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Abstract. We resolve three longstanding questions related to the large scale geometry of the group
of Hamiltonian diffeomorphisms of the two-sphere, equipped with Hofer’s metric. Namely: (1) we
resolve the Kapovich–Polterovich question by showing that this group is not quasi-isometric to the
real line; (2) more generally, we show that the kernel of Calabi over any proper open subset is
unbounded; and (3) we show that the group of area and orientation preserving homeomorphisms of
the two-sphere is not a simple group. We also find, as a corollary, that the group of area-preserving
diffeomorphisms of the open disc, equipped with an area form of finite area, is not perfect. Central
to all of our proofs are new sequences of spectral invariants over the two-sphere, defined via periodic
Floer homology.
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1. Introduction

It is a remarkable fact that the group of Hamiltonian diffeomorphisms of a symplectic
manifold admits a bi-invariant Finsler metric, known as Hofer’s metric. The existence of
such a metric on an infinite-dimensional Lie group is highly unusual, due to the lack of
compactness, and stands in contrast to the fact that a simple1 finite-dimensional Lie group
admits a bi-invariant Finsler metric only if it is compact; see [43, Prop. 1.3.15].

The theme of this article is the large-scale geometry of Hofer’s metric, on Ham.S2;!/,
the Hamiltonian diffeomorphisms of the two-sphere.2 Our first result, Theorem 1.4,
settles two longstanding questions, presented below, about the quasi-isometry type of
Ham.S2; !/. The first of the two questions was posed by Kapovich and Polterovich
in 2006.

Question 1.1. Is Ham.S2; !/ quasi-isometric to the real line R?

The second question is due to Polterovich and dates back to the 2000s. To state it, con-
sider a connected, proper open set U � S2 and denote by HamU .S2; !/ the subgroup of
Ham.S2; !/ consisting of Hamiltonian diffeomorphisms supported in U . This subgroup
carries a well-known group homomorphism called the Calabi homomorphism:

Cal W HamU .S
2; !/! R;

whose definition we recall in Section 2.1 (see (7)).

Question 1.2. Suppose3 that Area.U / � 1
2

Area.S2/. Is the kernel of Cal W
HamU .S2; !/! R an unbounded subset of Ham.S2; !/?

The Hofer geometry of the two-sphere has long remained mysterious, and these two
basic questions have received much attention over the past years. This is especially the

1Ham.M;!/ is simple for closed M , by a theorem of Banyaga [2].
2It is known that the group Ham.S2; !/ is in fact the set of all diffeomorphisms of S2 which

preserve the area form !.
3If Area.U / > 1

2 Area.S2/, then the question is known to have an affirmative answer by
Polterovich [41].
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case for Question 1.1, which appears as Problem 21 on the list of open problems of
McDuff–Salamon [36, Sec. 14.2]; it is mentioned as one of the motivations behind the
influential article of Polterovich and Shelukhin [44, Sec. 1.3]; and it is highlighted in
several articles such as [4, 13, 29, 46].

We also continue the direction of research initiated in our recent article [9]. In particu-
lar, we answer the following question from the 1980 article of Fathi [15] on the algebraic
structure of Homeo0.S2; !/, the group of all area and orientation preserving homeomor-
phisms of the two-sphere.4

Question 1.3. Is the group Homeo0.S2; !/ simple?

Although at first glance this question might appear unrelated to Hofer’s geometry, we
will see that the large scale geometry of Hofer’s metric plays a crucial role in the solution.
The two-sphere is the only closed manifold for which the question of simplicity of the
component of the identity in the group of volume-preserving homeomorphisms remained
open; for other closed manifolds this was settled by Fathi in the late 1970s.

1.1. The large-scale geometry of the kernel of Calabi

Let dH denote the Hofer metric on Ham.M; !/, the group of Hamiltonian diffeomor-
phisms of a closed and connected symplectic manifold .M; !/; we will review the
definition of dH , and other basic notions from symplectic geometry, in Section 2.1.

A fundamental notion in large-scale geometry is that of quasi-isometry, which we
now recall. A quasi-isometric embedding is a mappingˆ W .X1; d1/! .X2; d2/ of metric
spaces for which there exist constants A � 1; B � 0 such that

1

A
d1.x; y/ � B � d2.ˆ.x/;ˆ.y// � Ad1.x; y/C B: (1)

The map ˆ satisfying the above is said to be a quasi-isometry if it is quasi-surjective,
i.e. there exists a constant C > 0 such that every point in X2 is within distance C of the
image ˆ.X1/.

The large-scale geometry of Hofer’s metric, on general symplectic manifolds, has
been studied extensively ever since Hofer’s discovery of the metric in 1990 [18]; see
for example [1, 10, 20, 27, 28, 38, 44, 46, 49, 52]. Usually, .Ham; dH / is a “large” metric
space. For example, it is conjectured to be always unbounded, and this has been proven
for many manifolds [10, 31, 35, 38, 41, 47, 52]. Moreover, Usher [52] has proven that,
for a large class of manifolds, including closed surfaces of positive genus,5 it admits a

4The group Homeo0.S2; !/ can alternatively be described as the connected component of the
group of area-preserving homeomorphisms of S2. For any transformation group, the simplicity
question is only interesting for the component of the identity because it forms a normal subgroup
of the ambient group.

5As observed in [46], such results for surfaces of positive genus can be deduced from the argu-
ments in [31, 41].
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quasi-isometric embedding of infinite-dimensional normed vector spaces; see also Py’s
article [46].

Despite all the above progress, a famous case that has been difficult to understand
is that of the two-sphere. All that is known is that Ham.S2; !/, and the subgroup
HamU .S2; !/, are unbounded and admit a quasi-isometric embedding of the real line R;
this was proven by Polterovich [41]. As for the kernel of Cal W HamU .S2; !/! R with
Area.U / � 1

2
Area.S2/, it is not even known if it is unbounded, i.e. whether it is quasi-

isometric to the point. It is our understanding that when Questions 1.1 and 1.2 were posed,
there were not even clear conjectures about what their answers should be.

Our first point in the present work is that the kernel of Calabi is indeed rather big,
which we illustrate in two different ways.

Theorem 1.4. Let U ¨ S2. Then:

(a) For any n2N, there exists a quasi-isometric embedding of Rn into .Ham.S2;!/;dH /
whose image is contained in the kernel of the Calabi homomorphism Cal W
HamU .S2; !/! R.

(b) The kernel of Cal W HamU .S2; !/! R is not coarsely proper.

To review the terminology here, recall that a metric space .X;d/ is said to be coarsely
proper if there exists R0 > 0 such that every bounded subset of .X; d/ can be covered by
finitely many balls of radiusR0; see [8, Def. 3.D.10]. Examples of coarsely proper spaces
include the Euclidean space Rn or any bounded spaces – in particular, part (b) of Theo-
rem 1.4 resolves Questions 1.1 and 1.2 – but on the other hand, an infinite-dimensional
Banach space is not coarsely proper. Recall also that a quasi-flat in a metric space .X; d/
is the image of a quasi-isometric embedding of Rn; moreover, the quasi-flat rank of a
metric space .X; d/ is the supremum of all n such that there exists a quasi-isometric
embedding of Rn into X . Thus, part (a) of Theorem 1.4 is equivalent to the statement
that the metric space .Ham.S2; !/; dH / and the subset given by the kernel of the Cal-
abi homomorphism Cal W HamU .S2; !/ ! R have infinite quasi-flat rank. Now, it is
known that the quasi-flat rank of Rn is n and so we see that part (a) of Theorem 1.4
also answers Questions 1.1 and 1.2. In fact, we will see in Example 1.5 below that The-
orem 1.4 tells us quite a bit more about the quasi-isometry type of the metric spaces in
question.

Example 1.5. Let .G; d/ be a finite-dimensional connected Lie group, with a left invari-
ant Finsler metric induced from a norm on its Lie algebra; we call such a d a compatible
metric. As was explained above, the existence of Hofer’s metric dramatically contrasts
with the situation for finite-dimensional Lie groups; one might hope that the large-
scale geometry also sees this. Indeed, it is known that any such .G; d/ both has finite
quasi-flat rank and is coarsely proper. So, our main theorem precludes this as a quasi-
isometry type for .Ham.S2/; d/ or for the kernel of Calabi. Similarly, any finitely
generated group, or more generally, any locally compact and compactly generated group
(here we refer the reader to [8] for the precise definition) is coarsely proper [8, Prop.
3.D.29]. It would be interesting to understand to what degree the quasi-isometry type of
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Ham.S2/ is unique, for example whether it differs6 from that of Ham.S/ for other sur-
faces S .

Remark 1.6. Contemporaneously with our work, Polterovich–Shelukhin [45] have
shown, using very different methods, that there is an isometric embedding of the space
of even compactly supported functions on .�1=8; 1=8/ into Ham.S2; !/: This clearly
answers the Kapovich–Polterovich question, and moreover implies that Ham.S2; !/ is
neither coarsely proper nor of finite quasi-flat rank. It would be very interesting to relate
our methods here to the methods in [45].

1.2. Nonsimplicity of Homeo0.S2; !/

We turn now to continuous symplectic geometry.
In our recent article [9], we proved that the group of compactly supported area-

preserving homeomorphisms of the disc is not simple. Our next theorem settles the
simplicity question for the sphere. Recall that Homeo0.S2; !/ denotes the identity com-
ponent in the group of area-preserving homeomorphisms of the two-sphere.

Theorem 1.7. Homeo0.S2; !/ is not simple.

In fact, as in our previous article [9], this theorem implies a stronger statement by
appealing to a beautiful argument of Epstein and Higman [14, 17]. Recall that a group is
perfect if it is equal to its commutator subgroup.

Corollary 1.8. Homeo0.S2; !/ is not perfect.

Theorem 1.7 answers a question of Fathi7 from the 70s [15, Appendix A.6], whose
history we now briefly review. The question of simplicity of groups of homeomor-
phisms and diffeomorphisms was studied extensively in the 50s, 60s, and 70s and is
fairly well-understood in most scenarios. However, area-preserving homeomorphisms of
surfaces have remained mysterious. For example, in the case of closed manifolds, the
simplicity question had been answered by the late 70s for all of the following groups:
homeomorphisms, diffeomorphisms8, volume-preserving diffeomorphisms and symplec-
tomorphisms. And in the case of volume-preserving homeomorphisms it was answered
by Fathi [15] for every closed manifold other than the two-sphere. Fathi asked the afore-
mentioned question answered by Theorem 1.7 in the work [15].

We remark that nonsimplicity of Homeo0.S2; !/ is surprising as it stands in dra-
matic contrast to the fact that on closed simply connected manifolds, such as spheres
of dimension greater than 1, this is the only example of the “usual” transformation

6We have learned in recent conversation with Polterovich that this question is wide open.
7In fact, Theorem 5.2 below answers Fathi’s question for all compact genus zero surfaces; see

Remark 5.6.
8We are considering C1 diffeomorphisms here. For C k diffeomorphisms, simplicity is known

for all k except when k D dim.M/C 1, which remains open to date.
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groups known to be nonsimple. For example, it is known that for simply connected
manifolds the identity component in any of the groups mentioned in the previous para-
graph is simple except, of course, in our case of area-preserving homeomorphisms of the
sphere.

The simplicity of the aforementioned groups was established through the works of a
long list of mathematicians who studied the question from the 30s to the late 70s. For a
summary of the long history of the simplicity question, we refer the interested reader to
[9, Sec. 1].

1.2.1. The perfectness question for volume-preserving diffeomorphisms of Rn. We
now explain an application to the study of the algebraic structure of diffeomorphism
groups.

Let � be a volume form on Rn and denote by Diff.Rn; �/ the group of all diffeo-
morphisms of Rn which preserve �. McDuff proved in 1980 that although Diff.Rn; �/
is nonsimple,9 it is always perfect for n � 3; see [34]. There are two distinct cases of
McDuff’s theorem, namely the finite volume case, which is the same as the case of an
open ball with its standard volume form, and the infinite volume case. In both cases,
however, the 2-dimensional case has remained open. Theorem 1.7 allows us to settle this
question in the finite area case.

Corollary 1.9. Assume that
R

R2 � < C1. Then Diff.R2; �/ is not perfect.

We prove this corollary in Section 5.3.

1.3. New spectral invariants

We now discuss the main tools that we use and develop here for proving the above the-
orems. We henceforth view S2 as the unit sphere in standard R3 and equip it with the
symplectic form ! WD 1

4�
d� ^ dz; where .�; z/ are cylindrical coordinates. Note that this

gives the sphere a total area of 1.

Periodic Floer homology and spectral invariants

To prove our results we use a version of Floer homology for area-preserving diffeomor-
phisms, called periodic Floer homology (PFH), which was introduced by Hutchings [23];
we will review PFH in Section 2.3. As will be reviewed in Section 3, one can use PFH to
define a collection of invariants of Hamiltonians on the sphere,

cd;k W C
1.S1 � S2/! R;

which are indexed by d 2 N and k 2 Z with k having the same parity as d .

9In this case, nonsimplicity follows from the fact that the compactly supported volume-
preserving diffeomorphisms form a proper normal subgroup.
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We show in Section 3 that these invariants have various useful properties; see Propo-
sition 3.2. In particular, we show that they can be used to define invariants

cd;k W eHam.S2; !/! R; cd W eHam.S2; !/! R;

where cd WD cd;�d , which are well-defined on the universal cover of Ham.S2; !/. More-
over, we show in Proposition 3.5 that if d is even then cd;k W eHam.S2; !/! R descends
to Ham.S2; !/ and so in particular we obtain

cd W Ham.S2; !/! R;

defined for even d .

