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Abstract. We show the existence of a weak solution for a system of partial differential equations
describing the motion of a flexible solid inside a fluid: A nonlinear, viscoelastic, n-dimensional bulk
solid governed by a PDE including inertia is interacting with an incompressible fluid governed by
the (n-dimensional) Navier–Stokes equation for n � 2. The result is the first allowing for large bulk
deformations in the regime of long time existence for fluid-structure interactions. The existence
is achieved by introducing a novel variational scheme involving two time-scales that allows us to
extend the method of minimizing movements to hyperbolic problems involving nonconvex and
degenerate energies.
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1. Introduction

Fluid-structure interaction (FSI) happens whenever the mechanical movements of a solid
body and of an adjacent fluid influence each other. Examples of such interaction are
numerous, including the blood flow in vessels, the usage of vocal chords during speech or
the flying of airplanes. Mathematically, fluid-structure interaction is given by a system of
coupled PDEs that describe the motion of a fluid and a solid body exchanging momentum
over a common interface; see for example (1.1)–(1.11) below.

Due to its relevance for various applications, fluid-structure interaction has attracted
much attention in various fields. For an overview on mathematical progress, see the recent
monograph [57]. In the present paper we show the existence of a weak solution to a
problem describing a viscoelastic bulk solid moving inside and interacting with an incom-
pressible fluid governed by the Navier–Stokes equations.

The majority of the available mathematical literature on fluid-structure interaction
concentrates on rigid solid bodies, for which also weak existence theory was developed;
see [15, 20, 21, 34, 37, 38, 41, 42, 44–47, 76, 84, 85] and the references therein. Other exis-
tence results for weak solutions are for a prescribed geometry, as e.g. in [77]. A very
well studied regime is lower-dimensional solids, namely the important case of plates or
shells bounding a fluid domain [22–25, 50, 65, 66, 71–74]. Analytical results concerning
existence of weak solutions for the interaction of a fluid with an elastic body of the same
dimension are few and generally include some condition that restricts the problem to the
regime of small deformations; see e.g. [5, 9, 35, 43, 49, 56]. On the other hand, a number
of results on strong solutions for elastic solids interacting with fluids are available [4–6,
9–13,24,28,29,55,56,61,62]. They include existence, uniqueness, (higher) regularity and
stability results and rely on linearizations and short times and/or small data analysis.

In this work we systematically develop a variational methodology for fluid-structure
interaction problems that allows us to prove, for the first time, existence of weak solutions
in a general setting, i.e. allowing for both the fluid and the structure to have full dimension
and permitting large, unrestricted forces and deformations – a setting which in particular
precludes approaches relying on linearization or convexity (see the next subsection for
detailed explanations).
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Let us point out some important difficulties that appear in fluid-structure interactions.
Their mathematical description is given through a system of mutually coupled PDEs that
is required to satisfy additional geometric restrictions. To be more precise, the common
interface between the fluid and the solid is part of the solution and hence has to be
constructed simultaneously. This challenge appears whenever motions of the solid are
allowed, and many methods have been developed to overcome such deep nonlinear cou-
plings (see e.g. the pioneering works [28,29,60,61]). On top of that, as in the setting here
the solid is allowed to undergo large structural deformations, it is necessary to ensure
that the solutions we consider consist of deformations that are known to be injective
a priori [36, 52]. This is essential not only in order for the solutions to stay physically
meaningful under large deformations, but also for the coupling to the fluid variables to be
well-posed. In order to reflect these geometric restrictions, the operator appearing in the
equations describing the movement of the solid is necessarily nonmonotone and possesses
a nonconvex domain of definition.

In this work, in order to handle these (highly nonlinear) limitations we develop a
methodology that focuses on the underlying energetic structure of the PDEs and a varia-
tional point of view. We believe this methodology has great potential to prove existence
and approximation results for large classes of dynamical problems in continuum mechan-
ics. The theory is built upon the following three ideas, each introduced in a separate
section:

Sec. 2, Minimizing movements for fluid-structure interaction: We introduce an adap-
tation of De Giorgi’s minimizing movements [1, 31] scheme. This is used to show the
existence of weak solutions to the fluid-structure interaction problem in the simplified
parabolic case where inertial effects are omitted. Consequently, the fluid motion is quasi-
steady satisfying the Stokes equation and the solid evolves along a gradient flow. In more
detail, we construct an approximate, time-discretized solution by iteratively solving a
coupled minimization problem. Each minimization produces the subsequent deformation
and thus a new interface to be used in the next time step to separate the fluid and the
solid. The new variational approach we introduce is essential, as it can cope both with
the nonmonotonicity of the operators involved and the nonconvex nature of the under-
lying state space. Moreover, used properly, it will also automatically induce the correct
coupling conditions between the fluid and solid velocities and the forces at their common
interface.

While the minimizing movements method and its variations are commonly used for
quasi-static evolution problems in the field of viscoelastic solids (see e.g. [59]), to the best
of our knowledge it has never been applied to fluid-structure interaction before.

Sec. 3, Minimizing movements for hyperbolic evolutions: The original minimizing
movements scheme is restricted to gradient flows. We propose an extension of this
scheme, capable of approximating solutions to hyperbolic equations.

The method is built on an approach involving two time-scales: the larger acceleration
time-scale and the smaller velocity time-scale. Consequently, the second time derivative
is approximated by a double difference quotient with respect to these different scales.
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This provides the setting of a minimizing movements iteration for all fixed positive accel-
eration scales. In doing so, we “combine the best of the two worlds”, by first using the
variational approach to handle all the nonlinearities during the construction of approx-
imate solutions, and then considering the Euler–Lagrange equations to gain respective
(hyperbolic) a priori estimates that are uniform with respect to both scales.

The hyperbolic minimizing movements scheme introduced here allows one to approx-
imate hyperbolic PDEs. However, here we perform this scheme for nonlinear PDEs moti-
vated from continuum mechanics of solids. For these it is to date unavoidable to include
damping terms to recover weak solutions in the limit; consequently, those PDEs are not
hyperbolic in a strict sense. See Remark 1.5 for more explanations.

Sec. 4, Bulk elastic solids coupled to Navier–Stokes equations: In this section the ideas
from the previous two sections are combined to establish the main result of the paper,
which is the existence of weak solutions to a problem involving a solid (with inertia)
interacting with the unsteady incompressible Navier–Stokes equations.

In order to adapt the method to the Eulerian description of the fluid by its velocity and
pressure in the time changing domain, we use Lagrangian approximation of the material
time derivative on the acceleration scale. This is done via the method of characteristics
by constructing a flow map for short times. Since the flow velocity and the flow map are
inextricably linked and both are additionally connected to the changing fluid domain, the
main difficulty here is that the three have to be constructed simultaneously. In particular,
we introduce a discretized flow map in the discretized variable domain for which we prove
various natural regularity and approximability results. This allows for a coupling between
the hyperbolic minimizing movements scheme for the (viscous) solid deformation and the
respective semi-Lagrangian approximation of the unsteady Navier–Stokes equation.

Some of the ideas in this section are inspired by the works [48, 80] on the Navier–
Stokes equations. In particular, in [48] the authors apply minimizing movements to
construct solutions to the Navier–Stokes equations. Their approach, however, strongly
depends on having a fixed fluid domain.

In sum, we introduce a new viewpoint on fluid-structure interaction and hyperbolic
problems in general. In particular, (for the first time) we prove existence for a bulk, large
deformations interaction problem between a viscoelastic solid and the incompressible
Navier–Stokes equations until the point of self-contact of the fluid boundaries (Theo-
rem 1.2).

1.1. Setup

We consider the following setup for the fluid-structure interaction problem: The fluid
together with the elastic structure are both confined to a container� � Rn that is fixed in
time. The deformation of the solid is at any instant of time t described by the deformation
function �.t/ WD �.t; �/ W Q! �. Here Q is a given reference configuration of the solid.
We assume that both Q;� � Rn are Lipschitz domains. Here, n � 2 is the dimension of
the problem with n D 2 corresponding to the planar case and n D 3 to the bulk case. The
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Fig. 1. A scheme of the geometry of the fluid-structure interaction. Left: the reference configuration.
Right: the actual configuration at a given time instant t .

fluid variables are defined in the time-dependent domain�.t/ WD� n �.t;Q/. The flow of
the fluid is determined by its velocity v.t/ W�.t/!Rn and its pressure p.t/ W�.t/!R.
Thus, the solid is described in Lagrangian coordinates and the fluid in Eulerian coordi-
nates. Observe that a similar configuration for linear elasticity has already been studied
in [35]. We refer to Figure 1 for better orientation.

To set up the evolution equation, we will need the basic physical balances to be
fulfilled. As we are not modeling any thermal effects, this reduces to the balance of
momentum for both the fluid and the structure together with suitable conditions on their
mutual boundary, as well as conservation of mass. In the interior these balance equations
read, in strong formulation,

�s@
2
t �C div � D �sf ı � in Q; (1.1)

�f .@tv C Œrv�v/ D ��v � rp C �f f on �.t/; (1.2)

div v D 0 on �.t/: (1.3)

Here, � is the first Piola–Kirchhoff stress tensor of the solid, � is the viscosity constant
of the fluid, �s and �f are the densities of the solid and fluid respectively, and f is the
actual applied force in the current (Eulerian) configuration. Thus, the fluid is assumed to
be Newtonian with the Navier–Stokes equation modeling its behavior.

The solid is going to be modeled in the large deformation regime. This means that
the strains as well as the rotations within the material may be large so that linearized
theories are not applicable. For our purposes, we will restrict our attention further to
hyper-viscoelasticity. Classically, hyperelasticity (see e.g. [36]) refers to a subclass of
models for which the Piola–Kirchhoff stress tensor can be derived from an underlying
energy functionW WR3�3!R, i.e. �ij .x/D

@W.F /
@Fij

ˇ̌
FDr�.x/

. Then the large deformation
setting is reflected in the following assumptions:

W.RF / D W.F / for all F 2 Rn�n and all R 2 SO.n/; (1.4)

W.F / D C1 if detF � 0, and W.F /!C1 if detF ! 0C; (1.5)

where the first equation corresponds to material frame-indifference and has to be imposed
due to the possibility of large rotations, while the second corresponds to the infinite resis-
tance of the material to infinite compression; see e.g. [7].
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It has been realized early on [27] that already the frame-indifference assumption
excludes the possibility of the underlying energy being convex in the first gradient, which
in turn excludes methods based on monotonicity and calls for a variational approach
where more general convexity settings can be utilized (see e.g. [7, 30]). The second con-
dition then makes the domain of the energy a nonconvex set, which is a challenging issue
already for static problems (see [8]). In particular, it is open whether under condition (1.5)
a minimizer of the energy satisfies the corresponding Euler–Lagrange equation (see [8]
for a discussion) and, to the authors’ knowledge, this question could only be answered
in the affirmative [52] if the energy additionally depends on the second gradient of the
deformation, which is the setting of so-called nonsimple materials; see Section 1.4.

Yet, in the setting of FSI, the often used, even if potentially unphysical, simplifica-
tion to drop (1.5) is not admissible as exactly this condition enforces local invertibility
(and until contact even global invertibility) of the deformation, which is needed for well-
posedness of the FSI problem. In linearized settings, for example, this invertibility follows
from restricting the strain to be very small. However, in our situation where no such con-
trol is available, use of an energy functional satisfying (1.5) is essential.

Thus, following the current state of the art, we will consider a regularized version of
classical hyperelasticity. First, as in [52] we will let the energy depend also on the second
gradient of the deformation (see Section 1.4). Moreover, we need to consider a material
that is additionally viscous, i.e. the stress tensor has a viscous part. For our approach, it
is advantageous to assume that, analogously to the elastic part, the viscous part can also
be derived from an underlying dissipation function (potential). Materials satisfying this
assumption are often called generalized standard materials [51, 59, 79]; see Section 1.4.

In sum, we will restrict ourselves to materials for which the first Piola–Kirchhoff stress
tensor � can be derived from underlying energy and dissipation potentials, i.e.

div � WD DE.�/CD2R.�; @t�/

with E being the energy functional describing the elastic properties, while R is the dis-
sipation functional used to model the viscosity of the solid. Here D denotes the Fréchet
derivative and D2 the Fréchet derivative with respect to the second argument. For the
analysis performed in this paper, quite general forms of E and R can be admitted (see
Section 1.4 for a list of assumptions). The prototypical examples of the potentials are the
following (we will prove that they satisfy the imposed assumptions):

R.�; @t�/ WD

ˆ
Q

j.r@t�/
T
r�C .r�/T .r@t�/j

2 dx D

ˆ
Q

j@t .r�
T
r�/j2 dx; (1.6)

E.�/ WD

´ ´
Q

�
1
8
jr�Tr��I jCC

1
.detr�/aC

1
q
jr2�jq

�
dx if detr�>0 a.e. in Q,

C1 otherwise,
(1.7)

where we use the notation jr�Tr� � I jC WD .C.r�Tr� � I // � .r�Tr� � I /, with C

being a positive definite tensor of elastic constants, q > n and a > qn
q�n

.
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Notice that in (1.7) the first term corresponds to the Saint Venant–Kirchhoff energy,
the second models the resistance of the solids to infinite compression and the last is a
regularization term.

Additionally, we impose coupling conditions between � and v on their common inter-
face; namely, we will assume the continuity of deformation (i.e. no-slip conditions adapted
to the moving domain) as well as traction on the boundary between the fluid and the solid.
We denote by M the portion of the boundary of Q that is mapped to the contact inter-
face between the fluid and the solid. While Q is only assumed to be a Lipschitz domain,
we assume that the pieces of its boundary that belong to M are additionally C 2. The
boundary conditions read

v.t; �.x// D @t�.t; x/ in Œ0; T � �M; (1.8)

�.t; x/n.x/ D
�
�"v.t; �.t; x//C p.t; �.t; x//I

�
On.t; �.t; x// in Œ0; T � �M; (1.9)

where n.x/ is the unit normal to M , while On.t; �.t; x// WD cof.r�.t; x//n.x/ is the nor-
mal transformed to the actual configuration and "v WD rv C .rv/T is the symmetrized
gradient. Additionally, there are second order Neumann-type zero boundary conditions
for the deformation � arising from the second order gradient in its energy.1

Finally, we will prescribe Dirichlet boundary conditions on P WD @Q nM :

�.x; t/ D 
.x/ in Œ0; T � � P (1.10)

for some fixed boundary displacement 
 W P ! �. Together with the injectivity of defor-
mations, we will encode this condition in the set E of admissible deformations (see
Remark 1.8 for the precise definition).

We close the system by prescribing initial conditions for v; �; @t�:

�.0; x/ D �0.x/ for x 2 Q; @t�.0; x/ D ��.x/ for x 2 Q;

�.0/ D � n �0.Q/; v.0; y/ D v0.y/ for all y 2 �.0/:
(1.11)

1.2. Main result

The final objective of this paper is to prove existence of weak solutions to the system
(1.1)–(1.3) subject to the coupling conditions (1.8)–(1.9) and the remaining boundary and
initial conditions detailed in the previous subsection.

As is customary in fluid-structure interaction problems (see e.g. [49, 65]), the weak
formulation is designed in such a way that the coupling conditions are realized by choos-
ing well-fitted test functions. Indeed, we have the following definition:

1Specifically, these naturally occur while minimizing the elastic energy and not prescribing
boundary values for r�. This can also be seen as a kind of integrability condition for � . That is, for
� to be defined as a measure, we need hDE.�/; �ı i ! 0 (for ı ! 0) , where �ı is a regularized
version of �ı.1� dist.�;@Q/=ı/C with � 2C10 .M/ extended constantly along the normal direction.
For our example energy (1.7), this simply reduces to @2�=@n2 D 0 on M .
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Definition 1.1. Let f 2 C 0.Œ0;1/ ��/, v0 2 L2.�/, �� 2 L2.Q/ and �0 2 E with E

defined in (1.22), such that v0 ı �0 D ��. We call2 � W Œ0; T � �Q! �, v W Œ0; T � ��.t/
! Rn and p W Œ0; T � � �.t/! R, where �.t/ WD � n �.t; Q/, a weak solution to the
fluid-structure interaction problem (1.1)–(1.2) and (1.8)–(1.11) if the following holds:

The deformation satisfies � 2L2.Œ0;T �IW 2;q.QIRn//\W 1;2.Œ0;T �IW 1;2.QIRn//
with �.0/ D �0 and @t� 2 Cw.Œ0; T �I L

2.QI Rn//, while the velocity satisfies v 2
L2.Œ0;T �IW

1;2
div .�.�/IR

n// and the pressure satisfies3 p 2D 0.Œ0;T ���/with supp.p/�
Œ0; T � ��.t/. Further, for all

.�;�/2L2.Œ0;T �IW 2;q.QIRn//\W 1;2.Œ0;T �IW 1;2.QIRn//�C1.Œ0;T �IC10 .�IR
n//

satisfying �.T /D 0, �.t/D �.t/ ı �.t/ onQ, �.t/D 0 on P for all t 2 Œ0; T �, we require

ˆ T

0

Œ��sh@t�; @t�iQ � �shv; @t� � v � r�i�.t/

C hDE.�/; �i C hD2R.�; @t�/; �i C �h"v; "�i�.t/� dt

D

ˆ T

0

Œhp; div �i�.t/ C �shf ı �; �iQ C �f hf; �i�.t/� dt

� �sh��; �.0/iQ � �f hv0; �.0/i�.0/

and @t�.t/ D v.t/ ı �.t/ on M , �.t/ 2 E and v.t/j@� D 0 for almost all t 2 Œ0; T �.

We can then formulate our main theorem as follows:

Theorem 1.2 (Existence of weak solutions). Assume that E satisfies Assumption 1.7 and
R satisfies Assumption 1.10 given in Section 1.4. Then for any �0 2 int.E/D E n @E .see
Remark 1.8/ with E.�0/ <1, any �� 2 L2.QIRn/, v0 2 L2.�.0/IRn/ and any right
hand side f 2 C 0.Œ0;1/ � �IRn/ there exists a T > 0 such that there exists a weak
solution to (1.1)–(1.11) on Œ0; T / according to Definition 1.1. Here either T D1 or T is
the time of the first contact of the boundary of the solid body with either itself or @� .i.e.
�.T / 2 @E/.

Moreover, the solution satisfies the energy inequality (1.12); for additional regularity
of the pressure see (4.12).

Let us remark that the assumptions on the energy and dissipation functionals are in
particular satisfied by the model case energies (1.6)–(1.7) (see Section 2.3).

2We use standard notation for Bochner spaces over Lebesgue spaces and Sobolev spaces
with time-changing domains. The subscript div indicates the respective solenoidal subspace:
W
1;2

div .�.t/IR
n/ D ¹v 2 W 1;2.�.t/IRn/ j div v D 0º.

3From the given weak formulation one can deduce some more regularity of the pressure. How-
ever, as is known from the theory for fixed domains, regularity of the pressure in time can be
obtained merely in a negative Sobolev space. See the estimates in Section 4.2, Step 3b, which show
that the pressure is in the respective natural class.
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The coupled system satisfies a natural energy inequality:

E.�.t//C �s

ˆ
Q

1
2
j@t�.t/j

2 dx C �f

ˆ
�.t/

1
2
jv.t/j2 dy

C

ˆ t

0

�
2R.�.s/; @t�.s//C �

ˆ
�.s/

j"v.s/j2 dy

�
ds

� E.�0/C �s

ˆ
Q

1
2
j��j

2 dx C �f

ˆ
�.0/

1
2
jv0j

2 dy

C

ˆ t

0

�
�s

ˆ
Q

f .s/ ı �.s/ � @t�.s/ dx C �f

ˆ
�.s/

f .s/ � v.s/ dy

�
ds: (1.12)

As is usual in evolution equations, this inequality holds as an equality for sufficiently
regular solutions, i.e. if .@t�; v/ can be used as a pair of test functions.

1.3. Outline of the paper

The proof of Theorem 1.2 is based on three main ideas, each of independent interest and
each explained in a separate section. Sections 2 and 3 can be read pretty much indepen-
dently. Section 4, however, relies on both preceding sections. We now describe the content
of each section.

Section 2: Minimizing movements for fluid-structure interactions. In this section we
consider a reduced parabolic system with the inertial terms omitted:

div �.�/ D �sf ı � in Q; (1.13)

0 D ��v � rp C �f f in �.t/; (1.14)

div v D 0 in �.t/; (1.15)

together with the same coupling and boundary conditions as before.
We construct a weak solution to (1.13)–(1.15) by an implicit-explicit time-discretiza-

tion scheme that exploits the variational structure of the problem, namely that the stress
tensors for both the solid and the fluid have a potential.

Indeed, let us split Œ0; T � into N time steps of length � each. Assume, for k 2
¹0; : : : ; N � 1º, that �k 2 E is given and denote �k D � n �k.Q/. We then define
�kC1; vkC1 to be the solution of the following minimization problem:

argmin
�;v

E.�/C �R
�
�k ;

���k
�

�
C

��
2
krvk2�k � ��s

˝
f ı �k ;

���k
�

˛
Q
� ��f hf; vi�k

(1.16)

over all � 2 E , v 2 W 1;2.�k IR
n/ satisfying div v D 0, vj@� D 0 and the affine coupling

condition v ı �k D
���k
�

inM . Minimizing with respect to this coupling is essential here:
not only does it represent the discretized version of the coupling of velocities (1.8), but it
will also result in the equality of tractions (1.9) via the minimization procedure.
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Searching for time-discrete approximations of the weak solution to (1.13) alone via a
minimization problem similar to the one above is actually well known and heavily used in
the mathematics of continuum mechanics of solids (see e.g. [59]). The method is known as
the method of minimizing movements or, especially in the engineering literature, the time-
incremental problem. As far as the authors are aware, this method has not been applied to
fluid-structure interaction problems before.

