � 1;
A if i D 0;L
I�¹1;:::;rº; jJ jD�i .jJ /

M
Š .jJ /

�
MA if i � �1:

The differential ofC �.A/ is an alternating sum of maps given by Proposition 2.5. Then the
left adjoint of Db

Z.M .X//! Db.M .X// is the functor sending A� to the total complex
of C �.A�/.

Let Z be a closed immersion such that the open immersion j W U ,! X of the com-
plement of Z in X is affine. It follows from the proof of Proposition 4.2 that we have a
canonical exact triangle

jM
Š j �M ! Id! iM� i�M

C1
��! :

Moreover, the diagram

jP
Š j �P ratMX

//

�M
j

��

ratMX
// iP� i

�
P ratMX

�M
i

��

C1
//

jP
Š

ratMU j
�
M

//

�M
j

��

ratMX
// iP� ratMZ i

�
M

C1
//

.M
i
/�1

��

ratMX jM
Š j �M

// ratMX
// ratMX iM� i�M

C1
//

(4.2)
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is commutative (the morphisms in the second row are those obtained by adjunction
from �M

i and the inverse of �M
j ).

Lemma 4.3. Let i W Z ! X be a closed immersion. Then the natural transformation

�M
i W i

�
P ı ratMX ! ratMZ ı i

�
M

is invertible.

Proof. The statement is local on X , so we may assume that X is affine. Then, as in the
proof of Theorem 4.1, we can write i D ir ı � � � ı i1, where each is is a closed immersion
with affine complement. Using the compatibility of the 2-morphisms �M

i with the compo-
sition of morphisms in Imm.Sch=k/ we may assume that the open immersion j W U ,! X

of the complement of Z in X is affine. Then, our assertion follows from (4.2) and the
conservativity of the functor iP� .

4.2. Gluing of the pullback 2-functors

Let us fix a global left adjoint ImmH�M of ImmHM
� . To be able to glue the 2-functors ImmH�M

and LissH�M using [5, Théorème 1.3.1], it suffices to construct, for every commutative
square

X 0
i 0 //

f 0

��

Y 0

f

��

X
i // Y

(4.3)

such that i; i 0 are closed immersions and f; f 0 smooth morphisms, a 2-isomorphism

i 0�M ı f
�

M

'
�! f 0�M ı i

�
M (4.4)

and prove that these 2-isomorphisms define an exchange structure, that is, they are com-
patible with the horizontal and vertical composition of commutative squares (see [5,
Définition 1.2.1]).

Dg enhancements. For the general theory of dg categories we refer to Drinfeld [31],
Keller [54, 55] or Toën [71]. Let A be an abelian category. We denote by Cb

dg.A/ the dg
category of bounded complexes of objects of A and by Db

dg.A/ the dg quotient of Cb
dg.A/

by the subcategory of acyclic bounded complexes (for a simple construction of the dg quo-
tient see [31, Section 3.1]). The bounded derived category Db.A/ of A is the homotopy
category of the dg category Db

dg.A/. We let rep.Db
dg.A/;D

b
dg.B// be the category of dg

quasi-functors from Db
dg.A/ to Db

dg.B/ (this category is denoted by T .Db
dg.A/;D

b
dg.B//

in Vologodsky’s paper [76]). Let us recall the following particular case of [76, Theorem 1].

Proposition 4.4. Let A;B be abelian categories and F;G 2 r.A;B/ be dg quasi-func-
tors. Assume that the induced triangulated functors F;G W Db.A/! Db.B/ are t -exact
for the classical t -structures. Then F; G are respectively canonically isomorphic to the
functors induced by the exact functors H 0F W A! B;H 0G W A! B and the canonical
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map
Homrep.Db

dg.A/;D
b
dg.B//

.F;G/! HomFct.A;B/.H
0F;H 0G/

is an isomorphism.

A triangulated functor Db.A/! Db.B/ is said to be dg enhanced if it is induced by
some dg quasi-functor in rep.Db

dg.A/;D
b
dg.B//. Note that a composition of dg enhanced

functors is also dg enhanced.

Remark 4.5. Let i W Z ,! X be a closed immersion and f W X ! Y be a smooth mor-
phism of quasi-projective k-varieties. By construction the triangulated functors iM� and
f �M are dg enhanced. This is also the case of the triangulated functor

i�M W D
b.M .X//! Db.M .Z//:

Indeed, let j WU ,!X be the open immersion of the complement ofZ inX and fix a finite
open covering of U by affine open subsets. Let Db

dg;Z.M .X// be the dg full subcategory
of Db

dg.M .X// formed by the complexes that belong to Db
Z.M .X//. We then have dg

functors

Db
dg.M .Z//

iM�
��! Db

dg;Z.M .X//
C�

 ��Db
dg.M .X// (4.5)

where C � is the dg functor constructed (using the given open covering of U by affine
open subsets) in the proof of Proposition 4.2. Since the dg functor on the left is a quasi-
equivalence, the diagram (4.5) defines a quasi-functor from Db

dg.M .X// to Db
dg.M .Z//

that induces the triangulated functor i�M .

Gluing of the 2-functors. Let us now start with the construction of the 2-isomorphisms
(4.4).

Step 1. When the square (4.3) is cartesian, the 2-isomorphism (4.4) is obtained by con-
sidering the exchange structure M Ex�� on the pair .ImmHM

� ;
LissH�M / obtained in Propo-

sition 2.3 (in this exchange structure, all squares are cartesian). By applying [5, Proposi-
tion 1.2.5], we get an exchange structure M Ex�� on the pair .ImmH�M ; LissH�M / for the
class of cartesian squares (4.3). The uniqueness in loc.cit. implies that this exchange
structure lifts the trivial exchange structure on .ImmH�P ;

LissH�P/ given by the connec-
tion 2-isomorphisms of the 2-functor H�P . In particular, the conservativity of the functors
ratMX W D

b.M .X//! Db.P.X// implies that M Ex�� is an iso-exchange.

Step 2. Let us consider a commutative triangle

X
i //

g
  

Y

f

��

S

(4.6)

in which i is a closed immersion and f; g are smooth morphisms. As preparation for the
construction of the 2-isomorphism (4.4), we first construct a 2-isomorphism

i�M ı f
�

M ! g�M : (4.7)
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To do this, observe that if d is the relative dimension of g, then the triangulated functors
i�M ı f

�
M Œd � and g�M Œd � are t -exact for the classical t -structures. This is a vanishing state-

ment that can be checked after application of the functor ratMX and, for perverse sheaves,
it follows from [18, Section 4.2.4] since g�P and i�P ı f

�
P are isomorphic. Moreover both

functors are dg enhanced by Remark 4.5.
By Proposition 4.4, to construct (4.7), it is enough to construct a 2-isomorphism

i�M ı f
�

M Œd �! g�M Œd � (4.8)

where both functors are exact functors from M .S/ to M .X/. Therefore, it suffices to
prove the following proposition.

Proposition 4.6. Consider the commutative diagram (4.6). Let A be an object in M .S/

and let K be its underlying perverse sheaf. Then the canonical morphism of perverse
sheaves i�P ı f

�
P Œd �.K/! g�P Œd �.K/ lies in the image of the injective morphism

HomM .X/.i
�
M ı f

�
M Œd �.A/; g�M Œd �.A//! HomP.X/.i

�
P ı f

�
P Œd �.K/; g

�
P Œd �.K//:

(4.9)

Remark 4.7. Note that the map (4.9) is obtained via the functor ratMX using the invert-
ible natural transformations f �P ı ratMS ! ratMY ı f

�
M , g�P ı ratMS ! ratMX ı g

�
M and

i�P ı ratMY ! ratMX ı i
�
M which have been previously constructed.

Proof. Step (a). Consider a commutative diagram

X 0
i 0 //

g0

//

�v

��

Y 0

u

��

f 0

��

X
i //

g
!!

Y

f

��

S

where i is a closed immersion, f;g are smooth morphisms and u is an étale morphism. By
Step 1, we have a natural transformation i 0�M ıu

�
M ! v�M ı i

�
M that lifts the corresponding

natural transformation in the derived category of perverse sheaves. Assume the proposi-
tionis true for the diagram (4.6). Then, the morphism i�P ı f

�
P Œd �.K/! g�P Œd �.K/ lifts

to a morphism i�M ı f
�

M Œd �.A/ ! g�M Œd �.A/. By applying v�M to this lift we obtain
a morphism i 0�M ı f

0�
M Œd �.A/! g0�M Œd �.A/ that lifts the morphism i 0�P ı f

0�
P Œd �.K/!

g0�M Œd �.K/. This shows, in particular, that if the proposition is true for the diagram (4.6)
then it is also true for the diagram

X 0
i 0 //

g0
  

Y 0

f 0

��

S

Step (b). Let Y D .Y˛/˛2I be a finite Zariski open covering of Y and consider for every
˛ 2 I the commutative diagram
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X˛
i˛ //

g˛

//

�v˛

��

Y˛

u˛

��

f˛

��

X
i //

g
!!

Y

f

��

S

where u˛ is the open immersion of Y˛ in Y . Note that the canonical morphism of per-
verse sheaves i�P ı f

�
P Œd �.K/! g�P Œd �.K/ is obtained by gluing the morphism i�˛;P ı

f �˛;P Œd �.K/! g�˛;P Œd �.K/ along the Zariski open covering X D .X˛/˛2I ofX . Hence
it follows from Step (a) and Proposition 2.7 that the proposition is true for the diagram
(4.6) if and only if it is true for the diagrams

X˛
i˛ //

g˛
!!

Y˛

f˛

��

S

Step (c). By Step (b) the problem is local on Y for the Zariski topology. Since both Y
and X are smooth over S , we may assume that there exists a cartesian square

X
i //

g

//

�
v

��

Y

u

��

f

��

AdS //

""

AdCcS

��

S

where u is an étale morphism. Using Step (a) and induction, we are reduced to proving
the proposition in the case

AdS

�
""

s // AdC1S

p

��

S

where p and � are the projections and s is the zero section. By considering the factoriza-
tion

AdS
s //

�

��

AdC1S

p

��

��

AdS

�

��

S
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and observing that the functors ��M Œd �, ��P Œd � are exact, we may further assume that
d D 0.