Homogenization

As is evident from the works of Entov–Polterovich [10, 12], for the purposes of applica-
tions to Hofer’s geometry, it is often beneficial to homogenize spectral invariants. This
is true in our work as well, and in fact we prove Theorem 1.4 using the homogeniza-
tions of the invariants cd which we now introduce. More precisely, we can define, for
' 2 Ham.S2; !/ and for all d 2 N,

�d .'/ WD lim sup
n!1

cd . Q'
n/

n
; (2)

where Q' 2 eHam.S2; !/ is any lift of '; we show in Proposition 3.6 that the above lim sup
is well-defined and that �d .'/ does not depend on the choice of Q' 2 eHam.S2; !/. We
also define the related invariant �d W C1.S2/! R by

�d .H/ WD lim sup
n!1

cd .nH/

n
: (3)

We will see that these two homogenized invariants are related by the formula

�d .'
1
H / D �d .H/ � d

Z
S2
H!:

A useful property of any �d is that it coincides with (a multiple of) the Calabi invari-
ant for Hamiltonian diffeomorphisms with small supports. More precisely, suppose that
supp.'/, the support of ' 2 Ham.S2; !/, is contained in a topological disc D with
Area.D/ < 1

dC1
. Then

1

d
�d .'/ D �Cal.'/: (4)

The above properties of �d ; �d will be proven in Section 3.

Remark 1.10. The properties of the �d are reminiscent of the Calabi quasi-morphism
of Entov–Polterovich [10]. It is an open question whether Ham.S2; !/ admits any Hofer
continuous (homogeneous) quasi-morphisms other than the one constructed by Entov–
Polterovich. We plan to investigate in future work whether the invariants �d are quasi-
morphisms.
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The Hofer Lipschitz property and monotone twists A critical fact which we will show,
and which is at the heart of all applications to Hofer’s geometry, is the Hofer Lipschitz
property. For the invariants �d this means that

j�d .'/ � �d . /j � CddH .';  /

for all '; 2 Ham.S2; !/. The Lipschitz constant is Cd D d . In particular, these invari-
ants can be used to bound the Hofer distance from below.

In view of the Hofer Lipschitz property, to prove our results, we will have to produce
examples of Hamiltonian diffeomorphisms whose invariants we can compute. This will
be done by studying monotone twist Hamiltonians, that is, autonomous HamiltoniansH W
S2 ! R of the form

H.z; �/ D 1
2
h.z/;

where h0 � 0, h00 � 0, h.�1/ D h0.�1/ D 0; we developed a combinatorial model in our
previous work [9] which can be used to compute the cd for Hamiltonians like this under
the additional technical assumption that h0.1/ 2N: For monotone twist Hamiltonians, the
invariant �d has a beautiful expression.

Proposition 1.11. For any Hamiltonian H as above we have

�d .H/ D
1
2

dX
iD1

h

�
�1C

2i

d C 1

�
:

In other words, �d is the sum of the values of H on d equally distributed horizontal
circles. We learn from the above proposition that �d .H/ is at least as large as the valueH
takes on each of the d circles Ci D ¹.z; �/ W z D �1C

2i
dC1
º, where i 2 ¹1; : : : ; dº. This

bears some resemblance to the notion of heaviness of equators introduced in the work
of Entov–Polterovich [12]. What is surprising is that the circles Ci are all displaceable
for d � 2, while heaviness of a set, as defined in [12], implies that the set is not dis-
placeable by Hamiltonian diffeomorphisms. Sensitivity to the displaceable circles Ci is
the distinguishing feature of our invariants �d ; �d which powers our applications to the
Hofer geometry of the kernel of Calabi.

C 0-continuity and nonsimplicity of Homeo0.S2; !/

To prove Theorem 1.7, we need invariants which are continuous with respect to the C 0-
topology. The invariants cd and �d , while useful, are not in general C 0-continuous. We
remedy this by taking certain linear combinations of the cd to define C 0-continuous
invariants

�d W Ham.S2; !/! R:

Not only are these invariants C 0-continuous, but also they extend continuously to
Homeo0.S2; !/. Moreover, they are Hofer Lipschitz. We summarize the properties of the
�d in Proposition 3.9.
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1.4. Relationship to previous work

As mentioned above, in our previous work we used PFH to define spectral invariants
for compactly supported area-preserving diffeomorphisms and homeomorphisms of the
two-disc. For all of the applications discussed here, we need to rework this theory over
the two-sphere. In the disc case, we could assume that the maps were generated by a
Hamiltonian that vanishes near the boundary of the disc. This is no longer possible, so
new ideas are needed.

One idea here, familiar to specialists (see for example [10, 37, 47]), is to work with
mean-normalized Hamiltonians. A careful analysis shows that this gives invariants which
are well-defined on eHam; then, after homogenization as in the previous section, we can
obtain invariants of Ham. These invariants would be enough to prove the theorems of
Section 1.1. However, as stated above, they are not C 0-continuous, and so cannot be
used to study the algebraic structure of the homeomorphism group. This is where the �d ,
defined by taking a difference of spectral invariants, come in. The crucial insight for this,
which was initially surprising to us, is that the cd for even d descend from eHam to Ham.

2. Preliminaries

In this section we fix our notation and introduce the necessary background on symplectic
geometry and periodic Floer homology.

2.1. Recollections

Here we recall some basic facts about symplectic geometry and the Hofer distance.
Let .M; !/ be a symplectic manifold. Let H 2 C1.S1 �M/ be a Hamiltonian; if

M happens to be noncompact, then we consider only compactly supported Hamiltonians.
We can think of H as a family of functions Ht on M , depending on time; we think of S1

as parametrized by 0 � t � 1. Such an H gives rise to a possibly time-varying vector
field XHt on M , called the Hamiltonian vector field, defined by

!.XHt ; �/ D dHt :

The flow of XHt is called the Hamiltonian flow and is denoted 'tH . The set of time-1
maps of Hamiltonian flows is called the set of Hamiltonian diffeomorphisms of M and
denoted Ham.M;!/I it forms a subgroup of the symplectomorphisms of .M;!/. We can
define the Hofer norm k'k of any ' 2 Ham.M; !/ as follows. First, to a Hamiltonian
H 2 C1.S1 �M/, we associate the norm

kHk1;1 WD

Z 1

0

�
max
M
.Ht / �min

M
.Ht /

�
dt:

We then define
k'k WD inf ¹kHk1;1 W ' D '1H º:
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The above quantity is invariant under conjugation, i.e. k �1' k D k'k. This follows
from the fact that 'tHı D  

�1'tH ; see [19, Sec. 5.1, Prop. 1], for example.
Finally, we can define a metric on Ham.M;!/, the Hofer metric, by

dH .';  / D k'
�1
ı  k:

As mentioned above, this yields a nondegenerate, bi-invariant metric, which is quite
remarkable given the noncompactness of Ham. Nondegeneracy is what is difficult to prove
and it was established by Hofer for R2n [18], by Polterovich for rational symplectic man-
ifolds [40], and by Lalonde–McDuff in full generality [30].

The bi-invariance of Hofer’s distance also implies the following inequalities:

dH .'1'2;  1 2/ � dH .'1;  1/C dH .'2;  2/; (5)

dH .';  
�1' / � 2dH . ; Id/: (6)

Indeed, (5) follows from (9) below, and (6) is proved as follows:

dH .';  
�1' / D k'�1 �1' k � k'�1 �1'k C k k D 2dH . ; Id/:

Now letM D S2 D ¹.x; y; z/ 2 R3 W x2 C y2 C z2 D 1º: This has a symplectic form
! WD 1

4�
d� ^ dz; where .�; z/ are cylindrical coordinates. We let Diff.S2; !/ denote the

set of smooth diffeomorphisms ' such that '�! D !. In fact, Diff.S2;!/D Ham.S2;!/:
The Hofer geometry of Diff.S2; !/, with this identification implied, will be the topic
of study in the present work. We recall, for later use, that the fundamental group of
Ham.S2; !/ is Z=2Z and is generated by Rot, the full rotation around the North-South
axis of the sphere; for a proof of this see, for example, [42]; the HamiltonianH.�;z/D 1

2
z

generates this full rotation.
We will denote the universal cover of Ham.S2; !/ by eHam.S2; !/. This can be

described as the set of Hamiltonian paths, considered up to homotopy relative to end-
points; here, by a Hamiltonian path, we mean a path of Hamiltonian diffeomorphisms
¹'t ; 0 � t � 1º. This is a two-fold covering, by the discussion in the previous paragraph.

We next recall the displacement energy of a subset A � S2. This is by definition the
quantity

e.A/ WD inf ¹k�k W �.A/ \ xA D ;º:

It is known that for a disjoint union of closed discs, each with area a and whose union
covers less than half the area of the sphere, the displacement energy is a. We will need
the following lemma in Section 4.3.

Lemma 2.1. Let D;D0 � S2 be disjoint closed discs of equal area. Then

inf ¹k�k W �.D/ D D0º D Area.D/:

Proof. Let us denote a WD Area.D/ and E WD inf ¹k�k W �.D/DD0º. It follows from the
above discussion of displacement energy that E � a.

For the reverse inequality, note that the same discussion also implies that for any
" > 0, there exists  2 Ham.S2; !/ with k k < aC " and  .D/\D D ;. Since  .D/



PFH spectral invariants on the two-sphere and the large scale geometry of Hofer’s metric 4547

and D0 have the same area and are both contained in S2 nD, there exists a Hamiltonian
diffeomorphism �, supported in S2 nD, which maps  .D/ onto D0. The assumption on
the support implies that ��1.D/DD. We now pick � D � ��1. We see that �.D/DD0

and by conjugation invariance of the Hofer norm we have k�k D k k < a C ". Since
such a diffeomorphism � may be found for any " > 0, this shows the reverse inequality
E � a.

Next, we review the definition of the Calabi homomorphism

Cal W HamU .S
2; !/! R;

alluded to in the introduction. Recall that, for open U ¨ S2, we denote by HamU .S2; !/
the subgroup of Ham.S2; !/ consisting of Hamiltonian diffeomorphisms which are sup-
ported in U . Given ' 2 HamU .S2; !/, define

Cal.'/ D
Z

S1

Z
S2
H.t; �/! dt; (7)

where H 2 C1.S1 � S2/ is any Hamiltonian supported in U whose time-1 flow is '.
It is well-known that Cal.'/ does not depend on the choice of H , and moreover Cal W
HamU .S2; !/! R is a group homomorphism; see [5, 36] for further details.

In Section 5, we will also consider the group Homeo0.S2; !/ of area and orientation
preserving homeomorphisms of S2. This is defined to be the group of homeomorphisms
of S2 preserving the measure induced by ! in the component of the identity. It has a
distance dC0 , called the C 0-distance, defined by picking a Riemannian metric d on S2,
and defining

dC0.';  / D sup
x2M

d.'.x/;  .x//:

We remark for later use that Diff.S2; !/ sits densely in the C 0-distance in
Homeo0.S2; !/.

2.2. The spectrum

We now recall the action spectrum, defined in [9, Sec. 2.5]. LetH 2C1.S1 �S2/: Recall
the action functional associated to H ,

AH .z; u/ D

Z 1

0

H.t; z.t// dt C

Z
D2
u�!; (8)

defined for capped loops .z; u/. The critical points of AH are pairs .z; u/, where z is a 1-
periodic orbit of 'tH ; and the set of associated critical values is called the action spectrum
Spec.H/ of H . The forthcoming PFH spectral invariants will take values in the order d
action spectrum of H , defined by

Specd .H/ WD
[

k1C���CkjDd

.Spec.H k1/C � � � C Spec.H kj //;
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where H k denotes the k-fold composition of H with itself. Here, the composition is
defined by

.G #H/.t; x/ D

´
2�0.2t/H�.2t/.x/ if t 2 Œ0; 1=2�;

2�0.2t � 1/G�.2t�1/.x/ if t 2 Œ1=2; 1�;

where � W Œ0; 1� ! Œ0; 1� is a fixed nondecreasing smooth function which is equal to 0
near 0 and to 1 near 1. Note that we do not need H and G to be 1-periodic to define the
composition, and even if they are not 1-periodic, G #H will still be, since it is zero for t
close to 0 and 1. The time-1 map of G #H is '1G ı '

1
H : Note that for any Hamiltonians

G1; G2;H1;H2, we have

kG1 #H1 �G2 #H2k1;1 D kG1 �G2k1;1 C kH1 �H2k1;1: (9)

We state here some of the properties of the order d action spectrum which will be used
in the following sections. Recall thatH 2 C1.S1 � S2/ is said to be mean-normalized ifR

S2H.t; �/!D 0 for all t 2S2. Two HamiltoniansH0;H1 are said to be homotopic if there
exists a smooth path of Hamiltonians connecting H0 to H1 such that '1H0 D '

1
Hs
D '1H1

for all s 2 Œ0; 1�. In other words, the Hamiltonian paths ¹'tH0º and ¹'tH1º, for 0 � t � 1,

coincide as elements of the universal cover eHam.S2; !/. Here is a list of properties of
Specd which will be needed.

(i) Symplectic invariance:

Specd .H ı  / D Specd .H/

for all H 2 C1.S1 � S2/ and  2 Ham.S2; !/.

(ii) Homotopy invariance: If H0; H1 are mean-normalized and homotopic, then
Specd .H0/ D Specd .H1/.

(iii) Measure zero: Specd .H/ is of measure zero.