The advantage of the variational approach over directly solving the corresponding
Euler–Lagrange equations is twofold. Not only do we deal with the nonconvexity of E
and the underlying nonconvex space E in a natural way, but we also automatically gain
an energetic a prori estimate. Indeed, comparing the value of the functional in (1.16) at
.�kC1; vkC1/ with its value for .�k ; 0/ and iterating, we get the following (quantitatively
optimal) estimate of energy and dissipation:

E.�kC1/„ ƒ‚ …
final energy

C

kX
lD0

�
�
R
�
�l ;

�lC1��l
�

�
C

�
2
k"vlC1k

2
�k

�
„ ƒ‚ …

1=2 of dissipation

� E.�0/„ƒ‚…
initial energy

C

kX
lD0

�
�
�s
˝
f ı �l ;

�lC1��l
�

˛
Q
C �f hf; vlC1i

�
„ ƒ‚ …

work from forces

: (1.17)

Starting from this energetic estimate some other analytic tools need to be developed in
order to deduce a priori estimates. In particular, a Korn inequaliy (Lemma 2.11) esti-
mating the fluid and solid velocities simultaneously is introduced. The limit equation is
then established via weak compactness results, the so-called Minty method (see Propo-
sition 2.23) and a subtle approximation of test functions (see Lemma 2.22). The latter is
necessary due to the fact that the fluid domain (the part where the test function is supposed
to be solenoidal) is part of the solution. It is an analytic density result that is technically
quite involving and as such possibly of independent interest.

Remark 1.3 (Chain rule). If we considered Euler–Lagrange equations instead of the vari-
ational problem (1.16), the standard way to obtain a priori estimates would be testing with
�kC1 � �k and vkC1. To obtain a similar estimate, we would then need to use a discrete
variant of the chain rule to see that

E.�kC1/ �E.�k/ � hDE.�kC1/; �kC1 � �ki:

While this inequality is valid ifE is convex, it is generally not true otherwise. In particular
(see also Section 1.4), convexity of E is ruled out for physical reasons in mechanics of
solids.

Section 3: Minimizing movements for hyperbolic evolutions. As we have seen in the
previous step, discretizing the parabolic equation via a variational scheme is essential
due to the nonconvexities involved. However, once an inertial, or hyperbolic, term is
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present, comparing values in the minimization problem no longer leads to useful esti-
mates. Instead, having this term, it seems more advantageous to obtain a priori estimates
from the Euler–Lagrange equation, which in turn is incompatible with the nonconvexity
of the energy again. To overcome this difficulty, we consecutively approximate using two
different time-scales: the velocity scale � and the acceleration scale h. Keeping the accel-
eration scale fixed at first, we may use the strategy from the previous step and obtain,
after passing to the limit � ! 0, a continuous-in-time equation from which a second set
of a priori estimates can be seen.

In order to explain the concept, we first illustrate this procedure on the solid alone:
We thus consider � W Œ0; T � �Q! Rn, evolving according to

DE.�/CD2R.�; @t�/ � f ı � D �s@
2
t � (1.18)

without any coupling to the fluid, but with otherwise similar initial data to those before.
In order to be able to approximate the equation by a gradient flow we replace the

second time derivative @2t � with a difference quotient and solve what we will call the
time-delayed problem

DE.�.t//CD2R.�.t/; @t�.t// � f ı �.t/ D
@t�.t/�@t�.t�h/

h
(1.19)

for some fixed h.
Considered on a short interval of length h, the term @t�.t � h/ can be seen as fixed

given data. Then on this interval the problem is parabolic and can be solved using a similar
minimizing movements approximation to what was described before, where for fixed h
we pick � � h and solve a problem similar to

argmin
�

E.�/C �R
�
�k ;

���k
�

�
� ��s

˝
f ı �k ;

���k
�

˛
Q
C

1

2h



���k
�
� @t�.�k � h/



2:
(1.20)

Upon letting � ! 0, using the same techniques as before, we then obtain a weak
solution to (1.19) on Œ0; h� which can be used as data on Œh; 2h� and so on, until we have
derived a solution on Œ0; T /.

Now, as the time-delayed equation (1.19) is continuous, we avoid the problem with
the chain rule (see Remark 1.3) and we can test4 with @t� and obtain an energy inequality
for the time-delayed problem in the form5

E.�.t//C �s

 t

t�h

1
2
k@t�.s/k

2
Q ds C

ˆ t

0

2R.�; @t�/ ds

� E.�0/C
1
2
�sk��k

2
Q C

ˆ t

0

hf ı �; @t�iQ ds:

4In order to guarantee that @t� is an admissible test function we have to include a parabolic
regularizer in the dissipation functional of the solid. As the resulting estimate is only needed for
h > 0 and independent of the regularizer, we can choose it in such a way that it vanishes as h! 0.

5Here and in the following we use the notation
ffl b
a D

1
jb�aj

´
for the mean-value integral.
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As before, we can then turn this into a uniform a priori estimate, in order to finally let
h! 0.

We will discuss this in full rigor and prove existence for solutions to (1.18) in Sec-
tion 3.

Remark 1.4 (Previous works on related PDEs). While our approach to existence of
solutions to hyperbolic evolutions seems to be new, we wish to mention some previous
approaches to similar PDEs. However, they either rely on convexity or, more generally,
polyconvexity (convexity on minors) [33, 70], or use more explicit schemes which do not
work well with the injectivity considerations [32]. In particular, notice that, for the solid,
the scheme proposed here is fully implicit, which has the advantage that it is ensured
that the constructed solution, even in the discrete setting, fulfills all relevant nonlinear
constraints at all times, in particular global (almost) injectivity.6

Remark 1.5 (Hyperbolic minimizing movements and dissipation). Note that the approxi-
mation scheme does work in the purely elastic case, which means without any dissipation
(the case R � 0). Moreover, the a priori estimates (1.20) are also valid R � 0. Hence
whenever energy estimates suffice to pass to the limit, the hyperbolic minimizing move-
ments scheme can be used to construct a (weak or measure-valued) solution. A simple
PDE example would be the wave equation for which it is easy to see that the scheme pro-
duces a solution. But no strategy is known to deal with the nonlinearity inDE.�/ without
resorting to a relaxed concept of solutions such as measure-valued solutions, which is
outside the scope of this paper.

Observe that this problem of nonlinearity in the hyperbolic regime is a well known
challenge for many open problems. Difficulties already arise with convex energies.
Indeed, even for the hyperbolic p-Laplacian equation @2t � � div.jr�jp�2r�/ D 0 the
existence of weak solutions is a long-standing, unsolved problem (see e.g. [2] for a
discussion). Only in the case p D 2, where the elastic energy is quadratic in highest
order (and thus its derivative is linear) existence of solutions is known. But certainly,
for any p 2 .1;1/ the hyperbolic minimizing movements would produce a well defined
approximation, satisfying a natural a priori estimate. However, without dissipation, the
compactness resulting from such an estimate is only enough to obtain measure-valued
solutions.

Section 4: Bulk elastic solids coupled to Navier–Stokes equations. In Section 4 we
combine the previous two sections and apply the two-time-scale approach to the fluid-
structure interaction problem (1.1)–(1.11). The main obstacle here lies in the Eulerian
description of the fluid. Here it turns out to be natural to approximate the material deriva-
tive of the fluid velocity .@tv C Œrv�v/ by a time-discrete differential quotient. This
is done by subsequently introducing a flow map ˆs.t/ W �.t/ ! �.t C s/ fulfilling

6To be more precise, we will consider the Ciarlet–Nečas condition, which guarantees injectivity
up to a set of measure zero and which has the important property of being preserved under the
relevant convergence.
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@sˆs.t; y/ D v.t C s; ˆs.t; y// (resp. a discrete version) and ˆ0.t; y/ D y in both the
discrete and the time-delayed approximation layers. This means that ˆ transports the
domain of the fluid along with its velocity.

In particular, the fluid analogue of the difference quotient in the time-delayed problem
will be a “material difference quotient” in the size of the acceleration scale h, which is
essentially of the form

v.t; ˆh.t � h; y// � v.t � h; y/

h
:

Asˆ and v are inseparably linked, we need to construct their discrete counterparts along-
side each other already in the � scale. This discrete construction of the highly nonlinearˆ
and its subsequent convergence are one of the main additions in the proof and one of the
technical centerpieces of the paper.

As in Step 2, an approximation of the final energy estimates (1.12) is obtained only
after the first limit passage � ! 0. More precisely, they are again obtained by testing the
coupled Euler–Lagrange equation of the continuous-in-time quasi-steady approximation
with the fluid and solid velocities. The energy inequality obtained by testing differs from
(1.12) by replacing the kinetic energies with their moving averages. From this we can then
derive an a priori estimate that allows us to pass to the limit. A particular difficulty is the
material derivative of the fluid velocity. Here we need to derive a modified Aubin–Lions
lemma in order to obtain stronger convergence for a time-average approximation of u,
which is the natural quantity in this context.

Remark 1.6 (Previous variational approaches to the Navier–Stokes equation). While the
minimizing movements method seems to be new in the field of fluid-structure interactions,
it has been previously used to show existence of solutions to the Navier–Stokes equations.
In particular, we want to highlight [48] as an inspiration.7 There the authors also employ
flow maps to obtain the material derivative, but as they work on a fixed domain, they do
not need to construct them iteratively but can instead rely on the corresponding existence
theory for the Stokes problem. As an indirect consequence, their minimization happens
on what we would consider the h-level, which makes it incompatible with our way of han-
dling the solid evolution. Thus, the scheme proposed here is more than an improvement
of the numerical scheme [80] which has been developed much earlier.

1.4. Mechanical and analytical restrictions on the energy/dissipation functional

As introduced in Section 1.1, we consider solid materials for which the stress tensor can
be determined by prescribing two functionals: the energy and dissipation functionals.
Materials admitting such modeling fall into the class of so-called generalized standard
materials [51, 59, 79], together with many other rheological models [59]. In fact, this
setting has its roots in modeling plasticity in solids and has later been generalized to

7We would also like to mention similar approaches for the compressible case found in [18].
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many other processes with internal variables [67]. Nevertheless, the classical rheological
models starting with the Kelvin–Voigt and Maxwell model can also be put into this frame,
as one can find a suitable dissipation function for them.

Nonetheless, the two functionals cannot be chosen completely freely, but have to com-
ply with certain physical requirements. We summarize these at this point.

As in examples (1.6) and (1.7), for the sake of discussion we will assume that the
energy and dissipation functionals each have a density, i.e.

E.�/ D

ˆ
Q

e.r�;r2�/ dx; R.�; @t�/ D

ˆ
Q

r.r�; @tr�/ dx; (1.21)

for all smooth vector fields � W Q! Rn.
Here, the energy density depends on the first and second gradients8 of the deforma-

tion, which puts us into the class of so-called nonsimple (or second grade) materials (see
the pioneering work [86] as well as [39, 82] for later developments). This is in contrast
with classical hyperelasticity, where the energy depends on the first gradient only. In the
mechanical literature, the second gradient is usually employed when microstructure is
modeled [69] or when localization is present. In the mathematical literature (see e.g. [59]),
second grade materials are usually exploited as they allow for control of the deformation
in higher order Sobolev spaces. Moreover, the physical restrictions on the energy do not
exclude convexity in higher order terms, because the restrictions (1.4) and (1.5) concern
the first gradient only.

On top of all that, within the setting of second grade materials it is possible to obtain a
uniform lower bound on the Jacobian of the deformation, as has been first realized in [52].
Not only will this result in a meaningful boundary for the fluid domain, but it will also help
us to readily switch between Lagrangian and Eulerian descriptions of the solid velocity.

As for the dissipation potential, we will also need it to be independent of the observer,
i.e. for all smoothly time-varying proper rotations R.t/, and all smooth time-dependent
F W Œ0; T �! Rn,

r.RF; @t .RF // D r.F; @tF /:

This restriction implies [3] that r cannot depend on @t� only but needs to also depend
on �. This in turn will require using fine Korn-type inequalities [78,81] to deduce a priori
estimates (as already in [68]). We also note that for both physical and analytic reasons,
r should be nonnegative and convex in the second variable. We additionally require R to
be a quadratic form in its second variable.9

Taking into account these, as well as some analytical requirements, we will now detail
our setup for the deformation. Throughout the paper, for the elastic energy potential we
impose the following assumptions.

8The formalism of our proofs naturally also allows for dependence on material and spatial
positions x and �.x/, but the latter dependence is nonphysical and the former does not add much to
the discussion. Nevertheless we emphasize that our results also hold for inhomogeneous materials.

9See Remark 1.5 for possible relaxations of the assumptions on the dissipation potential.
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Assumption 1.7 (Elastic energy). LetQ;��Rn and q > n. ThenE WW 2;q.QI�/!R
satisfies:

S1 Lower bound: There exists a number Emin > �1 such that

E.�/ � Emin for all � 2 W 2;q.QI�/:

S2 Lower bound of the determinant: For anyE0 >0 there is �0 >0 such that detr�� �0
for all � 2 W 2;q.QI�/ with E.�/ < E0.

S3 Weak lower semicontinuity: If �l*� inW 2;q.QI�/ thenE.�/� lim infl!1E.�l /.

S4 Coercivity: All sublevel sets ¹� 2 E j E.�/ < E0º are bounded in W 2;q.QI�/.

S5 Existence of derivatives: For finite values E has a well defined derivative which we
will formally denote by

DE W ¹� 2 E j E.�/ <1º ! .W 2;q.QIRn//0:

Furthermore, on any sublevel set of E, DE is bounded and continuous with respect
to strong W 2;q convergence.

S6 Monotonicity and Minty-type property: If �l * � in W 2;q.QI�/, then

lim inf
l!1

hDE.�l / �DE.�/; .�l � �/ i � 0 for all  2 C10 .QI Œ0; 1�/:

If additionally
lim sup
l!1

hDE.�l / �DE.�/; .�l � �/ i � 0

then �l ! � in W 2;q.QI�/.

Let us briefly elaborate on the above stated assumptions. As elastic energies are gen-
erally bounded from below, assumption S1 is a natural one. Similarly, S5 is to be expected
as we need to take the derivative of the energy to determine a weak version of the Piola–
Kirchhoff stress tensor. Assumptions S3 and S4 are standard in any variational approach
as they open up the possibility for using the direct method of the calculus of variations.
Assumption S6 effectively means that the energy density has to be convex in the highest
gradient (but of course not convex overall) and allows us to get weak solutions and not
merely measure-valued ones (as in the case of a solid material in [33]). Finally, S2 is
probably the most restricting one and, to the authors’ knowledge, necessitates the use of
second-grade elasticity, combined with an energy density e which blows up sufficiently
fast as detF ! 0 (see [52]). This is, in particular, the case for the model energy (1.7).

Definition 1.8 (Domain of definition). The set of functions in W 2;q.QI�/ (and satisfy-
ing the Dirichlet boundary condition) used for minimization in (1.16) can be expressed
as

E WD

²
� 2 W 2;q.QI�/

ˇ̌̌
E.�/ < 1; j�.Q/j D

ˆ
Q

det r� dx; �jP D 


³
: (1.22)
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Here, the finite energy guarantees local injectivity (see assumption S2), and the equal-
ity j�.Q/j D

´
Q

detr� dx, termed the Ciarlet–Nečas condition, has been proposed in
[26] and, as proved there, it ensures that any C 1 local homeomorphism is globally injec-
tive except for possible touching at the boundary. Working with this equivalent condi-
tion has the advantage that it is easily seen to be preserved under weak convergence in
W 2;q.QI�/.

Remark 1.9. Of particular interest is the topology of E . It is easy to see that this is
a closed subset of the affine space W 2;q


 .QI�/, i.e. W 2;q.QI�/ with fixed boundary
conditions. As a subset of this topological space it has both interior points (denoted by
int.E/) and a boundary @E . As we construct our approximate solutions by minimization
over E , it is crucial to know if �k 2 int.E/ because only then are we allowed to test in all
directions and have the full Euler–Lagrange equation we need.

Luckily, however, int.E/ and @E are easily quantifiable. As long as detr� > 0, which
is true for finite energy, we are able to vary in all directions, if and only if �jM is injective
and does not touch @�. Thus the relevant part of @E , i.e. the deformations with finite
energy, consists precisely of the � which have a collision.

Finally, for the dissipation functional we have the following assumption:

Assumption 1.10 (Dissipation functional). The dissipation R W E �W 1;2.QIRn/! R
satisfies:

R1 Weak lower semicontinuity: If bl * b in W 1;2 then

lim inf
l!1

R.�; bl / � R.�; b/:

R2 Homogeneity of degree 2: The dissipation is homogeneous of degree 2 in its second
argument, i.e.

R.�; �b/ D �2R.�; b/ 8� 2 R:

In particular, this implies R.�; b/ � 0 and R.�; 0/ D 0.

R3 Energy-dependent Korn-type inequality: Fix E0 > 0. Then there exists a constant
cK D cK.E0/ > 0 such that for all � 2 W 2;q.QI Rn/ with E.�/ � E0 and all
b 2 W 1;2.QIRn/ with bjP D 0 we have

cKkbk
2
W 1;2.Q/

� R.�; b/:

R4 Existence of a continuous derivative: The derivative D2R.�; b/ 2 .W 1;2.QIRn//0

given by
d

d�

ˇ̌̌̌
�D0

R.�; b C ��/ DW hD2R.�; b/; �i

exists and is weakly continuous in its two arguments. Due to the homogeneity of
degree 2 this in particular implies

hD2R.�; b/; bi D 2R.�; b/:
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Again some remarks are in order. As above, assumption R4 is natural as we need to be
able to evaluate the actual stress. Assumption R2, on the other hand, reflects the fact that
we are considering viscous dissipation. Assumption R1 is again important from the point
of view of the calculus of variations. Assumption R3 is a coercivity assumption in a sense
and needs to be stated in this rather weak form to satisfy frame indifference. Indeed, our
model dissipation (1.6) satisfies this assumption, as shown e.g. in [68] relying on quite
general Korn inequalities due to [78, 81].

1.5. Outlook and further applicability

We would like to highlight that all three parts of the result outlined here present a huge
potential for generalizations. In particular, the ideas are easily applicable to different mate-
rial laws for both the fluid and the solid.

For the fluid, we would like to highlight in particular that modifying the dissipation
potential for the fluid could allow for working with non-Newtonian fluids and that by the
time of publication there are already first results for compressible fluids [16], extending
some of the known FSI results such as [17,64] to a 3D-3D setting. On the other hand, the
hyperbolic minimizing movement scheme could be used to allow for a displacement in all
coordinate directions for a 2D-1D fluid-structure interaction [58]. It would be interesting
to connect the regimes, studying the limit passage from bulk solids to shells to the FSI
setting, as has been done for solids alone e.g. in [40, 63].

For the solid in turn, we remark that this approach is suitable to similarly describe iner-
tial evolution for a large class of materials, extending previous results such as [32,33]. But
additionally the way of dealing with the interplay of Lagrangian and Eulerian representa-
tion, developed here for the fluid, might in turn be useful in dealing with similar problems
in the solid, such as plasticity or coupling with electro-magnetic effects. In particular, in
combination with the variational approach, this has some interesting implications for the
study of the (self-)contact problem, as some preliminary results show [19]. This should
also have some applications to the same problem in an FSI context (see e.g. [53, 54]
or [50]).

A final point we would like to mention is potential numerical applications of our
results. While our proofs rely on specifically dealing with the limit of one process as
an approximation of another and thus offer no guarantee of convergence of a numerical
approximation, we believe that for more specific setups, estimates on convergence rates
and thus on approximation quality should be available.

1.6. Notation

Let us detail the notation, some of which we have already used. Throughout the paper we
will deal with a number of quantities that may depend on either or both of the parameters
� and h, corresponding to our two time-scales. Whenever this dependence is relevant, i.e.
when we are varying the parameter or passing to the corresponding limit, we will indicate
it by a superscript, e.g. �.�/ ! �. There will be no context where both are relevant at
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the same time, but we note that in Sections 3 and 4, all quantities that depend on � also
depend on the larger scale h. Any such dependence may additionally be combined with a
sequence index as well, as for example in �.�/

k
.

Of particular interest here is the fluid domain, which technically is always determined
through the deformation of the solid. As this deformation may depend on the scales �
and h, on a sequence index as well as on time, we may indicate this dependence in the
notation. For example, we might write �.h/

l
.t/ WD � n �

.h/

l
.t;Q/.

Coordinates in the reference domain Q will always be denoted by x and coordinates
in the physical domain � by y. The gradient operator r will always refer to these spatial
coordinates and never to time. Similarly Lip.v.t// D Lipy.v.t// is the Lipschitz constant
of a function v.t/ only with respect to spatial coordinates, except for one specific occasion
when we will explicitly write Lipt;y.v/ for the Lipschitz constant in space-time.

In order to avoid confusion with changing domains, we will almost always write out
all time integrations and apart from a few exceptions try to only use spatial norms and
inner products. We will always give the relevant domain if there is any chance of doubt.
In particular, a subscript like A will always denote the L2 norm or inner product with
respect to this domain:

kf k2A WD

ˆ
A

jf j2 dx and hf; giA D

ˆ
A

f � g dx:

For other norms we will always specify the domain (but omit the codomain), e.g.
we will write kv.t/kW 1;2.�.t//. The only exceptions are the linear operators DE.�/
and D2R.�; b/ which invariably have their domain of definition associated to them.
We will thus simply write hDE.�/; �i and hD2R.�; b/; �i to denote the underlying
W 2;q.QIRn/�W �2;q.QIRn/ andW 1;2.QIRn/�W �1;2.QIRn/ pairings. Since these
only ever occur as linear operators and not as functions, there should be no confusion.

2. Minimizing movements for fluid-structure interactions

In this section, we provide existence of weak solutions to the parabolic fluid-structure
interaction problem, i.e. the inertia-less balances (1.13)–(1.15) together with the coupling
conditions (1.8)–(1.9) as well as Dirichlet boundary conditions for the deformation and
a Navier boundary condition stemming from the higher gradients in the energy. This has
the interesting difficulty that in fluid-structure interaction a naturally Lagrangian solid has
to be coupled with a naturally Eulerian fluid on a variable domain. We will do so without
fixing a reference fluid domain and instead use a variational approach to deal with the
fluid directly on a varying domain.

We shall work with the following weak formulation:

Definition 2.1 (Weak solution to the parabolic problem). We call a pair .�; v/ a weak
solution to the parabolic fluid-structure interaction problem if it satisfies

� 2 L1.Œ0; T �IE/; @t� 2 L
2.Œ0; T �IW 1;2.QIRn//;

v 2 L2.Œ0; T �IW 1;2.�.t/IRn//; div v.t/ D 0 for a.a. t 2 Œ0; T �,
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as well as v.t; �.t; x// D @t�.t; x/ for a.a. t 2 Œ0; T � and x 2 @Q and there exists a p 2
D 0.Œ0; T � ��/ with suppp � Œ0; T � ��.t/, such that

ˆ T

0

ŒhDE.�/; �i C hD2R.�; @t�/; �i C h"v; "�i�.t/ � hp; div �i� dt

D

ˆ T

0

Œ�f hf; �i�.t/ C �shf ı �; �iQ� dt (2.1)

for all � 2 L2.Œ0; T �IW 2;q.QIRn// with �jP D 0 and � 2 C0.Œ0; T �IW
2;q
0 .�IRn// such

that � D � ı � on Q where, as before, we set �.t/ WD � n �.t;Q/. Moreover, the initial
condition for � is satisfied in the sense that

lim
t!0

�.t/ D �0 in L2.QIRn/:

The main goal of this section is to prove existence of weak solutions to the parabolic
fluid-structure interaction problem. In particular, we show the following theorem:

Theorem 2.2 (Existence of a parabolic fluid-structure interaction). Assume that the
energy and dissipation pair .E; R/ fulfill Assumptions 1.7 and 1.10. Further, let �0 2 E

and f 2 L1.�IRn/. Then there exists a maximal time Tmax > 0 such that on the interval
Œ0; Tmax/ there exists a weak solution to the parabolic fluid-structure interaction problem
in the sense of Definition 2.1.

