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Abstract. Discovered by Aldous, Diaconis and Shahshahani in the context of card shuffling, the
cutoff phenomenon has since then been established for a variety of Markov chains. However,
proving cutoff remains a delicate affair, which requires a very detailed knowledge of the chain.
Identifying the general mechanisms underlying this phase transition, without having to pinpoint its
precise location, remains one of the most fundamental open problems in the area of mixing times.
In the present paper, we make a step in this direction by establishing cutoff for all Markov chains
with non-negative curvature, under a suitably refined product condition. The result applies, in par-
ticular, to the random walk on abelian Cayley expanders satisfying a mild degree assumption, hence
to the random walk on almost all abelian Cayley graphs. Our proof relies on a quantitative entropic
concentration principle, which we believe to lie behind all cutoff phenomena.
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1. Introduction

1.1. The cutoff phenomenon

Setup. Throughout the paper, we consider a stochastic matrixP on a finite state space X ,
and we let .Pt /t�0 denote the associated heat kernel, defined for t 2 Œ0;1/ and x;y 2X

by

Pt .x; y/ WD e
�t

1X
kD0

P k.x; y/tk

kŠ
:

Any continuous-time Markov semigroup on a finite state space takes this form, after a
trivial time scaling ensuring that jumps occur at rate at most 1. As soon asP is irreducible,
we have

Pt .x; y/ ���!
t!1

�.y/;

where � D �P denotes the unique invariant law. The rate at which this convergence
occurs is captured by the so-called mixing time, defined for any precision " 2 .0; 1/ by

tMIX."/ WD min
°
t � 0W max

x2X
kPt .x; �/ � �kTV � "

±
;
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where k� � �kTV D maxA�X j�.A/ � �.A/j denotes total-variation distance. Under-
standing how this fundamental parameter depends on the underlying transition matrix P
constitutes a fascinating area of research, at the crossroad between probability, discrete
geometry, spectral analysis and functional inequalities; see the books [43,51] for an intro-
duction.

The cutoff phenomenon. Quantifying the approach to equilibrium is of course particu-
larly relevant when the number of states is large. One is thus naturally led to consider a
sequence .Pn/n�1 of irreducible transition matrices and investigate the asymptotic behav-
ior of their mixing times as n!1. To lighten our exposition, we will completely drop
the subscript n from all notations. For many natural chains, a remarkable phase transi-
tion known as a cutoff has been established: the distance to equilibrium remains close
to its maximal value for a long time, and then suddenly drops to zero on a much shorter
time-scale. More formally, for any fixed " 2 .0; 1/,

tMIX.1 � "/

tMIX."/
D 1C o.1/; (1)

where o.1/ denotes a quantity that vanishes as n!1. The first instances of this phe-
nomenon were discovered in the 80’s by Aldous, Diaconis and Shahshahani in the context
of card shuffling [1, 2, 21]. Since then, cutoff has been established on a variety of ex-
amples; see in particular the surveys [20, 59]. The present paper is concerned with the
more fundamental problem of singling out abstract conditions under which this phase
transition occurs, without having to pinpoint its precise location. This question was raised
by Aldous and Diaconis in their seminal works [1, 2], and constitutes one of the most
important open problems in the modern study of Markov chains.

The product condition. In the reversible case (i.e., �.x/P.x; y/ D �.y/P.y; x/ for all
x; y 2 X ), cutoff is easily seen to imply the so-called product condition: for each fixed
" 2 .0; 1/,

tREL � tMIX."/; (2)

where the notation a� b means a=b D o.1/, and where tREL denotes the relaxation time
(inverse spectral gap) of the matrix P . The interest of this criterion is that it only involves
orders of magnitude: unlike the definition (1), it can be checked without having to deter-
mine the precise prefactor in front of mixing times. In the 2004 AIM workshop on mixing
times, Peres [57] conjectured that (2) is also sufficient for cutoff. This has been verified
for birth-and-death chains [22] and, more generally, random walks on trees [7]. Unfortu-
nately, counter-examples have been constructed in the general case; see [18, Section 6].
In fact, this failure is generic, in the sense that (2) is stable under a general rank-one
perturbation which completely destroys cutoff; see [43, Example 18.7]. Thus, the prod-
uct condition will incorrectly predict cutoff for many natural Markov chains, including
certain random walks on abelian groups.