Step (d). It remains to prove the proposition in the case of the diagram

S
s // A1S

p

��

S

where s is the zero section and p is the projection. Let f W A1S D A1 � S ! A1 be the
first projection and a W Gm � S ! A1 � S be the inclusion. We set q D p ı a. Given a
motive B 2M .A1S /, consider the connecting morphism B ! sM�

pLogM
f
.a�M .B//Œ1� in

Db.M .A1S // obtained from the exact sequence (3.20). By adjunction, we get a morphism
s�M .B/ ! pLogM

f
.a�MB/Œ1� in the category Db.M .S//. Taking B to be the perverse

motive B D p�M Œ1�A, we get after a shift a morphism

s�M ı p
�
M .A/! pLogM

f .q�M Œ1�.A//

in Db.M .S//. As both objects are concentrated in degree zero, the above morphism is
actually a morphism in the abelian category M .S/. Moreover, it is an isomorphism since
it is on the underlying perverse sheaves. Moreover, we know that the square

HomM .S/.
pLogM

f
.q�M Œ1�.A//; A/ //

'

��

HomP.S/.
pLogP

f
.q�P Œ1�.K//;K/

'

��

HomM .S/.s
�
M ı p

�
M .A/; A/ // HomP.S/.s

�
P ı p

�
P.K/;K/

is commutative. Hence, to conclude, it suffices to show that the canonical morphism of
perverse sheaves

pLogP
f .q

�
P Œ1�.K//! K (4.10)

lifts to a morphism pLogM
f
.q�M Œ1�.A//! A in the abelian category M .S/. By construc-

tion of the exact functors pLogM
f

and q�M Œ1�, this is an application of property P2, since
(4.10) is the Betti realization of a natural transformation

Logf .q
�.�//! Id

in the triangulated category of étale motives on S .

Lemma 4.8. Consider a commutative diagram

X
i //

h
''

Y
s //

g

  

Z

f

��

S

in which i; s are closed immersions and f; g; h are smooth morphisms. Then the diagram
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i�M ı s
�
M ı f

�
M

//

'

��

i�M ı g
�
M

// h�M

.s ı i/�M ı f
�

M

==

is commutative.

Proof. The lemma follows from the analogous statement for perverse sheaves. Indeed, let
d be the relative dimension of h. It suffices to show that the diagram

i�M ı s
�
M ı f

�
M Œd � //

'

��

i�M ı g
�
M Œd � // h�M Œd �

.s ı i/�M ı f
�

M Œd �

;;

is commutative. Since all functors in this diagram are dg enhanced and t -exact for the
classical t -structures, by Proposition 4.4 it suffices to check the commutativity of the
diagram induced on the hearts. This can be done on the underlying perverse sheaves.

Step 3. To construct the 2-isomorphisms (4.4) in the general case, we can decompose the
commutative square (4.3) as follows:

X 0
i 000 //

f 0
$$

i 0

%%
X �Y Y

0 i
00
//

f 00

��

�

Y 0

f

��

X
i // Y

where i 00; i 000 are closed immersions and f 00 is a smooth morphism. Then, using the iso-
exchange constructed in Step 1, the 2-isomorphism of Step 2 and the connection 2-isomor-
phisms of the 2-functor ImmH�M we get (4.4) as the composition

i 0�M ı f
�

M

'
�! i 000�M ı i 00�M ı f

�
M

'
�! i 000�M ı f 00�M ı i�M

'
�! f 0�M ı i

�
M :

Lemma 4.9. Let

X 0
i 0 //

f 0

��

�

Y 0
s //

f

��

Z

g
~~

X
i // Y

be a commutative diagram of morphisms of k-varieties in which g; f are smooth and i; s
are closed immersions. Consider the commutative diagram

X 0

sıi 0

$$s0 //

f 0
$$

X �Y Z
i 00 //

g0

��

�

Z

g

��

X
i // Y
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Then the following diagram is commutative:

.s ı i 0/�M ı g
�
M

' // i 0�M ı s
�
M ı g

�
M

// i 0�M ı f
�

M
// f 0�M ı i

�
M

.i 00 ı s0/�M ı g
�
M

' // s0�M ı i
00�
M ı g

�
M

// s0�M ı g
0�
M ı i

�
M

// f 0�M ı i
�
M

Proof. By adjunction, it is enough to show that the diagram

s�M ı g
�
M ı i

M
� A //

--

f �M ı i
M
� A // i 0M� ı f 0�MA

s�M ı i
00M
� ı g0�MA // i 0M� ı s0�M ı g

0�
MA

OO

is commutative for every object A in Db.M .X//. Since all the entries of the above dia-
gram are dg enhanced and t -exact functors up to a shift by the relative dimension d of f ,
by Proposition 4.4 it suffices to check the commutativity of the diagram induced on the
hearts. Again, this can be done on the underlying perverse sheaves.

Lemma 4.10. Consider a commutative diagram

X 0

f 0

��

i 0 //

�

h0

00

Y 0

f

��

h

��

X
i //

g0
!!

Y

g

��

S

in which i; i 0 are closed immersions and all other morphisms are smooth. Then the dia-
gram

i 0�M ı f
�

M ı g
�
M

//

'

��

f 0�M ı i
�
M ı g

�
M

// f 0�M ı g
0�
M

'

��

i 0�M ı h
�
M

// h0�M

is commutative.

Proof. Let d be the relative dimension of h0. It is enough to check that the diagram

i 0�M ı f
�

M ı g
�
M Œd � //

'

��

f 0�M ı i
�
M ı g

�
M Œd � // f 0�M ı g

0�
M Œd �

'

��

i 0�M ı h
�
M Œd � // h0�M Œd �

is commutative. Since all functors in this diagram are dg enhanced and t -exact for the
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classical t -structures, by Proposition 4.4 it suffices to check the commutativity of the
diagram induced on the hearts. Once again, this can be done on the underlying perverse
sheaves.

Proposition 4.11. The 2-isomorphisms (4.4) define an exchange structure, i.e., they are
compatible with the horizontal and vertical compositions of commutative squares.

Proof. � Horizontal composition of squares. Consider a commutative diagram

Z0
s0 //

f 00

��

X 0
i 0 //

f 0

��

Y 0

f

��

Z
s // X

i // Y

(4.11)

in which i; s; i 0; s0 are closed immersions and f; f 0; f 00 are smooth morphisms. We have
to prove that the diagram

.i 0 ı s0/�M ı f
�

M

'

��

// f 00�M ı .i ı s/�M

'

��

s0�M ı i
0�
M ı f

�
M

// s0�M ı f
0�

M ı i
�
M

// f 00�M ı s�M ı i
�
M

is commutative. Let us decompose (4.11) the following ways:

Z0 //

$$

Z �X X
0 //

��

�

X 0 //

��

X �Y Y
0 //

zz

�

Y 0

zz
Z // X // Y

(4.12)

and
Z0 //

$$

Z �Y Y
0

��

//

�

Y 0

��

Z // Y

Since Z �X .X �Y Y 0/ D Z �Y Y 0 we can rewrite the portion

Z �X X
0 //

��

�

X 0 //

��

X �Y Y
0

zz
Z // X

of the diagram (4.12) as

Z �X X
0 //

&&

Z �Y Y
0 //

��

�

X �Y Y
0

��

Z // X

Therefore the desired compatibility is a consequence of Proposition 2.3, Lemma 4.9 and
Lemma 4.8.
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� Vertical composition of squares. Consider a commutative diagram

X 00
i 00
//

g0

��

Y 00

g

��

X 0
i 0 //

f 0

��

Y 0

f

��

X
i // Y

(4.13)

in which i; i 0; i 00 are closed immersions and f; g; f 0; g0 are smooth morphisms. We have
to prove that the diagram

i 00�M ı .f ı g/
�
M

//

��

.f 0 ı g0/�M ı i
�
M

'

��

i 00�M ı g
�
M ı f

�
M

// g0�M ı i
0�
M ı f

�
M

// g0�M ı f
0�

M ı i
�
M

is commutative. We can refine (4.13) to the following commutative diagrams:

X 00 //

22

X 0 �Y 0 Y
00 //

��

�

X �Y Y
00 //

��

�

Y 00

��

X 0 //

33

X �Y Y
0 //

��

�

Y 0

��

X // Y

or
X 00 //

22

X �Y Y
00 //

��

�

Y 00

��

X // Y

The desired compatibility is now a consequence of Proposition 2.3 and Lemmas 4.10
and 4.8.

5. Main theorem

In Section 3.5, we have shown that the unipotent nearby and vanishing cycles functors
can be defined at the level of perverse Nori motives.

Our goal is to prove that the four operations (0.1) can be lifted to the derived categories
of perverse Nori motives. To obtain these various functors

Db.M .X//
fM
�

// Db.M .Y //

f �Moo
f ŠM //

Db.M .X//
fM
Š

oo (5.1)
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(and their compatibility relations) with the least effort, we have chosen to follow Ayoub’s
approach developed in [5] around the notion of stable homotopical 2-functor, which
encompasses in a small package all the ingredients needed to build the rest of the for-
malism.

5.1. Statement of the theorem

As before, .Sch=k/ denotes the category of quasi-projective k-varieties. Recall that a
contravariant 2-functor

H� W .Sch=k/! TR

is a called a stable homotopical 2-functor (see [5, Définition 1.4.1]) when the following
six properties are satisfied:

(1) H.¿/ D 0 (that is, H.¿/ is the trivial triangulated category).

(2) For every morphism f W X ! Y in .Sch=k/, the functor f � W H.Y /! H.X/ admits
a right adjoint. Furthermore for every immersion i the counit i�i� ! Id is invertible.

(3) For every smooth morphism f W X ! Y in .Sch=k/, the functor f � W H.Y /! H.X/
admits a left adjoint f]. Furthermore, for every cartesian square

X 0
g0
//

f 0

��

X

f

��

Y 0
g
// Y

with f smooth, the exchange 2-morphism f 0
]
g0� ! g�f] is invertible.

(4) If j WU !X is an open immersion in .Sch=k/ and i WZ!X is the closed immersion
of the complement, then the pair .j �; i�/ is conservative.

(5) If p W A1X ! X is the canonical projection, then the unit morphism Id! p�p
� is

invertible.