We have either TmaxD1, or lim inft!Tmax E.�.t//D1, or Tmax is the time of the first
collision of the solid with either itself or the container, i.e. the continuation �.Tmax/ exists
and �.Tmax/ 2 @E . Furthermore, p 2 L2.Œ0; T �IL1.�.t///CL1.Œ0; T �IL2.�.t/// for
all T < Tmax.

In order to prove Theorem 2.2, we shall exploit the natural gradient flow structure of
the parabolic fluid-structure evolution. Indeed, at the heart of the proof is the construction
of time-discrete approximations via variational problems inspired by De Giorgi’s mini-
mizing movements method [31] given in (2.3). We refer to Section 2.2 for a detailed proof
of Theorem 2.2 and to Section 2.1 for the preliminary material.

Remark 2.3 (Maximal existence time). The maximal existence time in Theorem 2.2 is
due not only to possible collisions but also to a possible blow-up of the energy due to the
acting forces. It is notable that by Lemma 4.11 such a situation is absent in the full model
including inertia, because acting forces can then be estimated using the inertial term.

2.1. Preliminary analysis

We start this section by discussing the relevant geometry of the fluid-solid coupling and
derive some necessary properties for the coupled system that will also be of use for the
full Navier–Stokes system in Section 4.

Lemma 2.4 (Closedness of E). Let .�l /l2N � E be a sequence such that �l * � in
W 2;q.QIRn/ and supl2N E.�l / <1. Then � 2 E .
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Proof. The boundary condition holds as W 2;q.QIRn/ has a continuous trace operator.
Similarly the lower semicontinuity of E guarantees E.�/ < 1. For the Ciarlet–Nečas
condition we refer to [26], but note that, due to the higher regularity we employ, a more
direct proof would be feasible as well.

Injectivity and boundary regularity of the solid. From the Ciarlet–Nečas condition we
know that any � 2 E is injective on Q but not necessarily on xQ, so collisions are in
principle possible. Nonetheless, we can exclude them for short times as shown via the
following two lemmas as well as Corollary 2.19.

Lemma 2.5 (Local injectivity of the boundary). For any E0 <1 there exists a ı0 > 0
such that all � 2 E with E.�/ < E0 are locally injective with radius ı0 on @Q, i.e.

�.x0/ ¤ �.x1/ for all x0; x1 2 @Q with jx0 � x1j < ı0:

Proof. Assume that there are x0; x1 2 @Q such that �.x0/ D �.x1/. Now using embed-
ding theorems and Assumptions 1.7 (S2, S4), E.�/ < E0 implies that r� is uniformly
continuous and there exists a uniform lower bound on detr�. This also results in uniform
continuity of .r�/�1 D cofr�

detr� . Now on the one hand, by the injectivity in the interior, the
tangent planes to @Q at x0 and x1 need to be mapped to the same image plane by r�.x0/
and r�.x1/ respectively, but with opposite orientations. On the other hand, if x0 and x1
are close, then the continuity of .r�/�1 implies that the tangent planes to @Q at x0 and
x1 are almost oppositely oriented as well, which contradicts the regularity of @Q.

Remark 2.6. The preceding proof is much easier to formulate in the case nD 2 as one can
deal with tangent vectors directly: Consider the positively oriented unit tangent vectors �x
at x 2 @Q. Then r�.x0/�x0 and r�.x1/�x1 point in opposite directions and their length
is bounded from below. But if x0 and x1 are close, then so are the �xi and r�.xi /, which
leads to a contradiction.

Lemma 2.7 (Short time global injectivity preservation). Fix E0 <1 and "0 > 0 and let
ı0 be given by the previous lemma. Then there exists a 
0 > 0 such that for all �0 2 E

with E.�0/ < E0 and

j�0.x0/ � �0.x1/j > "0 for all x0; x1 2 @Q with jx0 � x1j � ı0 (2.2)

we have, for all � 2 E with E.�/ < E0 and k�0 � �kL2.Q/ < 
0,

j�.x0/ � �.x1/j > "0=2 for all x0; x1 2 @Q with jx0 � x1j � ı0:

Proof. Let �0 be as prescribed and pick � 2 E with E.�/ < E0 and j�.x0/ � �.x1/j
� "0=2 for some x0; x1 with jx0 � x1j � ı0. Then

j�0.x0/ � �.x0/j C j�0.x1/ � �.x1/j � j�0.x0/ � �0.x1/j � j�.x0/ � �.x1/j > "0=2:

So, without loss of generality, we can assume that j�0.x0/ � �.x0/j � "0=4. But then
since �0 and � are uniformly continuous with the modulus of continuity depending just
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on E0, there exists an r > 0 such that j�0.x/ � �.x/j � "0=8 for all x 2 Br .x0/ \Q.
Thus

k�0 � �kL2.Q/ �
p
."0=8/2jBr .x0/ \Qj DW 
0 > 0:

Since we are concerned with variable-in-time domains for the fluid flow, we recall here
the quantification of uniform regular domains. Later we will encounter several analytical
results which will be used uniformly with respect to these quantifications.

Definition 2.8. For k 2 N and ˛ 2 Œ0; 1�. We call � � Rn a C k;˛ domain with char-
acteristics L; r if for all x 2 @� there is a C k;˛ diffeomorphism �x W B1.0/! Br .x/

such that �x W B�1 .0/ ! Br .x/ \ �, �x W BC1 .0/ ! Br .x/ \ �
c and �x.0/ D x. We

require that �x can be written as a graph over a direction ex 2 �n�1. This means that
for .z0; zn/ 2 B1.0/ we have �x.z/ D �x..z

0; 0// C rexzn. Moreover, we assume that
k�xkC˛;k.B1.0// C k�

�1
x kC˛;k.Br .x// � L:

Collecting the regularity that comes from the energy bounds leads to an important
(locally) uniform estimate on the C 1;˛ regularity of the fluid domains.

Corollary 2.9 (Uniform C 1;˛ domains). Fix E0 <1 and �0 2 E with E.�0/ < E0 and
satisfying (2.2) for some "0 > 0. Then for all � 2 E with E.�/ < E0 and k�0 � �kL2.Q/
< 
0 for 
0 from Proposition 2.7 the set �� WD � n �.Q/ is a C 1;˛domain with charac-
teristics L; r depending only on E0; �0 and "0.

Global velocity and a global Korn inequality. A useful tool when dealing with fluid-
structure interaction in the bulk is the global Eulerian velocity field, which is defined on
the unchanging domain �. In particular, this will allow us to circumvent the problem of
talking about convergence on a changing domain.

Definition 2.10 (The global velocity field). Let � 2 E be a given deformation. Let v 2
W 1;2.�IRn/ be a divergence free fluid velocity and b 2 W 1;2.QIRn/ a solid velocity
satisfying the coupling condition v ı � D b on @Q n P . Then the corresponding global
velocity u 2 W 1;2

0 .�IRn/ is defined by

u.y/ WD

´
v.y/ if y 2 �� WD � n �.Q/;

b ı ��1.y/ if y 2 �.Q/:

Note that this definition does not involve a reference time-scale directly. The solid
velocity b is allowed to be a time derivative b WD @t� or a discrete derivative b WD �kC1��k

�
.

Furthermore, this definition is invertible. Given u and knowing �, both v and b can be
reconstructed, and those reconstructed velocities will satisfy the coupling condition as
above.

When deriving a priori estimates, the only bounds on the velocities that will be avail-
able are in the form of the dissipation. As this is given in terms of a symmetrized deriva-
tive, we will need to use Korn-type inequalities, whose constants are generally domain-
dependent. However, another benefit of the global velocity and its constant domain is that
the inequalities for the solid and the fluid can be merged into one global Korn inequality.
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Lemma 2.11 (Global Korn inequality). FixE0 >0. Then there exists cgK D cgK.E0/ > 0
such that for any � 2 E with E.�/ < E0 and any b 2W 1;2.QIRn/ and u 2W 1;2.�IRn/
with uj@� D 0 and bjP D 0 and satisfying the coupling condition u ı �D b inQ we have

cgKkukW 1;2.�/ �
�

2
k"uk�� CR.�; b/;

where we define �� D � n �.Q/.

Proof. On the reference domain Q we have by the chain rule rb D r.u ı �/ D
.ru/ ı � � r�. Using this we can estimate, in analogy to Proposition A.4, as � is a diffeo-
morphism,

ˆ
�n��

jruj2 dy D

ˆ
Q

j.ru/ ı �j2 detr� dx D
ˆ
Q

j.rb/ � .r�/�1j2 detr� dx

�

ˆ
Q

jrbj2
jcofr�j2

detr�
dx �

k�k2n�2
C1

�0

ˆ
Q

jrbj2 dx �
k�k2n�2

C1

�0
cKR.�; b/;

where �0 > 0 is the uniform lower bound on detr� as given in assumption S2, k�kC1
is uniformly bounded by embeddings and we use the Korn-type inequality from assump-
tion R3.

But now we can apply Korn’s inequality to the fixed domain � to get a constant c�
for which

c�kuk
2
W 1;2.�/

� k"uk2� D k"uk
2
��
C k"uk2�n�� � k"uk

2
��
C
k�k2n�2

C1

�0
cKR.�; b/:

Collecting all the constants then proves the lemma.

2.2. Proof of Theorem 2.2

As mentioned before, we will show Theorem 2.2 in several steps using a time discretiza-
tion in the form of a minimizing movements iteration.

Step 1: Existence of the discrete approximation. For this we will fix a time-step size � .
Setting �.�/0 WD �0 and assuming �.�/

k
2 E given we define .�.�/

kC1
; v
.�/

kC1
/ as the minimizer

of

E.�/C�R
�
�
.�/

k
;
���

.�/

k

�

�
C�

�

2
k"vk2

�
.�/

k

��s�
˝
f ı�

.�/

k
;
���

.�/

k

�

˛
Q
��f �hf; vi�.�/

k

(2.3)

over � 2 E; v 2 W 1;2.�
.�/

k
IRn/ with div v D 0; vj@� D 0 and ���

.�/

k

�
D v ı �

.�/

k
in M .

We then repeat this process until we reach k� > T . Notice that in the coupling con-
dition in (2.3), we implicitly assumed that the solid is free of collisions, i.e. �k … @E . We
will show in Corollary 2.19 that for small enough T this will always be the case.
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We will now show that this problem has a (not necessarily unique) solution which sat-
isfies a discrete approximation of our problem in the form of an Euler–Lagrange equation.

Remark 2.12. In (2.3) we minimize the sum of the energy and the dissipation needed to
reach the current step from the previous one. In this context, we view the Stokes poten-
tial as dissipative damping on the solid. Now, as far as the deformation is concerned, the
scheme is implicit in the energy and implicit-explicit in the dissipation. In particular, in
the Stokes potential, the dependence on the deformation manifests itself explicitly through
the domain and implicitly through the coupled boundary values. Explicit-implicit schemes
are commonly used in fluid-structure interactions (see e.g. [71]). Moreover, it is a com-
mon way to produce solutions in solid mechanics if the dissipation depends on the state
variables [59]. Equality of tractions need not then be imposed but follows automatically
from the variational approach.

Proposition 2.13 (Existence of solutions to (2.3)). Assume that �.�/
k
2 E . Then the iter-

ative problem (2.3) has a minimizer, i.e. �.�/
kC1

and v.�/
kC1

are defined. Furthermore, if

�
.�/

kC1
… @E .i.e. �.�/

kC1
is injective on xQ/ the minimizers obey the Euler–Lagrange equa-

tion

hDE.�
.�/

kC1
/; �i C

˝
D2R

�
�
.�/

k
;
�
.�/

kC1
��
.�/

k

�

�
; �
˛
C �h"v

.�/

kC1
;r�i

�
.�/

k

D �f hf; �i�.�/
k

C �shf ı �
.�/

k
; �iQ

for any � 2W 2;q.QIRn/ with �jP D 0 and � 2W 1;2.�
.�/

k
IRn/ with div � D 0, �j@� D 0

and � ı � D � on @M .

Proof. First we investigate existence using the direct method. The class of admissible
functions is nonempty, since .�.�/

k
; 0/ is a possible competitor with finite energy. Next we

show that the functional is bounded from below. As the energy and dissipation have lower
bounds by assumption, the only problematic terms are those involving the force f . For
those we note that by the weighted Young inequality and using assumption R3 we haveˇ̌˝

f ı �
.�/

k
;
���

.�/

k

�

˛
Q

ˇ̌
�
ı

2



���.�/k
�



2
Q
C

1

2ı
kf ı �

.�/

k
k
2
Q

�
ı

2cK
R
�
�
.�/

k
;
���

.�/

k

�

�
C

1

2ı
kf ı �

.�/

k
k
2
Q;

and also, using Lemma 2.11,

jhf; vi
�
.�/

k

j �
ı

2
kvk2

�
.�/

k

C
1

2ı
kf k2

�
.�/

k

�
ı

2cgK

�
k"vk2

�
.�/

k

CR
�
�
.�/

k
;
���

.�/

k

�

��
C

1

2ı
kf k2

�
.�/

k

:
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Now if we choose ı small enough, e.g. ı WD min.cK ; cgK/=2, all v- and �-dependent
terms can be absorbed to get the lower bound

E.�/C �R
�
�k ;

���
.�/

k

�

�
C �

�

2
k"vk2

�
.�/

k

� �f �hf; vi�.�/
k

� �s�
˝
f ı �

.�/

k
;
���

.�/

k

�

˛
Q

� Emin � �
max.�f ; �s/

2ı
.kf ı �

.�/

k
k
2
Q C kf k

2

�
.�/

k

/: (2.4)

Thus a minimizing sequence Q�l ; Qvl exists and along that sequence, the energy and
dissipation are bounded. So by coercivity of the energy we know that Q�l is bounded in
W 2;q.QI�/ and using the Banach–Alaoglu theorem along with compact embeddings we
may extract a subsequence (not relabeled) and a limit �min for which

Q�l * �min in W 2;q.QI�/;

Q�l ! �min in C 1;˛
�

.QI�/ for 0 < ˛� < ˛ WD 1 � n=q.

By Lemma 2.4 we know that �min 2 E . We also know that E and R are lower semicon-
tinuous with respect to the above convergence by assumptions S3 and R1 respectively.

Next we pass to the limit with the fluid velocity. With no loss of generality, we may
assume Qvl is a minimizer of the functional in (2.3) holding the deformation Q�l fixed. As
the functional in (2.3) is convex with respect to the velocity, minimizing is equivalent
to solving the appropriate Euler–Lagrange equation, in other words, it is equivalent to
finding a weak solution to the following classical Stokes boundary value problem:8̂̂̂̂

<̂̂
ˆ̂̂̂:
��� Qvl Crp D �f f in �.�/

k
;

div Qvl D 0 in �.�/
k
;

Qvl D gl WD
. Q�l��

.�/

k
/ı.�

.�/

k
/�1

�
in @�.�/

k
\ @�

.�/

k
.Q/;

Qvl D 0 in @�:

Now since �.�/
k

is a fixed diffeomorphism, and Q�l converges uniformly, the boundary
data gl in this problem converges uniformly as well. Furthermore, the solution operator
L2.@�

.�/

k
IRn/! W 1;2.�IRn/ associated with this boundary value problem is contin-

uous, which implies the existence of a limit vmin 2 W
1;2.�

.�/

k
IRn/ with Qvl ! vmin in

W 1;2.�
.�/

k
IRn/. Then by construction .�min; vmin/ satisfy the compatibility condition and

since k"vk
�
.�/

k

is lower semicontinuous and all terms involving f are continuous, the pair
.�; v/ is indeed a minimizer to the problem.

Next let us derive the Euler–Lagrange equation. Let .�.�/
kC1

; v
.�/

kC1
/ be a minimizer

and let � 2 C1.QIRn/ and � 2 W 1;2.�
.�/

k
IRn/. We require the perturbation .�.�/

kC1
C

"�; v
.�/

kC1
C "�=�/ to also be admissible10 for all small enough ". From this we derive the

conditions div � D 0, �j@� D 0, �P D 0 and for the coupling we get � ı �.�/
k
D � on M .

10The different scaling of � and �=� with respect to � allows us to remove most occurrences of �
in the Euler–Lagrange equation. This does not matter as long as � is fixed, but is the correct scaling
in the limit � ! 0.
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Now since we assume �.�/
kC1
… @E , for small enough ", we have �.�/

kC1
C "� 2 E . Thus

we are allowed to take the first variation with respect to .�; �=�/, which immediately
results in the weak formulation.

Now let us give some a priori estimates on the solutions (2.3). Here, it will be crucial
that the approximants are constructed as minimizers of an appropriate functional.

Lemma 2.14 (Parabolic a priori estimates). We have

E.�
.�/

kC1
/C �R

�
�
.�/

k
;
�
.�/

kC1
��
.�/

k

�

�
C ��k"v

.�/

kC1
k
2

�
.�/

k

� E.�
.�/

k
/C ��f hf; v

.�/

kC1
i�k C ��s

˝
f ı �

.�/

k
;
�
.�/

kC1
��
.�/

k

�

˛
Q
:

Furthermore, letE0 be such thatE0>E.�0/. Then there exists a time TE0 >0, depending
only on E0, the difference E0 � E.�0/ and kf kL1.�/, such that for all � > 0 and all
N 2 N with N� � TE0 we have

E.�
.�/
N /C

�

2

NX
kD1

�
�

2
k"v

.�/

k
k
2

�
.�/

k�1

CR
�
�
.�/

k�1
;
�
.�/

k
��
.�/

k�1

�

��
� E0:

Proof. As before, for fixed k, we may compare the value of the cost functional in (2.3)
at the minimizer with its value for the pair .�.�/

k
; 0/. As R.�.�/

k
; 0/ D 0 and the terms

involving v vanish for v D 0, the comparison yields the first statement.
Now we proceed by induction on N . Assume that E.�.�/N�1/ � E0 and let cgK be the

Korn constant corresponding to E0 from Lemma 2.11. Using (2.4) again, we end up with

E.�
.�/

kC1
/C

�

2
R
�
�
.�/

k
;
�
.�/

kC1
��
.�/

k

�

�
C �

�

4
k"v

.�/

k
k
2

�
.�/

k

� E.�
.�/

k
/C �

max.�f ; �s/
2ı

kf k2L1.�/; (2.5)

where for all k 2 ¹1; : : : ; N º the ı only depends on cgK and cK , and thus only on E0.
Hence we may sum this estimate over k, yielding

E.�
.�/
N /C

�

2

NX
lD1

�
�

2
k"v

.�/

k
k
2

�
.�/

k�1

CR
�
�
.�/

k�1
;
�
.�/

k
��
.�/

k�1

�

��
� E.�0/CN�

max.�f ; �s/
2ı

kf k2L1.�/ � E0

assuming that N� � TE0 for TE0 > 0 given by T max.�f ;�s/
2ı

kf k2
L1.�/

D E0 � E.�0/.

But then E.�.�/N / � E0 and we can continue the induction until N� reaches TE0 .

Remark 2.15. Clearly, the maximal length of the time interval on which the a priori
estimates are true depends on E0 and could be optimized. However, later we prolong the
solution to the maximal existence time, independently of this argument.
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Step 2: Time-continuous approximations and their properties. Now we use these iterative
solutions to construct approximations of the continuous problem. At this point, we will
completely switch over to the global velocity u. We will also approximate the deforma-
tion � in two different ways: a piecewise constant approximation, which we will need to
keep track of the fluid domain, and a piecewise affine approximation, which will give us
the correct time derivative @t�. To be more precise, we define:

Definition 2.16 (Discrete parabolic approximation). For some E0 > E.�0/ fix TE0 > 0
as given by Lemma 2.14. We define the piecewise constant � -approximation as

�.�/.t; x/ WD �
.�/

kC1
.x/ for t 2 Œ�k; �.k C 1//; x 2 Q;

�.�/.t; x/ WD �
.�/

k
.x/ for t 2 Œ�k; �.k C 1//; x 2 Q;

u.�/.t; y/ WD

8<: v
.�/

k
.y/ for t 2 Œ�k; �.k C 1//; y 2 �.�/

k
;

.�
.�/

kC1
��
.�/

k
/ı.�

.�/

k
/�1.y/

�
for t 2 Œ�k; �.k C 1//; y 2 �k. xQ/;

�.�/.t/ WD �
.�/

k
for t 2 Œ�k; �.k C 1//;

where .�.�/
k
; v
.�/

k
/ is the iterative solution for time step � . We also define the piecewise

affine approximation for � as

Q�.�/.t; �/ WD ..k C 1/ � t=�/�
.�/

k
� .t=� � k/�

.�/

kC1
for t 2 Œ�k; �.k C 1//; x 2 Q:

Note that Q�.�/ is Lipschitz continuous in time, Q�.�/.k�/ D �.�/.k�/ for all k 2
¹0; : : : ; N º and

@t Q�
.�/.t/ D

�
.�/

kC1
��
.�/

k

�
D u.�/.t/ ı �.�/.t/ for all t 2 .�k; �.k C 1//.