The above properties are well-known in the case of Spec.H/, that is, when d D 1;
see for example [37]. It is not difficult to see that the first two properties follow from the
case d D 1: symplectic invariance follows from the identity .H ı /k DH k ı for any
k 2 N, and homotopy invariance is a consequence of the fact that H k

0 ; H
k
1 are mean-

normalized and homotopic, for any k 2 N, if H0 and H1 are. As we will now explain,
the third property also follows from the d D 1 case. As a consequence of the definition
of Specd .H/, it is sufficient to prove that the set Spec.H k1/ C � � � C Spec.H kj / is of
measure zero for any k1; : : : ; kj with k1C � � � C kj D d . To that end, let .M;!˚ � � � ˚!/
be the symplectic manifold obtained by taking the j -fold product of .S2; !/ and consider
the Hamiltonian F W S1 �M ! R defined by

F.t; x1; : : : ; xj / D H
k1.t; x1/C � � � CH

kj .t; xj /:

We conclude that Spec.H k1/C � � � C Spec.H kj / has measure zero by observing that it
coincides with Spec.F / which we know has measure zero.
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2.3. Definition of PFH

We now recall the definition of periodic Floer homology (PFH), for example from [23],
which is a tool that will be central in our work. While PFH can be defined over any
surface, for simplicity we consider the case where our surface is S2, which is the only
case that is relevant for the present work.

We start with some preliminaries. Let ' 2 Diff.S2; !/. Given ', we can define the
mapping torus

Y' WD S2 � Œ0; 1�t=�; .x; 1/ � .'.x/; 0/:

This has a natural vector field R WD @t , which we call the Reeb vector field, a natural one-
form dt , and a natural two-form !' induced from the area form !. The pair .dt; !'/ is
a stable Hamiltonian structure in the sense of for example [3, 7, 26, 53]. The manifold Y'
has a plane field � defined to be the vertical tangent bundle for the fibration � W Y' ! S1.

We will be interested in closed integral curves

˛ W R=TZ! Y'

of R, modulo reparametrization of the domain, which we call closed orbits; we can iden-
tify an embedded closed orbit with its image. A closed orbit ˛ has an integral degree
d.˛/ WD ��Œ˛� 2 H1.S1/ D Z: The linearized return map P˛ for a closed orbit ˛ is
defined for any p 2 ˛ as the linearization of the time-T flow of R on �jp . A closed orbit
is called nondegenerate if 1 is not an eigenvalue of the linearized return map; a nonde-
generate closed orbit is called hyperbolic if the eigenvalues of P˛ are real, and elliptic if
the eigenvalues lie on the unit circle; these definitions do not depend on the choice of p.

Define an orbit set ˛ WD ¹.˛i ;mi /º to be a finite set, where the ˛i are distinct embedded
closed orbits of R, and the mi are positive integers. The degree of the orbit set ˛ is the
sum of the degrees of the ˛i . The map ' is d -nondegenerate if every closed orbit with
degree at most d is nondegenerate; this is a generic condition. A degree d orbit set for a
d -nondegenerate ' is called admissible if mi D 1 whenever ˛i is hyperbolic.

Let X D Rs � Y' . This has a natural symplectic form

! D ds ^ dt C !' :

The pair .X; !/ is called the symplectization of Y' : Recall that an almost complex struc-
ture on X is a smooth bundle map J W TX ! TX such that J 2 D �1. A J -holomorphic
curve in X is a map u W .†; j /! .X; J / satisfying the equation

du ı j D J ı du:

Here, † is a closed (possibly disconnected) Riemann surface minus a finite number of
punctures, and the map u is assumed to be asymptotic to Reeb orbits near the punctures,
see for example [22] for the precise definition.

The periodic Floer homology PFH.S2; '; d/ is the homology of a chain complex
PFC.S2; '; d/. The chain complex PFC.S2; '; d/ is freely generated over Z2 by admis-
sible orbit sets ˛ of degree d > 0. The chain complex differential @ counts J -holomorphic
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curves in X , for generic admissible J ; here, an almost complex structure is called admis-
sible if it preserves �, is R-invariant, sends @s to R, and its restriction to � is tamed by !' :
More precisely,

h@˛; ˇi D #MID1
J .˛; ˇ/;

where I denotes the ECH index, defined below, we are considering curves in X up to
equivalence of currents and modulo translation in the R direction, and # denotes the mod 2
count.

It is shown in [24, 25] that10 @2 D 0, so the homology is well-defined; it is shown
in [33] that it agrees with a version of Seiberg–Witten Floer cohomology and in particular
is independent of '.

To define spectral invariants, we will want to use a twisted version of PFH, denoted
ePFH.S2; '; d/; as we will see in §3.1.1, the twisted PFH carries a natural action filtration

which we will use to define the spectral invariants. To define twisted PFH, let  be any
degree 1 cycle in Y' , transverse to �; choose a homotopy class of trivializations �0 on �j .
The twisted PFH chain complex ePFC is generated by pairs .˛; Z/, called twisted PFH
generators, where ˛ is a degree d admissible orbit set, and Z 2 H2.Y' ; ˛; d/. The dif-
ferential counts I D 1 curves C from .˛;Z/ to .ˇ;Z0/, namely curves C 2MID1

J .˛; ˇ/,
such that

ŒC �CZ0 D Z:

For each d , there is a grading, defined below, which we call the k-grading. The homology
is an invariant, and so can be computed, with the result that for d � 0 we have

ePFH�.S2; '; d/ D

´
Z2 if � D d mod 2;

0 otherwise.
(10)

The above identity can be proven via a direct computation when ' is taken to be an
irrational rotation of the sphere; for more details see, for example, [9, Sec. 3.3]. We now
define the ECH index I , and the grading k.

The ECH index I depends only on the relative homology class A 2 H2.Y' ; ˛; ˇ/
between two orbit sets. We have

I.A/ D c� .A/CQ� .A/C CZ
I
� .A/; (11)

where � denotes a homotopy class of trivializations of � over all Reeb orbits, c� .A/
denotes the relative Chern class of � restricted to A, Q� .A/ denotes the relative self-
intersection, and CZI� denotes the total Conley–Zehnder index. We will not need the
precise definitions of these terms in the present work, so we omit them for brevity, refer-
ring the reader to [21] for the details.

We can define the promised k-grading. The definitions of the relative Chern class and
relative self-intersection extend verbatim to relative homology classesA 2H2.Y' ;˛;d/,

10More precisely, [25] proves that the differential in embedded contact homology squares to
zero. As pointed out in [24, 33] this proof carries over, nearly verbatim, to our setting.
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once a trivialization � over the simple orbits in ˛ and a trivialization �0 over  have been
chosen. With the preceding understood, we now define

k.˛;Z/ WD c�;�0.Z/CQ�;�0.Z/C CZ
I
� .˛/:

To simplify the notation, we will denote k.˛;Z/ by I.Z/ below.

3. The spectral invariants

We now use the twisted PFH to define various invariants. We begin by summarizing for
the reader what will be done in this section.

To set the stage for what is coming, it is helpful to recall what was done in [9, Sec. 3.4].
There, we defined spectral invariants cd;k.H/ for H 2 H where

H WD ¹H 2 C1.S1 � S2/ W 'tH .p�/ D p�; H.t; p�/ D 0; 8t 2 Œ0; 1�;

�1=4 < rot.¹'tH º; p�/ < 1=4º;

where rot.¹'tH º;p�/ is the rotation number of the isotopy ¹'tH ºt2Œ0;1� at p�. It was shown
in addition that these invariants depend only on the time-1 map. Spectral invariants for
compactly supported disc maps were then defined by identifying the disc with the northern
hemisphere.

Our goal now is to define spectral invariants for all H 2 C1.S1 � S2/ and to find
invariants that depend only on ' 2 Ham.S2; !/, rather than on a choice of generating
Hamiltonian. Here is how we do this. First we extend the procedure in [9] from H 2 H

to arbitrary H to get invariants cd;k , defined when k and d have the same parity. These
cd;k extend the cd;k from our previous work: that is, ifH 2H � C1.S1 � S2/, then the
definition of cd;k.H/ here agrees with that in [9]. Similarly to our previous work, we can
then define cd WD cd;�d . This choice of k D �d is not quite canonical (see Remark 3.4),
but is convenient and suffices for our purposes: what is crucial is that cd .0/ D 0.

As alluded to in the introduction, these cd are in general not invariants of the time-1
map, and so are not well-suited on their own for proving our main theorems. However,
we can use the cd to form new invariants. First, we show that the cd for even d are invari-
ants when we restrict to mean-normalized Hamiltonians; similarly, the homogenizations
�d ; �d are also invariants restricted to mean-normalized Hamiltonians. None of these
invariants are C 0-continuous, so we use a linear combination of the cd for d even to
define another sequence �d .

Thus, to summarize for the ease of the reader, the main product of this section are
invariants cd and �d defined for d even, and �d ; �d defined for all d , together with
proofs of their properties that we will need. The �d and �d are related by formula (25).
The �d are used to prove Theorem 1.4, while the �d are used to prove Theorem 1.7; the
cd are used to construct the �d and the �d .
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3.1. Invariants for Hamiltonians

We begin by introducing PFH spectral invariants cd;k.H/ for Hamiltonians H 2

C1.S1 � S2/. This requires first recalling a construction of Hutchings, assigning a spec-
tral invariant to every nonzero twisted PFH class.

3.1.1. The nondegenerate case. A Hamiltonian H 2 C1.S1 � S2/ is called d -
nondegenerate if its time-1 flow ' D '1H is d -nondegenerate. We now explain how to
define PFH spectral invariants for d -nondegenerate Hamiltonians by extending the defi-
nition in [9] in a natural way.

We begin by explaining the aforementioned construction of Hutchings for assigning a
spectral invariant to a nonzero twisted PFH class. A twisted PFH generator has an action
defined by

A.˛;Z/ D

Z
Z

!' :

The differential decreases the action (see for example [9, Sec. 3.3]), so the action induces
a filtration on the twisted PFH chain complex: we can define ePFCL to be the subcomplex
generated by twisted PFH generators with action no more than L. Denote the homology
of this complex by ePFHL. For any nonzero class � 2 ePFH.S2; '; d/, we can now define
c� .'; ; �0/ to be the smallest L such that � is in the image of the inclusion induced map

ePFHL
! ePFH:

We can think of this as the minimum action required to represent � .
The number c� .'; ; �0/ depends on the choice of reference cycle  and trivial-

ization �0 over  ; we will now define the PFH spectral invariants associated to a
d -nondegenerate HamiltonianH by using the Hamiltonian flow to fix a natural reference
cycle.

To make this precise, let H be a d -nondegenerate Hamiltonian and write ' D '1H :

Consider the trivialization

‰H W S
1
� S2 ! Y' ; .t; x/ 7! ..'tH /

�1.x/; t/: (12)

Define H D‰H .S1 � ¹p�º/. This is trivialized by the pushforward �H of an S1-invariant
trivialization over p�. We will now use the twisted PFH chain complex for Y' , with
respect to the reference cycle H , to define the spectral invariants.

Assume first that H vanishes at p� for all time. For each d 2 N, we define

cd;k.H/ WD c� .'
1
H ; H ; �H /; d � k mod 2;

where � is the unique nonzero class in ePFHk.S
2; '; d/. We emphasize that, even fixing

the Hamiltonian diffeomorphism, this can and will depend on H , since the trivialized
reference cycle H does. We note that for such an H ,

cd;k.H/ D A.˛;Z/ (13)
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for some twisted PFH generator .˛;Z/: Indeed, as explained in [9, Sec. 3.3], this follows
from the fact that the subset ¹A.˛;Z/ W .˛;Z/ 2 ePFC.'; d/º � R is discrete, since under
our nondegeneracy assumption there are only finitely many orbit sets of degree d .

Finally, for arbitrary H we reduce to the case of H vanishing at p by demanding that
the shift property, stated in Proposition 3.2 below, hold. This says that

cd;k.H C h/ D cd;k.H/C d

Z 1

0

h.t/ dt; (14)

when h W S1 ! R is any function.
In principle, cd;k.H/ could depend on the choice of admissible J , but we will see by

the monotonicity property below that it does not.

3.1.2. Key properties . We now prove that the PFH spectral invariants have the following
key properties and extend to all, possibly degenerate, Hamiltonians.

Theorem 3.1. The PFH spectral invariant cd;k.H/ admits a unique extension to allH 2
C1.S1 � S2/ such that the extended spectral invariant

cd;k W C
1.S1 � S2/! R

has the following properties:

(1) Continuity: For any H;G 2 C1.S1 � S2/, we have

d

Z
S1

min.Ht �Gt / dt � cd;k.H/ � cd;k.G/ � d

Z
S1

max.Ht �Gt / dt:

(2) Spectrality: cd;k.H/ 2 Specd .H/.

Before giving the proof, we note that the second item of the theorem implies that if
H;G vanish at p�, then

jcd;k.H/ � cd;k.G/j � dkH �Gk1;1; (15)

which is an alternative variant of the Hofer continuity property.

Proof of Theorem 3.1. The proof proceeds along similar lines to [9, Thm. 3.6].

Step 1: Reducing to the d -nondegenerate case. We now assume that the theorem has been
proved for d -nondegenerate H , and explain how this implies the result for all H . Given
any H , take any sequence of d -nondegenerate Hi which C 2-converges to H , and define

cd;k.H/ D lim
i!1

cd;k.Hi /: (16)

This limit exists, and does not depend on the choice of approximatingHi , due to the conti-
nuity property withH DHi andG DHj . The same inequality implies that the extension
from d -nondegenerate H is unique as claimed; the continuity and shift properties for d -
nondegenerate H imply these properties for all H . Spectrality for d -nondegenerate H
implies spectrality for all H by Arzelà–Ascoli.
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Step 2: Reducing to Hamiltonians that vanish at p�. It remains to prove continuity and
spectrality in the nondegenerate case.