(6) If s is the zero section of the canonical projection p W A1X ! X , then

p]s� W H.X/! H.X/

is an equivalence of categories.

The main theorem of [5] says that these data can be expanded into a complete formal-
ism of the four operations (see [5, Scholie 1.4.2]).

Theorem 5.1. The contravariant 2-functor H�M constructed in Section 4 is a stable homo-
topical 2-functor in the sense of [5, Définition 1.4.1], and .ratM ; �M / is a morphism of
stable homotopical 2-functors.

In particular, we can apply [5, Scholie 1.4.2] to get the functors (5.1). The next sub-
section is devoted to the proof of Theorem 5.1, and the reader will find some applications
of the main theorem in Section 5.4.
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5.2. Proof of the main theorem 5.1

We start by showing the existence of the direct image functor. The most important step is
the proof of the existence of the direct image by the projection of the affine line A1Y onto
its base Y .

Proposition 5.2. For every morphism f W X ! Y in .Sch=k/, the functor

f �M W D
b.M .Y //! Db.M .X//

admits a right adjoint f M
� . Moreover,

(1) if i W Z ! X is a closed immersion, the counit of the adjunction i�M iM� ! Id is
invertible;

(2) the natural transformation

M
f W ratMY f

M
� ! f P

� ratMX

obtained from �M
f

by adjunction is invertible;

(3) if p W A1X ! X is the canonical projection, then the unit morphism Id! pM
� p

�
M is

invertible.

Proof. In the proof, all products are fiber products over the base field k and A1 is the
affine line over k.

Step 1. Suppose first that f is a closed immersion. Then f �M admits f M
� as a right adjoint

by construction of f �M , we know item (2) by Lemma 4.3, and item (1) is true by (2) and
by conservativity of ratMX .

Step 2. Now we consider the case where f is the projection morphism p WX WDA1Y ! Y .
As before, if we can prove that p�M admits a right adjoint satisfying (2), then item (3) will
follow automatically.

We consider the following commutative diagram:

A1 � Y

p

��

A1 � A1 � Y
q2oo

q1

��

U � Y
j

oo

Y A1 � Y
p

oo A1 � Y
Id

oo

i

gg

Id

kk

where q1 D IdA1 � p, q2 is the product of the projection A1 ! Spec k and of IdA1�Y ,
i is the product of the diagonal morphism of A1 and of IdY , and j is the complementary
open inclusion. We also denote by s W Y ! A1 � Y the zero section of p. By the smooth
base change theorem (or a direct calculation), the base change map p�Pp

P
� ! qP

1�q
�
2P is

an isomorphism, so we get a functorial isomorphism pP
� ' s

�
Pp
�
Pp

P
� ! s�Pq

P
1�q
�
2P .

Let K be a perverse sheaf on Y . Then L WD q�2PKŒ1� is perverse, and we have
i�PL D KŒ1�, so we get an exact sequence of perverse sheaves on A1 � Y :

0! iP� K ! jP
Š j �PL! L! 0:
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Applying the functor qP
1� and using the fact that q1 ı i D IdA1�Y , we get an exact triangle

qP
1�q
�
2PK ! K ! qP

1�j
P
Š j �PL

C1
��! :

We claim that qP
1�j

P
Š
j �PL is perverse. Indeed, this complex is concentrated in perverse

degrees �1 and 0 by [18, Théorème 4.1.1 and Section 4.2.4]. So we just need to prove
that M WD pH�1qP

1�j
P
Š
j �PL is equal to 0. By [18, Corollaire 4.2.6.2], the adjunction

morphism q�1PMŒ1� ! jP
Š
j �PL is injective; we denote its quotient by N . Then, as

q1 ı i D IdA1�Y and i�Pj
P
Š
D 0, we have i�PN D MŒ2�. But i is the complement of

an open affine embedding, so i�P is of perverse cohomological amplitude Œ�1; 0� by [18,
Corollaire 4.1.10], hence M D 0.

Finally, we get an exact sequence of perverse sheaves on A1 � Y :

0! pH0qP
1�q
�
2PK ! K ! qP

1�j
P
Š j �Pq

�
2PKŒ1�!

pH1qP
1�q
�
2PK ! 0:

Consider the functors FP ;GP WP.A1 � Y /! Db.P.A1 � Y // defined by

FP.K/ WD K; GP.K/ WD q
P
1�j

P
Š j �Pq

�
2PKŒ1�:

We have just proved that these functors are t -exact (of course, this is obvious for the first
one) and that there is a functorial exact triangle

qP
1�q
�
2P ! FP ! GP

C1
��! :

The functors FP and GP are defined in terms of the four operations. The existence of
these operations in the categories DAct.�/ and the compatibility of the Betti realization
with the four operations (see [7, Théorème 3.19]) imply by the universal property of the
categories of perverse motives that there exist

� two exact functors

FM ;GM WM .A1 � Y /!M .A1 � Y /;

� a natural transformation FM ! GM ,

� two invertible natural transformations

ratMA1�Y ı FM ! FP ı ratMA1�Y ; ratMA1�Y ı GM ! GP ı ratMA1�Y

such that the diagram

ratMA1�Y ı FM
//

��

ratMA1�Y ı GM

��

FP ı ratMA1�Y
// GP ı ratMA1�Y

is commutative.
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Given a complex M � of perverse motives on X D A1 � Y , let HM .M �/ be the map-
ping fiber of the morphism FM .M �/ ! GM .M �/ of complexes of perverse motives
on X . We get a triangulated functor

HM W Db.M .A1 � Y //! Db.M .A1 � Y //;

and the Betti realization of HM is isomorphic to qP
1�q
�P
2 .

We now define a functor

pM
� WD s

�
M HM .�/ W Db.M .A1 � Y //! Db.M .Y //:

By construction of pM
� , we have an invertible natural transformation

ratMA1�Y p
M
� ! pP

� ratMA1�Y :

Note also the following useful fact. We denote by f WA1 � Y !A1 the first projection
and by a W Gm � Y ! A1 � Y the inclusion. Then applying s�M to the connecting map in
the exact sequence (3.20) in Section 3.5, we get a natural transformation

s�M !
pLogM

f a�M Œ1�;

whose composition with the functor HM is invertible. Indeed, we can check this last
statement after applying the functors ratMY , and then this follows from the exact triangle

qP
1�q
�P
2 ! FP!GP

C1
��! and the fact that the composition of the natural transformation

s�P !
pLogP

f
a�P Œ1� and of the functor qP

1�q
�P
2 ' p�Pp

P
� ' QA1�p

P
� is invertible. As

the functor pLogM
f
a�M is exact, we get an isomorphism from pM

� to the mapping cone of
the morphism of exact functors pLogM

f
a�M ı FM !

pLogM
f
a�M ı GM .

Let us prove that the functor pM
� is right adjoint to the functor p�M . Let �P W Id!

pP
� p
�
P and ıP W p�Pp

P
� ! Id be the unit and the counit of the adjunction between p�P

and p�P . It suffices to lift �P and ıP to natural transformations �M W Id! pM
� p

�
M and

ıM W p
�
MpM

� ! Id such that the two natural transformations

p�M
p�M�M

�����! p�MpM
� p

�
M

ıMp�M
�����! p�M

and

pM
�

�MpM
�

�����! pM
� p

�
MpM

�

pM
� ıM
�����! pM

�

are isomorphisms and the first one is the identity (see [69, Section 3.1]). Note that the fact
that these natural transformations are isomorphisms will follow automatically from the
conservativity of the functors ratMX .

We first construct �M . Let us first show that GM ı p
�
M D 0. As the functors ratMX

are conservative, it suffices to prove that GP ı p
�
P D 0. Let k W U ! A1 � A1 be the

open immersion (remember that U is the complement of the diagonal in A1 � A1), so
that j D k � IdY , and let � W A1 �A1! A1 be the first projection, so that q1 D � � IdY .
Then

GP ı p
�
P D q

P
1�j

P
Š j �Pq

�
2Pp

�
M Œ1� ' qP

1�..k
P
Š QU /��/Œ1� ' .�

P
� k

P
Š QU /�.�/Œ1�;
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so it suffices to show that
�P
� k

P
Š QU D 0:

Let � W A1 ! A1 � A1 be the diagonal embedding. Then we have an exact triangle

kŠQU ! QA1�A1 ! ��QA1
C1
��!;

so, applying �P
� , we get an exact triangle

�P
� k

P
Š QU ! QA1

Id
�! QA1

C1
��!;

and this implies the desired result.
Now that we know that GP ı p

�
M D 0, we get HM ı p

�
M D p

�
M , hence pM

� p
�
M D

s�M ı HM ı p
�
M D s

�
Mp�M , and we take for �M W Id! pM

� p
�
M the inverse of the con-

nection isomorphism s�Mp�M
�
�! Id.

Next we construct ıM . First we define a functor

qM
1� W D

b.M .A1 � Y //! Db.M .A1 � A1 � Y //

in the same way as pM
� , that is, we consider the commutative diagram

A1 � A1 � Y

q1
��

A1 � A1 � A1 � Y
r2oo

r1

��

A1 � U � Y
J

oo

A1 � Y A1 � A1 � Y
q1

oo A1 � A1 � Y
Id

oo

I

ii

Id

ll

where r1 D IdA1 � q1, r2 D IdA1 � q2, I D IdA1 � i and J D IdA1 � j , and we set t D
IdA1 � s WA1 �Y!A1 �A1 �Y . Then the functors F0P ;G

0
P from Db.P.A1 �A1 �Y //

to itself defined by F0P D Id and G0P D rP
1�J

P
Š J �Pr

�
2P Œ1� are t -exact and we have a

natural transformation F0P ! G0P . As before, we can lift these functors and the trans-
formation to endofunctors F0M ! G0M of Db.M .A1 � A1 � Y //. We denote by H0M
the mapping fiber of F0M ! G0M , and we set qM

1� D t�M ı H0M . Also, if we denote by
f 0 WA1 �A1 � Y !A1 the second projection and by a0 the injection of A1 �Gm � Y into
A1 � A1 � Y , we get as above an invertible natural transformation from qM

1� to the map-
ping cone of the morphism pLogM

f 0
.a0/�M ı F0M !

pLogM
f 0
.a0/�M ıG0M of exact functors.