Lemma 2.17 (Basic a priori estimates). For any fixedE0 and the resulting time TE0 from
Lemma 2.14 there exists a constant C independent of � such that

E.�.�/.t//C

ˆ t

0

�
R.�.�/.t/; @t Q�

.�/.t//C
�

2
k"u.�/k2

�.�/.t/

�
dt � E0

for all t 2 Œ0; TE0 �, and

sup
t2Œ0;TE0 �

k�.�/.t/kW 2;q.Q/ � C;

ˆ TE0

0

k@t Q�
.�/
k
2
W 1;2.Q/

dt � C;

ˆ T

0

ku.�/k2
W 1;2.�/

dt � C:

Proof. The first statement is a direct translation of Lemma 2.14 while the last three
inequalities follow from this. In particular, since E.�.�/.t// < E0 on any of its constancy
intervals and thus on all of Œ0; TE0 �, its supremum is bounded. Similarly the two inte-
gral inequalities follow from the boundedness of the dissipation combined with the Korn
inequalities R3 and Lemma 2.11.
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Lemma 2.18 (Energy and Hölder estimates). For any E0 and the resulting time TE0
from Lemma 2.14, there exists a constant C independent of � < 1 such that we have the
following estimates:

(1) For all t 2 Œ0; TE0 �,

k�.�/.t/ � Q�.�/.t/kW 1;2.Q/ � C
p
�:

(2) E.�.�/.t// is nearly monotone, i.e. for any t; t0 2 Œ0; TE0 � with t � t0 � � we have

E.�.�//.t/ �E.�.�//.t0/ � C.t � t0/:

(3) �.�/.t/ is nearly Hölder continuous in W 1;2.Q/, i.e. for any t; t0 2 Œ0; TE0 � with
t � t0 > � we have

k�.�/.t/ � �.�/.t0/kW 1;2.Q/ � C
p
t � t0:

Proof. Consider the lower bound on a single step given in (2.5). Singling out the dissipa-
tion of the solid material, and dropping some terms with compatible sign, we get by using
the Korn inequality R3,

cK
1

�
k�
.�/

kC1
� �

.�/

k
k
2
W 1;2.Q/

� �R
�
�
.�/

k
;
�
.�/

kC1
��
.�/

k

�

�
� 2

�
E.�

.�/

k
/ �E.�

.�/

kC1
/C �

max.�f ; �s/
2ı

kf k21

�
Now as the energy is bounded uniformly from above and from below, we can derive

k�
.�/

kC1
� �

.�/

k
kW 1;2.Q/ � C

p
�

for some constant C depending only on E0 and f . In particular, due to the definitions
of Q�.�/.t/ and �.�/.t/, this implies (1).

Further, reordering the terms in a different way, we get

E.�
.�/

kC1
/ �E.�

.�/

k
/ � �

max.�f ; �s/
2ı

kf k21:

Now fix T � t > t0 � 0 and letM WD bt=�c andN WD bt0=�c. Adding up the inequalities
yields

E.�.�/.t// �E.�.�/.t0// � �.M �N/
max.�f ; �s/

2ı
kf k21:

Now either � � t � t0 < 2� , in which case �.M �N/ < 2� < 2.t � t0/, or t � t0 � 2�
and thus �.M �N/ < .t � t0/C � < 3

2
.t � t0/, so this estimate proves (2).11

11The lower bound on t0 � t is somewhat arbitrary and is only due to the jumps in the piecewise
constant approximation. As we are generally interested in � ! 0 for fixed t; t0, this will not be an
issue.
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Finally, we again use the first estimate and Hölder’s inequality to add up the distances:

k�.�/.t/ � �.�/.t0/kW 1;2.Q/ �

M�1X
kDN

k�
.�/

kC1
� �

.�/

k
kW 1;2.Q/

�

vuutM�1X
kDN

�

vuutM�1X
kDN

1

�
k�
.�/

kC1
� �

.�/

k
k2
W 1;2.Q/

� c
p
t � t0

r
E.�.�/.t0// �E.�.�/.t//C .t � t0/

max.�f ; �s/
2ı

kf k21;

which proves (3).

A direct consequence of the last estimate is that the solid cannot move much in a short
time. In particular, this implies the following result on injectivity:

Corollary 2.19 (Short-time collision exclusion). If �0 2 E is injective .i.e. �0 … @E/ then
there exists Tinj > 0 such that for all � small enough and all t 2 Œ0; Tinj�, the deformations
�.�/.t/ and Q�.�/.t/ are injective .i.e. not in @E/.

Proof. If we choose Tinj small enough, then the near Hölder continuity from Lemma 2.18
implies that k�0 � �

.�/

k
kQ is uniformly small. In particular, we can choose it to be smaller

than the constant 
0 from Proposition 2.7, which then results in injectivity.

In the following, we take, for �0, E0 fixed, T � min ¹Tinj; TE0º. In this way, both the
a priori estimates of Lemma 2.14 hold and we may assume injectivity.

Step 3: Existence and regularity of limits. As a next step, we will derive limiting objects
as �! 0 for the deformation and the global velocity, as well as their mode of convergence.

Proposition 2.20 (Convergence of the time-discrete scheme). There exists a .not rela-
beled/ subsequence � ! 0 and a limit

� 2 C 1=2.Œ0;T �IW 1;2.QIRn//\Cw.Œ0;T �IW
2;q.QIRn//\C 0.Œ0;T �IC 1;˛

�

.QIRn//

for ˛ D 1 � n=q and u 2 L2.Œ0; T �IW 1;2.�IRn//, such that

Q�.�/ ! � in C .1=2/
�

.Œ0; T �IW 1;2.QIRn//;

�.�/; �.�/; Q�.�/ *� � in L1.Œ0; T �IW 2;q.QIRn//;

u.�/ * u in L2.Œ0; T �IW 1;2.�IRn//;

@t Q�
.�/ * @t� in L2.Œ0; T �IW 1;2.QIRn//:

Furthermore,
@t� D u ı � in Œ0; T � �Q

and �.�/ converges uniformly to � in the following sense: For all r > 0, there exists a
ır > 0 such that for all � < ır and all jx1 � x2j C jt1 � t2j

1
˛Cn � r˛

�

we have

jr.�.�/.t1; x1/ � �.t2; x2//j C j�
.�/.t1; x1/ � �.t2; x2/j � Cr

˛� ;
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for all 0 < ˛� < 1 � n=q. Finally,

Q�.�/ ! � in C 0.Œ0; T �IC 1;˛
�

.QIRn//; (2.6)

�.�/ ! �; �.�/ ! � in L1.Œ0; T �IC 1;˛
�

.QIRn//:

Proof. We apply a weak version of the Arzelà–Ascoli theorem. Let ¹tiºi2N � Œ0; T � be a
countable dense set. By the upper bound on the energy and its coercivity, we have a uni-
form bound on k�.�/.t/kW 2;q.Q/; thus, by a diagonalization argument we can pick a sub-
sequence of � ’s (not relabeled) and limits �.ti / such that �.�/.ti / * �.ti / inW 2;q.QIRn/
and uniformly strongly inW 1;2.QIRn/ for all i 2N. Then by the convergence of norms,
the Hölder continuity from Lemma 2.18 (3) carries over to

k�.ti / � �.tj /kW 1;2.Q/ � C

q
jti � tj j 8i; j 2 N:

This means that � has a unique extension onto Œ0; T � in C 1=2.Œ0; T �IW 1;2.QIRn//.
By compactness arguments one gets

Q�� ! � 2 C 1=2
�

.Œ0; T �IW 1;2.QIRn//:

Now pick t 2 Œ0; T � and a new sequence .ti /i2N � Œ0; T � with ti ! t . Due to the uni-
form W 2;q.QIRn/ bounds resulting from the bounded energy, the sequence .�.ti //i2N

has a weakly converging subsequence in W 2;q.QIRn/, which must converge to �.t/.
As the original sequence .ti /i2N was arbitrary, this means that � is weakly contin-
uous in W 2;q.QI Rn/. By the same argument, �.�/ * � in W 2;q.QI Rn/ pointwise.
By Lemma 2.18 (1), we know that Q�.�/.t/ converges to the same limit as �.�/.t/ in
W 1;2.QIRn/. Since Q�.�/.t/ satisfies the same W 2;q.QIRn/ bounds, we can then also
prove weak W 2;q.QIRn/ convergence by the same argument.

Next we interpolate in order to prove that r� is Hölder continuous in space-time,
which implies � 2 C 0.Œ0; T �I C 1;˛.QI Rn//.12 For that we take .s1; x1/; .s2; x2/ 2
Œ0; T � �Q with Br 3 x1; x2 (i.e. jx1 � x2j � 2r) and js1 � s2j � r2˛Cn. We have

jr�.s1; x1/ � r�.s2; x2/j �

ˇ̌̌̌
r�.s1; x1/ �

 
Br

r�.s1/ dx

ˇ̌̌̌
C

ˇ̌̌̌ 
Br

r.�.s1/ � �.s2// dx

ˇ̌̌̌
C

ˇ̌̌̌
r�.s2; x2/ �

 
Br

r�.s2/ dx

ˇ̌̌̌
� Cr˛ C js2 � s2j

ˇ̌̌̌ s2

s1

 
Br

@tr� dx ds

ˇ̌̌̌
� Cr˛ C js2 � s2j

� s2

s1

 
Br

j@tr�j
2 dx ds

�1=2
� Cr˛ C C

ˇ̌̌̌
s1 � s2

rn

ˇ̌̌̌1=2
� Cr˛: (2.7)

12Note that due to the zero boundary values on P the continuity estimates for � follow directly
from the gradient estimates.
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By similar arguments, we can also prove that �.�/ ! � and �.�/ ! �. To this end, recall
that 0 < ˛� < ˛ D 1 � n=q. For r > 0 we may choose a finite subset ¹tiº

mr
iD1 such that

for every t 2 Œ0; T � there exists a ti such that jti � t j � r2˛
�Cn. Using the Arzelà–Ascoli

theorem we may choose a subsequence of � ’s and a ır > 0 such that for all � � ır ,

max
i2¹1;:::;mr º

k�.�/.ti / � �.ti /kC1;˛� .Q/ � 1I

without loss of generality, we may assume that ı� < r2˛
�Cn.

Now for all .s1; x1/; .s2; x2/ 2 Œ0; T � �Q with jx1 � x2j � r , a ball Br of radius r
such that x1; x2 2 Br and js1 � s2j � r2˛

�Cn there is a ti 2 Œs1; s2� and by an analogous
calculation to (2.7) we obtain

jr�.�/.s1; x1/ � r�.s2; x2/j � Cr
˛;

by using the already obtained Hölder continuity of �.
Having the uniform convergence of �.�/ at hand, we finally deduce the convergence of

the global velocity field u.�/. To do so, we use the uniformL2.Œ0;T �IW 1;2.�IRn// bound
on u.�/ derived through Lemmas 2.14 and 2.11 to extract another subsequence of � ’s
such that u.�/ converges weakly in L2.Œ0; T �IW 1;2.�IRn// to some limit u. Further,
the uniform L2.Œ0; T �IW 1;2.QIRn// bound on @t Q�� implies that up to a subsequence,
@t Q�

� converges weakly to @t� in L2.Œ0; T �IW 1;2.QIRn//.
Directly from the definition, we see that @t Q�� .t/ D u� .t/ ı �� .t/ for almost all t . So

in particular for all � 2 C10 .Œ0; T � �QIR
n/,

ˆ T

0

h@t Q�; �iQ dt  

ˆ T

0

h@t Q�
.�/; �iQ dt D

ˆ T

0

hu.�/ ı �.�/; �iQ dt

D

ˆ T

0

hu.�/ ı �; �iQ dt C

ˆ T

0

hu.�/ ı �.�/ � u.�/ ı �; �iQ dt:

Now the first integral on the last line converges to
´ T
0
hu ı �; �iQ dt as � is a diffeomor-

phism, while the second vanishes in the limit by the following argument: Let �s.t; x/ WD
s�.�/.t; x/C .1 � s/�.t; x//. Then

ju.�/.t; �.�/.t; x// � u.�/.t; �.t; x//j2 D

ˇ̌̌̌ˆ 1

0

@

@s
u.�/.t; �s.t; x// ds

ˇ̌̌̌2
�

ˆ 1

0

jru.�/.t; �s.t; x//j
2 ds sup

t2Œ0;T �; x2Q

j�.�/.t; x/ � �.t; x/j2:

Now, as �.�/.t/ and �.t/ are both diffeomorphisms with lower bound on the determinant
and uniformly close gradients, the linear interpolation �s also has to be a diffeomorphism.
So integrating the equation yields

ˆ T

0

ˆ
Q

ju.�/.t; �.�/.t; x// � u.�/.t; �.t; x//j2 dx dt

� c

ˆ T

0

ˆ
�

jru.�/j2 dx dt sup
t2Œ0;T �; x2Q

j�.�/.t; x/ � �.t; x/j2:
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Here the first term is uniformly bounded and the second converges to 0, by the uniform
convergence of �.�/ outlined above.

Thus we have @t� D u ı � almost everywhere in Q.

Step 4: Convergence of the equation. Using the convergences we derived in Proposi-
tion 2.20, we proceed by showing that the discrete Euler–Lagrange equations from Propo-
sition 2.13 converge to the equation satisfied by the weak solution. This is not a straight-
forward task, as we have to deal with coupled pairs of test functions with the coupling
nonlinearly dependent on the deformation. We will deal with this issue by focusing on a
global test function � on � from which we derive the test functions on the discrete level.
In order to do so, we need to be able to approximate the test functions smoothly while
also maintaining the coupling condition. This is done in Proposition 2.22.

For the approximation of test functions we make use of a Bogovskiı̆-type theorem.

Theorem 2.21 (Bogovskiı̆ operator [14, Theorem 2.4]). Let � be a bounded Lipschitz
domain. Then there is a linear operator B W ¹g 2 C10 .�/ j

´
�
g dy D 0º ! C10 .�/ such

that
div B.g/ D g:

Moreover, for k 2 ¹0; 1; 2; : : : º and a 2 .1;1/ the operator extends to Sobolev spaces as
an operator B W ¹g 2 W

k�1;a
0 .�/ j

´
�
g dy D 0º ! W

k;a
0 .�/ such that

kB.g/k
W
k;a
0

.�/
� ckgk

W
k�1;a
0

.�/
;

where the constant just depends on k, a, n and �.

Next we state the approximation result. It is introduced in order to approximate
test functions and later in Section 4 to extend the Aubin–Lions lemma to the variable
domain setup. The proof is quite involved and for that reason put in the appendix (see
Appendix A.2).

Proposition 2.22 (Approximation of test functions). Fix a function

� 2 L1.Œ0; T �IE/ \W 1;2.Œ0; T �IW 1;2.QIRn// with sup
t2T

E.�.t// <1

such that �.t/ … @E for all t 2 Œ0; T �. As before, set�.t/D � n �.t;Q/. Let T� be the set
of admissible test functions, defined as

T� WD ¹.�; �/ 2 W
1;2.Œ0; T �IW 1;2.QIRn// � L2.Œ0; T �IW 1;2

0 .�IRn// j

� D � ı � on Œ0; T � �Q and div �.t/ D 0 in �.t/º:

Then the set

QT� WD ¹.�; �/ 2 T� j � 2 C
1.Œ0; T �IC10 .�IR

n//; div �.t; y/ D 0

for all t 2 Œ0; T � and all y with dist.y;�.t// < " for some " > 0º

is dense in T� in the following sense:
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For every " sufficiently small there exists a linear map .�; �/ 7! .�"; �"/ 2 QT� such
that

div.�".t; y// D 0 for all y 2 � with dist.y;�.t// � ":

Moreover, if � 2 Lb.Œ0; T �IW k;a.�//, then for k 2 N, a 2 .1;1/ and b 2 Œ1;1�,

�" ! � in Lb.Œ0; T �IW k;a.�// as "! 0:

If additionally � 2 Lb.Œ0; T �IW k;a.QIRn//, with a D 2, if k � 3, then

�" ! � in Lb.Œ0; T �IW k;a.QIRn// \W 1;2.Œ0; T �IW 1;2.QIRn//:

Further, in case @t� 2 L2.Œ0;T �IW 1;2.�//, we have @t�"! @t� in L2.Œ0;T �IW 1;2.Q//.
If additionally � 2 L1.Œ0; T �IW 3;a.�// with a > n and @t� 2 L2.Œ0; T �IW 1;2.�//, then
@t�" ! @t� in L2.Œ0; T �IW 1;2.Q//.

Moreover, the following bounds are satisfied at every time instant where the right hand
side is finite:

k�".t/kW 1;2.�/ � ck�.t/kW 1;2.�IRn//;

k�".t/ � �.t/kL2.�/ � c"
2
nC2 k�.t/kW 1;2.�/;

k�".t/kW k;a.�/ � c."/k�.t/kL2.�IRn/;

k�".t/kW k;a.Q/ � ck�.t/kCk.�/k�.t/kW k;a.Q/ � c."/k�.t/kL2.�/k�.t/kW k;a.Q/;

where the constant c depends on the bounds of � 2 L1.Œ0; T �I E/ \ W 1;2.Œ0; T �I

W 1;2.QIRn// and the lower bound on the Jacobian of � only. The constant c."/ depends
additionally on ".

Having Lemma 2.22 at hand, we now pass to the limit in the Euler–Lagrange equation.

Proposition 2.23 (Limit equation). The limit pair .�; v/ obtained in Proposition 2.20
satisfies

0 D

ˆ T

0

ŒhDE.�.t//; �iQ C hD2R.�.t/; @t�.t//; �iQ C �h"v; "�i�.t/

� �f hf; �i�.t/ � �shf ı �; �iQ� dt (2.8)

for all pairs � 2 L2.Œ0; T �IW 2;q.QIRn//, � 2 L2.Œ0; T �IW 1;2.�IRn// which satisfy
�.t; �/ D � ı �.t/ on Q and div �.t/ D 0 on �.t/.

Proof. First, we use the Minty method to show hDE.�� .t//; �� iQ ! hDE.�.t//; �iQ.
Fix t 2 Œ0; T � and pick  2 C10 .QI Œ0; 1�/. Then the pair ..�.�/ � �/ ; 0/ fulfills the
coupling condition for the discrete Euler–Lagrange equation and we have

hDE.�.�// �DE.�/; .�.�/ � �/�i

D �hDE.�/; .�.�/ � �/�i � hD2R.�
.�/; @t Q�

.�//; .�.�/ � �/�i C hf ı �� ; .�.�/ � �/�i:
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As �.�/.t/! �.t/ weakly in W 2;q.QIRn/ and strongly in C 1;˛
�

.QIRn/ and moreover
@t Q�

.�/.t/ is uniformly bounded in L2.Œ0; T � �QIRn/, all three terms on the right hand
side converge to 0 when integrated in time and thus for almost all t 2 Œ0; T � by Proposi-
tion 2.20. Hence Assumption 1.7 (S6) implies the strong convergence of �.�/.t/! �.t/

in W 2;q.QIRn/ for almost all t 2 Œ0; T �.
By Lemma 2.22, it is enough to show the limit equation for � 2 C10 .Œ0; T � ��IR

n/

which is divergence free on a slightly larger set than the fluid domain. Fix such a � . Then
since �.�/ converges uniformly to �, div � D 0 on �.�/.t/ for all � small enough.

Now we construct the matching �.�/.t; x/ WD �.t; �.�/.t; x// and �.t; x/ WD

�.t; �.t; x//. Then by Lemma A.2 and Proposition A.4, �.�/ 2 L1.Œ0; T �IW 2;q.QIRn//
with uniform bounds. Thus by compactness and uniqueness of limits we get
�.�/.t/ * �.t/ in W 2;q.Rn/.

As constructed, the pairs .�.�/.t/; �.t// are admissible in the respective Euler–
Lagrange equations from Proposition 2.13 and we have

0 D hDE.�.�/.t//; �.�/.t/i C hD2R.�
.�/.t/; @t Q�

.�/.t//; �.�/.t/i

C �h"u.�/.t/;r�.t/i�.�/.t/ � �f hf; �.t/i�.�/.t/ � �shf ı �
.�/.t/; �.�/.t/iQ

for all t 2 Œ0; T � and � small enough.
Now we integrate this equation in time and check each of the terms for convergence.

For the first term we note that by the strong convergence of �.�/ in W 2;q.QIRn/ and
Assumption 1.7 (S5),DE.�.�/.t// converges strongly inW �2;q.QIRn/ for every fixed t .
Since �.�/.t/ converges weakly and both terms are uniformly bounded in their respective
spaces, we get

ˆ T

0

hDE.�.�/.t//; �.�/.t/i dt !

ˆ T

0

hDE.�.t//; �.t/i dt:

For the next term we find by Proposition 2.20 and the continuity of R in Assump-
tion 1.10 (R1) thatD2R.�.�/; @t Q�.�// converges weakly in L2.Œ0; T �IW �1;2.QIRn// and
�.�/ converges strongly in L2.Œ0; T �IW 1;2.QIRn//, which implies that

ˆ T

0

hD2R.�
.�/.t/; @t Q�

.�/.t//; �.�/.t/i dt !

ˆ T

0

hD2R.�.t/; @t�.t//; �.t/i dt:

For the next terms, let us first deal with the variable domain by rewriting the terms
using characteristic functions. By the uniform convergence of the boundary we have
��.�/.t/ ! ��.t/ in L2.Œ0; T � ��/ and we can thus conclude

ˆ T

0

hru.�/.t/;r�.t/i�.�/.t/ dt D

ˆ T

0

ˆ
�

��.�/.t/ru
.�/.t/ W r�.t/ dy dt

!

ˆ T

0

ˆ
�

��.t/ru.t/ W r�.t/ dy dt D

ˆ T

0

hru.�/.t/;r�.t/i�.�/ dt

as u converges weakly in L2.Œ0; T �IW 1;2.�IRn//.
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The same approach also works for the forces on the fluid, where the domain is the
only variable depending on � and thus

ˆ T

0

�f hf; �.t/i�.�/.t/ dt !

ˆ T

0

�f hf; �.t/i�.t/ dt:

Finally, we have the forces acting on the solid. Here both sides converge uniformly:
ˆ T

0

�shf ı �
.�/.t/; �.�/.t/iQ dt !

ˆ T

0

�shf ı �.t/; �.t/iQ dt:

Collecting all the terms then concludes the proof.

Step 5: Construction of the pressure. Take an arbitrary s 2 .0;T /. Since we have excluded
collisions on .0; T /, we know that�.t/ is a uniform Lipschitz domain with bounds in the
sense of Corollary 2.9 for all t � s. Taking  2 C10 .�.t// such that

´
�.t/

 dy D 0, we
can use the Bogovskiı̆ operator Bt defined on �.t/ via Theorem 2.21 to define

QP .t/. / D �h"u; "Bt i�.t/ � �f hf;Bt i�.t/:

This then gives the estimate

j QP .t/. /j � CkBtk k kL2.�.t//;

where kBtk is the operator norm of Bt W ¹ 2L
2.�.t// j

´
�.t/

 dy D 0º!W 1;2.�.t//

which is bounded by the Lipschitz constant of �.t/ by Theorem 2.21. Now since
¹ 2 L2.�.t// j

´
�.t/

 dy D 0º is a Hilbert space we find a Qp.t/ in that space such
that Qp.t/ � QP .t/.