We now show that by using the shift property (14), it suffices to prove these properties
for Hamiltonians vanishing at p�. We begin with continuity. Consider arbitrary H; G.
Then we can write

H D QH C h; G D QG C g; (17)

where h and g are defined as the restrictions of H; G to p�, and QH; QG vanish on p�.
Then, by the shift property,

cd;k.H/ � cd;k.G/ D cd;k. QH/ � cd;k. QG/C d

Z
S1
.h.t/ � g.t// dt:

Thus, if continuity holds for QH and QG, then we have

cd;k.H/ � cd;k.G/ � d

Z
S1

max. QHt � QGt / dt C d

Z
S1
.h.t/ � g.t// dt:

Now, since h; g only depend on t , we have

max. QHt � QGt / D max.Ht �Gt /C g.t/ � h.t/:

Combining this equality with the previous inequality proves the rightmost inequality
required for continuity. Similarly, if continuity holds for QH and QG, then we have

cd;k.H/ � cd;k.G/ � d

Z
S1

min. QHt � QGt / dt C d

Z
S1
.h.t/ � g.t// dt;

and we know that

min. QHt � QGt / D min.Ht �Gt /C g.t/ � h.t/;

which yields the leftmost inequality required for continuity to hold.
Similarly, if spectrality holds for QH in (17), then it holds for H by the shift property,

because the addition of h does not change the set of critical points of AH , hence by (8),
Specd .H/ D Specd . QH/C d

R
S1 h.t/ dt:

Thus, we can assume H and G vanish at p�.

Step 3: Continuity when H and G vanish at p�. Under (12), the stable Hamiltonian
structure .dt; !'/ is of the form .dt; ! C dH ^ dt/; and R D @t C XH . The natural
symplectic form on the symplectization X D R � Y' under (12) is

!H D ds ^ dt C ! C dH ^ dt;

where s is the coordinate on R. We henceforth identify Y' with S1 � S2 using (12), we
implicitly identify orbit sets on Y' with the corresponding orbit sets on S1 � S2, and we
identify the trivialized reference cycle .H ; �H / with the S1-invariant trivialized cycle 
over p�.
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Given H and G, we pick a function ˇ which is 0 for sufficiently small s, is 1 for s
sufficiently large, and satisfies 1C ˇ0.H � G/ > 0, we define K D G C ˇ.s/.H � G/,
and we consider the form

!X D ds ^ dt C ! C d.Kdt/;

which is symplectic and agrees with !H for sufficiently positive s and with !G for suffi-
ciently negative s.

The general theory of (twisted) PFH cobordism maps, as developed by Chen [6],
guarantees a chain map ‰H;G between the twisted PFH chain complexes for H and G,
counting ECH index zero JX -holomorphic buildings from .˛;Z/ to .ˇ;Z0/, and inducing
an isomorphism, where JX is a fibration compatible almost complex structure on X , in
the sense that it preserves the vertical tangent bundle and its !X -orthogonal complement.

So, given d � 1 and k 2 Z of the same parity, let .˛1; Z1/C � � � C .˛m; Zm/ be a
cycle in ePFC.'1H ; d / representing �d;k with

c�d;k .'
1
H / D A.˛1; Z1/ � � � � � A.˛m; Zm/

and let .ˇ;Z0/ be a generator in ePFC.'1G ; d / with maximal action among the elements of
the support of ‰H;G..˛1; Z1/C � � � C .˛m; Zm//:

Thus, we have a JX -holomorphic building C from some .˛i ; Zi /, which we will
denote by .˛; Z/, to .ˇ; Z0/. Since, just as in [9], our argument only involves action
and index considerations, we can assume that C consists of a single level, and we know
that

Z0 C ŒC � D Z

as elements of H2.S1 � S2; ˛; d/. Hence, as I.ŒC �/ D 0, we must have I.Z/ D
I.Z0/ D k, so that

cd;k.'
1
H / � cd;k.'

1
G/ � A.˛;Z/ �A.ˇ;Z0/: (18)

We now claim that

A.˛;Z/ �A.ˇ;Z0/ D

Z
C

.! C dK ^ dt CK 0ds ^ dt/; (19)

where K 0 denotes the derivative with respect to s, and for the rest of this section dK
denotes the derivative in the S2 direction.

The proof of this is just as in [9, Lem. 3.8]. Indeed, as in that proof, we have

A.˛;Z/ D

Z
Z

.! C d.Hdt//; A.ˇ;Z0/ D

Z
Z0

.! C d.Gdt//;

and Z
C

! D

Z
Z

! �

Z
Z0

!:
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Moreover,
R
C
d.Kdt/ D

R
Z
d.Hdt/ �

R
Z0 d.Gdt/, since H and G vanish on  . So,

putting all this together, we have

A.˛;Z/ �A.ˇ;Z0/ D

Z
C

.! C d.Kdt//;

proving (19).
Moreover, we have

R
C
.! C dK ^ dt/ � 0, since as in the proof of [9, Lem. 3.8], the

form ! C dK ^ dt is pointwise nonnegative along C , and so in fact we obtain

A.˛;Z/ �A.ˇ;Z0/ �

Z
C

K 0ds ^ dt: (20)

The argument in [9, Lem. 3.8] also shows that ds ^ dt is pointwise nonnegative on C .
Now we haveZ
C

K 0ds ^ dt D

Z
C

ˇ0.s/.H �G/ds ^ dt �

Z
C

ˇ0.s/min.Ht �Gt /ds ^ dt;

since ds ^ dt is pointwise nonnegative along C . We can evaluate the rightmost integral
above by projecting to the .s; t/ plane; this projection has degree d , and

R
ˇ0 D 1, so the

above inequality combined with (20) and (18) gives the leftmost inequality required for
continuity.

To prove the other inequality, we switch the roles of H and G in the above argument,
and again invoke the corresponding versions of (18) and (20) to get

cd;k.'
1
G/ � cd;k.'

1
H / �

Z
C

ˇ0.s/.G �H/ds ^ dt;

hence

cd;k.'
1
H / � cd;k.'

1
G/ �

Z
C

ˇ0.s/.H �G/ds ^ dt �

Z
C

ˇ0.s/max.Ht �Gt /ds ^ dt;

where in the rightmost inequality we have used the fact that ds ^ dt is pointwise non-
negative. We then project to the .s; t/ plane as above to obtain the rightmost inequality
required for continuity.

Step 4: Spectrality when H vanishes at p�. Since H vanishes at p�, we know by (13)
that any cd;k.H/ equals A.˛;Z/ for some twisted PFH generator .˛;Z/.

Recall that A.˛; Z/ is the action of some relative homology class. We first construct
a particular homology class Z˛ from a periodic orbit ˛, and show that the action of this
class lies in the action spectrum. More precisely, let x be a q-periodic point of ' D '1H ,
and pick a capping disc u for the orbit .t/ D .'tH .x//t2Œ0;q� such that u.0; 0/ D p�.
Equip the disc with polar coordinates .�; �/ with � 2 R=qZ, � � 1, and then consider the
homology class Z˛ represented by

R=qZ � Œ0; 1�! S1 � S2; .�; �/ 7! .� mod 1; u.�; �//:
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We now compute

A.ˇ;Z˛/ D

Z
Z˛

.! C dH ^ dt/ D

Z
Z˛

.! C d.Hdt//

D

Z
u�! C

Z
@Z˛

Hdt D

Z
u�! C

Z q

0

Ht ..t// dt

D AH .; u/ 2 Specq.H/;

where, in the third equality above, we have used the fact that H vanishes at p�.
Now, given an arbitrary .˛; Z/, write ˛ D ¹.˛i ; qi /º. We can write Z D

P
Z˛i C

yŒS2�: Then

A.˛;Z/ D y C
X

A.˛i ; Z˛i /:

The right hand side is an element of Specd .H/, since we can for example absorb the y
into the capping of any particular orbit. Hence, cd;k.H/ 2 Specd .H/.

We now collect some additional useful properties of the cd;k .

Proposition 3.2. The spectral invariant cd;k W C1.S1 � S2/! R satisfies:

(1) Normalization: cd;k.0/ D 0 for �d � k � d .

(2) Monotonicity: Suppose that H � G. Then

cd;k.H/ � cd;k.G/:

(3) Shift: Let h W S1 ! R be a function of time. Then

cd;k.H C h/ D cd;k.H/C d

Z
S1
h.t/ dt:

(4) Symplectic invariance: cd;k.H ı  / D cd;k.H/ for any  2 Ham.S2; !/.

(5) Homotopy invariance: If H0 and H1 are mean-normalized and homotopic, then
cd;k.H0/ D cd;k.H1/.

(6) Support control: If the support of H is contained in a topological disc D with
Area.D/ < 1

dC1
, and �d � k � d , then jcd;k.H/j � 2d Area.D/.

Proof. Normalization follows from our previous work [9, Thm. 3.6], since as mentioned
previously the cd;k extend the spectral invariants we defined there. The shift property is
immediate from the definition. The monotonicity property follows formally from conti-
nuity: indeed, by continuity we have

cd;k.H/ � cd;k.G/ � d

Z
S1

max.Ht �Gt / dt;

and so if H � G then the integrand in the above inequality is nonpositive, so that we
obtain monotonicity.
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To prove symplectic invariance, let  t be a Hamiltonian isotopy such that  0 D Id
and  1 D  . It is sufficient to show that the function t 7! cd;k.H ı  t / is constant. To
see this, recall from Section 2.2 that Specd .H ı  t / D Specd .H/ and so the function
t 7! cd;k.H ı  t /, which is continuous by the continuity property of Theorem 3.1, takes
values in the measure-zero set Specd .H/ and so it must be constant.

The proof of homotopy invariance is analogous. Let Hs; 0 � s � 1, be a smooth path
of mean-normalized Hamiltonians connecting H0 to H1. Note that, by the homotopy
invariance of the action spectrum from Section 2.2, we have Specd .Hs/D Specd .H0/ for
all d 2N and s 2 Œ0; 1�. Then the continuous function s 7! cd;k.Hs/ is constant because it
takes values in the measure-zero set Specd .H0/. We conclude that cd;k.H0/D cd;k.H1/.

It therefore remains to prove support control. The proof will rely on the fol-
lowing lemma. We will say that a set U is d -displaced by a map ‰ if the sets
U;‰.U /; : : : ; ‰d .U / are pairwise disjoint.

Lemma 3.3. Let F be a Hamiltonian and let B be an open topological disc which is
d -displaced by '1F . Then, for any Hamiltonian G which is supported in B , we have
cd;k.G # F / D cd;k.F /.

A similar lemma was established in [9, Lem. 4.4] but only for maps supported in the
northern hemisphere. The argument presented here is essentially the same and so we will
be rather brief.

Proof of Lemma 3.3. Let .Ks/s2Œ0;1� be a smooth one-parameter family of Hamiltonians
such that for any s 2 Œ0; 1�, the time-1 map of Ks is 'sG'

1
F and the isotopy of Ks consists

in following first the isotopy generated by F and then that generated by sG.st; x/. More
precisely, we may takeKs DGs #F;whereGs.t;x/ WD sG.st;x/. It generates the isotopy

'tKs D

´
'
�.2t/
F if t 2 Œ0; 1=2�;

'
s�.2t�1/
G '1F if t 2 Œ1=2; 1�:

Then, for all s 2 Œ0; 1�, Specd .K
s/ D Specd .F /: the argument for this is exactly the

same as the argument11 in [9, Lem. 4.4] and so we will omit it. This implies that for
any .d; k/ the continuous map s 7! cd;k.K

s/ takes values in Specd .F /; the fact that
this map is continuous is a consequence of Hofer continuity of cd;k (see (15)). Since
Specd .F / is totally disconnected, we deduce that these functions are all constant, and so
cd;k.K

0/ D cd;k.K
1/.

SinceK1DG #F , it is sufficient to show that cd;k.K0/D cd;k.F / to finish the proof.
To see this, note that the Hamiltonian flows 't

K0
and 'tF are homotopic rel. endpoints, and

moreover
R

S1
R

S2K
0! dt D

R
S1
R

S2 F! dt . It then follows from the homotopy invariance
and shift properties that cd;k.K0/ D cd;k.F /.

11To orient a reader who reads [9, Lem. 4.4], note that the argument there refers to the spectrum
of the time-1 maps of Ks and F rather than to the Hamiltonians themselves; this is because in that
proof, the Hamiltonians are all assumed to be zero on the southern hemisphere so we can refer to
the spectrum in terms of the time-1 map; however, the argument for that lemma extends to the case
here with no changes.
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We will now use Lemma 3.3 to establish the support-control inequality.

Proof of the support-control inequality. Fix d > 0. Let H be a Hamiltonian supported
in a disc D of area smaller than 1

dC1
. This area condition implies that we can find a

Hamiltonian F such that the disc D is d -displaced by '1F .
Furthermore, for any " > 0, we may assume that kF k1;1 � Area.D/C ". To see this,

note that we can find an area-preserving diffeomorphism such that .D/ is sandwiched
between two meridians (that is, curves with � D constant) of S2 which enclose a region
of area Area.D/C "

2
. Suppose that " is so small that Area.D/C " < 1

dC1
. Then, consider

the HamiltonianK D Area.D/C"
2

z whose time-1 map '1K is the horizontal rotation of angle
Area.D/C ", which d -displaces .D/. Then we may set F DK ı , whose time-1 map,
 �1'1K , d -displaces the disc D. Clearly, kF k1;1 D Area.D/C ".

By Lemma 3.3, we have cd;k.H # F / D cd;k.F /. Using this and (15), we obtain

jcd;k.H/ � cd;k.F /j D jcd;k.H # 0/ � cd;k.H # F /j � dkH # 0 �H # F k1;1
D dkF k1;1:

Hence,

jcd;k.H/j � jcd;k.F /j C dkF k1;1 � 2dkF k1;1 D 2d Area.D/C 2":

This completes the proof of the support-control inequality.