Other criteria. A few other criteria for cutoff of reversible chains have been proposed. In
particular, Basu, Hermon and Peres provided a formulation in terms of concentration of
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hitting times [7]. Unfortunately, verifying this condition requires determining the precise
prefactor in front of hitting times, which, to the best of our knowledge, has not been
practically carried out beyond random walks on trees. In the specific context of random
walks on regular graphs with fixed degree d � 3, the delicate asymptotic Ramanujan
property

tREL D
d

d � 2
p
d � 1

C o.1/;

is known to imply cutoff [30, 44, 55]; see [16] for a generalization. Note, however, that
unlike the product condition (2), verifying the Ramanujan property does require determin-
ing the relaxation time up to an o.1/ term, a notoriously challenging task even on random
instances [13, 28]. Finally, let us mention an impressive series of works by Lubetzky and
Sly [46–49] (see also [29]), which develops a general framework for proving cutoff in cer-
tain spin systems at sufficiently high temperature, without having to determine the cutoff
location.

Our contribution. For a broad class of chains known as non-negatively curved chains, we
provide a sufficient “product-like” condition for cutoff, which only involves comparing
orders of magnitude of tREL and tMIX. Moreover, we do not require reversibility, but only
symmetry of the support:

P.x; y/ > 0 ” P.y; x/ > 0: (3)

Before stating the result, let us briefly recall the two notions of curvature on which our
approach relies: the Bakry–Émery curvature, and the Ollivier–Ricci curvature.

1.2. Non-negative curvature

Ricci curvature is a central concept in Riemannian geometry; see e.g. the book [39]. Over
the past decades, considerable efforts have been made to develop a satisfactory analogue
of this notion in discrete settings, such as graphs and Markov chains. In particular, Bakry
and Émery [4,5] proposed a fruitful approach based on �-calculus; see also the book [6].
More recently, Ollivier [53] put forward a different definition of curvature based on opti-
mal transport, which applies to arbitrary metric spaces. Our results will apply to both
definitions indifferently.

Ollivier–Ricci curvature. Under the symmetry assumption (3), we may turn the state
space X into a metric space by equipping it with the distance

dist.x; y/ WD min ¹k 2 ZCWP
k.x; y/ > 0º:

We use the graph-theoretical notation x � y to mean that dist.x; y/D 1. As any distance,
the above metric can be “lifted” to the distributional level via optimal transport. Specif-
ically, the L1-Wasserstein distance between two probability measures � and � on X is
defined as

W1.�; �/ WD min

2….�;�/

X
x;y2X


.x; y/ dist.x; y/;
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where….�;�/ is the set of all couplings of � and �, i.e. probability measures on X �X

whose marginals are � and �. The Ollivier–Ricci curvature is the largest number � such
that the inequality

W1.Pt .x; �/;Pt .y; �// � e
��t dist.x; y/

holds for all t 2 RC and all x; y 2 X . By Kantorovich duality, this is equivalent to the
inequality

kPtf kLIP � e
��t
kf kLIP (4)

for all t 2 RC and all observables f WX ! R, where kf kLIP D maxx�y jf .x/ � f .y/j.
In particular, non-negative Ollivier–Ricci curvature simply means that the semigroup is
a contraction for the Lipschitz norm. This natural property constitutes the essence of the
powerful path coupling method [17], and its consequences in terms of geometry, mixing,
and concentration of measure have been massively investigated. The literature is too vast
for an exhaustive account, and we refer the reader to the survey [54] for details. Estab-
lishing non-negative curvature is easier than one may think. Indeed, by convexity of W1,
it is enough to prove the one-step estimate

W1.P.x; �/; P.y; �// � .1 � �/ dist.x; y/:

Furthermore, by the triangle inequality, we may restrict our attention to the case where
x � y.