We can extend the operator to L2.�.t// in the following way: Take '.t/ 2 C10 .�.t//
and Q'.t/ 2 C10 .� n�.t// fixed such that

´
�
'.t/ dy D

´
�
Q'.t/ dy D 1 for all t 2 Œ0; s�.

Since the change of domain in time is uniformly continuous, we may assume further that
'; Q' are C 1 smooth in time. Next we define B to be the operator of Theorem 2.21 with
respect to the full domain �.

By taking the fixed pair of test functions

�0.t/ WD B.'.t/ � Q'.t//; �0.t; x/ WD �0.t; �.t; x//;

we may define

Op.t; y/ D
�
hDE.�.t//; �0.t/iQ C hD2R.�.t/; @t�.t//; �0.t/iQ C �h"u.t/; "�0.t/i�.t/

� �f hf .t/; �0.t/i�.t/ � �shf .t/ ı �.t/; �0.t/iQ
�
'.t; y/;

which satisfies k OpkL2.Œ0;s�IL1.�.t// � C with C depending on the energy estimates only.
But this allows us to introduce the pressure. For  2 L1.�.t//, we define c .t/ D´
�.t/

 .t/ dy. Now, if  2 L2.Œ0; T �IL1.�.t/// we find that c 2 L2.Œ0; s�/. Hence
we may define

P. / D

ˆ T

0

h Qp; � c 'i dt C

ˆ T

0

ˆ
�.t/

Op dy c dt:
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Thus p 2 L1.0; sIL2.�.t//C L2.0; sIL1.�.t// is well defined via that operator:
ˆ T

0

hrp; �i dt WD P.div �/;

and satisfies the proposed regularity.
One can now check that it fulfills the right equations. For that it suffices to see that

� �Bt .div.�/ � cdiv.�/'/ � cdiv.�/B.' � Q'/ D � �Bt .div.�/ � cdiv.�/'/ � cdiv.�/�0

is divergence free over �.t/. Hence (2.1) is satisfied by (2.8) using the test function�
� � cdiv.�/�0; � �Bt .div.�/ � cdiv.�/'/ � cdiv.�/�0

�
:

This finally allows us to conclude the theorem:

Proof of Theorem 2.2. For any injective �0 there is a short interval Œ0; T � such that for
all � small enough all �.�/

k
are injective according to Corollary 2.19. Passing to the limit

in the sequence of the accordingly constructed .�.�/; v.�//’s we find, by Proposition 2.13,
.�; v/ that is a weak solution to the parabolic fluid-structure interaction problem.

Now let Œ0; Tmax/ be a maximal interval on which a solution .�; v/ constructed in
this way exists. If Tmax D 1 there is nothing to show. The same holds if Tmax <1 and
lim inft!Tmax E.�.t// D1 or if a self-intersection is approached. Now assume that none
of that is the case. Then there exists a sequence of times ti % Tmax such that E.�.ti // is
bounded and there exists a limit, which we will denote �.Tmax/.

Now take E0 WD lim inft!Tmax E.�.t// � E.�.Tmax// due to lower semicontinuity.
Following Lemmas 2.14 and 2.18, there exists a minimal time T such that any solution
starting with energy below 2E0 stays below energy 3E0 and is Hölder continuous in
time in Œ0; T �. Due to the convergence, we can pick ti with Tmax � ti � T and E.�.ti // �
2E0, which makes the solution Hölder continuous right until Tmax and thus limt%Tmax �.t/

D �.Tmax/. But then we can use the short-term existence to construct a solution starting
from �.Tmax/ and appending this to the previous solution yields a contradiction as Tmax

cannot then be maximal.

2.3. The example energy-dissipation pair

Let us now consider the prototypical example we stated in the introduction in the form
of (1.6) and (1.7). In particular, we will prove that this energy-dissipation pair fulfills
Assumptions 1.7 and 1.10. While doing so, we comment in more detail on the meaning
of those assumptions and on how they come into play in the course of the construction.
Effectively we will prove the following proposition.

Proposition 2.24. The example energy and dissipation given in (1.6) and (1.7) fulfill
Assumptions 1.7 and 1.10 respectively.

Instead of proving the assumptions in ascending order or order of convenience, we will
try to tackle them in the order as they appear in the proof of Theorem 2.2. Furthermore,
we will roughly group them by some relevant subtopics.
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The minimization problem (S1, S3–S4, R1–R2). We start with the definition of �.�/
kC1

in
the minimizing movements scheme in (2.3). In order to prove existence of minimizers, we
need to invoke the direct method of the calculus of variations. In other words, we need to
show compactness and lower semicontinuity, as well as a lower bound for the functional.

The last one seems to be directly stated in S1 together with the quadratic homogeneity
in R2. Of course for our example energy, S1 immediately holds, as all terms are non-
negative, and R2 is similarly obvious, as @t� occurs as a quadratic factor. There is however
some hidden difficulty in finding a lower bound for the whole functional, which includes
not only energy and dissipation, but also the force terms, which can indeed be negative.
To counteract these, we actually use the proper quadratic growth of the dissipation.

Once a lower bound for our minimizing sequence is established, we need to consider
compactness. Here the relevant topology for � is the weak W 2;q.QI�/ topology and
the relevant assumption for compactness is coercivity, in the form of S4. As we have
bounded the other terms in the functional from below without involving the energy E, the
coercivity is obtained in the simplest way, as kr2�kq

Lq.Q/
is part of the energy.

As for (weak) lower semicontinuity, we need to verify assumptions S3 and R1 for the
example case. First, note that the highest order term kr2�kq

Lq.Q/
in the energy is weakly

lower semicontinuous as it is a convex function of the norm. Second, we find that q > n
allows us to pick another subsequence converging in C 1;˛ for some ˛ < q�n

q
. This allows

us to pass to the limit in the other terms.

Converting between Lagrangian and Eulerian setting (S2). Note that as long as we were
only discussing the minimization over the solid, the specific choice of W 2;q.QIRn/ as a
space was unimportant and choosing different terms in the integrand might as well have
led us to a different space. It however becomes important when adding in the fluid, since
it is prescribed with respect to the Eulerian setting which is again determined by the solid
deformation �. The key here is assumption S2. Not only does this result in physically
reasonable injectivity (in conjunction with the Ciarlet–Nečas condition), but it also allows
us to convert between Eulerian and Lagrangian quantities.

To prove this property we follow the ideas of [52] where a similar energy was studied.
Define f .x/ WD detr�. If E.�/ is bounded, then f is bounded in W 1;q.Q/ and C ˛.Q/.
Now for a fixed �0 assume that there is x0 2 Q with f .x0/ D 2�0. Then

E.�/ �

ˆ
Bı.x0/\Q

1

f .x/a
dx �

ˆ
Bı.x0/\Q

1

.f .x0/C jf .x/ � f .x0/j/a
dx

� c
ın

.2�0 C Cı˛/a
:

However, if a˛ > n, the right hand side can be arbitrarily large if �0 and ı are chosen
small enough, which is a contradiction.

Uniform bounds (R3). It has long been known that there is a certain mismatch between
physically reasonable and mathematically expedient dissipation functionals (see e.g. [3]).
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Mathematicians would prefer the dissipation potential to be of the form k@t�k2W 1;2.Q/

and kuk2
W 1;2.�/

. This would then lead directly toL2.Œ0;T �IW 1;2.QIRn// andL2.Œ0;T �I
W 1;2.�IRn// bounds respectively for @t� and v as well as their approximations. Instead,
for physical reasons we have to consider R.�; @t�/ and k"vk2

�.t/
, which are independent

of the observer. Thus Korn-type inequalities are required to convert the bounds for the
latter into bounds for the former.

As the Korn inequality for the fluid is the classic one and the added difficulties due to
the changing domain are overcome by Lemma 2.11, we only need to focus on the solid.
For our example, this inequality and thus R3 follows from the main theorems in [78, 81].
See also the discussion in [68], where these results are coupled with an energy similar to
ours in the context of a thermoviscoelastic solid (but without a fluid).

Observe that these inequalities require a certain regularity of the deformation r�
itself. In fact, we need the same properties that allow us to switch between Lagrangian and
Eulerian settings, i.e. a uniform lower bound on detr� and continuity of r�, as otherwise
there are known counterexamples for which the inequality fails.

Weak equations (S5, R4). Combined, the assumptions so far are enough to construct iter-
ative minimizers and even to have a subsequence converge to a limit object .�; v/ in
space-time by weak compactness. It remains to show that these functions do satisfy a
weak coupled PDE. This is where assumptions S5 and R4 come in. Both are two-part in
nature, requiring both the existence of a derivative and some form of continuity. For the
example both follow by direct calculation. Let us start with the dissipation, namely

hD2R.�; b/; �i D

ˆ
Q

2.rbTr�Cr�Trb/ � .r�Tr�Cr�Tr�/ dx:

Since we have C 1;˛.QIRn/ bounds on r�, the L2.Q/ regularity of rb .D r@t�/ is
enough to make sense of D2R.�; b/ as an operator in W �1;2.QIRn/. Similarly, the uni-
form convergence in some Hölder space for r� is enough to give this derivative the
required continuity with respect to both b and �.

The calculation for the energy is a bit more involved. Restricting ourselves to defor-
mations � of finite energy and thus positive determinant, by a short calculation we get

hDE.�/; �i D

ˆ
Q

�
1

4
C.r�Tr� � I / � .r�Tr�Cr�Tr�/

� a
cofr�

.detr�/aC1
� r� C jr2�jq�2r2� � r2�

�
dx;

where the scalar products are to be understood over all tensorial dimensions.
Again in order to pass to the limit with the energy, we need to make use of the uniform

Hölder continuity of r� to see that the first two terms in DE.�/ are well defined and
continuous with respect to the corresponding convergence. Finally, the last term is well
defined since � 2 W 2;q.QIRn/ uniformly, but to show that it is also continuous we need
to show strong convergence using the convexity of the quantity.
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Improved convergence (S6). As the usual compactness methods will only result in weak
compactness, and S5 requires strong convergence, we need a way to improve upon this.
For this we rely on an idea that is most commonly attributed to Minty. While it is certainly
not true that our energy is convex, the critical, second order term in its derivative DE.�/
is monotone and this allows us to improve convergence as desired. Assume that as stated
�l *� inW 2;q.QIRn/. Then after possibly extracting another subsequence with �l ! �

in C 1;˛.QIRn/, the first two terms of DE.�l / already converge to their respective limits
(using the lower bound on detr� given through S2). As a result, the stated conditions on
convergence of hDE.�l /�DE.�/; .�l � �/ i ! 0 for all cutoffs  2 C10 .QI Œ0; 1�/ are
equivalent to those for

hjr
2�l j

q�2
r
2�l � jr

2�jq�2r2�;r2..�l � �/ /i: (2.9)

Here the cutoff complicates things slightly, but expanding the right hand side yields terms
of lower order (.�l � �/˝r2 and r.�l � �/˝r ) which already converge strongly
to 0 and one term of second order, which leaves us with (2.9) where we can now let
 ! 1 by approximation. Now � 7! jr2�jq�2r2� is a classical example of a monotone
operator. Thus the term is bounded from below by 0 and its convergence to 0 implies
strong convergence �l ! � in W 2;q.QIRn/, because .jajq�2a � jbjq�2b/ � .a � b/ �
cja � bjq for q � 2 and a; b 2 Rn

3
.

3. Minimizing movements for hyperbolic evolutions

In this section, we will introduce a general method for adding inertial effects to continuum
mechanical problems. As can be seen below, the scheme we introduce is able to approx-
imate hyperbolic PDEs via a (forced) gradient flow. We will demonstrate it for the solid
evolution under study including the inertia and dissipation even though the dissipation
is not needed for the construction of the approximations. Moreover, as we will see in the
next section, the method turns out to be flexible enough to even apply to problems which
are of a mixed Lagrangian/Eulerian type such as fluid-structure interaction. Also note that
while this section can be read independently of the previous one, at some places we will
use a similar reasoning, which will thus be abridged slightly.

In particular, we keep the notation from the previous section. Thus � W Q! Rn with
� 2 E is the deformation of the solid specimen, andE andR are its elastic energy and dis-
sipation. For simplicity we will also use the same set of assumptions (i.e. Assumptions 1.7
and 1.10, respectively), though many of them could be relaxed, as they are intended for
interaction with the fluid. Furthermore, as the only relevant domain Q is kept fixed, we
will suppress the dependence of the inner products and the resulting L2 norms on Q.

The problem we thus want to solve is to find the deformation of the viscoelastic solid
specimen moving inertially in space subject to an action of forces. In other words, we
need to solve the balance of momentum (Newton’s second law) that reads

�@2t �CD2R.�; @t�/CDE.�/ D f ı � in Œ0; T � �Q; (3.1)
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where � D �s is a constant density and f some external force, not necessarily conserva-
tive. In addition, we will require that � 2 E , which implies that it satisfies given Dirichlet
boundary conditions on P . On the other parts of the boundary @Q n P we assume natural
Neumann-type (free) boundary conditions that will result from minimization. Finally, we
will add appropriate initial conditions to (3.1),

�.0/ D �0 and @t�.0/ D �
� in Q: (3.2)

As usual, we translate this into a notion of weak solution.

Definition 3.1 (Weak solution to the inertial problem for solids). We call a function � 2
L1.Œ0;T �IE/\W 1;2.Œ0;T �IW 1;2.QIRn// such that @t� 2 C 0w.Œ0;T �IL

2..QIRn// and
�.0/D �0 a weak solution to the inertial problem of the viscoelastic solid (3.1) with initial
conditions (3.2) if
ˆ T

0

ŒhDE.�/; �iChD2R.�; @t�/; �i�hf ı�; �i��h@t�; @t�i� dtC�h��; �.0/iQ D 0

for all � 2 C1.Œ0; T �IC1.QIRn// with �jŒ0;T ��P D 0 such that �.T / D 0.

Observe that we restrict the solution to the closed set E and thus will only work with
injective deformations on Q. This will be of particular interest to us as this property is
relevant for modeling fluid-structure interactions.

The main goal of this section will be to prove the following theorem.

Theorem 3.2 (Existence of solutions for solids). Assume that Assumption 1.7 .with
�DRn/ and Assumption 1.10 hold. Assume that �02E n @E ,E.�/<1, ��2L2.QIRn/
and f 2 C 0.Œ0;1/ � RnIRn/. Then there exists a weak solution to (3.1) according to
Definition 3.1 on Œ0; T �. Furthermore, T > 0 can be chosen in such a way that T D1 or
�.T / 2 @E .

As described in the introduction, we will first solve what we will call the time-delayed
problem:

� @t�
.h/.t/�@t�

.h/.t�h/
h

D �DR2.�
.h/.t/; @t�

.h/.t//�DE.�.h/.t//C f ı �.h/.t/: (3.3)

For any fixed h, (3.3) has the structure of a gradient flow, yet one with a nonlocality in time
in the form of a time-delayed13 term @t�

.h/.t � h/. Now the important observation is that
on the interval Œ0; h�, @t�.h/.t � h/ is not part of the solution but actually given through
the initial data. Thus, on this interval, the problem can be solved using parabolic methods.

13Problems with a time delay have long been studied in continuum mechanics, usually in the
form of a convolution in time with an integral kernel backwards in time. This is done to model
memory-type effects of the material. At this point we would like to emphasize that our time-delayed
equation is not modeling any physical behaviour but is simply used as an approximation of the actual
problem.
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But then, once we know the solution on Œ0; h�, we can use this as data for the problem on
Œh; 2h� and iterate. To allow for an iteration process, we in particular need to know that
the solution obtained from the previous step is admissible to play the role of data in the
next step. This is guaranteed by proving a suitable energy inequality, a key element of the
proof. In our case, for the time-delayed problem on Œ0; h�, the energy inequality will have
the form

E.�.h/.h//C
�

2h

ˆ h

0

k@t�
.h/.t/k2 dt C

ˆ h

0

R.�.h/.t/; @t�
.h/.t// dt

� E.�.h/.0//C
�

2h

ˆ h

0

k@t�
.h/.t � h/k2 dt C

ˆ h

0

hf ı �.h/; @t�
.h/
i dt:

Let us elaborate on the terms in this inequality: On the right hand side, we have the poten-
tial energy E of the initial data, as well as the averaged kinetic energy �

2

ffl h
0
k@t�

.h/k2 dt

of the “previous step”. On the left hand side, we have the potential energy at the end of
the step, as well as the averaged kinetic energy of the current step.

So not only have we bounded the initial data for the next step in terms of the initial
data of the previous step, which allows for an iterative process, but also we have an esti-
mate suitable to employ a telescope argument. The resulting uniform bounds for �.h/ are
independent of h, thus they allow us to deduce a priori estimates and, in turn, to pass to
the limit h! 0 in order to obtain a solution including inertia.

We will show the existence of weak solutions for the time-delayed problem in detail
in Section 3.1 before proving Theorem 3.2 in Section 3.2.

3.1. The time-delayed problem

Throughout this subsection we will assume h > 0 is fixed. In order to solve the time-
delayed problem, we first need to give a precise definition of its weak formulation.

Definition 3.3 (Weak solutions to the time-delayed equation for solids). Let w 2
L2.Œ0; h� � QIRn/. We call � 2 L1.Œ0; h�I E/ \ W 1;2.Œ0; h�IW k0;2.QIRn// a weak
solution to the time-delayed equation (3.3) if �.0/ D �0 and

0 D

ˆ h

0

�
hDEh.�/; �i C hD2Rh.�; @t�/; �i � hf ı �; �i C

�

h
h@t��w;�i

�
dt (3.4)

for all � 2 C1.Œ0; h� �QIRn/ with �jŒ0;h��P D 0.

In this definition, w will play the role of the given data @t�.t � h/. In addition, as
we assume h > 0 is fixed, we will not highlight the h-dependence for any of the given
quantities. Note that in Definition 3.3 we used the regularized forms of the energy and
dissipation potentials that read

Eh.�/ D E.�/C h
a0kr

k0�k2; Rh.�; b/ WD R.�; b/C hkr
k0bk2; (3.5)
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where we choose k0 such that k0 � n=2 � 2 � n=q, which implies that W k0;2.QIRn/ �
W 2;q.QIRn/ compactly. This actually has no direct impact on the existence of time-
delayed solutions. Instead, it is a mollifying strategy which will allow us to test the
Euler–Lagrange equation with @t� in order to obtain the previously mentioned energy
inequality. A similar term will also help us with some regularity issues in the fluid-
structure interaction problem later in Lemma 4.11. See Remark 3.10 for more discussion
of the need of a regularizer.

Remark 3.4 (Properties of the regularizing energy and dissipation). For all h> 0, we find
that Eh fulfills Assumption 1.7 with W 2;q.QIRn/ replaced by W k0;2.QIRn/, and Rh
fulfills Assumption 1.10 with W 1;2.QIRn/ replaced by W k0;2.QIRn/, where we may
replace R3 by

c.kr�k2 C hkrk0�k2/ � Rh.�; �/ � C.kr�k
2
C hkrk0�k2/:

Now the bulk of this subsection will be devoted to proving the following theorem:

Theorem 3.5 (Existence of time-delayed solutions for solids). Let �0 2 E \

W k0;2.QIRn/ n @E , w 2 L2.Œ0; h� �QIRn/ and f 2 C 0.Œ0; h� �QIRn/. Then there
exists a weak solution to the time-delayed equation (3.3) in the sense of Definition 3.3 or
there exists a solution on a shorter interval Œ0; hmax� such that �.hmax/ 2 @E .14

Before we start, let us discuss how the time-delayed problem can still be seen as a
type of parabolic gradient flow. In particular, let us compare it to the classical parabolic
gradient flow problem at its root, which reads

DEh.�.t// D �D2Rh.�.t/; @t�.t//C f ı �.t/:

This problem consists of three components: energy, dissipation and forces. Our goal is to
identify each of the two additional terms in the time-delayed problem with one of those
three in order to show that we are still solving a similar problem.

Let us start with the delayed time derivative �
h
w.t/ D �

h
@t�.t � h/. As we work in

the interval Œ0; h�, this is just a given function, not depending on �jŒ0;h�. But then any such
function plays the role of a force. In fact, in contrast to the actual forces we consider in the
problem, it is a force given in the reference configuration and thus even easier to handle.

The other term, �
h
@t�.t/, can be seen as stemming from a quadratic dissipation poten-

tial OR.�;b/ WD OR.b/ WD �
2h
kbk2; so thatD2 OR.�.t/; @t�.t//D

�
h
@t�.t/. By this reasoning,

we claim that in general, if there is a method of solving the gradient flow problem, then
the same method can solve the corresponding time-delayed problem.

Proof of Theorem 3.5. The construction is performed by what we call the hyperbolic min-
imizing movements. This is done by a time discretization of the interval Œ0; h� by some

14Note that a posteriori (see Corollary 2.19) it will be shown that (in dependence on �0) there is
always a minimal time-length hmin for which it can be guaranteed that �.t/ … @E for t 2 Œ0; hmin�.



B. Benešová, M. Kampschulte, S. Schwarzacher 4656

fixed time-step size � . Given �.�/
k

, we then recursively solve the following minimization
problem to obtain �.�/

kC1
:

min
�2E

Eh.�/C �Rh
�
�
.�/

k
;
���

.�/

k

�

�
� �

˝
f
.�/

k
ı �k ;

���
.�/

k

�

˛
C �

�

2h



���.�/k
�
�w

.�/

k



2 (3.6)

where w.�/
k
D

ffl .kC1/�
k�

w dt 2 L2.QIRn/ and f .�/
k
D

ffl .kC1/�
k�

f dt 2 L2.QIRn/ are
time averages.

Note that (3.6) is not quite in the form suggested by the previous discussion. Instead
we deliberately wrote the last term as a quadratic difference, to give the problem a bit more
structure. Note that when the last term is expanded, these two approaches only differ by a
constant, which has no effect on the minimization.