We have now completed the proof of Proposition 3.2.

3.2. Invariants for Hamiltonian diffeomorphisms

The goal of this section is to introduce PFH spectral invariants, and other related invari-
ants, for Hamiltonian diffeomorphisms.

3.2.1. The cd . We begin by noting that we can now define the PFH spectral invari-
ants on the universal cover eHam.S2; !/ as follows. Given Q' 2 eHam.S2; !/, let H be
a mean-normalized Hamiltonian such that the Hamiltonian path ¹'tH º; 0 � t � 1, is a
representative for Q'. Define

cd;k. Q'/ WD cd;k.H/: (21)

The mapping
cd;k W eHam.S2; !/! R

is well-defined as a consequence of the homotopy invariance property in Proposition 3.2.
Note that for any (not necessarily normalized) Hamiltonian H , the shift property yields

cd;k. Q'/ D cd;k.H/ � d

Z
S1

Z
S2
Ht! dt; (22)

where Q' is the lift of ' given by the isotopy .'tH /t2Œ0;1�.
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However, to prove our main theorems, we will want invariants of Ham.S2; !/ rather
than eHam.S2; !/.

To produce such invariants, we start by showing that, as mentioned above, we can
use the cd;k to define invariants that are independent of the choice of mean-normalized
Hamiltonian. To begin, let Q' 2 eHam.S2; !/: Define

cd . Q'/ WD cd;�d . Q'/:

Next, we will prove that, for even d , the map cd W eHam.S2; !/ ! R descends to
Ham.S2; !/. In other words, we will show that there is a well-defined map

cd W Ham.S2; !/! R:

This is the content of Proposition 3.5.

Remark 3.4. The cd as defined here are not canonical. We could equally well define

cd .'/ WD cd;k.'
1
H /

for any �d � k � d with the same parity as d . What is important for the applications
in our paper is to choose a k such that the cd;k have the normalization property. It is
also instructive to note that because addition of the homology class of a fiber of the map
Y' ! S1 induces a canonical bijection of the twisted PFH chain complex, we have

cd;kC2dC2.H/ D cd;k.H/C 1: (23)

In particular, as a function on C1.S1 � S2/, any cd;k0 differs by a constant function from
some cd;k with �d � k � d .

To summarize, then, there are essentially d C 1 possible spectral invariants corre-
sponding to degree d , and we have made a noncanonical choice of one of them moving
forward, with the main goal of simplifying the notation.

For future use, we also define

cd .H/ WD cd;�d .H/

for any H 2 C1.S1 � S2/.

Proposition 3.5. For any positive even integer d and any even integer k, the invariant
cd;k W eHam.S2; !/! R descends to Ham.S2; !/. In other words, it does not depend on
the choice of mean-normalized H .

In particular, we obtain a well-defined invariant cd WHam.S2;!/!R for any positive
even integer d .

Proof. Let H be any Hamiltonian and K D 1
2
.z C 1/: Note that the Hamiltonian K van-

ishes at p� and its time-1 flow is rotation by 2� about the z-axis. We will show below
that for any positive integer d and integer k of the same parity as d ,

cd;k.H #K/ D cd;k.H/C d=2: (24)
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This implies the conclusin of Proposition 3.5, by the following argument. Let H1 and H2
be mean-normalized Hamiltonians generating the same time-1 map. We can assume that
H1 and H2 are not homotopic, or else the conclusion holds by Proposition 3.2 (5). Then
H1 # .K � 1=2/ and H2 are homotopic, and H1 # .K � 1=2/ is mean-normalized, hence

cd;k.H1 # .K � 1=2// D cd;k.H2/:

On the other hand, by the shift property,

cd;k.H1 # .K � 1=2// D cd;k.H1 #K/ � d=2;

so that the conclusion follows from (24).
It remains to prove (24). To do this, we first note that

cd;k.H # 0/ D cd;k.H/:

Indeed, H # 0 and H are homotopic, with the same mean. Thus, it suffices to show that

cd;k.H #K/ D cd;k.H # 0/C d=2:

To prove this, by the shift property we can assume that H vanishes at p�. Then H # K
and H # 0 have the same time-1 map ', and the same reference cycle  � Y' . The only
difference between them is the trivialization of V over  ; more precisely, if � 0 denotes the
trivialization over  induced byH #K and � denotes the trivialization induced byH # 0,
then � 0 D � � 1. Thus, since in this case the identity map is an isomorphism of the twisted
PFH chain complexes, which shifts the grading by d2 C d by [21, (6), Lem. 2.5 (b)], we
have

cd;k.H #K/ D cd;kCd2Cd .H # 0/ D cd;k.H # 0/C d=2

as desired; here, we have used (23) for the second equality above.

3.2.2. Homogenized invariants. We introduced the homogenizations �d and �d in the
introduction (see (2) and (3)). The next proposition states that they are well-defined.

Proposition 3.6. There are well-defined maps �d W Ham.S2; !/ ! R and �d W

C1.S2/! R given by

�d .'/ D lim sup
n!1

cd . Q'
n/

n
and �d .H/ D lim sup

n!1

cd .nH/

n

for any ' 2 Ham.S2; !/ and H 2 C1.S2/.

Remark 3.7. One can more generally define �d .H/ WD lim supn!1 cd .H
n/=n for any

(not necessarily autonomous) Hamiltonian H 2 C1.S1 � S2/. However, we choose to
restrict �d to C1.S2/ in analogy with [11], where a similar map � was defined and was
proved to satisfy the properties of a symplectic quasi-state. It would be interesting to see
if our �d also has these properties.
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Proof of Proposition 3.6. The fact that both the lim sup exist follows directly from the
continuity property of cd WD cd;�d in Theorem 3.1. This shows that �d is well-defined
on C1.S2/ and that �d is well-defined on the universal cover eHam.S2; !/. It remains to
show that �d descends to Ham.S2; !/.

To see this, let ' 2 Ham.S2; !/. Let Q'; Q'0 be two lifts of ' to eHam.S2; !/. Recall that
�1.Ham.S2; !// has only two elements and the nontrivial element is represented by the
isotopy ¹'tRº, where R.�; z/D z=2 is the Hamiltonian which generates a full 2� rotation
around the z-axis. As a consequence, for any n 2 N, since Q'n and Q'0n are both lifts of
the same diffeomorphism 'n, we have either Q'n D Q'0n or Q'n D Q'0n Q'R. In both cases, the
continuity property of Theorem 3.1 gives an upper bound which does not depend on n:

jcd . Q'
n/ � cd . Q'

0n/j � dkRk1;1:

It then follows that

lim sup
n!1

cd . Q'
n/

n
D lim sup

n!1

cd . Q'
0n/

n
;

which proves that �d descends to Ham.S2; !/.

We next state some of the properties of �d which will be used in our arguments.

Proposition 3.8. The invariant �d W Ham.S2; !/! R has the following properties:

(1) Normalization: �d .Id/ D 0.

(2) Hofer continuity: For all '; we have

j�d .'/ � �d . /j � ddH .';  /:

(3) Calabi property: Suppose that supp.'/ is contained in a topological disc D. If
Area.D/ < 1

dC1
, then

1

d
�d .'/ D �Cal.'/;

where Cal W Hamc.D; !/! R denotes the Calabi invariant.

(4) Relationship to �d : For any H 2 C1.S2/,

�d .'
t
H / D �d .tH/ � td

Z
S2
H! (25)

for all t 2 R.

Proof. The first item follows immediately from the definition of �d combined with the
fact that cd .0/ D 0.

To prove the second item, let ';  2 Ham.S2; !/ and H; K be mean-normalized
Hamiltonians with '1H D ' and '1K D  . We also denote by Q'; Q 2 eHam.S2; !/ the lifts
of '; respectively given by H;K. Then, by definition,

1
d
jcd . Q'

n/ � cd . Q 
n/j D 1

d
jcd .H

#n/ � cd .K
#n/j
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for any n > 0. Here H #n denotes the n-fold composition H # � � � #H . By the continuity
property of cd , we have

1
d
jcd .H

n/ � cd .K
n/j � kH #n

�K#n
k1;1 D nkH �Kk1;1:

Note that this last equality follows from (9). From this inequality, we deduce

j�d .'/ � �d . /j � dkH �Kk1;1:

Since this holds for any choices of HamiltoniansH;K, and since we can restrict to mean-
normalized Hamiltonians in computing the Hofer norm of '�1 , the Hofer continuity
property follows.

The Calabi property is a consequence of the support-control property from Proposi-
tion 3.2. Indeed, given any Hamiltonian H with support in D, (22) yields

cd . Q'/ D cd .H/ � d

Z
S1

Z
S2
Ht! dt;

where Q' is the lift of ' given by the isotopy .'tH /t2Œ0;1�. The integral in the second term
on the right hand side above is precisely �Cal.'/, while the first term is bounded from
above by 2d Area.D/, by support control. Applying this to 'n, for any n > 0, we getˇ̌

1
n
cd . Q'

n/C d Cal.'n/
ˇ̌
D

1
n
jcd . Q'

n/C d Cal.'n/j D 1
n
jcd .H

n/j � 1
n
2d Area.D/:

The Calabi property follows from this inequality.
As for the last item, it follows from the definitions of �d and �d , and (22), that

�d .'
t
H / D �d .'

1
tH / D �d .tH/ � d

Z
S1

Z
S2
tH! dt:

3.2.3. The invariants �d . Although we can use the invariants cd or �d to get invariants
of the time-1 map, these invariants will not in general be C 0-continuous, as they require
mean-normalizing the Hamiltonian. We obtain C 0-continuous invariants by defining, for
even d 2 N, the numbers

�d W Ham.S2; !/! R; ' 7! cd .'/ �
d

2
c2.'/: (26)

The fact that �d is well-defined is an immediate consequence of Proposition 3.5.
Observe that, by Proposition 3.5 and the shift property of Proposition 3.2, we have

�d .'/ D cd .H/ �
d

2
c2.H/; (27)

where H is any Hamiltonian with time-1 flow '.
We now prove that �d has various properties, most notably C 0-continuity.

Proposition 3.9. The invariant �d is well-defined and has the following properties for all
'; 2 Ham.S2; !/:
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(1) Normalization: �d .Id/ D 0.

(2) Hofer continuity: j�d .'/ � �d . /j � ddH .';  /:

(3) Support control: If the support of ' 2 Ham.S2; !/ is contained in a topological disc
D with Area.D/ < 1

dC1
, then j�d .'/j � 2d Area.D/.

(4) C 0-continuity: The mapping �d W Ham.S2; !/ ! R is continuous with respect
to the C 0-topology on Ham.S2; !/, and furthermore it extends continuously to
Homeo0.S2; !/.

We recall in relation to the support-control inequality that the total area of the sphere
is assumed to be 1.

Proof of Proposition 3.9. The first and third properties are immediate consequences of
the same properties of the invariants cd;k ; see Theorem 3.1 and Proposition 3.2. To prove
the second, note first of all that if H and G are any Hamiltonians, then by the continuity
property of Theorem 3.1, we have

.cd .H/ � cd .G// �
d

2
.c2.H/ � c2.G// � dkH �Gk:

Now letK be any Hamiltonian generating '�1 and letG generate '. ThenH WDG #K
generates  and hence by the above inequality,

�d . / � �d .'/ � dkKk; �d .'/ � �d . / � dkKk;

which yields the Hofer continuity property, since K was arbitrary.
We only have to establish C 0-continuity. This takes up the remainder of this subsec-

tion. Our proof will follow the lines (and use some of the intermediate steps) of [9, Sec. 4],
which established a similar result for the invariant cd restricted to maps supported in the
northern hemisphere. We fix some degree d > 0. The result will follow from the next
proposition.

Proposition 3.10. For any h 2 Homeo0.S2; !/ and " > 0, there exists ı > 0 such
that for all f; g 2 Ham.S2; !/ satisfying dC0.f; h/ < ı and dC0.g; Id/ < ı, we have
j�d .gf / � �d .f /j < ".

Let us temporarily assume this proposition and explain how it implies the C 0-
continuity of �d . Let ¹fiºi2N � Ham.S2; !/ be a sequence which C 0-converges to
h 2 Ham.S2; !/. We may write fi in the form gih with dC0.gi ; Id/ ! 0 as i ! 1.
By the proposition we have j�d .gih/ � �d .h/j ! 0, which proves the C 0-continuity. To
prove extension to Homeo0.S2;!/ let h 2Homeo0.S2;!/ and let ¹fiºi2N �Ham.S2;!/
be a sequence which C 0-converges to h. Then dC0.fi ; fj / D dC0.fif

�1
j ; Id/ becomes

arbitrarily small when i; j are large enough and so Proposition 3.10 implies that
j�d .fi / � �d .fj /j D j�d ..fif

�1
j /fj / � �d .fj /j becomes arbitrarily small for i; j large

enough so that �d .fi / converges. Proposition 3.10 also similarly implies that if ¹f 0i ºi2N

is another sequence converging to h, then j�d .fi / � �d .f 0i /j ! 0, hence the limit does
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not depend on the choice of limiting sequence. This allows us to consistently define �d .h/
for any h 2 Homeo0.S2; !/ by setting

�d .h/ WD lim
i!1

�d .fi /

for any sequence fi which C 0-converges to h.

We now prove Proposition 3.10.

Proof of Proposition 3.10. We give the proof of this proposition in two steps.

Step A: Continuity in the non-finite-order case. We first assume that h is not of finite order
in the group Homeo0.S2; !/. Then there exists a point x 2 S2 such that hdŠ.x/ ¤ x. For
such a point and for any integers 0 � p < q � d , we have hq�p.x/ ¤ x. By compos-
ing with hp , we also have hq.x/ ¤ hp.x/. Therefore, the points x; h.x/; : : : ; hd .x/ are
pairwise distinct. Let B be a small ball centered at x such that the closure xB of B is
d -displaced by h.