Bakry–Émery curvature. We now turn to Bakry–Émery curvature. We only introduce the
necessary notation, and refer to the beautiful lecture notes [61] for details. Write L D

P � Id for the generator of the semigroup .Pt /t�0. This operator acts on any observable
f WX ! R via

.L f /.x/ WD
X
y2X

P.x; y/.f .y/ � f .x//;

and the associated carré du champ � is given, for all f; gWX ! R, by the formula

�.f; g/.x/ WD
1

2

X
y2X

P.x; y/.f .y/ � f .x//.g.y/ � g.x//:

The Bakry–Émery curvature is then defined as the largest number � such that the inequal-
ity

1
2
L �.f; f / � �.f;L f /C ��.f; f /

holds pointwise for all f WX ! R. This functional inequality, often denoted CD.�;1/,
is equivalent to the following subcommutativity relation between the carré du champ and
the semigroup:

8t 2 RC; �.Ptf;Ptf / � e
�2�tPt�.f; f /: (5)

For consequences in terms of geometry, mixing, and concentration of measure, see [25].
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Non-negatively curved chains. In the discrete setting, there is apparently no known rela-
tion between the Bakry–Émery curvature and the Ollivier–Ricci curvature, although these
two notions share many similarities. We emphasize that our results will apply to both def-
initions indifferently. Thus, by a non-negatively curved chain, we will henceforth simply
mean a chain that has non-negative curvature in the Bakry–Émery sense or the Ollivier–
Ricci sense. Non-negatively curved chains are ubiquitous, and appear in a broad variety
of contexts. Classical examples include:

� all random walks on abelian groups [42];

� all conjugacy-invariant random walks on groups [11, 26];

� simple random walks on all Bruhat graphs of Coxeter groups [60];

� all monotone birth-and-death chains [40];

� the zero-range process with non-decreasing rates, and many other particle systems [62];

� the Glauber dynamics for various spin systems at high temperature [26].

To complement this list of examples, we note that non-negative curvature is closed under
several natural operations, such as composition, superposition and L1-tensorization [53].

1.3. Results and implications

Recall that P is not required to be reversible, i.e., to coincide with its adjoint

P ?.x; y/ WD
�.y/P.y; x/

�.x/
:

Consequently, we define the relaxation time tREL of the chain to be the inverse spectral
gap of the additive reversibilization PCP?

2
. Equivalently, tREL is the optimal constant in

the Poincaré inequality
Var.f / � tREL EŒ�.f; f /�; (6)

valid for all observables f WX ! R, where E and Var denote expectation and variance
on the finite probability space .X ; �/. We also introduce the sparsity parameter

� WD max
²

1

P.x; y/
W x; y 2X ; x � y

³
;

which is simply the maximum degree when P is the transition matrix of simple random
walk on a graph. To avoid degeneracies, we will assume that jX j � 3, so that (under our
assumption (3)),

tREL � 1=2 and � � 2: (7)

Finally, we recall that the notation a� b means that the ratio a=b vanishes as our implicit
parameter n tends to infinity. Similarly, a. b means that a=b is bounded above uniformly
in n. We are now ready to state our main result, in which non-negative curvature can be
understood either in the Ollivier–Ricci or the Bakry–Émery sense.
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Theorem 1 (Main result). Consider a sequence of irreducible transition matrices with
symmetric support and non-negative curvature. Suppose that for every fixed " 2 .0; 1/, we
have

tMIX."/� .tREL log�/2: (8)

Then the sequence exhibits cutoff. More precisely, for every " 2 .0; 1=2/, we have

tMIX."/ � tMIX.1 � "/ .
p

tMIX.1=4/ tREL log�:

Let us now comment on the “product-like” condition (8). First, it is effective, in the
sense that its verification only requires comparing the orders of magnitude of tMIX and tREL,
as promised. Second, it implies the original product condition, by (7). Third, the presence
of an additional sparsity term is unavoidable, because of the generic counter-example in
[43, Example 18.7]. More precisely, let P be the transition matrix of the random walk
with increment law � on an abelian group X (such chains are non-negatively curved),
where the pair .X ; �/ is chosen so that tREL . 1 � tMIX.1=4/. Then we can destroy
cutoff without affecting this property by simply replacing � with .1 � �/�C �� , where
� 2 .0; 1/ satisfies 1

tMIX.1=4/
� � � 1. However, this perturbation will drastically increase

the sparsity parameter �, and the role of the latter in our condition (8) is precisely to
preclude this type of pathologies. Finally, we emphasize that there is a variety of methods
for estimating the orders of magnitude of tMIX."/ and tREL; see the books [43, 51]. For
example, a simple diameter bound (see Lemma 11 below) ensures that our “product-like”
condition (8) holds whenever

diam.X /� .tREL log�/2:

This condition may be further simplified by using the estimate diam.X / � logN=log�,
where N D jX j denotes the number of states. As a consequence, we readily deduce
that non-negatively curved chains with reasonably good expansion exhibit cutoff, in the
following sense.

Corollary 2 (Non-negative curvature and expansion imply cutoff). A sufficient condition
for a sequence of non-negatively curved chains with symmetric support to exhibit cutoff
is that

tREL �
.logN/1=2

.log�/3=2
: (9)

This result applies to a variety of chains. To illustrate this, let us consider the important
special case where P is the transition matrix of simple random walk on a Cayley graph
G D Cay.X ; S/, where .X ;C/ is a finite abelian group and S �X a symmetric set of
generators. Specifically,

P.x; y/ D
1

jS j

X
z2S

1.yDxCz/:

Write N D jX j for the number of group elements, and d D jS j for the number of gener-
ators.
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Corollary 3 (Abelian graphs). Random walk on abelian Cayley graphs exhibits cutoff
whenever

tREL �
.logN/1=2

.log d/3=2
:

In particular, this applies to random instances. Indeed, a celebrated result of Alon
& Roichman [3], refined by Pak [56], by Naor [52], and finally by Hermon & Olesker-
Taylor [31], asserts that almost all Cayley graphs with d � .1C "/ log2N satisfy tREL . 1,
leading to the following result.

Corollary 4 (Cutoff on almost all abelian Cayley graphs). Let G be the Cayley graph
obtained by choosing d generators uniformly at random in an abelian group of size N .
Consider the regime

d � a log2N and log d � .logN/1=3;

where a > 1 is any fixed constant. Then the random walk on G exhibits cutoff with high
probability.

Note that the requirement a > 1 cannot be improved in general, since the binary group
Zd2 cannot be generated by less than d D log2N elements. The problem of establishing
cutoff for random abelian Cayley graphs has a long history (see the survey [37]). It origi-
nates with a conjecture raised by Aldous and Diaconis in an extended version of [2]. The
dense regime d � logN was settled several years ago by Dou and Hildebrand [23, 36].
The sparse regime d . logN , in contrast, was tackled only very recently in an impressive
series of works by Hermon and Olesker-Taylor [31–34], which additionally provides a
very detailed picture of the geometry of random Cayley graphs. We emphasize that those
two approaches crucially rely on the fact that the generators are chosen uniformly at ran-
dom, whereas our Corollary 3 deterministically applies to any abelian Cayley graph with
reasonably good expansion, without requiring any specific computation.

Remark 1 (Refinements). With some additional knowledge on the chain, our approach
can easily be refined. For example, the “product-like” condition (8) can be replaced with

tMIX."/�
tREL log�
p
�

;

which is strictly weaker as long as 1=� � tMIX."/. See Remark 4 below for details.

Remark 2 (Characterization of the cutoff time). Our proof also provides an entropic
characterization of the cutoff time; see the second part of Theorem 5 below.