Now using the coercivity of E in a way similar to, but easier than in the proof of
Proposition 2.13, we find that a (possibly nonunique) minimizer exists and a short calcu-
lation shows that it satisfies (assuming that �.�/

kC1
… @E) the Euler–Lagrange equation

0 D hDEh.�
.�/

kC1
/; �i C

˝
D2Rh

�
�
.�/

k
;
�
.�/

kC1
��
.�/

k

�

�
; �
˛
� hf

.�/

k
ı �

.�/

k
; �i

C
�

2h

˝�.�/
kC1
��
.�/

k

�
� w

.�/

k
; �
˛

(3.7)

for all � 2 W 2;q.QIRn/ with �jP D 0.
Next we follow in the steps of Lemma 2.14 (see Remark 1.5 for a discussion of some

interesting differences) and derive a simple initial energy estimate by comparing the value
of the functional in (3.6) at the minimizer �.�/

kC1
with its value at �.�/

k
:

Eh.�
.�/

kC1
/C �Rh

�
�
.�/

k
;
�
.�/

kC1
��
.�/

k

�

�
� �

˝
f
.�/

k
;
�
.�/

kC1
��
.�/

k

�

˛
C �

�

2h



�.�/kC1��.�/k
�

� w
.�/

k



2 � Eh.�.�/k /C �
�

2h
kw

.�/

k
k
2: (3.8)

This estimate can be summed so that, using the triangle and the weighted Young inequal-
ity, we can derive, for any N such that �N � h,

Eh.�N /C

N�1X
kD0

�
�
Rh
�
�
.�/

k
;
�
.�/

kC1
��
.�/

k

�

�
C c



�.�/kC1��.�/k
�



2�
� Eh.�0/C C

ˆ h

0

Œkwk2 C kf k2� dt

for some C; c > 0 depending on h but independent of � . Here we have used Jensen’s
inequality to show

�

N�1X
kD0

kw
.�/

k
k
2
D �

N�1X
kD0





 .kC1/�

k�

w dt





2 � � N�1X
kD0

 .kC1/�

k�

kwk2 dt D

ˆ N�

0

kwk2 dt

and a similar estimate for f . In particular, this also allows us to apply Proposition 2.7 to
conclude that �.�/

k
is always injective and the Euler–Lagrange equation is well defined.
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If we now define the piecewise constant and piecewise affine approximations

�.�/.t/ D �
.�/

kC1
for k� � t < .k C 1/�;

�.�/.t/ D �
.�/

k
for k� � t < .k C 1/�;

Q�.�/.t/ D
�
t
�
� k

�
�
.�/

kC1
C
�
k C 1 � t

�

�
�
.�/

k
for k� � t < .k C 1/�;

where in particular

@t Q�
.�/.t/ D

�
.�/

kC1
��
.�/

k

�
for k� < t < .k C 1/�;

our energy estimate turns into a uniform (in � and t ) bound on Eh.�
.�/.t//, as

well as a uniform (in � ) bound on
´ h
0
ŒRh.�

.�/; @t Q�
.�// C ck@t Q�

.�/k2� dt . Now using
the properties of energy and dissipation from our assumptions, this gives a uniform
bound in L1.Œ0; h�I W k0;2.QI Rn// on �.�/, �.�/ and Q�.�/ as well as a uniform
L2.Œ0; h�IW k0;2.QIRn// bound on @t Q�.�/.

Analogously to Proposition 2.20, we may extract a converging subsequence and a
single limit � 2 W 1;2.Œ0; T �IW k0;2.Q// \ C 0.Œ0; T �IC 1;˛.Q//. In particular, we get

Q�.�/ * � in W 1;2.Œ0; T �IW k0;2.QIRn//;

�.�/; �.�/ *� � in L1.Œ0; T �IW k0;2.QIRn//;

Q�.�/ ! � in L1.Œ0; T �IC 1;˛
�

.QIRn//;

�.�/; �.�/ ! � in L1.Œ0; T �IC 1;˛
�

.QIRn//;

for all 0 < ˛� < ˛ WD 1 � n=q.
This is already enough to pass to the limit in all the terms in the Euler–Lagrange equa-

tion (3.7); note that due to the added regularizing terms we use the strong convergence
and the linearity in the highest gradient to pass to the limit in DE.�.�//.

Time-delayed energy inequality. In the proof of Theorem 3.5 we already gave an initial,
somewhat crude energy estimate on the discrete level. Now that we have a solution of the
time-delayed equation, we can give a much stronger, “physical” energy inequality, which
will turn out to be crucial in what follows.

Lemma 3.6 (Time-delayed energy inequality for the solid). Let the deformation � in
L1.Œ0; h�IE/\W 1;2.Œ0; h� �QIRn/ be a weak solution to the time-delayed equation in
the sense of Definition 3.3. Then for all t 2 Œ0; h�, we have

Eh.�.t//C
�

2h

ˆ t

0

k@t�k
2 dt C

ˆ t

0

2Rh.�; @t�/ dt

� Eh.�0/C
�

2h

ˆ t

0

kwk2 dt C

ˆ t

0

hf ı �; @t�i dt:
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Proof. We use �Œ0;t�@t� as a test function in the weak equation.15 From this we get

0 D

ˆ t

0

�
hDEh.�/; @t�i C hD2Rh.�; @t�/; @t�i � hf ı �; @t�i C

�

h
h@t� � w; @t�i

�
dt

D Eh.�.t// �Eh.�.0//C

ˆ t

0

�
2Rh.�; @t�/ � hf ı �; @t�i C

�

h
h@t� � w; @t�i

�
dt;

where in particular we have used the fact that hD2Rh.�; @t�/; @t�i D 2Rh.�; @t�/ by the
quadratic nature of Rh. Finally, we use Young’s inequality on the last term in the form of

h@t� � w; @t�i D k@t�k
2
� hw; @t�i � k@t�k

2
�
k@t�k

2

2
�
kwk2

2

D
k@t�k

2

2
�
kwk2

2
:

Reordering the terms then closes the proof.

3.2. Proof of Theorem 3.2

We will start the proof by directly using its two key ingredients, the two results from the
previous section. First we iteratively use the existence of time-delayed solutions on short
intervals Œ0; h� to construct a time-delayed solution on the longer interval Œ0; T �.

Step 1: Iterated time-delayed solutions and energy estimates. For fixed h we start with
given initial deformation �0 2 E and we use the initial velocity as a constant right hand
side w0.t/ D �� for t 2 Œ0; h�. This allows us to find Q�1 as a solution of the time-delayed
problem. Then we iterate the constructions, i.e. given �l 2 E andwl 2L2.Œ0;h��QIRn/,
we find a solution Q�lC1 2L1.Œ0;h�IE/\W 1;2.Œ0;h�IW k0;2.QIRn// to the time-delayed
equation using Theorem 3.5. We then set �lC1 D Q�lC1.h/ and wlC1 D Q�lC1 as data for
the next step for which they are admissible by Lemma 3.6.

From these ingredients we construct �.h/ W Œ0; T � �Q! Rn using

�.h/.t; x/ WD Q�lC1.t � hl/ for hl � t � h.l C 1/:

Directly from the definition we see that �.h/ fulfills

0 D

ˆ T

0

�
hDEh.�

.h/.t//; �i C hD2Rh.�
.h/.t/; @t�

.h/.t//; �i

� hf ı �.h/.t/; �i C
�

h
h@t�

.h/.t/ � @t�
.h/.t � h/; �i

�
dt (3.9)

15Note that this is the point where we rely on Rh, since to test DE.�/, we need � 2

L2.Œ0; T �IW 2;q.QI Rn//, but bounding R.�; @t�/ only gives us an L2.Œ0; T �IW 1;2.QI Rn//
bound. See also Remark 3.10.
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for all � 2 C1.Œ0; h� �QIRn/ with �jŒ0;h��P D 0. Furthermore, exploiting the energy
inequality (Lemma 3.6) yields

Eh.�
.h/..l C 1/h//C

�

2

 .lC1/h

lh

k@t�
.h/
k
2 dt C

ˆ .lC1/h

lh

2Rh.�
.h/; @t�

.h// dt

� Eh.�
.h/.lh//C

�

2

 lh

.l�1/h

k@t�
.h/
k
2 dt C

ˆ .lC1/h

lh

hf ı �; @t�
.h/
i dt:

Taking t 2 Œlh; .l C 1/h�, after summing the above over 1; : : : ; l and adding the energy
inequality for Q�lC1 from Lemma 3.6 we find the following crucial estimate:

.E/ WD Eh.�
.h/.t//C

�

2

 t

t�h

k@t�
.h/
k
2 ds C

ˆ t

0

2R.�.h/; @t�
.h// ds

� Eh.�0/C
�

2
k��k

2
C

ˆ t

0

hf ı �; @t�
.h/
i ds (3.10)

for all t 2 Œ0; T �. Now, as before, we need to estimate the force term using Young’s
inequality. This gives

.E/ � C0 C C1
T

ı
C
ı

2

ˆ T

0

k@t�
.h/
k
2 ds

for some constants C0; C1 resulting from the given data and independent of h. Dropping
the positive terms involving E and Rh on the left hand side, multiplying by h and adding
up implies

�

2

ˆ T

0

k@t�
.h/
k
2 ds D

NX
lD0

�

2

ˆ .lC1/h

lh

k@t�
.h/
k
2 ds

� hN

�
C0 C C1

T

ı
C
ı

2

ˆ T

0

k@t�
.h/
k
2 ds

�
for hN D T .16 Now choosing ı WD �

2T
allows us to absorb the integral on the right hand

side in the left and we end up with a uniform estimate of the form

�

4

ˆ T

0

k@t�
.h/
k
2 ds � TC0 C C

0
2T

2;

which also implies that .E/ � TC0 C C 02T
2. Note that in contrast to the parabolic setup

from the last section, up to this point there was no need to apply Korn’s inequality. In
particular, as we used the inertial term to estimate the force term, we obtain a uniform
bound on the energy without exploiting the dissipative terms, i.e. we already know that
supt2Œ0;T �E.�

h.t//� TC0CC
0
2T

2. Now, using this estimate, we may apply Lemma 2.11

16There is no need to assume that T is a multiple of h, but we will do so for the sake of simplifi-
cation.
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without restrictions on the final time T to find that

sup
t2Œh;T �

� h

t�h

k@t�
.h/
k
2 ds CE.�.h/.t//C ha0krk0�.h/.t/k2

�
� C;

ˆ T

0

Œk@t�
.h/
k
2
W 1;2.Q/

C hk@t�
.h/
k
2

W k0;2.Q/
� ds � C;

(3.11)

with constant C D C.T / independent of h. Moreover, it allows us to conclude that �.h/.t/
is always injective by Proposition 2.7.

By the identical arguments to the ones used in the proof of Lemma 2.20, we can now
choose a subsequence which converges to a limit function �2Cw.Œ0;T �IW 2;q.QIRn//\
W 1;2.Œ0; T �IW 1;2.QIRn// \ C 0.Œ0; T �IC 1;˛.QIRn//. In particular, we obtain

�.h/ * � in W 1;2.Œ0; T �IW 1;2.QIRn//;

�.h/ *� � in L1.Œ0; T �IW 2;q.QIRn//;

�.h/ ! � in C 0.Œ0; T �IC 1;˛
�

.QIRn//;

for all 0 < ˛� < ˛ WD 1 � n=q. Moreover, the weak lower semicontinuity implies that

sup
t2Œ0;T �

�
k@t�.t/k

2
CE.�.t//

�
� C and

ˆ T

0

k@t�k
2
W 1;2.Q/

ds � C (3.12)

with the same constant as before.

Step 2: Improving convergence. Our final goal is to prove convergence of the weak equa-
tion (3.9), which is satisfied by the time-delayed approximation �.h/, to the weak inertial
equation (Definition 3.1), as this then implies that the limit � is a weak solution. The cru-
cial term here isDE.�.h//which requires strong convergence of �.h/ inW 2;q.QIRn/. For
this we want to use the Minty-type property of the energy, which requires convergence of
the other terms in the equation. We achieve this convergence by the Aubin–Lions lemma,
for which in turn we need another estimate on the discrete difference quotient.

Lemma 3.7 (Length h bounds (solid)). Fix T > 0. Then there exists a constant C ,
depending only on the initial data and T , such that for k0 > 2 C .q�2/n

2q
the following

holds: ˆ T

0



 @t�.h/.t/�@t�.h/.t�h/
h



2
W�k0;2.Q/

dt � C;

where @t� is extended by �� for negative times.

Proof. Pick � 2 C10 .QIR
n/. Then, using the time-delayed equation, we have

�s
ˇ̌˝
@t�

.h/.t/�@t�
.h/.t�h/

h
; �
˛
Q

ˇ̌
� jhDE.�.h/.t//; �ij C ha0 jhrk0�.h/;rk0�ij

C jhD2R.�
.h/.t/; @t�

.h/.t//; �ij C hjhrk0@t�
.h/;rk0�ij C jhf .t/; �iQj

� .kDE.�.h/.t//kW�2;q.Q/ C h
a0kr

k0�.h/.t/kQ C kf k1/k�kW k0;2.Q/

C .kD2R.�
.h/.t/; @t�

.h/.t//kW�1;2.Q/ C hkr
k0@t�

.h/.t/kQ/k�kW k0;2.Q/:
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Now for the first set of terms, we note that they are uniformly bounded by Assump-
tion 1.7 (S5) and (3.11). For the second set, we note that the quadratic growth of R.�; �/ in
W 1;2.QIRn/ implies the linear growth ofD2R, thus equally (3.11) implies boundedness
when integrated in time.

Note that in the previous lemma the h by which time is shifted is the same h as the
sequence index. Thus even though @t�.h/ is already continuous, we can only ever compare
at fixed distances in the form of multiples of h. This is an unavoidable consequence of the
way the estimate is obtained, using the equation. In particular, we cannot use the Aubin–
Lions lemma directly to conclude that @t�.h/ converges strongly in C.Œ0;T �IL2.QIRn//.
Instead we will prove the strong convergence for averages @t�.h/ over time intervals of
length h, which turn out to be much more natural in this context and are in fact the same
averages that also occur in the energy inequality.

Lemma 3.8 (Aubin–Lions (solid)). Let b.h/.t/ WD
ffl tCh
t

@t�
.h/ds. We have . for a subse-

quence h! 0/

b.h/ ! @t� in C 0.Œ0; T �IL2.QIRn//:

Proof. By the fundamental theorem of calculus we have

@tb
.h/
D

@t�
.h/.tCh/�@t�

.h/.t/
h

:

Now b.h/ is uniformly bounded in L1.Œ0; T �IW 1;2.QIRn// by the energy estimate and
@tb

.h/ is uniformly bounded in L2.Œ0; T �IW �k0;20 .QIRn// by the previous lemma. Thus
we can apply the classical Aubin–Lions lemma [83], yielding the existence of a subse-
quence converging in C 0.Œ0; T �IL2.QIRn//. It remains to associate the limit function
with @t�. For that taking h0 > 0 and � 2 C10 .Œh0; T � h0� �Q/, for all h 2 .0; h0/ we
find, by the weak convergence @t�.h/ * @t� (and the Lebesgue point theorem), that

ˆ T

0

hb.h/; �iQ dt D

 h

0

ˆ T

0

h@t�
.h/.t C s/; �.t/iQ dt ds

D

 h

0

ˆ T

0

h@t�
.h/.�/; �.� � s/iQ d� ds !

ˆ T

0

h@t�.�/; �.�/iQ d�:

Finally, we will use a Minty-type argument to improve convergence.

Lemma 3.9 (Minty trick). �.h/.t/! �.t/ strongly in W 2;q.QIRn/ for a.a. t 2 Œ0; T �.

Proof. As in the last section we will rely on Assumption 1.7 (S6). Let h0 > 0 and
h 2 .0; h0/. Further take  2 C10 ..h0; T � h0/ �QIR

C/ with dist.supp. /; @Q/ > h0.
Accordingly we define the approximation �ıh WD .��Œ0;T ��Q/ � 
ıh for ıh D ha1 < h0,
where 
ı is the standard convolution kernel in space-time. This implies that .�.h/ � �ıh/ 
is a valid test function for (3.9). Moreover, by the standard convolution estimates we find

k�ıh kW k0;2.Q/ � ch
a1.2�q=n�k0C2=n/k�kW 2;q.Q/;

k@t�ıh kW k0;2.Q/ � ch
.1�k0/a1k@t�kW 1;2.Q/:
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Also �ıh ! � strongly as h! 0 in all norms in which � is bounded. Now we calculate

0 � lim sup
h!0

ˆ T

0

hDE.�.h/.t// �DE.�.t//; .�.h/ � �/ idt

D lim sup
h!0

ˆ T

0

ŒhDE.�.h/.t//; .�.h/ � �ıh/ i

C hDE.�.h/.t//„ ƒ‚ …
bd. inW�2;q.Q/

; .� � �ıh/ „ ƒ‚ …
!0 inW 2;q.Q/

i� dt

D lim sup
h!0

ˆ T

0

ŒhDEh.�
.h/.t//; .�.h/ � �ıh/ i

� 2ha0=2hha0=2rk0.�.h/.t//;rk0.�.h/ � �ıh/ i� dt

� lim sup
h!0

ˆ T

0

ŒhDEh.�
.h/.t//; .�.h/ � �ıh/ i

C 4ha0krk0.�.h/.t//k k�ıh kW k0;2 � dt

� lim sup
h!0

ˆ T

0

ŒhDEh.�
.h/.t//; .�.h/ � �ıh/ i C ch

a0=2�.2�q=n�k0C2=n/a1 � dt

D lim sup
h!0

ˆ T

0

hDEh.�
.h/.t//; .�.h/ � �ıh/ i dt

by (3.13) and by choosing a1 small enough. The final term can be rewritten using (3.9) as

ˆ T

0

hDEh.�
.h/.t//; .�.h/��ıh/ i dtD

ˆ T

0

�
�hD2Rh.�

.h/.t/; @t�
.h/.t//; .�.h/��ıh/ i

C hf ı �.h/.t/; .�.h/ � �ıh/ i C
�s

h
h@t�

.h/.t/ � @t�
.h/.t � h/; .�.h/ � �ıh/ i

�
dt:

On the right hand side we may pass to the limit h! 0. In particular, observe that

hD2Rh.�
.h/.t/; @t�

.h/.t//; .�.h/ � �ıh/ i D hD2R.�
.h/.t/; @t�

.h/.t//; .�.h/ � �ıh/ i

C 2hhrk0@t�
.h/;rk0..�.h/ � �ıh/ /i ! hD2R.�.t/; @t�.t//; .� � �ıh/ i

by the strong convergence of �.h/ in W 1;2.QIRn/, the weak convergence of @t�.h/ in
W 1;2.QIRn/ and since

hjhrk0@t�
.h/;rk0..�.h/ � �ıh/ /ij

� h1=2�a0=2k
p
hrk0@t�

.h/
k kha0=2rk0..�.h/ � �ıh/ /k;

which converges to zero a.e. using the energy estimates and (3.13) by choosing a0 < 1 and
a1 < 1 suitably. The force-term converges, since all terms involved converge strongly. For
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the last term, we use the discrete integration by parts in time (i.e. shift the term involving
t � h) to get

ˆ T

0

�s

h
h@t�

.h/.t/ � @t�
.h/.t � h/; .�.h/.t/ � �ıh.t// .t/i dt

D ��s

ˆ T

0

˝
@t�

.h/.t/;
�
�.h/.tCh/��.h/.t/

h
�
�ıh .tCh/��ıh .t/

h

�
 .t C h/

˛
dt

� �s

ˆ T

0

˝
@t�

.h/.t/; .�.h/.t/ � �ıh.t//
 .tCh/� .t/

h

˛
dt:

Now note that the first difference quotient is equal to w.h/ as it was defined in Lemma 3.8
and thus converges strongly to @t� in L2.Œ0; T � � QIRn/, while the other difference
quotients only involve constant functions and their mollifications and thus also converge
in the same space. As a result, the entire right hand side converges strongly to 0 in
L2.Œ0; T � �QIRn/ and the left hand sides is bounded. Thus the total limit is 0 and via
Assumption 1.7 (S6), we have �.h/.t/! �.t/ inW 2;q.QIRn/ for almost all t 2 Œ0;T �.

Step 3: Limit equation. With all the necessary ingredients at hand, we can finally consider
the weak equation (3.9) for arbitrary test functions. For the first three terms we have, as
before,

ˆ T

0

ŒhDEh.�
.h/.t//; �i C hD2Rh.�

.h/.t/; @t�
.h/.t//; �i C hf ı �.h/.t/; �i� dt

!

ˆ T

0

ŒhDE.�.t//; �i C hD2R.�.t/; @t�.t//; �i C hf ı �.t/; �i� dt;

where the regularizing terms vanish by the same estimates as in the proof of Lemma 3.9.
This leaves us with the last term, where we shift the discrete derivative to the test

function again and get
ˆ T

0

�

h
h@t�

.h/.t/ � @t�
.h/.t � h/; �i dt D ��

ˆ T

0

˝
@t�

.h/.t/; �.tCh/��.t/
h

˛
dt

! ��

ˆ T

0

h@t�.t/; @t�i dt:

From this, we get solutions on the interval Œ0; T �.

Step 4: Continuation until collision. Using the short term existence, we can now employ
a continuation argument: Assume that � W Œ0; Tmax/! E is a solution on a maximal inter-
val. Then either Tmax D 1 or we can use the energy inequality to show existence of
a unique limit �.Tmax/ similar to what we did at the end of the proof of Theorem 2.2.
Then �.Tmax/ … @E would allow us to reapply the short time existence, which would be a
contradiction. This finishes the proof of Theorem 3.2.



B. Benešová, M. Kampschulte, S. Schwarzacher 4664

Remark 3.10 (On the proof of the energy inequality). In the proof of the energy inequal-
ity of Lemma 3.6 we used a regularization term in the dissipation to simplify the proof.
Since we will need that term later on in the fluid-structure interaction, this only seemed
natural, but it should be noted that strictly speaking, it was not necessary. The same result
is still true if we only use R. To show this directly, one can use some techniques from the
theory of minimizing movements, specifically the so-called Moreau–Yosida approxima-
tion.

4. The unsteady fluid-structure interaction problem

We will now combine the methods developed in the last two sections to show existence
of weak solutions (in the sense of Definition 1.1) for a general fluid-structure interaction
problem. In contrast to previous works (see [21, 50, 65, 71–74] as well as the discussion
in the introduction) we work in arbitrary dimension and consider a bulk solid that can
undergo large elastic deformations. But most importantly, we consider the full nonlinear
equation, both for the fluid in the form of the incompressible Navier–Stokes equation with
its transport term and full nonlinear elasticity of the solid.

Before embarking on the technical discussion let us highlight some aspects regarding
the convective term in the Navier–Stokes equation. Indeed, the very presence of this term
necessitates the use of techniques beyond those presented in the previous two sections.
At this point, it is instructive to recall some of the arguments behind the derivation of
the Navier–Stokes equation. The natural way to deal with inertia in a moving fluid is to
transport it along the flow of the fluid, usually by employing the well known concept of a
flow map.