Let " > 0. We choose ı0 > 0 so small that any map f such that dC0.f; h/ < ı0 must
also d -displace xB .

The next lemma says roughly that a C 0-small element of Ham.S2; !/ is Hofer-close
to being supported in B .

Lemma 3.11. Let B be any open topological disc. For all "0 > 0, there exists ı > 0 such
that for all g 2 Ham.S2;!/ with dC0.g; Id/ < ı, there is � 2 Ham.S2;!/ supported in B
such that dH .�; g/ � "0.

A similar result was proved in [9, Lem. 4.6] but only for maps g supported in the
northern hemisphere. By conjugating by an appropriate area-preserving map, this partic-
ular case implies that Lemma 3.11 holds for maps g supported in any topological disc
of area 1=2. In fact, the factor 1=2 here is not essential to the proof of [9, Lem. 4.6]: the
same argument, which we omit12 for brevity, shows that it also holds for maps supported
in an embedded disc of any area. The general case then immediately follows from the
next fragmentation lemma: indeed, given the lemma below, and given g, we can first frag-
ment g into maps supported on embedded discs and then approximate each of these maps
by maps supported in B .

Lemma 3.12 ([48, Prop. 3.1]). There exist open topological embedded discs D1; D2
which cover S2 such that for any ˛ > 0, there exists ı > 0 such that for any
g 2 Ham.S2; !/ satisfying dC0.g; Id/ < ı, there exist g1; g2 2 Ham.S2; !/ with
supp.gi / � Di and dC0.gi ; Id/ < ˛ for i D 1; 2 such that g D g1 ı g2.

12To help the reader who reads the argument in [9, Lem. 4.6], we note that the only change is
that the factors of 1=2, which come from the fact that the northern hemisphere has area 1=2 (see
the end of the second paragraph of the proof there) must be changed to some number ` < 1. This
change can be accommodated by choosing what are called N and m in the proof to be such that
`=N < Area.B/; `=m < 1=2 and 4`NC1m < �: With these changes understood, the argument can
be repeated verbatim.
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Having established Lemma 3.11, we can now continue the proof of Proposition 3.10.
Let ı > 0 be as provided by Lemma 3.11 for "0 D "=d . We may assume without loss of
generality that ı < ı0. Then, by Lemma 3.11, for any Hamiltonian diffeomorphism g with
dC0.g; Id/ < ı, there exists � 2 Ham.S2; !/ supported in B satisfying dH .�; g/ � "=d .
Now let f; g 2 Ham.S2; !/ be such that dC0.f; h/ < ı and dC0.g; Id/ < ı. By Hofer
continuity of �d and Lemma 3.3, it follows that

j�d .gf / � �d .f /j � j�d .gf / � �d .�f /j C j�d .�f / � �d .f /j

� ddH .gf; �f /C 0 D ddH .g; �/ � ":

This concludes the proof in the case where h is not of finite order.

Step B: The finite-order case. We will now conclude the argument by reducing the case
where h is of finite order to the case where it is not. Let h be of finite order and let
" > 0. We may pick a Hamiltonian diffeomorphism  such that k k < "=3 and h is
not of finite order.13 Then, by Step A, there exists ı such that for any f 0; g0 satisfying
dC0.f

0; h / < ı and dC0.g0; h/ < ı, we have j�d .g0f 0/ � �d .f 0/j < "=3.
Now take f; g as in the statement of the proposition. We apply the triangle inequality

to obtain

j�d .gf / � �d .f /j

� j�d .gf / � �d .gf  /j C j�d .gf  / � �d .f  /j C j�d .f  / � �d .f /j:

By Hofer continuity and the above estimate on k k, we have

j�d .gf / � �d .gf  /j � "=3; j�d .f  / � �d .f /j � "=3:

Thus, to finish the proof of the proposition, it remains to show that

j�d .gf  / � �d .f  /j � "=3:

This follows from the previous paragraph, since if dC0.f;h/ < ı; then dC0.f  ;h / < ı.

4. The quasi-isometry type of the kernel of Calabi

Equipped with our new spectral invariants, we now prove Theorem 1.4.

13For the benefit of the reader, we briefly sketch why such a  exists. Since h has finite order, all
x 2 S2 are periodic and we let ` be the maximal period of a point. Then the set of points of period `
is open, because it is ¹x 2 S2 W hk.x/ ¤ x;8k D 1; : : : ; ` � 1º. It follows that if we fix a point x
of period `, there exists an open set U containing x such that h`jU D IdU and U; : : : ; h`�1.U /
are pairwise disjoint. Now, let  be a C 1-small (hence Hofer-small) map supported in U which
coincides with an irrational rotation around x in a smaller open subset V � U . Then h does not
have finite order. Indeed, for any n 2N and y 2 V n ¹xº, we have .h /n.y/D  n=`.y/ if ` divides
n and .h /n.y/ … U otherwise. In both cases, .h /n.y/ ¤ y. Thus, such a  suits our needs.
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4.1. Homogenization and monotone twists

4.1.1. A combinatorial model. We begin by recalling the combinatorial model of [9,
Thm. 6.1], which gives an explicit formula for cd .H/ where H W S2 ! R is a mono-
tone twist, and which we will need below and for the proof of Theorem 1.7 as well.

Here and below we use the notations of [9, Sec. 5.2]. To summarize, recall that a
lattice path P is the graph of a piecewise linear function Y W Œ0; d �! R�0 such that the
vertices of P are at integer lattice points; the number d is called the degree of the path
and is assumed to be an integer below. A lattice path is called concave if it never crosses
any of its tangent lines. We can think of a lattice path as a collection of maximal line
segments, called edges, joined end to end. We regard any edge as an integer multiplemp;q
of a primitive vector .q; p/; these vectors are directed with the convention that q � 1:

To any concave lattice path, we associate a number j.P / as follows. We form the
region RC bounded by the x-axis, the line x D d , and the part of P above the x-axis,
we form the region R� bounded by the axes and the part of P below the x-axis, we
define jC to be the number of lattice points in RC, not including lattice points on P , and
we define j� to be the number of lattice points in R�, not including the lattice points on
the x-axis. Finally, we define j.P / WD jC � j�. See Figure 1. We define the combinatorial
index I.P / by

I.P / WD 2j.P / � d:

P

d0

RC

R�

Fig. 1. The lattice points which contribute to the count for j.P / are circled. Here, jC.P / D 5,
j�.P / D 5, d D 6, thus j.P / D 0 and I.P / D �6.

Now letH D 1
2
h be a monotone twist. Assume that h.�1/D h0.�1/D 0;h00 > 0, and

h0.1/ is an integer. We call such a monotone twist nice. We call a lattice pathP compatible
with h if for every edge mp;q.q; p/, there exists some zp;q such that h0.zp;q/ D p=q: If
P is a concave lattice path, compatible with a nice monotone twist, then we define the
action A.P / by setting

A.q; p/ WD 1
2

�
p.1 � zp;q/C qh.zp;q/

�
; (28)

and extending by linearity.
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We can now state the formula from [9, Thm. 6.1] for the invariants cd;k : for all degrees
d � 1 and all gradings k, when H is a nice monotone twist we have

cd;k.H/ D max ¹A.P / W 2j.P / � d D kº; (29)

where the maximum is over concave lattice paths that are compatible with h. Invoking
this formula is justified because our nice monotone twists are in H , and the cd;k defined
here extend the definition from [9]; see the discussion at the beginning of Section 3.

4.1.2. �d of monotone twists. We now apply the combinatorial model from the previous
section to compute the invariants �d for monotone twists. In particular, we can now give
the promised proof of Proposition 1.11.

Proof of Proposition 1.11. First note that �d is Lipschitz continuous with respect to the
uniform norm on C1.S2/; this follows from Hofer continuity of cd . Thus, both sides of
the equation in Proposition 1.11 are continuous with respect to uniform norm. Since any
monotone twist H can be approximated uniformly by nice monotone twists, we deduce
that it is sufficient to prove Proposition 1.11 for such twists. For the rest of the proof, we
therefore assume that H is a nice monotone twist.

We note that the index I.P / D 2j.P / � d from §4.1.1 is equivalently given by

I.P / D 2AC y C w � e; (30)

where y and w are respectively the minimal and maximal vertical coordinates of P ,
e is the number of edges in P , and A is the (signed) area of the region enclosed by P , the
x-axis and the vertical line ¹dº �R. Indeed, by shifting the path if necessary, it suffices to
prove this when y D 0, in which case it follows from Pick’s formula that this corresponds
to the definition given in §4.1.1.

Let us introduce some notation. For any i 2 ¹1; : : : ; dº, we set ai D Y.i/� Y.i � 1/,
where Y is the function Œ0; d �! R such that P D graph.Y / D ¹.x; Y.x// W x 2 Œ0; d �º.
Then

2A D 2dy C a1 C .2a1 C a2/C � � � C .2a1 C � � � C 2ad�1 C ad /

D 2dy C .2d � 1/a1 C .2d � 3/a2 C � � � C ad :

Using (30) and the relation w D y C a1 C � � � C ad , the condition I.P / D �d becomes

2dy C 2y C 2da1 C .2d � 2/a2 C � � � C 2ad � e D �d:

Therefore, under this condition, we may express y in terms of the ai as

y D �
1

d C 1

�
da1 C .d � 1/a2 C � � � C ad C

d � e

2

�
D

e � d

2.d C 1/
C

dX
iD1

�
�ai C

i

d C 1
ai

�
: (31)
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Let us now turn our attention to the action. It is given by (28): we state here a refor-
mulated version with the ai , namely

A.P / D y C

dX
iD1

1

2
.ai .1 � zi /C h.zi //;

where zi is the unique point such that h0.zi / D ai . Using (31), we obtain

A.P / D
e � d

2.d C 1/
C

dX
iD1

�
i

d C 1
ai � ai

�
C

dX
iD1

1

2
.ai .1 � zi /C h.zi //

D
e � d

2.d C 1/
C
1

2

dX
iD1

�
h0.zi /

�
�1C

2i

d C 1
� zi

�
C h.zi /

�
: (32)

Note that the term e�d
2.dC1/

belongs to .�1=2; 0�. It vanishes when all edges in P have
horizontal displacement 1.

By (29), cd D cd;�d is obtained by maximizing the value of A.P / over all possible
paths with I.P / D �d .

To compute this maximum, consider the function

F.t1; : : : ; td / D

dX
iD1

�
h0.ti /

�
�1C

2i

d C 1
� ti

�
C h.ti /

�
;

defined on the set E of tuples .t1; : : : ; td / such that �1 � t1 � � � � � td � 1. We have

A.P / D
1

2
F.z1; : : : ; zd /C

e � d

2.d C 1/
: (33)

We may compute the partial derivatives of F ,

@F

@ti
D

�
�1C

2i

d C 1
� ti

�
h00.ti /;

and we see that it is positive for ti < �1C 2i
dC1

and negative for ti > �1C 2i
dC1

. This
implies that F attains its maximum at .t1; : : : ; tn/ such that ti D�1C 2i

dC1
for all i . Thus,

max
E
F D

dX
iD1

h

�
�1C

2i

d C 1

�
: (34)

Now it follows from the versions of (29), (33), (34) for nH , and the fact that e� d � 0,
that for all n,

1

n
cd .nH/ �

1

2

dX
iD1

h

�
�1C

2i

d C 1

�
: (35)
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To proceed, let an1 � � � � � a
n
d

be sequences in 1
n

N which converge respectively to
�1C 2

dC1
;�1C 4

dC1
; : : : ; 1 � 2

dC1
. Let zni be such that h0.zni / D a

n
i . Then

F.zn1 ; : : : ; z
n
d /

n!1
����! max

E
F D

1

2

dX
iD1

h

�
�1C

2i

d C 1

�
:

Moreover, we can construct a lattice path, for nH , such that (33) holds with the zi D
zni and e D d . We therefore deduce 1

n
cd .nH/ �

1
2
F.zn1 ; : : : ; z

n
d
/ and we conclude in

combination with (35) that

lim
n!1

1

n
cd;�d .nH/ D

1

2

dX
iD1

h

�
�1C

2i

d C 1

�
;

as desired.

Remark 4.1. (i) It follows from the previous proposition that we have the following
composition property for monotone twists: for any monotone twists �; we have

�d .� / D �d .�/C �d . /: (36)

Indeed, it follows from Proposition 1.11 that �d .H1 CH2/ D �d .H1/C �d .H2/, which
gives (36).

(ii) For any monotone twist ' 2 Ham.S2; !/, it can easily be shown that �d .'/ D
limn!1 cd . Q'

n/=n, i.e. the lim sup in formula (2) is in fact a limit for such '.

4.2. A family of Hamiltonians

We will now construct a certain family of Hamiltonian diffeomorphisms which will be
used to establish Theorem 1.4. Let U � S2 be a proper open set containing the north
pole pC and let � > 0 be an integer. For all i 2 N, we denote

Di WD ¹.z; �/ 2 S2 W 1 � 2=di < z � 1º; where di D 2�CiC1:

We choose � large enough so that all the Di ’s are contained in U . Note that each Di is an
embedded disc and

Area.Di / D 1=di :

The next lemma states the properties of our family of maps.

Lemma 4.2. There exist autonomous Hamiltonians .Hi /i2N such that Hi is supported
in Di and the following properties are satisfied for all t � 0, i 2 N:

(1) 'tHi is a monotone twist for all t 2 R,

(2) Cal.'tHi / D t=2,

(3) dH .'tHi ; Id/ � 2t C 2,

(4) if j > i , then �di .'
t
Hj
/ D �tdi=2,
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(5) �di .'
t
Hi
/ > �tdi=2 and if j < i , then �di .'

t
Hj
/ � �t 5di

16
,

(6) 'tHi'
s
Hj
D 'sHj

'tHi
for all t; s 2 R.