Let us show that the base change isomorphism p�Pp
P
�

�
�! qP

1�q
�
2P lifts to a morphism

p�MpM
� ! qM

1� q
�
2M (which will automatically be an isomorphism). We have invertible

natural transformations F0P ı q
�
2P ' q�2P ı FP and G0P ı q

�
2P ' q�2P ı GP . As all

the functors involved are t -exact up to the same shift, the transformations lift to natu-
ral transformations F0M ı q

�
2M ' q

�
2M ı FM and G0M ı q

�
2M ' q

�
2M ı GM , and induce

an invertible natural transformation H0M ı q
�
2M ' q�2M ı HM . Composing on the left

with t�M and using the connection isomorphism t�Mq�2M ' p�M s�M , we get the desired
isomorphism p�MpM

�

�
�! qM

1� q
�
2M .

Composing this isomorphism with the unit of the adjunction .i�M ; iM� / and using the
connection isomorphism i�Mq�2M ' Id gives a natural transformation p�MpM

� ! qM
1� i

M
� .
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It remains to show that the isomorphism qP
1�i

P
� ' Id lifts to a natural transformation

qM
1� i

M
� ! Id. First we note that the functors

pLogB
f 0.a

0/�Pr
P
1� r
�P
2 iP� Œ1� (5.2)

and
pLogB

f 0.a
0/�Pr

P
1�J

P
Š J �Pr

�P
2 iP� Œ1�

are t -exact and the counit of the adjunction .JP
Š
; J �P/ induces a natural transformation

from the second one to the first one. Hence, the functor (5.2) induces an exact endofunc-
tor H00M of M .A1 � Y /, together with a natural transformation pLogM .a0/�M ıG0M ı i

M
�

! H00M . But we also have an invertible natural transformation of t -exact functors

IdDb.P.A1�Y // ' t
�
Pq
�P
1 qP

1�i
P
� (connection isomorphisms)

�
�! t�Pr

P
1� r
�
2P i

P
� (base change)

�
�!

pLogB
f 0.a

0/�Pr
P
1� r
�
2P i

P
� Œ1� (by Section 3.5 as above)

and all the maps in it are defined in the categories DAct.�/, so it induces an invertible
natural transformation IdM .A1�Y /

�
�! H00M . Composing it with pLogM .a0/�M ıG0M ı i

M
�

! H00M and using the isomorphism from qM
1� to the mapping fiber of pLogM .a0/�M ı

F0M !
pLogM .a0/�M ı G0M , we finally get the desired natural transformation ıM :

p�MpM
�

�
�! qM

1� q
�M
2 ! qM

1� i
M
� !

pLogM .a0/�M ıG0M ı i
M
� ! H00M ' IdDb.M .A1�Y //:

Finally, we check that the natural transformation

p�M
p�M�M

�����! p�MpM
� p

�
M

ıMp�M
�����! p�M

is the identity. The two functors p�MpM
� p

�
M Œ1� and p�M Œ1� are exact and equal to the

derived functor of their H0, and the natural transformations

.p�M�M /�1; ıMp�M W p
�
MpM

� p
�
M Œ1�! p�M Œ1�

are also defined by extending their action on the H0’s, so it suffices to check that they
are equal on these H0’s. But this follows from the analogous result for the category of
perverse sheaves.

Step 3. We can now use the Brown Representability Theorem to see that the proposi-
tion is true more generally if f is the projection p W X WD E ! Y of a vector bundle E
on Y . Indeed, given a k-variety S , let Ind.M .S// be the abelian category of Ind-objects
of M .S/ and consider the bounded derived category Db.M .S// as a full subcategory of
the unbounded derived category D.Ind.M .S/// (see e.g. Kashiwara–Schapira [53, The-
orem 15.3.1]). As the morphism p W E ! Y is smooth, the functor p�M extends to a
triangulated functor L W D.Ind.M .Y ///! D.Ind.M .E///. By the Brown Representabil-
ity Theorem (see e.g. Neeman [61, Theorem 4.1] or [62, Theorem 8.4.4]), the functor L
admits a right adjoint R W D.Ind.M .E//! D.Ind.M .Y ///.

To prove that p�M admits a right adjoint pM
� , it suffices to check that, given M 2

Db.M .E//, the object R.M/ belongs to the subcategory Db.M .Y //. This can be checked
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on a finite Zariski open covering of Y that trivializes E and thus follows from the case of
a projection A1Y ! Y proved in Step 2. That pM

� satisfies (2) can again be checked on a
finite Zariski open covering of Y that trivializes E and we conclude using step 2.

Step 4. By Steps 1 and 3, the conclusion of the proposition is true if f is an affine mor-
phism. Indeed, if f is affine, then we can write f D p ı i , where i is a closed immersion
and p W E ! Y is a vector bundle on Y .

Step 5. We now consider the case of an arbitrary morphism f W X ! Y in .Sch=k/. By
Jouanolou’s trick [51], there exists a vector bundle E ! X and an affine E-torsor p W
zX ! X . As p is affine, we know the proposition for p by step 3. Moreover, the unit Id!
pM
� p

�
M is an isomorphism; indeed, it suffices to show this after restricting to an open

covering of X , so we may assume that the morphism p is isomorphic to the second pro-
jection An �X ! X , and then the result follows from item (3) of the proposition. As the
unit of the adjunction .p�M ; pM

� / is an isomorphism, the left adjoint p�M is fully faithful.
Let g D f ı p. As zX is affine, the morphism g is affine. Also, we show as before that

the unit Id! pP
� p
�
P is an isomorphism, so we get an isomorphism f P

�

�
�! f P

� pP
� p
�
P

' gP
� p
�
P . We set f M

� D gM
� p

�
M ; by the calculation we just did, this satisfies condi-

tion (2). It remains to show that f M
� is right adjoint to f �M . Let K 2 Ob DbM .Y / and

L 2 Ob DbM .X/. Then we have isomorphisms

HomDbM .Y /.K; f
M
� L/ D HomDbM .Y /.K; g

M
� p

�
ML/ ' HomDbM . zX/.g

�
MK;p�ML/

' HomDbM . zX/.p
�
Mf �MK;p�ML/;

and the last group is isomorphic to HomDbM .X/.f
�

MK;L/ since p�M is fully faithful.

Proposition 5.3. For every smooth morphism f W X ! Y in .Sch=k/ the functor

f �M W D
b.M .Y //! Db.M .X//

admits a left adjoint f]. Moreover,

(1) the natural transformation

f P
] ratMX ! ratMY f

M
]

obtained from �M
f

by adjunction is invertible;

(2) for every cartesian square
X 0

g0
//

f 0

��

X

f

��

Y 0
g
// Y

with f smooth, the exchange 2-morphism f 0M
]

g0�M ! g�Mf M
]

is invertible.

Proof. Assertion (2) is an immediate consequence of (1) since the functor ratMY is con-
servative.
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We deduce the proposition from Proposition 5.2 using Verdier duality. Let f WX! Y

be a smooth morphisms of relative dimension d . Note that f �P has a left adjoint given by

f P
] WD DP

Y f
P
� .�d/Œ�2d�DP

X :

Therefore we similarly set f M
]
WD DM

Y f M
� .�d/Œ�2d�DM

X .
Let A be an object in Db.M .X// and B be an object in Db.M .Y //. Then Proposi-

tions 5.2 and 2.6 provide isomorphisms

Hom.f M
] A;B/ ' Hom.DM

Y B; f M
� .�d/Œ�2d�DM

X A/

' Hom.f �M .d/Œ2d �DM
Y B;DM

X A/

' Hom.A;DM
X f �M .d/Œ2d �DM

Y B/ ' Hom.A; f �MB/:

This shows that .f M
]
; f �M / is a pair of adjoint functors. Note that the counit M ı�

]
of the

adjunction is given by the composition

f M
] f �M

"M
f

��! DM
Y f M
� f �M DM

Y

M���
���! .DM

Y /2
."M
Y
/�1

�����! Id (5.3)

and the unit M��
]

by the composition

Id
"M
X
��! .DM

X /2
Mı��
���! DM

X f �Mf M
� DM

X

"M
f

��! f �Mf M
] : (5.4)

To show that the morphism

f P
] ratMX

M��
]

���! f P
] ratMX f �Mf M

]

.�M
f
/�1

�����! f P
] f �P ratMY f

M
]

Pı�
]

���! ratMY f
M
]

is invertible, it is enough to check that it is equal to the morphism

f P
]

ratMX
.�M
X
/�1
// DP
Y f

P
� .�d/Œ�2d�ratMX DM

X

M
f

��

DP
Y ratMY f

M
� .�d/Œ�2d�DM

X

�M
Y // ratMY f

M
]

where M
f

is the invertible natural transformation of Proposition 5.2. Using the expres-
sions of M ı�

]
and M��

]
given in (5.3) and (5.4), this follows directly from Proposi-

tion 2.6 (1, 2), which ensures that the diagram

DP
X f

�
P Œd �D

P
Y ratMY

"P
f

//

"M
f

**

.DP
X /

2f �P.d/Œd �ratMY

."P
X
/�1

��

DP
X f

�
P Œd �ratMY DM

Y

"P
f

��

�M
Y

OO

f �P.d/Œd �.D
P
Y /

2ratMY
�M
Y

tt

."P
Y
/�1
// f �P.d/Œd �ratMY

f �P.d/Œd �D
P
Y ratMY DM

Y

�M
Y // f �P.d/Œd �ratMY .D

M
Y /2

."M
Y
/�1

OO

is commutative.
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The pair .j �M ; i�M / is conservative, since so is .j �P ; i
�
P/. This follows from the exis-

tence of the isomorphisms �M
j , �M

i and the fact that ratMX is a conservative functor.
To finish the proof of Theorem 5.1, it remains to check that if s is the zero section of

p W A1X ! X , then pM
]
sM� is an equivalence of categories. By construction

pM
] sM� D DM

X pM
� .�1/Œ�2�D

M
A1
X

sM� :

Note that the isomorphism DP
A1
X

sP� ' sP� DP
X exists in the category of (constructible)

étale motives. Therefore, the compatibility of the Betti realization with the four oper-
ations (see [7, Théorème 3.19]) implies by the universal property of the categories of
perverse motives that this isomorphism lifts to an isomorphism DM

A1
X

sM� ' s
M
� DM

X . As a

consequence, we get an isomorphism

pM
] sM� ' DM

X pM
� s

M
� .�1/Œ�2�D

M
A1
X

' Id.�1/Œ�2�:

This shows that pM
]
sM� is an equivalence of categories and concludes the proof of Theo-

rem 5.1.