A flow map is the fluid counterpart of the deformation of the solid. Indeed, let, as
before, �.t/ denote the fluid domain at a given time t . Now for a fixed t0, a flow map is a
family ˆs W �.t0/! � for s 2 Œ0; T � t0�, which we say is generated by v if ˆ0.y/ D y
and @sˆs.y/ D v.t0 C s;ˆs.y//.

If it exists and has some regularity, it has to be a volume preserving diffeomorphism,
which allows us to compare v.t0 C h;ˆh.y// and v.t0; y/ for any y 2 �.t0/. From this
we are able to obtain the material derivative via the chain rule:

lim
h&0

v.t0;ˆh.y//�v.t0;y/
h

D @tv.t0; y/Crv.t0; y/ � v.t0; y/:

This kind of difference quotient will be the Eulerian counterpart to the ordinary dif-
ference quotient for @t� in the previous section.

Having explained the idea, we immediately have to note that the existence of such
a flow map is not guaranteed, even in the case of the Navier–Stokes equation without
additional interaction. We will thus additionally use the fact that we no longer need such
a flow map in the limit h! 0. This allows us to add an h-dependent regularization term
for the fluid flow, similar to those already introduced for the solid.

Additionally we note that in turn to obtain the proper weak equation, we already need
to construct a discretized version of ˆ along with our minimization procedure. As an
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added benefit, as we let � ! 0, we are able to prove convergence of this discretization,
directly giving us a flow map for any h > 0, without having to resort to additional ODE
arguments.

4.1. An intermediate, time-delayed problem

As in the previous section, let us start by deriving a time-delayed equation, similar to
Section 3.1.

Definition 4.1 (Time-delayed solution). Let �0 D � n �0.Q/, f 2 C 0.Œ0; h� ��IRn/
and w 2 L2.Œ0; h� ��IRn/. We call the pair � W Œ0; h� �Q! �;u W Œ0; h� ��! Rn a
weak solution to the time-delayed inertial equation if it satisfies

0 D hDEh.�/; �iQ C hD2Rh.�; @t�/; �iQ C
˝
�s
@t��wı�

�1
0

h
; �
˛
Q
� �shf ı �; �iQ

C �h"u; "�i�.t/ C hhr
k0u;rk0�i�.t/ C

˝
�f

uıˆ�w
h

; � ıˆ
˛
�0
� �f hf; �i�.t/ (4.1)

for almost all t 2 Œ0; h� and all � 2 C 0.Œ0; h�I W k0;2.QI Rn//, � 2 C 0.Œ0; h�I
W k0;2.�IRn// satisfying div �j�.t/ D 0, �j@� D 0, �jP D 0 and the coupling conditions

� ı � D � and u ı � D @t� in Q:

Here we define �.t/ D � n �.t; Q/ and ˆ W Œ0; h� ��0 ! � solves @tˆ D u ı ˆ and
ˆ0.y/ D y.

The construction of the time-delayed solution shares many similarities to that of the
weak solution defined in Definition 2.1 combined with ideas from the construction of the
time-delayed solutions for solids in Definition 3.3. However, an important addition here
is the flow map ˆ. Note that in this subsection, the map will always start at t D 0. This
allows us to take a temporary Lagrangian point of view, as �0 will play the role of a
reference configuration for the fluid.

As in Section 3, we will construct the time-delayed solutions by time discretization.
Notice that, due to the way that ˆ is linked with the equation, we already need to begin
its construction in the discrete setting. Here, we make use of the additional regularizing
dissipation terms for v, as they will allow us to construct ˆ in the limit.

In this subsection we will prove the following existence theorem:

Theorem 4.2 (Existence of time-delayed solutions). Let �0 2 E \W k0;2.QIRn/ n @E ,
w 2L2.Œ0;h��QIRn/ and f 2 C 0.Œ0;h��QIRn/. Then there exists a solution .�; v/ to
the time-delayed equation as given in Definition 4.1 on the interval Œ0; h�, or there exists
a solution on a shorter interval Œ0; hmax� such that �.hmax/ 2 @E .17 Furthermore, ˆ.t; �/
is a volume preserving diffeomorphism between �0 and �.t/.

17Note that a posteriori (see Corollary 4.12) it will be shown that (in dependence on �0) there is
always a minimal time length hmin for which it can be guaranteed that �.t/ … @E for t 2 Œ0; hmin�.
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Let us now begin with the proof of this theorem. Parts that are identical to one of the
previous proofs will only be sketched.

Proof of Theorem 4.2, Step 1: Constructing an iterative approximation. Fix a step size
� > 0. We again proceed iteratively, this time constructing both the pair (�; v) and ˆ. We
start with the given �.�/0 WD �0 and ˆ.�/0 WD id. Assuming �.�/

k
2 E and ˆ.�/

k
W �0 ! �

.�/

k

are given, we define .�.�/
kC1

; v
.�/

kC1
/ as a solution to the following problem:

Minimize Eh.�/C �Rh
�
�
.�/

k
;
���

.�/

k

�

�
C
��s

2h



���.�/k
�
� w

.�/

k
ı �0



2
C �

�

2
k"vk2�k C

�h

2
kr

k0vk2
�
.�/

k

C
��f

2h
kv ıˆ

.�/

k
� w

.�/

k
k
2
�0

� �
˝
f ı �;

���
.�/

k

�

˛
� �hf ıˆ

.�/

k
; v ıˆ

.�/

k
i�0

subject to � 2 E; v 2 W 1;2.�
.�/

k
IRn/ with div v D 0; vj@� D 0

and ���
.�/

k

�
D v ı �

.�/

k
in P: (4.2)

Here, as before, �.�/
k
D � n �

.�/

k
.Q/ and we define w.�/

k
.y/ D

ffl .kC1/�
k�

w.t; y/ dt for all
y 2 �. Finally, we update ˆk to ˆkC1 using

ˆ
.�/

kC1
WD .idC �v.�/

kC1
/ ıˆ

.�/

k
:

Note that at this point, using the coupling condition, we can immediately derive
ˆ
.�/

kC1
.@�0/ D @�

.�/

kC1
but we still need to show that a similar property holds in the inte-

rior. This will be done in Step 2a of the proof. For now we can simply assume v.�/
kC1

is
extended by 0 in the definition of ˆ.�/

kC1
.

Proposition 4.3 (Existence of iterative solutions). The iterative problem (4.2) has a solu-
tion, i.e. �.�/

kC1
and v.�/

kC1
are defined. Furthermore, the minimizers obey the following

equation:

hDEh.�
.�/

kC1
/; �i C

˝
D2Rh

�
�
.�/

k
;
�
.�/

kC1
��
.�/

k

�

�
; �
˛
C
�s

h

˝�.�/
kC1
��
.�/

k

�
� w

.�/

k
ı �0; �

˛
Q

C �h"v
.�/

kC1
; "�i��

k
C hhrk0v

.�/

kC1
;rk0�i

�
.�/

k

C
�f

h
hv
.�/

kC1
ıˆ

.�/

k
� w

.�/

k
; � ıˆ

.�/

k
i�0

D �f hf ıˆ
.�/

k
; � ıˆ

.�/

k
i�0 C �s

˝
f ı �

.�/

k
;
�
.�/

kC1
��
.�/

k

�

˛
Q
;

where � 2 W 2;q.QIRn/, �jP D 0 and � 2 W 1;2
0 .�IRn/ are such that

� D � ı �k on Q and div �j�k D 0:

Proof. The proof differs from the quasistatic case in Proposition 2.13 only in the occur-
rence of the additional terms for the effects of inertia. As both are nonnegative, we still
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have a minimizing sequence . Q�l ; Qvl / bounded in the same spaces as in the proof of
Proposition 2.13. In particular, due to compact embeddings, we can assume that for a
subsequence both converge strongly in L2.QIRn/ and L2.�.�/

k
IRn/ respectively. As the

inertial terms are continuous with respect to this convergence, this minimizing sequence
will again converge to a minimizer. In fact, establishing the lower bound on the sequence
is easier in this case, as the two force terms can now be estimated against the inertial
terms directly, without having to resort to a potentially energy-dependent Korn inequality.
(See the corresponding calculations in the proof of Theorem 3.5 and Remark 1.5 for more
details.)

Further, with regard to the Euler–Lagrange equation, we can treat the additional terms
individually. Since both are quadratic functionals of � and v respectively, and neither
involves any derivatives, this is straightforward. Note that again we are able to remove a
factor of � from the final term by scaling � and � differently than � and v.

Now as before, our minimization yields a discrete energy inequality by comparing
minimizers.

Lemma 4.4 (Discrete energy inequality and estimates). We have

Eh.�
.�/

kC1
/C �Rh

�
�
.�/

k
;
�
.�/

kC1
��
.�/

k

�

�
C �

�s

2h



�.�/kC1��.�/k
�

� w
.�/

k
ı �0



2
Q

C �
�

2
k"v

.�/

kC1
k
2

�
.�/

k

C
�h

2
kr

k0v
.�/

kC1
k
2

�
.�/

k

C �
�f

2h
kv
.�/

kC1
ıˆ

.�/

k
� w

.�/

k
k
2
�0

� Eh.�
.�/

k
/C �

�s

2h
kw

.�/

k
ı �0k

2
Q C �

�f

2h
kw

.�/

k
k
2
�0
C ��f hf ıˆ

.�/

k
; v ıˆ

.�/

k
i�0

C ��s
˝
f ı �

.�/

k
;
�
.�/

kC1
��
.�/

k

�

˛
Q

and there exist c; C > 0 independent of � and N .with N 2 N satisfying N� � h/ such
that

Eh.�
.�/
N /C

NX
kD1

�
�
Rh
�
�
.�/

k�1
;
�
.�/

k
��
.�/

k�1

�

�
C c



�.�/k ��.�/k�1
�

� w
.�/

k
ı �0



2
Q

C �k"v
.�/

k
k
2

�
.�/

k�1

C
�h

2
kr

k0v
.�/

k
k
2

�
.�/

k�1

C ckv
.�/

k
ıˆ

.�/

k�1
� w

.�/

k
k
2
�0

�
� Eh.�0/C C

�ˆ h

0

kw ı �0k
2
Q dt C

ˆ h

0

kwk2�0 dt C kf k
2
1

�
:

Proof. As in Lemma 2.14, we compare the minimizer .�.�/
kC1

; v
.�/

kC1
/ in (4.2) with the pair

.�
.�/

k
; 0/ to get the first inequality. For the second we add up all those inequalites for

k � N � 1 and absorb the force terms as in the proof of Theorem 3.5.

As before, this immediately implies that for h small enough all �.�/
k

will be in E n @E .
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Proof of Theorem 4.2, Step 2: Constructing interpolations. Now we unfix � and define
the following interpolants:

�.�/.t; x/ D �
.�/

kC1
.x/ for �k � t < �.k C 1/;

�.�/.t; x/ D �
.�/

k
.x/ for �k � t < �.k C 1/;

Q�.�/.t; x/ D �.kC1/�t
�

�
.�/

k
.x/C t��k

�
�
.�/

kC1
.x/ for �k � t < �.k C 1/;

u.�/.t; y/ D

8<: v
.�/

k
.y/ for �k � t < �.k C 1/; y 2 �.�/

k
;

.�
.�/

kC1
��
.�/

k
/ı.�

.�/

k
/�1

�
for �k � t < �.k C 1/; y 2 � n�.�/

k
;

ˆ.�/.t; y/ D ˆ
.�/

k�1
.y/ for �k � t < �.k C 1/;

Q̂ .�/.t; y/ D �.kC1/�t
�

ˆ
.�/

k�1
.x/C t��k

�
ˆ
.�/

k
.x/ for �k � t < �.k C 1/;

as well as �.�/.t/ D �.�/
k

for �k � t < �.k C 1/.
Now using the a priori estimate of Lemma 4.4, we derive some uniform bounds on

those functions.

Lemma 4.5 (Uniform bounds in � ). The following quantities are bounded independently
of � :

sup
t2Œ0;h�

.Eh.�
.�/.t//CEh.�

.�/.t///;

sup
t2Œ0;h�

.k�.�/kW k0;2.Q/ C k�
.�/
kW k0;2.Q/ C kQ�

.�/
kW k0;2.Q//;

ˆ h

0

Œk@t Q�
.�/
k
2

W k0;2.Q/
C ku.�/k2

W k0;2.Q/
C ku.�/ ıˆ.�/k2�0 � dt:

Furthermore, by definition @t Q̂ .�/Du.�/ ıˆ.�/ wheneverˆ.�/.t;y/2�.�/.t/ and t …�N.

Proof. First we note that the right hand side of the second estimate in Lemma 4.4 only
depends on the initial data �0 and w as well as the force f . This gives us uniform
bounds on Eh.�k/ and thus an L1 bound on Eh.�.�/.t; �//. By the properties of the
energy, Assumption 1.7 and its regularized version, this also results in a uniform bound
on k�kkW k0;2.Q/ and thus in L1.Œ0; h�IW k0;2.QIRn// bounds on �.�/ and Q�.�/. By the
properties of the dissipation in Assumption 1.10 and using the bound on the energy, we
get

cK

ˆ h

0

Œk@tr Q�
.�/
k
2
Q C hkr

k0@t Q�
.�/
k
2
Q� dt

� c

ˆ h

0

Rh.�
.�/; @t Q�

.h// dt � c

NX
kD0

�Rh
�
�.�/;

�
.�/

k
��
.�/

k�1

�

�
where we know the right hand side to be bounded. Using Poincaré’s inequality, as @t Q�.�/jP
D 0, this extends to a uniform L2.Œ0; T �IW k0;2.QIRn// bound on @t Q�.�/. For the fluid,
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we use Proposition A.4, as well as the global Korn inequality of Lemma 2.11, to get a
c > 0 such that

ˆ h

0

ŒCgKku
.�/
k
2
W 1;2.�/

C chkrk0u.�/k2�� dt

�

ˆ h

0

�
R.�.�/; @t Q�

.�//C
�

2
k"u.�/.t/k2

�.�/.t/

�
dt

C h

ˆ h

0

Œk@tr
k0 Q�.�/k2Q C kr

k0u.�/k2
�.�/.t/

� dt;

which is uniformly bounded using the energy estimate again. The L2.Œ0; h�I

W k0;2.�IRn// estimate then follows by interpolating the missing intermediate deriva-
tives.

For the last estimate, we have
ˆ h

0

ku.�/ ıˆ.�/k2�0 dt D

NX
kD0

�ku
.�/

k
ıˆ

.�/

k
k
2

�

NX
kD0

�
3

2
.ku

.�/

k
ıˆ

.�/

k
� wkk

2
C kwkk

2/;

which again consists of two bounded sums.

Proof of Theorem 4.2, Step 2a: Bounds on ˆ.�/. We now arrive at a delicate point in
the existence proof for the time-delayed problem: establishing the properties of and suit-
able bounds on ˆ.�/. The challenge here is that ˆ.�/ is defined via concatenation of an
unbounded (for � ! 0) number of functions and thus is highly nonlinear. As any lin-
earizing would break the coupling properties needed, we will instead rely on using high
enough regularity of the functions involved.

We start by proving the following:

Proposition 4.6 (Higher regularity for the velocity). There are �0 > 0 and ˛ > 0 such
that for all � 2 .0; �0/, ˆ

.�/

k
W �0 ! �k is a diffeomorphism with 1=2 � detrˆ.�/

k
� 2

for all k < h=� , and
NX
kD1

�kv
.�/

k
k
2

C1;˛.�
.�/

k�1
/
�K

for any N < h=� , where K and �0 only depend on w; h;E.�0/ and f .

Proof. As k0 is such that k0 � n=2 � 2� n=q, we know that W k0;2
0 .�IRn/ embeds into

C 1;˛.�IRn/ for some ˛ > 0. Thus

NX
kD1

�kv
.�/

k
k
2

C1;˛.�
.�/

k�1
/
�

ˆ h

0

ku.�/k2
C1;˛.�/

dt � c

ˆ h

0

ku.�/k2
W k0;2.�/

dt;

which is uniformly bounded by Lemma 4.5.
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Now we need to show the properties of ˆN . By the chain rule, the multiplicative
nature of the determinant and its expansion (Lemma A.1) we have

detrˆ.�/N D
NY
kD1

Œdet.I C �rv.�/
k
/� ıˆ

.�/

k�1

D

NY
kD1

h
1C � tr.rv.�/

k
/„ ƒ‚ …

Ddivv.�/
k
D0

C

nX
lD2

� lMl .rv
.�/

k
/
i
ıˆ

.�/

k�1
;

whereMl are homogeneous polynomials of degree l . By the inequality between the arith-
metic and geometric means, we then have

detrˆ.�/N �
� NX
kD1

1

N

�
1C

nX
lD2

� lMl .rv
.�/

k
ıˆ

.�/

k�1
/
��N

�

�
1C

1

N

NX
kD1

nX
lD2

� lcl Lip.v.�/
k
/l
�N

;

where Lip.v.�/
k
/ denotes the Lipschitz constant of v.�/

k
with respect to its domain �.�/

k�1
.

Now as .1C a=N/N is increasing for a > 0, with limit exp.a/, we can further estimate

� exp
� NX
kD1

nX
lD2

� lcl Lip.v.�/
k
/l
�

D exp
� nX
lD2

cl�
l=2

NX
kD1

.� Lip.v.�/
k
/2/l=2

�
� exp

� nX
lD2

cl�
l=2K l=2

�
;

where we have used the fact that l � 2 and

� Lip.v.�/
k0
/2 �

NX
kD1

� Lip.v.�/
k
/2 �

NX
kD1

�kv
.�/

k
k
2

C1;˛.�
.�/

k�1
/
�K:

In a similar fashion, we can get a lower estimate

.detrˆ.�/N /�1 �

� NX
kD1

1

N

�
1C

nX
lD2

� lMl .rv
.�/

k
ıˆ

.�/

k�1
/
��1�N

� exp
�
2

nX
lD2

cl�
l=2K l=2

�
using 1

1Ca
�

1
1�jaj

� 1C 2jaj for jaj small enough. Thus for �0 small enough,

1=2 � detrˆ.�/N � 2:

Now we know from the boundary condition that ˆ.�/N is an orientation preserving diffeo-
morpism on @�0 as it is given by �.�/N ı �

�1
0 and id on the respective parts of the boundary.

We also know that�0 and�.�/N are domains with the same topology as there were no col-
lisions. But then ˆ.�/N has to be a diffeomorphism by a degree argument.
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An immediate consequence of the last proof is the following:

Corollary 4.7 (Regularity of ˆ.�/). The maps ˆ.�/.t; �/ are uniformly Lipschitz contin-
uous, i.e. Lipschitz continuous with respect to x such that the constants are bounded
independently of � and t . Furthermore,

lim
�!0

detrˆ.�/ D 1:

Proof. By the estimates in the previous proof, we find that lim�!0 det rˆ.�/ D 1. It
remains to prove Lipschitz regularity.

Here we proceed in the same fashion as in the preceding proof:

Lip.ˆ.�/N / �

NY
lD1

.1C � Lip.v.�/
l
// �

�
1

N

NX
lD1

.1C � Lip.v.�/
l
//

�N
D

�
1C

1

N

NX
lD1

� Lip.v.�/
l
/

�N
� exp

� NX
lD1

� Lip.v.�/
l
/
�

� exp

 vuut NX
lD1

�

vuut NX
lD1

� Lip.v.�/
l
/2

!
� exp

�p
h
p

K
�
:

Proof of Theorem 4.2, Step 3: Convergence of the equation. Relying on the Banach–
Alaoglu theorem as well as the classical Aubin–Lions lemma, we pick up a subsequence
of � ’s and find functions � 2 W 1;2.Œ0; h�IW k0;2.QIRn//, u 2 L2.Œ0; h�IW k0;2.�IRn//,
ˆ 2 C 0.Œ0; h�IW 1;1.�0IRn// such that

�.�/; �.�/; Q�.�/ *� � in L1.Œ0; h�IW k0;2.QIRn//;

@t Q�
.�/ * @t� in L2.Œ0; h�IW k0;2.QIRn//;

u.�/ * u in L2.Œ0; h�IW k0;2.�IRn//;

ˆ.�/ ! ˆ in C 0.Œ0; h�IC ˛.�0IRn//;

and we define �.t/ D � n �.t;Q/. Moreover, due to Lemma 4.7 we know that ˆ is Lip-
schitz with constant exp.

p
Lh/ and detrˆ D 1 almost everywhere. We also remark that

ˆ.t; �/j@�0 is injective as long as there is no collision in the solid (which we have already
excluded), and that again ˆ.t; �/ W �0 ! �.t/ is a volume preserving diffeomorphism.

Finally, we can conclude that

@tˆ D lim
�!0

@t Q̂
.�/
D lim
�!0

u.�/ ıˆ.�/ D u ıˆ

almost everywhere.
Then ˆ fulfills the requirements in Definition 4.1 and v and � are coupled in the right

way, as before. What is left is to show that these functions fulfill the weak equation (4.1).
This is indeed very similar to the proofs of Proposition 2.20 and Theorem 3.5.
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As before, we use Lemma 2.22 and pick a test function � 2 C10 .Œ0; h� ��IR
n/ such

that div � D 0 in a neighborhood of the fluid domain. From this we can construct �.�/ WD
� ı �.�/ and use those to test the discrete Euler–Lagrange equation from Proposition 4.3.

Most of the terms, including all those related to the solid, have already been dealt with
in Proposition 2.20 and Theorem 3.5. It remains to handle the additional regularization
term, the inertial effects of the fluid and the force term for the fluid which has been slightly
modified here.

We start with the latter, where we simply note that ˆ.�/ converges uniformly and
thus any concatenation with a uniformly continuous function such as given by f ı ˆ.�/

converges uniformly as well. Thereforeˆ h

0

hf ıˆ.�/; � ıˆ.�/i�0 dt !

ˆ T

0

hf ıˆ; � ıˆi�0 dt D

ˆ h

0

hf; �i�.t/ dt;

where the last equality is true as ˆ is volume preserving.
Of greater interest is the inertial term of the fluid, where we haveˆ h

0

hu.�/ ıˆ.�/ � w.�/; � ıˆ.�/i�0 dt !