Remark 3 (Bounded degrees). Condition (8) trivially holds in the bounded-degree
expander regime

max.�; tREL/ . 1� jX j:

Unfortunately, such chains must have negative curvature [58].
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Proof outline. The proof of Theorem 1 relies on a certain entropic concentration phe-
nomenon, which we formulate in Section 2.1 below. In Section 2.2, we show that this
phenomenon implies cutoff along any sequence of Markov chains, without any curvature
or support assumption. This is inspired by a recent body of work establishing cutoff on
random instances [8–10,14–16,19,31,35,45], where entropy plays a crucial role (see also
[50,55]). Our entropic criterion can be understood as the common mechanism underlying
these generic cutoff phenomena, and hopefully many more to come. Finally, in Sec-
tion 2.3, we establish the entropic concentration phenomenon for non-negatively curved
chains satisfying our “product-like” condition. This combines a new gradient estimate for
the logarithm of the heat kernel with a local concentration inequality for Lipschitz observ-
ables. While connections between curvature and local concentration are well known (see,
e.g., [24, 41, 61] and the references therein), their application to cutoff seems new and
promising.

2. Proof

2.1. The entropic concentration phenomenon

Relative entropy (or Kullback–Leibler divergence) is a natural measure of discrepancy
between a probability measure � and a (fully supported) reference probability measure � .
It is defined as

dKL.�k�/ WD
X
x2X

�.x/ log
�.x/

�.x/
;

where log denotes the natural logarithm. By the strict convexity of u 7! u logu, we always
have dKL.�k�/ � 0, with equality if and only if �D � . The celebrated Pinsker inequality
provides a one-sided quantitative version of this statement, by ensuring that k� � �kTV

is small whenever dKL.�k�/ is small. This is the starting point of a variety of powerful
upper bounds on mixing times (see, e.g., [12]). However, the converse relation – namely,
that k� � �kTV has to be large whenever dKL.�k�/ is large – is much looser, because a
very small region with �=� large can boost the above sum, while being negligible from
a total-variation viewpoint. A simple way to preclude this type of pathologies is to have
some control on the typical fluctuations of �=� . To do so, it is natural to consider the
associated variance, beautifully called varentropy in a different context [27]:

VKL.�k�/ WD
X
x2X

�.x/

�
log

�.x/

�.x/
� dKL.�k�/

�2
:

Coming back to Markov chains, we will consider the worst-case varentropy under the heat
kernel:

V ?
KL.t/ WD max

o2X
VKL.Pt .o; �/k�/:

This key quantity turns out to govern the cutoff phenomenon, as formalized in the fol-
lowing result (proved in Section 2.2 below). We emphasize that the latter applies to
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any transition matrix P : neither non-negative curvature, nor symmetry of the support
is required. To the best of our knowledge, the use of varentropy in relation with the cutoff
phenomenon is new.

Theorem 5 (Entropic concentration implies cutoff). For any stochastic matrix P and any
" 2 .0; 1=2/,

tMIX."/ � tMIX.1 � "/ �
2tREL

"2

�
1C

p
V ?

KL.tMIX.1 � "//
�
:

In particular, for a sequence of stochastic matrices to exhibit cutoff, it is enough that it
satisfies

1C
p

V ?
KL.tMIX."//�

tMIX."/

tREL

(10)

for all "2 .1=2;1/. Moreover, in that case, we have tMIX."/� t , where t solves the equation

d?KL.t/ � 1C
p

V ?
KL.t/

with d?KL.t/ D maxo2X dKL.Pt .o; �/k�/, and with � denoting equality up to any fixed
prefactor.

We naturally call (10) the entropic concentration phenomenon. Observe that the latter
readily implies the product condition (2). Of course, to make our criterion effective, we
need to complement it with an estimate on the varentropy V ?

KL. This is precisely the aim
of our second key result, established in Section 2.3 below, and which crucially exploits
non-negative curvature.

Theorem 6 (Varentropy estimate). Consider a sequence of non-negatively curved transi-
tions matrices with symmetric support. Fix " 2 .0; 1/, and suppose that

p
tREL � tMIX."/:

Then
V ?

KL.tMIX."// . tMIX."/.log�/2:

When combined together, Theorems 5 and 6 readily imply Theorem 1. The remainder
of the paper is thus devoted to the proof of these two results.