5.3. Complement to the main theorem

The following proposition complements Theorem 5.1.

Proposition 5.4. Let f WX ! Y be a morphism of quasi-projective k-varieties. Then the
natural transformations

�M
f W ratMX f ŠM ! f ŠP ratMY ; �M

f W f
P
Š ratMX ! ratMY f

M
Š

are invertible.

Proof. By [7, Théorème 3.4], it just remains to check that �M
i is invertible if i W Z ,! X

is a closed immersion. Let j W U ,! X be the open immersion of the complement of Z
in X . Then we have a commutative diagram

iP� i
Š
P ratMX

// ratMX
// jP
� j

�
P ratMX

C1
//

iP� ratMZ i
Š
M

//

�M
i

OO

ratMX
// jP
� ratMU j

�
M

C1
//

.�M
j
/�1

OO

ratMX iM� i ŠM
//

M
i

OO

ratMX
// ratMX jM

� j �M
C1
//

M
j

OO

which implies that the image of �M
i under iM� is invertible since all the other morphisms

are. Therefore �M
i is also invertible.
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5.4. Some consequences

In this subsection, we draw some immediate consequences of the main theorem 5.1.

Geometric local systems are motivic. A Q-local system L on a quasi-projective k-vari-
ety X will be called geometric if there exists a smooth proper morphism g W Z! X such
that L D Rig�Q for some i 2 Z. We will say that L is motivic if there exists an object
L in Db.M .X// such that L and ratMX .L/ are isomorphic in the category Db.P.X//.

Corollary 5.5. A geometric Q-local system L on a quasi-projective k-variety X is
motivic.

Proof. If the local system L is geometric, there exists a smooth proper morphism g W

Z ! X such that L D Rig�QZ for some i 2 Z. Then L is the image under the func-
tor ratMX of the perverse motive cHi .gM

� QM
Z /, where cHi is the cohomological functor

associated with the constructible t -structure (see below).

Remark 5.6. In this remark, we denote by Hi the standard cohomology functors on the
category Db.M .X//. Let L be a geometric Q-local system on a smooth quasi-projective
variety of (pure) dimension d and choose a smooth proper morphism g W Z ! X and
an integer j such that L D Rjg�QZ . As Z is smooth and g is proper and smooth,
the constructible sheaves Rig�QZ are all Q-local systems on X . Hence the complexes
.Rig�QZ/Œd � are perverse sheaves and therefore .Rig�QZ/Œd �D

pHdCig�QZ for every
i 2 Z. In particular, L Œd � D pH jCdg�QZ and it follows that L Œd � is the image under
ratMX of the perverse motivic sheaf A WD HjCd .gM

� QM
Z /.

Intersection cohomology. The four operations formalism allows the definition of a
motivic avatar of intersection complexes. In particular, intersection cohomology groups
with coefficients in geometric systems are motivic. More precisely:

Corollary 5.7. Let X be an irreducible quasi-projective k-variety and L be a Q-local
system on a smooth dense open subscheme of X . If L is motivic .in particular if L is
geometric/, then the intersection cohomology group IHi .X;L /, for i 2 Z, is canonically
the Betti realization of a Nori motive over k.

Proof. Let d be the dimension of X and L be a Q-local system on a smooth dense
open subscheme U of X . Since L is motivic, there exists an object L 2 Db.M .U //

such that L is isomorphic to ratMU .L/. Since L Œd � is a perverse sheaf on U and ratMU is
conservative, the complexLŒd� is a perverse motivic sheaf onU that is belongs to M .U /.
Then, with the notation of Definition 6.19 below, the intersection complex

ICX .L / WD Im.pH 0jP
Š L Œd �! pH 0jP

� L Œd �/

is canonically isomorphic to the image under ratMX of the perverse motivic sheaf jM
Š� LŒd�

WD Im.H0.jM
Š
LŒd�/! H0.jM

� LŒd�//. This implies IHi .X;L / WD Hi�d .X; ICX .L //
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is the Betti realization of the Nori motive Hi�d .�M
� jM

Š�
LŒd�/ where � W X ! Spec k is

the structural morphism.

This shows, in particular, that intersection cohomology groups carry a natural Hodge
structure. If X is a smooth projective curve, and L underlies a polarizable variation of
Hodge structure, then the Hodge structure on the intersection cohomology groups was
constructed by Zucker [77, (7.2) Theorem, (11.6) Theorem]. In general, it follows from
Saito’s work on mixed Hodge modules [67], and a different proof has been given by de
Cataldo [25]. We consider the weights in the next section (see Theorem 6.28 and Corol-
lary 6.29).

Leray spectral sequences. Let f W X ! Y be a morphism of quasi-projective k-varieties
and L be a Q-local system on X . Then we can associate with it two Leray spectral
sequences in Betti cohomology: the classical one

Hr .Y;Rsf�L / H) H rCs.X;L /

and the perverse one
Hr .Y; pH sf�L / H) H rCs.X;L /:

The main theorem of Arapura [2] shows that if L D QX is the constant local system on
X and the morphism f is projective, then the classical Leray sequence is motivic, that is,
it is the realization of a spectral sequence in the abelian category of Nori motives over k
(see precisely [2, Theorem 3.1]).

This property is still true without the projectivity assumption and also more generally
if the local system L is geometric:

Corollary 5.8. If the local system L is motivic .in particular if it is geometric/, then the
classical Leray spectral sequence and the perverse Leray spectral sequence are spectral
sequences of Nori motives over k.

Proof. The result follows from the functoriality of the direct image functors.

In particular, the Leray spectral sequences are spectral sequences of (polarizable)
mixed Hodge structures. The compatibility of the classical Leray spectral sequence result
in Hodge theory was already proved by Zucker [77] when X is a curve and more gener-
ally, for both spectral sequences, by Saito [67] if L underlies an admissible variation of
mixed Hodge structures. This result has been recovered by de Cataldo and Migliorini [26]
with different techniques.

Nearby cycles. The theory developed here also shows that nearby cycles functors applied
to perverse motives produce Nori motives.

Corollary 5.9. Let X be a quasi-projective k-variety, f W X ! A1
k

a flat morphism with
smooth generic fiberX� and L be a Q-local system onX� . If L is motivic .in particular
if it is geometric/, then, for every point x 2 X� .k/ and every i 2 Z, the Betti cohomology
H i .‰f .L /x/ of the nearby fiber is canonically a Nori motive over k.
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Proof. The nearby cycles functor  f WD ‰f Œ�1� is t -exact for the perverse t -structure.
Since it exists in the triangulated category of constructible étale motives (see [6, Sec-
tion 3.5]) and the Betti realization is compatible with the nearby cycles functor by [7,
Theorem 4.9], the universal property ensures the existence of an exact functor  M

f
W

M .X�/!M .X� / and an invertible natural transformation ratMX� 
M
f
'  f ratMX� .

Let d be the dimension of the generic fiber X� . Since L is motivic, there exists an
object L in Db.M .X�// such that L and ratMX�.L/ are isomorphic. As L Œd � is perverse
and ratMX� is conservative, the complex LŒd� belongs to M .X�/. So we conclude that

H i .‰f .L /x/ is the Betti realization of the Nori motive HiC1�d .x� M
f
LŒd�/.

Exponential motives. The perverse motives introduced in the present paper and their sta-
bility under the four operations could also be used in the study of exponential motives
as introduced in Fresán—Jossen’s book [34]. Indeed, recall that Kontsevich and Soibel-
man [56] define an exponential mixed Hodge structure as a mixed Hodge module A on
the complex affine line A1C such that p�A D 0 where p W A1C ! Spec.C/ is the projec-
tion. Their definition can be mimicked in the motivic context and the abelian category of
exponential Nori motives can be defined as the full subcategory of M .A1

k
/ formed by the

objects which have no global cohomology.

Constructible t -structure. Let us conclude by a possible comparison with Arapura’s con-
struction from [3]. Let X be a k-variety and consider the following full subcategories of
Db.M .X//:

cD�0 WD ¹A 2 Db.M .X// W H k.x�MA/ D 0; 8x 2 X; 8k > 0º;

cD�0 WD ¹A 2 Db.M .X// W H k.x�MA/ D 0; 8x 2 X; 8k < 0º:

As in Saito [67, 4.6. Remarks] (see also [3, Theorem C.0.12]), we can check that these
categories define a t -structure on Db.M .X//.

Let ctM .X/ be the heart of this t -structure. Then the functor ratMX induces a faithful
exact functor from ctM .X/ into the abelian category of constructible sheaves of Q-vector
spaces on X . Then, using the universal property of the category of constructible motives
M.X;Q/ constructed by Arapura in [3], we get a faithful exact functor M.X;Q/ !
ctM .X/. Is this functor an equivalence? IfX D Speck, then both categories are equivalent
to the abelian category of Nori motives, so this functor is an equivalence.

6. Weights

In this section, we will use results on motives and weight structures from Bondarko’s and
Hébert’s papers [21, 41]. To apply these references directly in our context, we will make
use of the fact that if S is a Noetherian scheme of finite dimension, then Ayoub’s cate-
gory DAct.S/ is canonically equivalent to the category of constructible Beilinson motives
studied in Cisinski and Déglise’s book [23]. This follows from [23, Theorem 16.2.18] and
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will henceforth be used without further comment. (Note also that, though the authors of
[21, 41] have chosen to use Beilinson’s motives, étale motives could have been used.)

6.1. Continuity of the abelian hull

Remember that, in Neeman’s book [62, Chapter 5], there are four constructions of the
abelian hull of a triangulated category. The first one gives a lax 2-functor from the 2-cat-
egory of triangulated categories to that of abelian categories, but the other three construc-
tions give strict 2-functors. If we use the fourth construction, which Neeman calls D.S/
(see [62, Definition 5.2.1]), then the following proposition is immediate.

Proposition 6.1. Let S be a triangulated category, and suppose that we have an equiv-
alence of triangulated categories S ��! 2-lim

�!i2I
Si , where I is a small filtered category.