Proof. Consider the functions fi W Œ�1; 1�! R defined by

fi .z/ WD

´
0; z 2 Œ�1; 1 � 2=di �;

d2i .z � .1 � 2=di //; z 2 Œ1 � 2=di ; 1�:

These functions are nonsmooth but to ensure that our future Hamiltonians are smooth, we
approximate them by smooth functions hi satisfying the following conditions:

(i) h0i .z/; h
00
i .z/ � 0 and jfi .z/ � hi .z/j � 1=di for all z 2 Œ�1; 1�,

(ii) the support of hi is contained in the interior of Œ1 � 2=di ; 1�.

(iii)
R 1
�1
hi .z/ dz D 2.

Let Hi .z; �/ D 1
2
hi .z/ and observe that Hi is supported in Di and that 'tHi is a

monotone twist for any t > 0 (proving item (1) of the lemma).
The fact that Cal.'tHi / D

t
2

readily follows from property (iii).
To prove item (3), we will need the following lemma, whose proof we postpone to the

end of this section. The idea behind this lemma goes back to Sikorav, who implemented
it in the case of R2n in [50]; see also [19, §5.6].

Lemma 4.3. Let H W S2 ! R denote an autonomous Hamiltonian such that the support
ofH is contained in a discD with Area.D/ < 1=N . Then dH .'1H ; Id/�

1
N

max.H/C 2.

Since the support of Hi is a disc of area less than 1=di , this lemma leads to

dH .'
t
Hi
; Id/ �

1

di
max.tHi /C 2 �

�
1C

1

2d2i

�
t C 2 � 2t C 2;

which implies item (3).
Item (4) is a consequence of the Calabi property from Proposition 3.8 (3), because

'tHj
is supported in Dj and Area.Dj / < 1

diC1
for j > i . The last item of Lemma 4.2 is

also easy to check. Indeed, since the Hamiltonians Hi are functions of z, they all Poisson
commute, hence their flows commute.

It remains to prove item (5). Since

�di .tHj / D �di .'
t
Hj
/C di

Z
S2
tHj! D �di .'

t
Hj
/C t

di

2
;

we just need to prove that �di .Hi / > 0 and �di .Hj / � 3di=16 when i > j:
As already mentioned, the above conditions (i) and (ii) ensure that 'tHj is a monotone

twist for all t > 0. By Proposition 1.11,

�di .Hj / D
1

2

diX
mD1

hj

�
�1C

2m

di C 1

�
:
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We can rewrite the above sum as

�di .Hj / D
1

2

NX
kD0

hj

�
�1C

2.di � k/

di C 1

�
;

where N is the largest integer such that �1 C 2.di�N/
diC1

is in the support of hj , that is,

�1C 2.di�N/
diC1

> 1 � 2
dj

. A simple computation reveals that

N C 1 D di=dj : (37)

Consider the (nonsmooth) function fj .z/. By the definition of hj , we have hj �
fj � 1=dj and so

�di .Hj / �

�
1

2

NX
kD0

fj

�
�1C

2.di � k/

di C 1

��
�
1

2

N C 1

dj
: (38)

The first term on the right hand side in the above equation may be computed explicitly.
Indeed, fj .z/ is linear in z and so the above is just an arithmetic sum. First, note that
�1C 2.di�k/

diC1
D 1 � 2

diC1
.k C 1/, and so

NX
kD0

fj

�
�1C

2.di � k/

di C 1

�
D

NX
kD0

fj

�
1 �

2

di C 1
.k C 1/

�
:

Next, one can easily check that fj .1 � 2
diC1

.k C 1// D 2dj �
2d2
j

diC1
.k C 1/. Thus,

NX
kD0

fj

�
1 �

2

di C 1
.k C 1/

�
D

NX
kD0

�
2dj �

2d2j

di C 1
.k C 1/

�
D 2dj .N C 1/ �

2d2j

di C 1

.N C 1/.N C 2/

2

D di

�
2 �

di C dj

di C 1

�
: (39)

For i D j , (37)–(39) yield

�di .Hi / � di

�
1 �

di

di C 1
�

1

2d2i

�
> 0;

as desired, which implies the first part of item (5).
For i > j , (37)–(39) give

�di .Hi / �
1

2
di

�
2 �

di C dj

di C 1
�
1

d2j

�
�
1

2
di

�
2 �

di C dj

di
�
1

8

�
D
1

2
di

�
7

8
�
dj

di

�
�
3di

16
;

where we have used 1=d2j � 1=8 for the second inequality and dj =di � 1=2 for the last
inequality. This concludes the proof of item (5).
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We end this section (and the proof of Lemma 4.2) with the proof of Lemma 4.3.

Proof of Lemma 4.3. Since Area.D/ < 1=N , by Lemma 2.1, we can find  1; : : : ;  N 2
Ham.S2; !/ such that

 i .D/ \  j .D/ D ; for i ¤ j; dH . i ; Id/ � 1=N :

Define the Hamiltonians Fi D 1
N
H ı �1i and note that '1Fi D  i'

1=N
H  �1i . Let F DPN

iD1 Fi . Observe that since Fi is supported in  i .D/, the Fi ’s have disjoint supports,
and so max.F / D max.Fi / D 1

N
max.H/. Hence,

dH .'
1
F ; Id/ �

1

N
max.H/;

from the definition of the Hofer norm. Therefore, to prove the claim it is sufficient to show
that dH .'1H ; '

1
F / � 2. This can be proved using inequalities (5) and (6) as follows:

dH .'
1
H ; '

1
F / D dH

� NY
iD1

'
1=N
H ;

NY
iD1

 i'
1=N
H  �1i

�
�

NX
iD1

dH .'
1=N
H ;  i'

1=N
H  �1i / �

NX
iD1

2dH . i ; Id/ � 2:

4.3. Quasi-flats in the kernel of Calabi

We are now ready to present a proof of Theorem 1.4. First note that without loss of
generality we may assume that the open set U contains the North Pole pC. This allows
us to use the constructions of the preceding section.

We begin by proving the first part of the theorem, regarding the quasi-flat rank.

Proof of Theorem 1.4 (a). Let RnC WD ¹.t1; : : : ; tn/ W ti � 0 for all iº. We equip RnC
with the distance induced by the sup norm, that is, we define the distance between
.t1; : : : ; tn/; .s1; : : : ; sn/ 2 RnC to be

k.t1; : : : ; tn/ � .s1; : : : ; sn/k1 D max ¹jti � si j W i D 1; : : : ; nº:

The mapping

ˆ W RnC ! Ham.S2; !/;

.t1; : : : ; tn/ 7! '
t1
H1
ı � � � ı '

tn
Hn
ı '
�.t1C���Ctn/
HnC1

;

takes values in HamU .S2; !/. Moreover, since the Hi all have the same integral over S2,
the mapping ˆ takes values in the kernel of the Calabi homomorphism.

We will show that there exists an invertible n � n matrix A such that

kA.t � s/k1 � dH .ˆ.t/; ˆ.s// � 2n.2kt � sk1 C 1C 1=n/; (40)
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where t, s stand for .t1; : : : ; tn/ and .s1; : : : ; sn/, respectively. As a consequence,

1

kA�1kop
kt � sk1 � dH .ˆ.t/; ˆ.s// � 4nkt � sk1 C 2nC 2;

where kA�1kop is the operator norm of A�1 as a linear map of the normed space
.Rn; k � k1/.

The above clearly implies that ˆ is a quasi-isometric embedding of .RnC; k � k1/
into .Ham.S2; !/; dH /. This establishes Theorem 1.4 (a) because .Rn; k � k1/ quasi-
isometrically embeds into .R2nC ; k � k1/; an explicit formula for such an embedding is

L W Rn ! R2nC ;

.x1; : : : ; xn/ 7! .L.x1/; : : : ; L.xn//;

where L W R! R2C is defined as

L.x/ WD

´
.0;�x/; x � 0;

.x; 0/; x � 0:

For a proof of the fact that L is a quasi-isometric embedding see [51, Lem. 8.12].
We now turn our attention to (40), beginning with the proof of the right inequality:

dH .ˆ.t/; ˆ.s// D kˆ.t/ ıˆ.s/�1k D k't1�s1H1
: : : '

tn�sn
Hn

'
�
P
i .ti�si /

HnC1
k

� k'
�
P
i .ti�si /

HnC1
k C

nX
iD1

k'
ti�si
Hi
k �

nX
iD1

.4jti � si j C 2/C 2

� 2n

�
2kt � sk1 C 1C

1

n

�
:

Above, the second equality on the first line is a consequence of Lemma 4.2 (6), the
first inequality on the second line follows from the triangle inequality, and the second
inequality in the second line is a consequence of Lemma 4.2 (3).

It remains to prove the left inequality of (40). Let us consider the following two fami-
lies of monotone twists:

˛.t/ D 't1H1 : : : '
tn
Hn
; ˇ.t/ D 't1C���CtnHnC1

:

By definition ˆ.t/ D ˛.t/ˇ.t/�1 and since monotone twists commute,

dH .ˆ.t/; ˆ.s// D kˇ.t/˛.t/�1˛.s/ˇ.s/�1k D k.˛.t/ˇ.s//�1˛.s/ˇ.t/k
D dH .˛.t/ˇ.s/; ˛.s/ˇ.t//:

Combining this with Proposition 3.8 (2) gives

max
iD1;:::;n

ˇ̌̌̌
�di .˛.t/ˇ.s//

di
�
�di .˛.s/ˇ.t//

di

ˇ̌̌̌
� dH .ˆ.t/; ˆ.s//: (41)
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By Proposition 3.8 (4) and (36), we can write

�d .˛.t/ˇ.s// � �d .˛.s/ˇ.t// D
nX

jD1

�
�d .'

1
Hj
/ � �d .'

1
HnC1

/
�
.tj � sj /

for any d . It follows that the left hand side in (41) equals kA.t � s/k1, where A is the
matrix whose ij entry (for 1 � i; j � n) is

Aij D
�di .'

1
Hj
/ � �di .'

1
HnC1

/

di
:

Lemma 4.2 (4) tells us that �di .'
1
HnC1

/ D �di .'
1
Hj
/ D �di=2 for j > i . It follows

that Aij D 0 for j > i , i.e. the matrix A is lower triangular. From Lemma 4.2 (5) we
deduce that the diagonal entries of A are nonzero. Hence, A is invertible, which proves
(40). We have completed the proof of Theorem 1.4 (a).

4.4. The kernel of Calabi is not coarsely proper

In this section, we prove the remainder of Theorem 1.4, that the kernel of the Calabi
homomorphism defined on HamU .S2; !/ is not coarsely proper. Recall from the intro-
duction that a metric space .X; d/ is said to be coarsely proper if there exists R0 > 0 such
that every bounded subset of .X; d/ can be covered by finitely many balls of radius R0.

Proof of Theorem 1.4 (b). For any fixed r > 0 consider the set

Xr WD ¹'
�r
H1
'rH2i W i � 1º;

where the Hi are the Hamiltonians provided by Lemma 4.2.

Claim 4.4. The set Xr is 3r
16

-separated, i.e. for i ¤ j we have

3r=16 � dH .'
�r
H1
'rH2i ; '

�r
H1
'rH2j /:

The above claim implies that the set Xr , which is bounded by Lemma 4.2, cannot be
covered by finitely many balls of radius r=16. Since this holds for every value of r , and
since Xr is included in ker.Cal/, we conclude that ker.Cal/ is not coarsely proper, which
proves the theorem.

Proof of Claim 4.4. Suppose that i < j , pick k 2 N such that 2i < k < 2j and consider
dk as in Lemma 4.2. By the Hofer continuity property of �dk from Proposition 3.8, we
have

1

dk
j�dk .'

r
H2i

/ � �dk .'
r
H2j

/j � dH .'
r
H2i

; 'rH2j / D dH .'
�r
H1
'rH2i ; '

�r
H1
'rH2j /:

By Lemma 4.2, we have �dk .'
r
H2j

/ D �rdk=2 and �dk .'
r
H2i

/ � �r 5dk
16

. Thus,
1
dk
j�dk .'

r
H2i

/ � �dk .'
r
H2j

/j � 3r=16, which completes the proof.

We have now proved Theorem 1.4 (b).
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5. Nonsimplicity of Homeo0.S2; !/

We conclude by proving Theorem 1.7.

5.1. Outline of the argument

To prove nonsimplicity of Homeo0.S2; !/, we explicitly construct a proper normal
subgroup which we call the group of finite-energy homeomorphisms and denote by
FHomeo.S2; !/. We introduced these homeomorphisms in [9] where we proved that they
form a proper normal subgroup of the compactly supported area-preserving homeomor-
phisms of the disc. Here, we will give a slight variant of the definition in [9] which is
more natural from the point of view of Hofer’s geometry.

Definition 5.1. We say ' 2 Homeo0.S2; !/ is a finite-energy homeomorphism if there
exists a sequence ¹'iºi2N of Hamiltonian diffeomorphisms which is bounded with respect
to Hofer’s distance and which converges uniformly to '. We denote by FHomeo.S2; !/
the set of all finite-energy homeomorphisms.

Theorem 1.7 follows immediately from the following result, whose proof will occupy
the remainder of this section.

Theorem 5.2. FHomeo.S2; !/ is a proper normal subgroup of Homeo0.S2; !/.

We prove the above using arguments similar to those given in [9]. Here is a brief out-
line. As we shall see, it is not hard to show that FHomeo.S2; !/ forms a normal subgroup
of Homeo0.S2; !/; the main challenge is proving that it is proper.