2.2. Entropic concentration implies cutoff

In this section, we prove that entropic concentration implies cutoff, as stated in Theorem 5.
To do so, we need a sharp, two-sided quantitative relation between entropy and mixing.
We start with the following upper bound, which shows that mixing occurs quickly once
relative entropy is small.

Lemma 7 (Entropic upper bound). For all t 2 RC and " 2 .0; 1/,

tMIX."/ � t C
tREL

"
.1C d?KL.t//:
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Proof. Recall that the relaxation time can be used to bound the total-variation distance
to equilibrium via the following classical inequality: for any law � on X and any time
s 2 RC,

k�Ps � �kTV �
e�s=tREL

2

s



��





1

I (11)

see, e.g., [51]. Now fix a law � on X , and consider the set A �X defined by

A WD

²
x 2X W log

�.x/

�.x/
< 1C

2dKL.�k�/

"

³
:

Observe that by definition,�
1C

2dKL.�k�/

"

�
�.Ac/ �

X
x2Ac

�.x/ log
�.x/

�.x/

D dKL.�k�/C
X
x2A

�.x/ log
�.x/

�.x/

� dKL.�k�/C �.A/ � �.A/

� dKL.�k�/C �.A
c/;

where at the third line we have used logu � u � 1. After simplification, we are left with

�.Ac/ � "=2:

Now, let b� WD �.�jA/ be � conditioned on A. Note that



b��





1

D
1

�.A/
max
x2A

�.x/

�.x/
� exp

²
2C

2dKL.�k�/

"

³
;

because �.A/ � 1=2 � 1=e. Consequently, (11) applied to b� yields

kb�Ps � �kTV �
1

2
exp

²
1C

dKL.�k�/

"
�

s

tREL

³
for all s � 0. To make the right-hand side less than "=2, we choose

s WD
tREL

"
.1C dKL.�k�//: (12)

On the other hand, we trivially have

kb�Ps � �PskTV � kb� � �kTV D �.A
c/ � "=2:

By the triangle inequality, we conclude that for s as in (12),

k�Ps � �kTV � ":

Since � is arbitrary, we may take � DPt .o; �/, and then maximize over o 2 X to con-
clude.
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To complement the above estimate, we now provide a lower bound showing that mix-
ing cannot occur until the relative entropy has reached a sufficiently low level.

Lemma 8 (Entropic lower bound). For any probability measure� on X and any "2.0;1/,

k� � �kTV � 1 � " H) dKL.�k�/ �
1C

p
VKL.�k�/

"
:

Proof. Consider the event A �X defined by

A WD ¹x 2X W�.x/ � �.x/e�º with � D dKL.�k�/ �

p
VKL.�k�/

"
:

Since log �
�

has mean dKL.�k�/ and variance VKL.�k�/ under �, Chebyshev’s inequality
implies

�.A/ � 1 � "2:

On the other hand, the definition of A readily implies

�.A/ � e���.A/:

Together, these two inequalities imply

�.A/ � �.A/ � .1 � "2/.1 � e�� /:

Assuming that k� � �kTV � 1 � ", we deduce that 1 � " � .1 � "2/.1 � e�� /, or equiv-
alently,

� � log.1C 1="/:

Since log.1C u/ � u, this implies � � 1=", as desired.

With these lemmas at hand, the proof of Theorem 5 is now straightforward.

Proof of Theorem 5. Fix " 2 .0; 1/ and set t D tMIX.1 � "/. By Lemma 7, we have

tMIX."/ � t C
tREL

"
.1C d?KL.t//:

On the other hand, Lemma 8 with � D Pt .o; �/ (followed by a maximization over o/
forces

d?KL.t/ �
1C

p
V ?

KL.t/

"
:

Reinserting this above and using " � 1 immediately yields the desired claim.