Then the canonical functor
Atr.S/! 2-lim

�!
i2I

Atr.Si /

is an equivalence of abelian categories.

6.2. Étale realization and `-adic perverse Nori motives

Let S be a Noetherian excellent scheme finite-dimensional scheme, and let ` be a prime
number invertible over S ; we assume that S is a Q-scheme. (By [45, Exposé XVIII-A],
the hypotheses above imply Hypothesis 5.1 in Ayoub [8].) Under this hypothesis, Ayoub
has constructed an étale `-adic realization functor on DAct.S/, compatible with pullbacks.

Theorem 6.2 (see [8, Section 5]). Denote by Db
c.S;Q`/ the category of constructible `-

adic complexes on S . Then we have a triangulated functor RKet
S W DAct.S/! Db

c.S;Q`/

for every S and, for every morphism f W S ! S 0 with S 0 satisfying the same hypotheses
as S , we have an invertible natural transformation

�f W f
�
ıRKet

Y ! RKet
X ı f

�:

Using results of Gabber [36] (see also Fargues [33, Sections 4 and 5]), we can con-
struct an abelian category P.S;Q`/ of `-adic perverse sheaves on S , satisfying all the
usual properties. In particular, we get a perverse cohomology functor pH 0

`
WD pH 0 ıRKet

S W

DAct.S/!P.S;Q`/.

Definition 6.3. Let S be as above. The abelian category of `-adic perverse motives on S
is the abelian category

M .S/` WD Atr.DAct.S/;
pH 0

` /:

By construction, the functor pH 0
`

has a factorization

DAct.S/
pH0M
���!M .S/`

ratM
S;`

���!P.S;Q`/

where ratM
S;`

is a faithful exact functor and pH 0
M is a homological functor.
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By the universal property of M .S/`, we also get pullback functors between these
categories as soon as the pullback functor between the categories of `-adic complexes
preserves the category of perverse sheaves.

We will use the following important fact: If we fix a base field k of characteristic
zero and only consider schemes that are quasi-projective over k, then the main theorem
(Section 5.1) stays true for the categories M .S/`. Of course, we have to replace Db

ct.S/

and the Betti realization functor by Db
c.S;Q`/ and the étale realization functor in all the

statements. Indeed, the proof of the main theorem, and of the statements that it uses,
still works if we use the `-adic étale realization instead of the Betti realization. The only
result that requires a slightly different proof is Lemma 3.13: we have to show that the
`-adic realization of Ayoub’s logarithmic motive Log_n is the local system used in Beilin-
son’s construction of the unipotent nearby cycle functor (see Beilinson [16, Sections 1.1
and 1.2] or [60, Definition 5.2.1]). As in the proof of Lemma 3.13, it suffices to check this
for n D 1, and then it follows from [8, Lemma 11.22].

6.3. Mixed horizontal perverse sheaves

Let k be a field and S be a k-scheme of finite type. Suppose that k is finitely gener-
ated over its prime field. We also fix a prime number ` invertible over S . The category
Db

m.S; Q`/ of mixed horizontal Q`-complexes and its perverse t-structure with heart
Pm.S;Q`/ (the category of mixed horizontal `-adic perverse sheaves on S ) were con-
structed by Huber [42] (see also [60, Section 2]). We recall the definition briefly and
refer to [42, 60] for the details. First we consider the category Db

h.S;Q`/ of horizon-
tal complexes on S , which is by definition the 2-colimit of the categories Db

c.X ;Q`/

where X runs over all flat finite type models of X over regular subalgebras A of k that
are of finite type over Z and have k as their fraction field. There is an obvious func-
tor �� W Db

h.S;Q`/! Db
c.S;Q`/, which is triangulated and conservative, and a perverse

t -structure on Db
h.S;Q`/ that is characterized by the fact that �� is t -exact. Also, the

functor �� is fully faithful on the heart of this t -structure [60, Proposition 2.6.2].
We say that an object of Db

h.S;Q`/ is mixed if it extends to a complexK on a model X
ofX as before such that all the (ordinary) cohomology sheaves ofK are successive exten-
sions of punctually pure sheaves in the sense of Deligne [27]. The category Db

m.S;Q`/ of
mixed horizontal complexes is the full subcategory of Db

h.S;Q`/ whose objects are mixed
complexes. The perverse t -structure on Db

h.S;Q`/ restricts to a t -structure on Db
m.S;Q`/,

whose heart is the category Pm.S;Q`/ of mixed horizontal perverse sheaves; this last
category is a full subcategory of the heart of the perverse t -structure on Db

h.S;Q`/, so ��

induces a fully faithful functor Pm.S;Q`/!P.S;Q`/.
Now we want to show that the realization functor ratM

S;`
WM .S/`!P.S;Q`/ factors

through the fully faithful functor Pm.S;Q`/!P.S;Q`/.
We have a continuity theorem for the categories of étale motives, proved by Ayoub

[12, Corollaire 1.A.3], [8, Corollaire 3.22] and by Cisinski–Déglise [23, Proposi-
tion 15.1.6]).
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Theorem 6.4. Let S be a Noetherian scheme of finite dimension. Suppose that we have
S D lim

 �i2I
Si , where all the Si are finite-dimensional Noetherian schemes and all the

transition maps Si ! Sj are affine. Then the canonical functor 2-lim
�!i2I

DAct.Si / !

DAct.S/ is an equivalence of monoidal triangulated categories.

Using the definition of mixed horizontal `-adic complexes, we immediately get the
following corollary.

Corollary 6.5. Let S and ` be as at the beginning of this subsection. Then the étale real-
ization functor DAct.S/! Db

c.S;Q`/ factors through a functor DAct.S/! Db
h.S;Q`/.

Corollary 6.6. With the notation of the previous corollary, the essential image of the
functor DAct.S/! Db

h.S;Q`/ is contained in the full subcategory Db
m.S;Q`/. In partic-

ular, the perverse cohomology functor pH 0
`
W DAct.S/!P.S;Q`/ factors through the

subcategory Pm.S;Q`/.

Proof. This follows from the facts that DAct.S/ is generated by the Tate twists of motives
of smooth S -schemes (see [23, Definition 15.1.1 and Proposition 15.1.4]) and that mixed
horizontal complexes are preserved by direct images and Tate twists (see [42, Proposi-
tion 3.2] for direct images; the stability by Tate twists is easy).

Corollary 6.7. The essential image of the realization functor ratM
S;`
W M .S/` !

P.S;Q`/ is contained in the subcategory Pm.S;Q`/.

We will also denote the resulting faithful exact functor M .S/!Pm.S;Q`/ by ratM
S;`

.

Remark 6.8. Suppose that k is not necessarily finitely generated over its prime field.
We define Db

m.S;Q`/ as the 2-colimit of the categories Db
m.S

0;Q`/ for S 0 a model of S
over a finitely generated subfield of k. This category inherits a perverse t -structure from
the perverse t -structures on the Db

m.S
0;Q`/, whose heart we denote by Pm.S;Q`/. The

obvious functor Pm.S;Q`/!P.S;Q`/ is only exact faithful in general (not necessarily
fully faithful), but the perverse cohomology functor pH 0

`
W DAct.S/ ! P.S;Q`/ still

factors through this functor as in Corollary 6.6 (by Theorem 6.4), so we get a faithful
exact realization functor M .S/` !Pm.S;Q`/.

6.4. Continuity for perverse Nori motives

Like the triangulated category of motives, the category of perverse Nori motives satisfies
a continuity property.

Proposition 6.9. Let S be a scheme and ` be a prime number satisfying the conditions of
Section 6.2. Assume that S D lim

 �i2I
Si , where .Si /i2I is a directed projective system of

schemes satisfying the same conditions as S , and in which the transition maps are affine.
Also assume that the pullback by any transition map Si ! Sj preserves the category of
perverse sheaves, and that there exists a 2 Z such that if fi W S ! Si is the canonical
map, then f �i Œa� preserves the category of perverse sheaves for every i 2 I . Under these
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hypotheses, the functors f �i Œa� induce a functor

2-lim
�!
i2I

M .Si /` !M .S/`;

and this functor is full and essentially surjective.
If moreover the canonical exact functor 2-lim

�!i2I
P.Si ;Q`/!P.S;Q`/ induced by

the f �i Œa� is faithful, then the canonical functor

2-lim
�!
i2I

M .Si /` !M .S/`

is an equivalence of abelian categories.

Proof. This follows from Proposition 6.1 and Theorem 6.4.

Corollary 6.10. Let S and ` be as above, and suppose that S is integral. If � is the
generic point of S , the canonical exact functor

2-lim
�!
U

M .U /` !M .�/`;

where the colimit is taken over all nonempty affine open subschemes of S and where the
image of KU 2 Ob M .U /` is KU;�Œ� dimS�, is an equivalence of categories.

Proof. By Proposition 6.9, it suffices to check that the similar functor

2-lim
�!
U

P.U;Q`/!P.�;Q`/

is faithful. Let K be an object of 2-lim
�!U

P.U;Q`/ whose image in P.�;Q`/ is 0, and
let U be a nonempty open affine subscheme of S such that K comes from an object
K 0 of P.U;Q`/. After shrinking U (which does not change K), we may assume that
K 0Œ�dimS� is a local system. Then the conditionK 0�Œ�dimS�D 0 implies that this local
system is zero, so K D 0.

6.5. Comparison of the different categories of perverse Nori motives

In the next proposition, we compare the `-adic definition of perverse motives with the one
used previously and obtained via the Betti realization.

Proposition 6.11. Suppose that k is a field of characteristic zero and that S is quasi-
projective over k. Write �` for the canonical exact functor Atr.DAct.S//! P.S;Q`/

induced by pH 0
`

. If � is an embedding of k into C, then we also have an exact functor ��
from Atr.DAct.S// to P.S/ induced by pH 0. Then:

(1) If `;`0 are two prime numbers, then Ker�`DKer�`0 . In particular, we get a canonical
equivalence of abelian categories M .S/` DM .S/`0 .
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(2) If � W k!C is an embedding, then Ker�` DKer�� . In particular, we get a canonical
equivalence of abelian categories M .S/` DM .S/.