To do this, we use the invariant �d W Ham.S2; !/ ! R. We showed above that it
is continuous with respect to the C 0-topology on Ham.S2; !/, and moreover it extends
continuously to Homeo0.S2; !/; see Proposition 3.9. A straightforward argument shows
that for any ' 2 FHomeo.S2; !/ there exists a constant C , depending on ', such that for
all (even) d we have

�d .'/

d
� C: (42)

We will prove Theorem 5.2 by showing that certain so-called infinite twist homeomor-
phisms  2 Homeo0.S2; !/ satisfy

lim
d!1

�d . /

d
D1; (43)

so fail to satisfy (42). This last step requires estimating �d . /, for which we rely on the
combinatorial model from Section 4.1.1.

We end this section by highlighting the differences between our proof, in this article,
of nonsimplicity of Homeo0.S2; !/ and the proof of nonsimplicity of Homeoc.D2; !/

given in [9]. In both articles we use PFH spectral invariants cd W C1.S1 � S2/ ! R.
Given an arbitrary Hamiltonian H , the value of cd .H/ depends on H and so cd does
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not yield a well-defined invariant of Hamiltonian diffeomorphisms. However, in [9] we
overcome this problem by restricting the domain of cd to a certain class of Hamiltonians
which is suitable for the purposes of that article; see [9, Sec. 3.4]. In the current article,
we do not have the possibility of restricting the domain of cd . Instead, we work with �d ,
which is well-defined for all Hamiltonian diffeomorphisms of the sphere as proved in
Section 3.2.

Another difference between the two proofs is the manner in which we show
properness of FHomeo. In both articles this is achieved by exhibiting area-preserving
homeomorphisms  satisfying (43). The proof of this given in [9] involves verifying for
certain smooth twist maps a conjecture of Hutchings, concerning recovering the Calabi
invariant from the asymptotics of PFH spectral invariants, whereas our proof here, which
is shorter, uses the forthcoming Claim 5.4. The proof of this claim, however, relies on the
combinatorial model for PFH developed in [9, Sec. 5]. We should remark that part of the
motivation for the somewhat longer argument in [9] was that Hutchings’ conjecture is of
independent interest, hence useful to verify for twist maps.

5.2. An infinite twist is not a finite-energy homeomorphism

We now carry out the above outline. We begin by describing the infinite twist homeomor-
phisms  .

Denote by pC 2 S2 the North Pole of the sphere, i.e. the point whose z-coordinate
is 1, in the cylindrical coordinate system introduced in Section 2.1. We say a function
F W S2 n ¹pCº ! R is an infinite twist Hamiltonian if it is of the form

F.z; �/ D 1
2
f .z/; (44)

where f W Œ�1; 1/! R is a smooth function such that f 0 � 0; f 00 � 0 and

lim
d!1

1

d
f

�
1 �

2

d C 1

�
D1: (45)

Observe that F defines a smooth Hamiltonian on S2 n ¹pCº whose flow is given by

'tF .�; z/ D .� C 2�tf
0.z/; z/:

We extend the flow 'tF to S2 by defining 'tF .pC/ D pC; this yields an area-preserving
flow on S2 which is nonsmooth at the point pC. We say  2 Homeo0.S2;!/ is an infinite
twist homeomorphism if it is of the form

 WD '1F (46)

for some F . We will call  an adapted infinite twist if the corresponding f satisfies the
following technical hypothesis:

f 0
�
1 �

2

d C 1

�
2 .d C 1/N

for all d � 2.
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We can now give the promised proof of the remaining theorem.

Proof of Theorem 5.2. We begin by noting that the argument in [9, Prop. 2.1], repeated
verbatim, shows that FHomeo.S2; !/ forms a normal subgroup of Homeo0.S2; !/. It
remains to show that it is proper.

Step 1: Linear growth in FHomeo. We first show that for any ' 2 FHomeo.S2; !/ the
linear growth condition (42) holds. This is an immediate consequence of the properties

in Proposition 3.9. Indeed, let ' 2 FHomeo.S2; !/ and choose a sequence 'i
C0

��! ' that
is uniformly bounded with respect to Hofer’s distance. Since the 'i are bounded and
�d .Id/ D 0, the Hofer continuity property ensures a bound of the form �d .'i / � d � C

for some uniform constant C ; then, by C 0-continuity, the same bound holds for '.

Step 2: Superlinear growth of some infinite twists. It remains to prove that FHomeo is
proper. The structure of the remainder of our argument will now be to prove properness,
assuming the technical Claim 5.3 below which makes use of the adapted condition, and
then prove the claim. From now until the end of the paper, we therefore assume that F
is an adapted infinite twist Hamiltonian whose support is contained in the interior of the
disc ¹.z; �/ W z � 7=8º, which is of area 1=16. Imposing this assumption enables us to
apply the following promised technical claim. Recall below that the �d are defined only
for even d .

Claim 5.3. Fix d � 4; define z0 WD 1 � 2
dC1

. Let H be a smooth monotone twist Hamil-
tonian supported in a disc of area at most 1=12. Assume that p WD h0.z0/ 2 .d C 1/N.
Then

�d .'
1
H / � H.z0/ � d=6:

We defer the proof for the moment. Assuming it, we can produce superlinear growth
of the �d as follows.

Claim 5.4. �d .'1F / �
1
2
f .1 � 2

dC1
/ � d

6
for d � 4.

Proof of Claim 5.4. For every i 2 N, let Fi W S2 ! R be a sequence of smooth Hamilto-
nians of the form

Fi .z; �/ D
1
2
fi .z/;

where fi W Œ�1; 1�! R is a smooth function such that f 0i � 0; f
00
i � 0 and fi .z/ D f .z/

for z 2 Œ�1; 1 � 1=i�.

Observe that '1Fi
C0

��! '1F , because .'1Fi /
�1 ı '1F is supported in the disc ¹.z; �/ W z �

1 � 1=iº. Hence, by the C 0-continuity of �d established in Proposition 3.9, we have

�d .'
1
F / D lim

i!1
�d .'

1
Fi
/

for every d . Applying Claim 5.3 to Fi , for i sufficiently large with respect to d , yields

�d .'
1
Fi
/ � Fi

�
1 �

2

d C 1

�
�
d

6
D
1

2
fi

�
1 �

2

d C 1

�
�
d

6
D
1

2
f

�
1 �

2

d C 1

�
�
d

6
;

for d > 3, as claimed.
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It follows immediately from the previous claim that  WD '1F satisfies (43), which,
as explained in Step 1, implies that an adapted infinite twist '1F is not a finite-energy
homeomorphism.

To complete the proof of Theorem 5.2, it therefore remains to prove Claim 5.3.

Proof of Claim 5.3. Recall from (27) that �d .'/ D cd .H/ �
d
2
c2.H/. Hence, to prove

the claim, it is sufficient to show that the following two inequalities hold:

c2.H/ �
1

3
; (47)

cd .H/ � H

�
1 �

2

d C 1

�
: (48)

To prove (47), we invoke the support-control inequality of Proposition 3.2, which
gives c2.H/ � 2 � 2 � 112 , since the area of the support of H is bounded by 1=12.

Next, we prove (48). By the continuity property of cd from Theorem 3.1, we may
perform a small perturbation of h, near z D 1, and assume that h0.1/ 2 N, in other words
that our twist is nice. This allows us to apply Theorem 6.1 of [9] whose statement we
recalled in Section 4.1.1.

Recall the notation z0 D 1 � 2
dC1

. By [9, Thm. 6.1] we have

cd .H/ � A.P /

for any degree d lattice path P of combinatorial index I.P / D �d ; see Section 4.1.1.
Recall the notation p WD h0.z0/, which is by assumption an integer. By assumption,

there exists an integer a > 0 such that pD a.d C 1/. TakeP to be the lattice path obtained
by joining the lattice points .0;�a/, .d � 1;�a/ and .d; p � a/. This is a concave lattice
path made up of two edges. It satisfies

A.P / D
p

2
.1 � z0/C

1

2
h.z0/ � a;

I.P / D 2j.P / � d D 2..p � a/ � da/ � d D �d:

Hence,

cd .H/ �
p

2
.1 � z0/C

1

2
h.z0/ � a D

p

2

�
1 � z0 �

2

d C 1

�
C
1

2
h.z0/

D
1

2
h.z0/ D H

�
1 �

2

d C 1

�
:

We have thus completed the proof of Theorem 5.2.

Remark 5.5. The infinite twist Hamiltonian F , introduced above, generates a 1-
parameter subgroup 'tF of Homeo0.S2; !/. It follows immediately from the above proof
that 'tF … FHomeo.S2; !/ for t ¤ 0. This yields an injective group homomorphism from
the real line R into the quotient Homeo0.S2; !/=FHomeo.S2; !/. One can show that
this injection is not a surjection; see [45]. However, we have not been able to determine
whether Homeo0.S2; !/=FHomeo.S2; !/ is isomorphic to R as an abelian group.
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Remark 5.6. The group FHomeo.†; !/ of finite-energy homeomorphisms can be
defined on any surface †; it forms a normal subgroup of Hamc.†; !/, the group of
Hamiltonian homeomorphisms of .†;!/which coincide with the identity near the bound-
ary, if @† ¤ ;. Recall that a Hamiltonian homeomorphism is a homeomorphism which
can be written as the C 0-limit of Hamiltonian diffeomorphisms. It is well-known that
Hamc.†; !/ coincides with the kernel of the mass-flow homomorphism of Fathi [15].

Suppose now that .†; !/ is any compact surface of genus zero, with bound-
ary, and view it as embedded into .S2; !/. There is an inclusion FHomeo.†; !/ �
FHomeo.S2; !/. The infinite twist  can be placed on .†; !/ and the fact that it is
not a finite-energy homeomorphism of the sphere implies that  … FHomeo.†; !/. We
conclude that Hamc.†; !/ is not simple. Moreover, as in the case of Corollary 1.8, one
can conclude that Hamc.†; !/ is not perfect either. This answers a question of Fathi
[15, Appendix A.6], concerning the simplicity of the kernel of the mass-flow homomor-
phism, for compact genus-zero surfaces.

We remark that the infinite twist and FHomeo can be defined on any symplectic mani-
fold. However, our methods for proving properness of finite-energy homeomorphisms are
currently applicable to dimension 2 only.

5.3. Proof of Corollary 1.9

We may assume without loss of generality that
R

R2 � D 1. As alluded to in the intro-
duction, by a version of Moser’s argument for noncompact manifolds, due to Greene
and Shiohama [16], there exists a smooth diffeomorphism  W R2 ! S2 n ¹pº such that
 �! D �. Here p denotes the North Pole in S2. This gives rise to an injective group
homomorphism ‰ W Diff.R2; �/ ! Homeo0.S2; !/, defined for any h 2 Diff.R2; �/
by ‰.h/.x/ WD  h �1.x/ for x ¤ p and ‰.h/.p/ D p. The image of ‰ is the set of
elements of Homeo0.S2; !/ that fix p and are smooth in the complement of p.

In particular, the image of ‰ contains an adapted infinite twist homeomorphism � ,
which we showed above is not in FHomeo.S2; !/: By the Epstein–Higman argument
cited in the introduction, the commutator subgroup of Homeo0 is contained in any non-
trivial normal subgroup. In particular, � is not a product of commutators. This implies that
‰�1.�/ is not a product of commutators in Diff.R2;�/, which is therefore not perfect.

Remark 5.7. The above argument similarly shows that Homeo.R2; �/, the group of
area-preserving homeomorphisms of the plane, is not perfect if � has finite total area.
This holds more generally if � is only assumed to be a good measure and not necessarily
a smooth area form; being good means that � is nonatomic and positive on nonempty
open sets. In this case, one can repeat the above argument, using the classical Oxtoby–
Ulam theorem [39] instead of [16].

5.4. Remarks on Hofer’s geometry

We close by briefly discussing the large scale geometry of FHomeo.
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It is possible to define Hofer’s distance for area-preserving homeomorphisms as fol-
lows. Given ' 2 FHomeo.S2; !/, we define its Hofer distance from the identity by

QdH .'; Id/ WD inf dH .'i ; Id/; (49)

where the infimum is taken over all sequences ¹'iº � Ham.S2; !/ which converge uni-
formly to '. Define QdH .';  / WD QdH .'�1 ; Id/.

We leave it to the reader to check that this defines a bi-invariant distance on
FHomeo.S2; !/.

It is a natural question to try to better understand this space. For example, one could
ask if FHomeo has infinite quasi-flat rank. We strongly suspect that the answer is, in fact,
positive as our tools are robust with respect to the C 0-topology and so one can adapt the
proof of Theorem 1.4 to prove that FHomeo does have infinite quasi-flat rank. Similarly,
it can be shown that FHomeo is not coarsely proper.

One could define QdH .'; Id/, via (49), for arbitrary ' 2 Homeo0.S2; !/.
If ' is not a finite energy homeomorphism, i.e. if ' … FHomeo.S2; !/, then we get

QdH .'; Id/ D1:

Hence, we may view homeomorphisms which are not finite-energy as those which
are infinitely far from diffeomorphisms, in Hofer’s distance. This is the point of view
expressed in Le Roux’s article [32, Question 1]. Theorem 5.2 tells us that such homeo-
morphisms do exist.

A question which arises immediately as a consequence of our definition of QdH is
whether QdH .';  / coincides with the usual Hofer distance dH .';  / when ';  2

Ham.S2; !/. We do not know the answer to this question. Note that this is equivalent
to asking if the (usual) Hofer distance is lower semicontinuous with respect to the C 0-
topology; this was posed as an open question by Le Roux [32].
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