2.3. Non-negative curvature implies entropic concentration

In this section, we prove the general varentropy estimate for non-negatively curved chains,
stated in Theorem 6. Our starting point is the following local concentration inequality for
Lipschitz observables. The term local here refers to the fact that the underlying measure
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is the heat kernel itself, rather than the equilibrium measure � . Let � denote the curvature
of the chain, in either the Ollivier–Ricci or the Bakry–Émery sense. This is the only place
where curvature is used.

Lemma 9 (Local concentration inequality). For any f WX ! R and t 2 RC,

kPt .f
2/ � .Ptf /

2
k1 �

1 � e�2t�

2�
kf k2LIP;

where the fraction is interpreted as t if � D 0. In particular, if � � 0, then

kPt .f
2/ � .Ptf /

2
k1 � tkf k

2
LIP:

Proof. Our starting point is the following well-known pointwise identity, which is easily
checked by differentiating both sides with respect to t (see, e.g., [61, Problem 2.12.a]):

Pt .f
2/ � .Ptf /

2
D 2

Z t

0

Pt�s�.Psf;Psf / ds:

This reduces our task to proving that the integrand is at most e�2�skf k2LIP. In the Bakry–
Émery case, we can use the subcommutativity property (5) to write

2�.Psf;Psf / � 2e
�2�sPs�.f; f / � e

�2�s
kf k2LIP;

where the last equality follows from the trivial bound 2�.f;f /� kf k2LIP and the stochas-
ticity of the operator Ps . On the other hand, in the Ollivier–Ricci case, we use (4) to
write

2�.Psf;Psf / � kPsf k
2
LIP � e

�2�s
kf k2LIP:

In either case, we obtain 2�.Psf;Psf / � e
�2�skf k2LIP. Since this uniform bound is

trivially preserved under the action of the stochastic operator Pt�s , the claim is estab-
lished.

Remark 4 (Refinement). The second part of the lemma uses the crude bound

1 � e�2t�

2�
� t;

which has the advantage of suppressing the dependency on the curvature. However, in
situations where a quantitative lower bound on � is known, the alternative bound

1 � e�2t�

2�
�

1

2�

might be preferable, and leads to the refined condition tMIX."/�
tREL log�
p
�

mentioned in
Remark 1.

Applying Lemma 9 to the observable f .x/D log Pt .o;x/
�.x/

readily yields the varentropy
estimate

8t � 0; V ?
KL.t/ � t max

o2X





log
Pt .o; �/

�.�/





2
LIP

: (13)
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This reduces our task to obtaining a gradient estimate on the logarithm of the heat kernel.
While such estimates have been explored in the setting of diffusions on manifolds (see,
e.g., [38]), we could not find any satisfactory analogue on discrete state spaces. Here is
what we can prove.

Lemma 10 (Logarithmic gradient estimate). If P has symmetric support, then



log
Pt .o; �/

�.�/






LIP

� 3.1C log�/

for any initial state o 2X and any time t � diam.X /=4.

Proof. Fix an initial state o 2X and a time t > 0, and define f WX ! .0;1/ by

f .x/ WD
Pt .o; x/

�.x/
:

Let also q denote the Poisson distribution with mean t , i.e.

8k 2 ZC; q.k/ D
tke�t

kŠ
:

It follows from the definitions of P ?, f , and Pt that for all x; y 2X ,

�.x/P ?.x; y/f .y/ D P.y; x/Pt .o; y/ D

1X
kD0

q.k/P k.o; y/P.y; x/:

Summing over all y 2 X and using the Poisson identity tq.k/ D .k C 1/q.k C 1/, we
arrive at

t�.x/.P ?f /.x/ D

1X
kD0

kq.k/P k.o; x/:

We may now divide both sides by Pt .o; x/ D
P
k q.k/P

k.o; x/ to obtain

t .P ?f /.x/

f .x/
D

P1
kD0 kq.k/P

k.o; x/P1
kD0 q.k/P

k.o; x/
:

By Jensen’s inequality, we deduce from this expression that

t .P ?f /.x/

f .x/
� log

�P1
kD0 e

kq.k/P k.o; x/P1
kD0 q.k/P

k.o; x/

�
� log

�
et.e�1/

Pt .o; x/

�
;

where the second inequality simply uses the bound P k.o; x/ � 1 in the numerator. In
other words, X

y2X

P ?.x; y/
f .y/

f .x/
� e � 1C

1

t
log

1

Pt .o; x/
:

Using the notation .�.Q//�1 for the smallest non-zero entry of a matrix Q, this readily
implies

max
y�x

f .y/

f .x/
� �.P ?/

�
e � 1C

log�.Pt /

t

�
:
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Taking logarithms, we obtain the logarithmic gradient estimate

k logf kLIP � log�.P ?/C log
�
e � 1C

log�.Pt /

t

�
: (14)

It now only remains to bound �.P ?/ and �.Pt /. For the former, we simply remark that

�.P ?/ � �2.P / D �2; (15)

as is easily deduced from the identity P ?.x; y/P ?.y; x/ D P.x; y/P.y; x/ and the sym-
metry of the support of P . To estimate �.Pt /, we consider the 3

4
-idle transition matrixbP D 3

4
IdC 1

4
P . Note that for k D diam.X /, all entries of bP k are at least . 1

4�
/k . Con-

sequently, for all x; y 2X ,

k � diam.X / H) bP k.x; y/ � � 1

4�

�diam.X /

:

Multiplying by e�4t .4t/k=kŠ and summing over all k � diam.X /, we obtain

Pt .x; y/ � p

�
1

4�

�diam.X /

;

where p denotes the probability that a Poisson variable with mean 4t is at least diam.X /.
Choosing t � diam.X /=4 makes this probability at least 1=2, and we deduce that

�.Pt / � 2.4�/
diam.X /: (16)

Inserting the estimates (15)–(16) into (14) easily yields the claim.

Our last ingredient is the following elementary diameter bound, in which the fact that
" may be taken arbitrarily close to 1 is crucial.

Lemma 11 (Diameter bound). For any " 2 .0; 1/, we have

diam.X / � 2tMIX."/C

r
8tMIX."/

1 � "
C

r
8tREL

1 � "
:

Proof. Fix " 2 .0; 1/, and set t D tMIX."/. By definition, we have

Pt .o; A/ � �.A/C " (17)

for any initial state o 2X and any event A �X . Let us consider the specific choice

A WD

²
x 2X W dist.o; x/ � t C

r
2t

1 � "

³
:

Note that by Chebyshev’s inequality,

Pt .o; A/ >
1C "

2
;
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because the distance to the origin at time t is stochastically dominated by a Poisson ran-
dom variable with mean t . In view of (17), we deduce that �.A/ > .1 � "/=2, i.e.

P

�
dist.o; U / � t C

r
2t

1 � "

�
>
1 � "

2
; (18)

where U denotes a random variable with distribution � . On the other hand, the function
f W x 7! dist.o; x/ is trivially Lipschitz on X , so the Poincaré inequality (6) implies

Var.dist.o; U // � tREL:

By Chebyshev’s inequality again, we deduce that

P

�
dist.o; U / � EŒdist.o; U /� 2

�
�

r
2tREL

1 � "
;

r
2tREL

1 � "

��
�
1C "

2
: (19)

Thus, the events in (18)–(19) must intersect. In other words, for all o 2X ,

EŒdist.o; U /� � t C

r
2t

1 � "
C

r
2tREL

1 � "
:

The triangle inequality dist.o; o0/ � EŒdist.o; U /C dist.o0; U /� completes the proof.

We may at last establish Theorem 6.

Proof of Theorem 6. Fix " 2 .0; 1/ and suppose that
p

tREL � tMIX."/. By, Lemma 11, we
have

diam.X / � .2C o.1//tMIX."/:

In particular, the condition tMIX."/ � diam.X /=4 is eventually satisfied. Consequently,
Lemma 10 applies with t D tMIX."/. Combining this with inequality (13), we obtain

V ?
KL.tMIX."// � 9tMIX."/.1C log�/2

for n sufficiently large. Since � � 2, we have 18.1C log�/2 . log2�, as desired.
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