Proof. We first treat the case S D Spec k. If k can be embedded in C, then (2) follows
from Huber’s construction of mixed realizations [43], and (1) follows from (2). In the
general case, (1) follows from the case where k can be embedded in C and from Proposi-
tion 6.9, applied to the family of subfields of k that can be embedded in C.

Now we treat the case of a general k-scheme S . As in the first case, (1) follows
from (2) and from Proposition 6.9. So suppose that we have an embedding � W k ! C.
We prove the desired result by induction on the dimension of S . The case dimS D 0 has
already been treated, so we may assume that dim S > 0 and the result is known for all
schemes of lower dimension. We denote by M 7! ŒM � the canonical functor DAct.S/!

Atr.DAct.S//; as DAct.S/ is a triangulated category, this is a fully faithful functor. Let X
be an object of Atr.DAct.S//. By construction of Atr.DAct.S//, there exists a morphism
N !M in DAct.S/ such thatX is the cokernel of ŒN �! ŒM �. Then �`.X/ is the cokernel
of pH 0

`
.N /! pH 0

`
.M/, so �`.X/ D 0 if and only if pH 0

`
.N /! pH 0

`
.M/ is surjective.

Similarly, �� .X/D 0 if and only if pH 0.N /! pH 0.M/ is surjective. We can check these
conditions on a Zariski open covering of S , so we may assume that S is affine. Choose a
nonempty smooth open subset U of S such that the restrictions to U of �`.M/, �`.N /,
�� .M/ and �� .N / are all locally constant sheaves placed in degree � dim S . As S is
affine, after shrinkingU we may assume thatU is the complement of the vanishing set of a
nonzero function f 2O.S/. By [16, Proposition 3.1], �`.N /! �`.M/ is surjective if and
only if both �`.N /jU ! �`.M/jU and pˆM

f
�`.N /!

pˆM
f
�`.M/ are, which is equiv-

alent to the surjectivity of �`.NjU /! �`.MjU / and �`. f̂N/! �`. f̂M/. We have a
similar statement for �� . As dim.S � U/ < dim S , we can use the induction hypothesis
to reduce to the case S D U . It suffices to check the result on an étale cover of S , so we
may assume that S has a rational point x. Let i W x ! S be the obvious inclusion. As
�`.N /Œ� dim S� and �`.M/Œ� dim S� are locally constant sheaves on S , the morphism
�`.N /! �`.M/ is surjective if and only if �`.i�NŒ� dimS�/! �`.i

�MŒ� dimS�/ is,
and similarly for �� . So we are reduced to the result on the scheme x, which we have
already treated.

Corollary 6.12. Let k be a field of characteristic zero and S a quasi-projective scheme
over k. We have a canonical Q-linear abelian category M .S/ of perverse Nori motives,
together with a cohomological functor pH 0

M W DAct.S/!M .S/, with a `-adic realiza-
tion functor ratM

S;`
WM .S/!P.S;Q`/ for every prime number `, with a Betti realization

functor ratMS;� WM .S/!P.S/ for every embedding � W k ! C, and it has a formalism
of the four operations, duality, unipotent nearby and vanishing cycles compatible with all
these operations.

We fix a field k of characteristic zero and a quasi-projective scheme S over k. We first
define weights via the `-adic realizations.
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Definition 6.13. Let w 2 Z. Let K be an object of M .S/. We say that K is of weight
� w (resp. � w) if ratM

S;`
.K/ 2 Ob.Pm.S;Q`// is of weight � w (resp. � w) for every

prime number `. We say that K is pure of weight w if it is both of weight � w and of
weight � w.

In Proposition 6.18, we will give a more intrinsic definition of weights that does not
use the realization functors.

Definition 6.14. A weight filtration on an object K of M .S/ is an increasing filtration
W�K on K such that WiK D 0 for i small enough, WiK D K for i large enough, and
WiK=Wi�1K is pure of weight i for every i 2 Z.

The next result follows immediately from the similar result in the categories of mixed
horizontal perverse sheaves (see Huber [42, Proposition 3.4 and Lemma 3.8]).

Proposition 6.15. Let K;L be objects of M .S/, and let w 2 Z.

(1) If K is of weight � w .resp. � w/, so is every subquotient of K.

(2) If K is of weight � w and L is of weight � w C 1, then HomM .S/.K;L/ D 0.

Recall that if A and B are objects of an abelian category endowed with increasing
filtrations .FiA/i2Z and .FiB/i2Z, then a morphism u W A ! B is called compatible
(resp. strictly compatible) with the filtrations if, for every i 2 Z, we have u.FiA/ � FiB
(resp. u.FiA/ D u.A/ \ FiB).

Corollary 6.16. A weight filtration on an object of M .S/ is unique if it exists, and mor-
phisms of M .S/ are strictly compatible with weight filtrations. In particular, if an object
of M .S/ has a weight filtration, then so do all its subquotients.

6.6. Application of Bondarko’s weight structures

Let S be as in the previous subsection. We will now make use of Bondarko’s Chow weight
structure on DAct.S/. Let Chow.S/ be the full subcategory of DAct.S/ whose objects
are direct factors of finite direct sums of objects of the form fŠQX .d/Œ2d �, with f W
X ! S a proper morphism from a smooth k-scheme X to S and d 2 Z. Then, as shown
by Hébert [41, Theorem 3.3], and also by Bondarko [21, Theorem 2.1.1], there exists
a unique weight structure on DAct.S/ with heart Chow.S/ (see [41, Definition 1.5] or
[21, Definition 1.2.1] for the definition of a weight structure).

In particular, for every object K of DAct.S/, there exists an exact triangle A! K !

B
C1
��! (not unique) such that A (resp. B) is a direct factor of a successive extension of

objects of Chow.S/Œi � with i � 0 (resp. i � 1).

Proposition 6.17. Every object of M .S/ has a weight filtration. Moreover, if S D Speck
and � is an embedding of k in C, then the notion of weights of Definition 6.13 coincides
with that of [44, Section 10.2.2].



F. Ivorra, S. Morel 4264

Proof. We first prove that if M is an object of Chow.S/, then pH 0
M .M/ is pure of

weight 0 in our sense, and also in the sense of [44, Section 10.2.2] if S D Spec k with k
embeddable in C. The second statement is actually an immediate consequence of [44,
Definition 10.2.4] and of the motivic Chow lemma (see for example [41, Lemma 3.1]).
To prove the first statement, by definition of the weights on Pm.S;Q`/, we may assume
that k is finitely generated over Q; then the statement follows immediately from [18, Sta-
bilités 5.1.14] (see [42, first remark on p. 116]).

Then we note that every object of M .S/ is a quotient of an object of the form
pH 0

M .M/ for M 2 Ob.DAct.S// (because this is true for objects of Atr.DAct.S//). So
it suffices to prove the result for objects in the essential image of pH 0

M . Let M 2
Ob.DAct.S//, and let K D pH 0

M .M/. Let w 2 Z. By the first part of the proof, if M
is a direct factor of a successive extension of objects of Chow.S/Œi � with i � w (resp.
i � w C 1), then pH 0

M .M/ is of weight � w (resp. � w C 1) in our sense, and also in
the sense of [44] when this applies. In general, using the Chow weight structure of Bon-

darko, we can find an exact triangle A! M ! B
C1
��! such that A (resp. B) is a direct

factor of a successive extension of objects of Chow.S/Œi � with i � w (resp i � w C 1).
Applying pH 0

M , we get an exact sequence pH 0
M .A/! K ! pH 0

M .B/, with pH 0
M .A/

of weight � w and pH 0
M .B/ of weight � w C 1. If we set WwK D Im.pH 0

M .A/! K/,
then WwK is of weight � w and K=WwK is of weight � w C 1. This defines a weight
filtration on K.

Weights and the related weight filtration so far have been defined and constructed
for perverse motives via the `-adic realizations. As we shall see now, we can also define
weights more directly. Let DAct.S/w�i be the full subcategory of DAct.S/ whose objects
are direct factors of successive extensions of objects of Chow.S/Œw� with w � i , and
consider the abelian category

M .S/w�i WD Aad.DAct.S/w�i ;
pH 0

` /

for some prime number `. It follows from Proposition 6.11 that this category, up to an
equivalence, does not depend on `. Indeed, the universal property provides a commutative
diagram (up to isomorphisms of functors)

DAct.S/w�i

I

��

// Aad.DAct.S/w�i /

J

��

%`

((

DAct.S/ //

pH0
`

55
Atr.DAct.S//

�` //Pm.S;Q`/

where I is the inclusion and J; %` are exact functors. As by construction M .S/w�i WD

Aad.DAct.S/w�i /=Ker %`, it suffices to show that Ker %` is independent of `. Let A be
an object in Aad.DAct.S/w�i /. Since A belongs to Ker %` if and only if J.A/ belongs to
Ker �`, our claim follows from Proposition 6.11.
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The inclusion DAct.S/w�i � DAct.S/ induces a faithful exact functor

ui WM .S/w�i !M .S/:

Let K be an object in M .S/. Given an object .L; ˛ W ui .L/! K/ in the slice category
M .S/w�i=K, we can consider the subobject Im˛ of K and define WiK to be the union
of all such subobjects in K, that is, we set

WiK WD colim
.L;˛/2M .S/w�i=K

Im˛:

This construction is functorial in K (and moreover using the inclusion of DAct.S/w�i in
DAct.S/w�iC1 it is easy to see that it defines a filtration on K).

Proposition 6.18. Let K 2M .S/. Then WiK DWiK for every integer i 2 Z.

Proof. As observed in the proof of Proposition 6.17, if M belongs to DAct.S/w�i , then
pH 0

M .M/ is of weight � i . Hence, the functor ui takes its values in the abelian subcat-
egory of M .S/ formed by the objects of weight � i . As a consequence, for .L; ˛/ in
the slice category M .S/w�i=K, the subobject Im ˛ of K is of weight � i and therefore
WiK � WiK.

Conversely, there exists an epimorphism e W pH 0
M .M/� K where M belongs to

DAct.S/. By construction

Wi
pH 0

M .M/ WD Im
�
pH 0

M .A/! pH 0
M .M/

�
�Wi

pH 0
M .M/

where A is an object of DAct.S/w�i that fits in an exact triangle A ! M ! B
C1
��!

such that B is a direct factor of a successive extension of objects of Chow.S/Œw� with
w � i C 1. Therefore, since the weight filtration onK is the induced filtration (see Corol-
lary 6.16), we get

WiK D e.Wi
pH 0

M .M// � e.Wi
pH 0

M .M// �WiK:

This concludes the proof.

6.7. The intermediate extension functor

Recall the definition of the intermediate extension functor, which already appeared in the
proof of Corollary 5.7.

Definition 6.19. Let j W S ! T be a quasi-finite morphism between quasi-projective k-
schemes. We define a functor jM

Š�
WM .S/!M .T / by

jM
Š� .K/ D Im.H0.jM

Š K/! H0.jM
� K//:

Note that, as j is quasi-finite, the functor jM
Š is right exact and the functor jM

� is left
exact. In particular, the functor jM

Š�
preserves injective and surjective morphisms, but it is

not exact in general.
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Proposition 6.20. Let j W S ! T be an open immersion, and letw 2 Z. IfK 2 ObM .S/

is of weight � w (resp. of weight � w, resp. pure of weight w), so is jM
Š�
K.

Also, the functor jM
Š�

is exact on the full abelian subcategory of objects that are pure
of weight w.

Proof. It suffices to show these statement for mixed `-adic perverse sheaves. The first
statement follows from [18, Corollaire 5.3.2] (more precisely, if j is not affine, it follows
from [18, Stabilités 5.1.14 and Proposition 5.3.1]). The second statement follows from
[60, Corollary 9.4].

6.8. Pure objects

Let us start with the definition of objects with strict support on a given closed subscheme.

Definition 6.21. Let Z be a closed integral subscheme of S , and denote the immersion
Z! S by i . We say that an objectK of M .S/ has strict supportZ ifKjS�Z D 0 and, for
every nonempty open subset j W U ! Z, the adjunction morphism K ! .ij /M� .ij /

�
MK

is injective and induces an isomorphism between K and .ij /M
Š�
.ij /�MK.

Remark 6.22. For example, if KjS�Z D 0 and if there exists a smooth dense open sub-
set j W U ! Z such that ratMU .KjU /Œ� dimU � (or any ratM

U;`
.KjU /Œ� dimU � for some

prime number `) is locally constant and KZ D jM
Š� .KjU /, then K has strict support Z.

Indeed, this follows from the similar result for perverse sheaves, which follows from
[18, Lemme 4.3.2] (note that the proof of this result does not use the hypothesis that L is
irreducible).

Proposition 6.23 (cf. [18, Théorème 5.3.8]). Let K be an object of M .S/, and suppose
that K is pure of some weight. Then we can write K D

L
Z KZ , where the sum is over

all integral closed subschemes Z of S , each KZ is an object of M .S/ with strict support
Z, and KZ D 0 for all but finitely many Z.

Proof. We prove the result by Noetherian induction on S . If dimS D 0, there is nothing
to prove. Suppose that dim S � 1, and let j W U ! S be a nonempty open affine subset
of S . After shrinking U , we may assume that U is smooth and that ratMS .K/Œ� dimU �

is a locally constant sheaf on U . Let w be the weight of K. Then [60, Corollary 9.4]
implies that jM

� j �MK=jM
Š�
j �MK is of weight � w C 1, so the adjunction morphism

K ! jM
� j �MK factors through a morphism K ! jM

Š� j
�
MK. Similarly, the adjunction

morphism jM
Š j �MK ! K factors through a morphism jM

Š� j
�
M ! K. By definition of

jM
Š�

, the composition jM
Š�
j �MK ! K ! jM

Š�
j �MK is the identity of jM

Š�
j �MK. So we

have K D jM
Š� j

�
MK ˚ L, with j �ML D 0. The first summand has strict support U by

the remark above, and LjU D 0, so the conclusion follows from the induction hypothesis
applied to LjS�U .

Theorem 6.24. Let S be as before, and let w 2 Z. Let M .S/w be the full abelian sub-
category of M .S/ whose objects are motives that are pure of weight w. Then M .S/w is
semisimple.
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Proof. By Proposition 6.23, we may assume that S is integral, and it suffices to prove the
result for the full subcategory M .S/0w of objects in M .S/w with strict support S itself.

Let � be the generic point of S . By Corollary 6.10, we have a full and essentially
surjective exact functor (given by the restriction morphisms) 2-lim

�!U
M .U / !M .�/,

where the limit is over the projective system of nonempty affine open subsets U of S .
For such a U , we denote by M .U /0w the full subcategory of M .U / whose objects
are motives that are pure of weight w and have strict support U . By Proposition 6.17,
the functor above induces a full and essentially surjective functor 2-lim

�!U
M .U /w !

M .�/w , and by Proposition 6.23 this is turn gives a full and essentially surjective functor
2-lim
�!U

M .U /0w !M .�/w . Moreover, if j W U ! S is a nonempty open subset, then the
exact functor j �M WM .S/0w !M .U /0w is an equivalence of categories, because it has a
quasi-inverse, given by jM

Š� . So we deduce that the restriction functor M .S/0w!M .�/w
is full and essentially surjective. But this functor is also faithful, because the analogous
functor on categories of `-adic perverse sheaves is faithful. So M .S/0w !M .�/w is an
equivalence of categories, which means that we just need to show the theorem in the case
S D �, i.e., if S is the spectrum of a field.

Now suppose that S D Speck. Then, by Proposition 6.9, M .k/w D 2-lim
�!k0

M .k0/w ,
where the limit is over all the subfields k0 of k that are finitely generated over Q. So it
suffices to show the theorem for k finitely generated over Q. But then we can embed k
into C, and the conclusion follows from [44, Theorem 10.2.7].

Definition 6.25. Let K be an object of DbM .X/ and w 2 Z. We say that K is of weight
� w (resp. of weight � w, resp. pure of weight w) if, for every i 2 Z, the perverse motive
HiK is of weight � w C i (resp. of weight � w C i , resp. pure of weight w C i ).

Corollary 6.26. LetK;L be objects of M .S/. IfK and L are pure of respective weights
i and j , then ExtrM .S/

.A;B/ D 0 if i < j C r .

Proof. By Lemma 4.5 of Saito [68], this follows from the existence of the weight filtra-
tion and the fact that it is strictly compatible with morphisms of M .S/, and from the
semisimplicity of pure objects of M .S/.

Corollary 6.27. (1) There exists a unique weight structure .see [21, Definition 1.2.1]/
on DbM .S/ whose heart is the full subcategory of complexes of weight 0.

(2) LetK;L be objects of DbM .S/ and w 2 Z. IfK is of weight � w and L is of weight
> w, then HomDbM .S/.K;L/ D 0.

(3) The weight structure of .1/ is transversal to the canonical t -structure on DbM .S/ in
the sense of Bondarko [20, Definition 1.2.2].

(4) If K 2 Ob DbM .S/ is pure of some weight, then K '
L
i2Z HiKŒ�i �.

Proof. To prove (1), we apply [19, part II of Theorem 4.3.2] to the triangulated category
DbM .S/ and the full subcategory A of complexes of weight 0. This subcategory is stable
by finite coproducts and direct summands, and it generates DbM .S/. Indeed, to prove the
second statement, it suffices to show that the triangulated subcategory generated by A
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contains P.S/; but every perverse motive is a successive extension of pure perverse
motives (by the existence of the weight filtration), and if K is a pure perverse motive,
then some shift of K is an A . By [19, Theorem 4.3.2], there exists a weight structure on
DbM .S/ with heart A if and only if, for any objectsK;L of A and every integer n > 0,
we have HomDbM .S/.K;L/ D 0. As the functor Hom is cohomological in each variable,
we may assume thatK and L are concentrated in one degree, so that there exist objects A
and B that are pure of respective weights i and j such that K D AŒ�i � and L D BŒ�j �.
Then HomDbM .S/.K;LŒn�/ D ExtnCi�jM .S/

.A;B/ is zero by Corollary 6.26.
We prove (2). We have HomDbM .S/.K; L/ D HomDbM .S/.KŒ�w�; LŒ�w�/. As

KŒ�w� is of weight � 0 and LŒ�w� is of weight � 1, the statement follows from [19,
Proposition 1.3.3 (1)].

Item (3) follows immediately from the existence of the weight filtration on objects
of M .S/.

We prove (4). Let w be the weight of K. Let i 2 Z. Then ��iK and �>iK are pure of
weight w, so HomDbM .S/.�>iK; ��iKŒ1�/ D 0 by (3), so the exact triangle

��iK ! K ! �>iK
C1
��!

splits. This implies the statement.

Theorem 6.28. Let f W X ! S be a proper morphism of quasi-projective k-varieties
with X irreducible. Let j W U ! X be an open immersion, and K be a perverse motive
on U . If K is pure of weight w, then Hi .f M

� jM
Š� K/ is a motivic perverse sheaf that is

pure of weight w C i .

Proof. Let us say that L 2 Db.M .S// is pure of weight w if HiL is pure of weight wC i
for every i 2 Z. For such an L, by Corollary 6.12, it follows from the Weil conjectures
proved by Deligne [27] that f M

� L is pure of weight w (see [42, remark after Definition
3.3]). Hence, Proposition 6.20 ensures that f M

� jM
Š� K is pure of weight w. This gives the

conclusion.

In particular, this provides (for geometric variations of Hodge structures) an arithmetic
proof of Zucker’s theorem [77, Theorem p. 416] via reduction to positive characteristic
and to the Weil conjectures [27, Théorème 1]. More generally, in higher dimension:

Corollary 6.29. Let k be a field embedded into C. Let X be an irreducible proper k-
variety and L be a Q-local system on a smooth dense open subscheme U of X of the
form L D Rwg�QV where g W V ! U is a smooth proper morphism and w is an inte-
ger. Then the intersection cohomology group IHi .X;L /, for i 2 Z, is canonically the
Betti realization of a Nori motive over k which is pure of weight i C w. In particular,
IHi .X;L / carries a canonical pure Hodge structure of weight i C w.

Proof. Let d be the dimension of X , � W X ! Spec.k/ be the structural morphism and
j be the inclusion of U in X . As in Corollary 5.7, IHi .X;L / is the Betti realization
of the Nori motive Hi�d .�M

� jM
Š�

HwCd .gM
� QM

V //, which is pure of weight w C i by
Theorem 6.28.
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