ˆ h

0

hu ıˆ � w; � ıˆi�0 dt

as the right side of the inner product converges uniformly and the left side at least weakly
in L2.Œ0; h� ��0IRn/. Here, we have introduced the notation

w.�/.t/ WD w
.�/

k
if �k � t < �.k C 1/:

Then by the Lebesgue differentiation theorem, w.�/ ! w in L2.Œ0; h� � �I Rn/ and
w.�/ ı ��10 ! w ı ��10 in L2.Œ0; h� �QIRn/.

Finally, since as before ��.�/.t/r
k0�! ��.t/r

k0� inL2.Œ0;h�IL2.�IRn//, we have
ˆ h

0

hr
k0u.�/;rk0�i�.�/.t/ dt !

ˆ h

0

hr
k0u;rk0�i�.t/ dt

by the corresponding weak convergence of u.�/. This finishes the proof.

A posteriori energy inequality. We close this section with an energy inequality analogous
to Lemma 3.6. As before, this will be the central estimate that allows us to let h! 0 and
pass to the limit with the equation.

Lemma 4.8 (Energy inequality for time-delayed solutions). Assume that .�; v/ is a weak
solution to the time-delayed equation (4.1), as constructed in Theorem 4.2. Then we have
the following energy inequality:

Eh.�.h//C

ˆ h

0

Œ2Rh.�; @t�/C �k"vk
2
�.t/ C hkr

k0vk2�.t/� dt

C

 h

0

�
�f

2
kvk2�.t/ C

�f

2
k@t�k

2
Q

�
dt

� Eh.�.0//C

ˆ h

0

Œ�f hf; vi�.t/ C �shf ı �; @t�iQ� dt

C

ˆ h

0

�
�f

2h
kwk2�0 C

�f

2h
kw ı ��10 k

2
Q

�
dt:
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Proof. We insert .@t�; v/ as test functions in (4.1). These have the correct coupling and
boundary conditions. We need to be careful with regularity here and thus have to rely on
the added regularizing terms. From these we know that @t� 2 L2.Œ0; h�IW k0;2.QIRn//
and it can thus be used in the duality pairing with DEh.�/. We hence obtain

0 D

ˆ h

0

�
hDEh.�/; @t�i C hD2Rh.�; @t�/; @t�i C

˝
�s
@t��wı�

�1
0

h
; @t�

˛
Q

C �h"v; "vi�.t/ C
˝
�f

vıˆ�w
h

; v ıˆ
˛
�0
� �f hf; vi�0 � �shf ı �; @t�iQ

�
dt:

Now the first term is just the time derivative of the energy and thus its integral is
Eh.�.h// �Eh.�.0//, while for the second term we recall that due to the 2-homogeneity
of the dissipation, hD2Rh.�; @t�/; @t�iQ D 2Rh.�; @t�/. Finally, we estimate the inertial
terms using Young’s inequality in the form ha � b; ai D jaj2 � hb; ai � 1

2
jaj2 � 1

2
jbj2.

Reordering terms according to their sign proves the estimate.

4.2. Proof of Theorem 1.2

Similarly to the proof of Theorem 3.2, we will use time-delayed solutions constructed in
the previous subsection to approximate weak solutions to the fluid-structure interaction
problem (1.1)–(1.11). The main added difficulty, when compared to Section 3, is in deal-
ing with the inertial effects of the fluid. A particular problem here is that the flow map
itself will not persist in the limit h! 0. However, since it is only needed for a flow of
length h, the goal is simply to find the right reformulation such that the limit quantities
still exist. In particular, the material derivative @tv C v � rv will only be obtained in a
weak sense. Furthermore, we note that due to the changing domain, we generally use
convergence of u instead of v. With all this in mind, let us begin the proof.

Proof of Theorem 1.2, Step 1: Constructing another iterative approximation. We now
iteratively construct an approximate solution to the to the fluid-structure interaction prob-
lem (1.1)–(1.11) using time-delayed solutions.

For some fixed h assume that �0 with finite energy Eh.�0/, v0 W �0 WD � n �0.Q/

!Rn satisfying divv0 D 0, and �� WQ!Rn are given. Setw0.t; y/D v0.y/ for y 2�0
and w0 D �� ı ��10 otherwise.18

For �l W Q ! �, wl W Œ0; h� � � ! Rn and �l WD � n �l .Q/ given, we rely on
Theorem 4.2 to construct time-delayed solutions to (1.1)–(1.11) according to Definition
4.1 on Œ0; h� with the given data, which we will denote using Q�lC1; vlC1; ˆlC1. Observe
in particular that

ˆlC1.s/.�l / D � n Q�lC1.s;Q/:

18Note that for this first step, v0 and �� do not need to fulfill a coupling condition �� D v0 ı �0
on @Q n P yet. This is completely reasonable from the mathematical point of view, as initial values
will only be taken in the L2 sense, so there is no trace theorem to make sense of this condition.
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We then set �lC1 WD Q�lC1.h; �/,�lC1 WD� n �lC1.Q/, and definewlC1 W Œ0;h���!Rn

by

wlC1.t; �/ D

´
vlC1.t; �/ ıˆlC1.t; �/ ıˆlC1.h; �/

�1 on �lC1;

@t�.t; �/ ı �.t; �/
�1 on � n�lC1;

which will again allow us to find time-delayed solutions according to Definition 4.1.
Indeed,Eh.�lC1/ <1 by the energy inequality of Lemma 4.8, and sinceˆlC1 is volume
preserving, we have

´ h
0
kwlC1k

2
�lC1

dt D
´ h
0
kvlC1k

2
�k.t/

dt <1, and a similar estimate
for the solid. Hence we can iterate until we reach a collision or until E.�l / or wl diverges
(as we will see in Lemma 4.10, neither of the last two can happen in finite time).

Now we construct the h-approximation.

Definition 4.9 (h-approximation). For h>0 and all l 2N0 such that lh<T , let Q�l , vl and
ˆl be time-delayed solutions as constructed above. Then we define the approximations
�.h/ W Œ0; T ��Q!�, u.h/ W Œ0; T ���! Rn andˆ.h/s W Œ0; T ���!� for s 2 Œ�h;h�
by

�.h/.t; x/ WD Q�l .t � lh; x/ for t 2 Œlh; .l C 1/h/;

�.h/.t/ WD �l .t � hl/ for t 2 Œlh; .l C 1/h/;

v.h/.t; y/ WD vl .t � lh; y/ for t 2 Œlh; .l C 1/h/; y 2 �.h/.t/;

u.h/.t; y/ WD

´
v.h/.t; y/ for t 2 Œ0; T /; y 2 �.h/.t/;

@t�
.h/.t; .�.h/.t//�1.y// for t 2 Œ0; T /; y 2 �.h/.t;Q/;

�.h/.t; y/ WD

´
�f for t 2 Œ0; T /; y 2 �.h/.t/;

�s
det.r�.h/.t;.�.h/.t//�1.y///

for t 2 Œlh; .l C 1/h/; y … �.h/.t/:

Moreover, for y 2 �.h/.t/ and s 2 Œ�h; h� we define, for t 2 Œlh; .l C 1/h/,

ˆ.h/s .t; �/ WD8̂̂<̂
:̂
ˆl .tCs� lh/ı.ˆl .t� lh//

�1 if tCs 2 Œlh; .lC1/h/;

ˆlC1.tCs�.lC1/h/ıˆl .h/ı.ˆl .t� lh//
�1 if .lC1/h � tCs < .lC2/h;

ˆl�1.tCs�.l�1/h/ı.ˆl�1.h//
�1ı.ˆl .t� lh//

�1 if .l�1/h � tCs < lh:

For y 2 �.h/.t;Q/ and s 2 Œ�h; h� we define

ˆ.h/s .t/ WD �.h/.t C s/ ı .�.h/.t//�1;

Note that in contrast to the usage in the proof of Theorem 4.2, where theˆ.t; �/ always
corresponded to the flow starting from the initial configuration of the fluid, we now use
a full flow map ˆ.h/s .t; �/ which corresponds to the flow from time t to time t C s. In
particular, ˆl .r/ maps the fluid at time lh to the fluid at time lhC r for r 2 Œ0; h�, so we
always need to use the previous multiples of h as intermediate steps in defining ˆ.h/s .

This being said, what we will use in the coming proofs is not the definition but the
fact thatˆ.h/s is the flow map of u.h/. In particular, we will rely on the resulting properties
that are shown in the following lemma.
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Lemma 4.10 (The global flow map). For all h > 0, the flow map defined above is contin-
uous in space-time and satisfies

@sˆ
.h/
s .t; y/ D u.h/.t C s;ˆ.h/s .t; y//: (4.3)

Moreover, ˆ.h/s .t; �/ is density preserving, i.e.

det.rˆ.h/s .t; y// D

8<: 1 for y 2 �.h/.t/;
�.h/.tCs;ˆ

.h/
s .t;y//

�.h/.t;y/
for y 2 �.h/.t;Q/:

The inverse of the flow map is given by .ˆ.h/s .t//�1 D ˆ
.h/
�s .t C s/.

Proof. For all y 2 �.h/.t/ [ �.h/.t;Q/ we find (by the chain rule and Theorem 4.2) that

@sˆ
.h/
s .t; y/ D u.h/.t C s;ˆ.h/s .t; y//:

For s D 0 the function ˆ.h/0 .t/ D id is trivially continuous over �, and by the a priori
estimates also u is uniformly Lipschitz continuous (in dependence on h). Hence by a
standard argument for ordinary differential equations, ˆ.h/s .t; y/ is continuous over �.

The identity for the determinant follows by Theorem 4.2 for the fluid part and by the
chain rule and the definition of �.h/ for the solid part. Furthermore, the inverse of the flow
map is given as the respective flow in the opposite direction, which directly follows from
the definition.

While it would also be possible to define ˆ.h/s .t/ for larger s, for the remainder of the
proof we only need s 2 Œ�h; h�.

With the h-approximation defined, (4.1) translates to

ˆ T

0

�
hDEh.�

.h//; �i C hDRh.�
.h/; @t�

.h//; �i C �s
˝
@t�

.h/.t/�@t�
.h/.t�h/

h
; �
˛
Q

C h"v.h/; "�i�.h/.t/ C �f
˝ v.h/.t/ıˆ.h/

h
.t�h/�v.h/.t�h/

h
; �.t/ ıˆ

.h/

h
.t � h/

˛
�.h/.t�h/

�
dt

D

ˆ T

0

Œ�shf ı �
.h/; �iQ C �f hf; �i�.h/.t/� dt (4.4)

for all � 2 C 0.Œ0; T �IW k0;2.QIRn//, � 2 C 0.Œ0; T �IW k0;2
0 .�IRn// satisfying div �j�.t/

D 0, �j@� D 0, �jP D 0 and the coupling conditions � ı � D � and u ı � D @t� in Q.
Observe that by the definition of �.h/ above, we find by a change of variables the

following identity for the global momentum:˝�.h/u.h/.t/ıˆ.h/
h
.t�h/��.h/u.h/.t�h/

h
; �.t/ ıˆ

.h/

h
.t � h/

˛
�

D �f
˝ v.h/.t/ıˆ.h/

h
.t�h/�v.h/.t�h/

h
; �.t/ ıˆ

.h/

h
.t � h/

˛
�.h/.t�h/

C �s
˝
@t�

.h/.t/�@t�
.h/.t�h/

h
; �
˛
Q
; (4.5)

which holds for the same set of test functions as (4.4).
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From Lemma 4.8 we deduce the following a priori estimate:

Lemma 4.11 (A priori estimate (full problem)). For any t 2 Œ0; T � we have

Eh.�
.h/.t//C

 t

t�h

�
�f

2
ku.h/k2

�.h/.s/
C
�s

2
k@t�

.h/
k
2
Q

�
ds

C

ˆ t

0

ŒRh.r�
.h/; @t�

.h//C �k"u.h/k2
�.h/.s/

C hkrk0u.h/k2
�.h/.s/

� ds

� Eh.�0/C
1

2
kv0k

2
�0
C

ˆ t

0

Œ�f hf; u
.h/
i�.h/.s/ C �shf ı �

.h/; @t�
.h/
iQ� ds;

and moreover there exist C; c > 0 independent of h such that

Eh.�
.h/.t//C c

 t

t�h

Œku.h/k2
�.h/.s/

C k@t�
.h/
k
2
Q� ds

C

ˆ t

0

ŒRh.r�
.h/; @t�

.h//C �k"u.h/k2
�.h/.s/

C hkrk0u.h/k2
�.h/.s/

� ds � C C Ct2:

In both these estimates, u.h/ and @t�.h/ are continued by their initial values to t < 0.

Proof. Lemma 4.8 translates for any l 2 N0 such that lh < T to

Eh.�lC1/C

 s

0

�
�f

2
kvlC1k

2
Q�l .t/
C
�s

2
k@t Q�lC1k

2
Q

�
dt

C

ˆ s

0

ŒRh.r Q�lC1; @tr Q�lC1/C �k"vlC1k
2
Q�l .t/
C hkrk0vlC1k

2
�.h/.t/

� dt

� Eh.�l /C

 s

0

�
�f

2
kwlk

2
�l
C
�s

2
kwl ı �lkQ

�
dt

C

ˆ s

0

Œhf; vlC1i�l C �shf ı Q�l ; @t Q�liQ� dt

for s 2 Œ0; h�. Now by construction kwl .t; �/k�l D kvl .t; �/k Q�l�1.t/ and kwl ı �lkQ D
k@t Q�lkQ, and thus we can use a telescope argument to get the first energy inequality as
we did in Lemma 3.6.

Next we use Young’s inequality for the two force terms, and proceeding as for
Lemma 2.14 and the corresponding estimate in Theorem 3.2 gives

ˆ T

0

�
�f

2
kv.h/k2

�.h/.t/
C
�s

2
k@t�

.h/
k
2
Q

�
dt

�

NX
lD1

h

 lh

.l�1/h

�
�f

2
kv.h/k2

�.h/.t/
C
�s

2
k@t�

.h/
k
2
Q

�
dt

� hN

�
C C

C

ı
T kf k21 C

ˆ T

0

�
ı�f

2
kv.h/k2

�.h/.t/
C
ı�s

2
k@t�

.h/
k
2
Q

�
dt

�
;

from which as before in Theorem 3.2 choosing ı D 1
2T

yields the desired estimate.
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Corollary 4.12 (Minimal no-collision time). Assume that �0 … @E . Then there is a T > 0
depending only on �0; v0 and f such that �.h/.s/ is injective on xQ for all t 2 Œ0; T � and
h small enough, i.e. �.h/.t/ … @E and thus there is no collision.

Proof. From the final estimate in the proof of Lemma 4.11 we get

k�.h/ � �0k
2
Q D





ˆ T

0

@t�
.h/ dt





2
Q

�

ˆ T

0

k@t�
.h/
k
2
Q dt � TC.1C T

2/:

Using this bound for small enough T then allows us to apply the short-distance injectivity
result of Proposition 2.7.

As a direct consequence of the uniform bounds of det.r�.h//, the definitions of Eh
and Rh as well as Lemma 2.11, we obtain

Corollary 4.13 (Korn-type estimate). There is a constantC , just depending on the energy
estimate in Lemma 4.11, such that

sup
t2Œ0;T�h�

 tCh

t

ku.h/.s/k2� ds C

ˆ T

0

k@t�
.h/
k
2
W 1;2.Q/

dt C

ˆ T

0

ku.h/k2
W 1;2.�/

dt � C;

sup
t2Œ0;T �

ha0k�.h/k2
W k0;2.Q/

C h

ˆ T

0

k@t�
.h/
k
2

W k0;2.Q/
dt C

ˆ T

0

ku.h/k2
W k0;2.�/

dt � C:

Proof of Theorem 1.2, Step 2: The weak time derivative. In the following, we may under-
stand @t�.h/ and u.h/ to be extended by their initial values for t 2 Œ�h; 0�.

Lemma 4.14 (Length h bounds (fluid)). Fix T > 0. Then there exists a constant C ,
depending only on the initial data, such that the following holds:

(1)
´ T
0



 @t�.h/.t/�@t�.h/.t�h/
h



2
W�k0;2.Q/

dt � C ,

(2) k�.t/ � �.t � s0/ ı ˆ
.h/
�s0.t/k� � Ch Lipt;y.�/ for all � 2 C10 .Œ0; T � � �/ and

s0 2 Œ�h; h�,

(3) k� � � ıˆ.h/s0 .t/k� � ChLipy.�/ for all � 2 C10 .�/, s0 2 Œ�h; h� and t 2 Œ0; T �.

Here we use Lipy and Lipt;y to distinguish the Lipschitz constants with respect to space
and space-time respectively.

Proof. The first estimate is shown in almost the same way as Lemma 3.7. Indeed, as we
only test by functions that vanish on the boundary, we can afford to set � to 0 on the fluid
domain.

For the second estimate, let � 2 C10 .Œ0; T � ��IR
n/ and calculate

ˆ
�

j�.t/ � �.t � s0/ ıˆ
.h/
�s0
.t/j2 dy D

ˆ
�

ˇ̌̌̌ˆ 0

�s0

@s.�.t C s/ ıˆ
.h/
s .t// ds

ˇ̌̌̌2
dy

D

ˆ
�

ˇ̌̌̌ˆ 0

�s0

Œr�.t C s/ � u.h/.t C s/C @t�.t C s/� ıˆ
.h/
s .t/ ds

ˇ̌̌̌2
dy
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� s0

ˆ 0

�s0

ˆ
�

jŒr�.t C s/ � u.h/.t C s/C @t�.t C s/� ıˆ
.h/
s .t/j2 dy ds

� h2 Lipt;y.�/
2

 t

t�h

ˆ
�

det.rˆ.h/�s .t C s//.ju
.h/.s/j2 C 1/ ds

� Ch2 Lipt;y.�/
2

 t

t�h

.ku.h/.s/k� C 1/
2 ds

using the uniform bounds of det.rˆ.h/�s .t C s// (Lemma 4.10) and Corollary 4.13. This
implies (2). The third assertion follows by the same arguments.

The next proposition estimates the weak time derivative of the global momentum.

Proposition 4.15. There is an m � k0 and a constant C independent of h such that for
all � 2 C 0.Œ0; T �IW m;2

0 .�IRn// with div � D 0 on �.t/,
ˆ T

0

ˇ̌˝
.�.h/u.h//.t/�.�.h/u.h//.t�h/

h
; �.t/

˛
�

ˇ̌
dt � Ck�kL2.Œ0;T �IWm;2.�//:

Proof. Let � 2 C 0.Œ0; T � � �IRn/ with div �.t/ D 0 on �.h/.t/ for all t 2 Œ0; T � and
define � WD � ı �.h/. Let us first split the integrand in two along the flow map:˝
.�.h/u.h//.t/�.�.h/u.h//.t�h/

h
; �.t/

˛
�
D
˝ .�.h/u.h//.t/�.�.h/u.h//.t�h/ıˆ.h/

�h
.t/

h
; �.t/

˛
�

�
˝ .�.h/u.h//.t�h/�.�.h/u.h//.t�h/ıˆ.h/

�h
.t/

h
; �.t/

˛
�
DW J1.t/ � J2.t/:

Now we estimate J1.t/ by changing variables on the fluid domain and using (4.4):
ˆ T

0

jJ1.t/j dt D

ˆ T

0

ˇ̌
�s
˝
@t�

.h/.t/�@t�
.h/.t�h/

h
; �
˛
Q

C �f
˝u.h/.t/ıˆ.h/

h
.t�h/�u.h/.t�h/

h
; �.t/ ıˆ

.h/

h
.t � h/

˛
�.h/.t�h/

ˇ̌
dt

�

ˆ T

0

ŒjhDE.�.h//; �ij C ha0 jhrk0�.h/;rk0�iQj C jhD2Rh.�
.h/; @t�

.h//; �ij

C hjhrk0@t�
.h/;rk0�iQj C �jh"u

.h/; "�i�.t/j C hjhr
k0u.h/;rk0�i�.t/j

C �f jhf; �i�.t/j C �sjhf ı �; �iQj� dt

� c

ˆ T

0

ŒkDE.�.h//kW�2;q.Q/k�.t/kW 2;q.�/k�
.h/.t/kW 2;q.Q/

C kD2R.�
.h/; @t�

.h//kW�1;2.Q/k�.t/kW 2;q.�/k�
.h/.t/kW 2;q.Q/

C k�.h/.t/kW k0;2.Q/.h
a0kr

k0�.h/kk�.t/kCk0 .�/Chk@t�
.h/.t/kW k0;2.Q/k�.t/kCk0 .�//

C hku.h/.t/kW k0;2.Q/k�kW k0;2.Q/ C k"u
.h/
k�.t/k"�k�.t/ C kf k1k�k�.t/� dt;

where we have used the fact that by Proposition A.4 we have the estimates

k�.t/kW 2;q.Q/ � ck�.t/kW 2;q.�/k�
.h/.t/kW 2;q.Q/;

k�.t/kW k0;2.Q/ � ck�.t/kCk0 .�/k�
.h/.t/kW k0;2.Q/:
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From the energy estimate in Lemma 4.11 we additionally know that k�.h/.t/kW 2;q.Q/ and
ha0=2k�.h/.t/kW k0;2.Q/ are uniformly bounded in h and t . Thus every term is a product of
a quantity which has (at least) a uniform L2.Œ0; T �/ bound using the energy estimate and
a term which can be estimated against k�.t/kCk0 .�/. Choosingm such thatW m;2.�IRn/

embeds into C k0.�IRn/ then gives us
ˆ T

0

jJ1.t/j dt � Ck�kL2.Œ0;T �IWm;2.�//:

For J2.t/ we first note that by the density preserving nature of ˆ (see Lemma 4.10)
we can obtain, by a change of variables,

h.�.h/u.h//.t � h/ ıˆ
.h/

�h
.t/; �.t/i� D h.�

.h/u.h//.t � h/; �.t/ ıˆ
.h/

h
.t � h/i�

and thus

J2.t/ D
˝
.�.h/u.h//.t � h/;

�.t/��.t/ıˆ
.h/

h
.t�h/

h

˛
�
� k.�.h/u.h//.t � h/k�C Lipy.�.t//

using Lemma 4.14 (3) as well as the uniform L1 bounds of �.h/ and Corollary 4.13.

Proof of Theorem 1.2, Step 3: Convergence to the limit. Now we again use our uniform
bounds in h to find a converging subsequence and suitable limit functions for the approx-
imating sequences:

Lemma 4.16 (Weak compactness). There exists a subsequence of h! 0 .not relabeled/
and limit functions � 2 Cw.Œ0; T �IW 2;q.QIRn// \W 1;2.Œ0; T �IW 1;2.QIRn// and u 2
L2.Œ0; T �IW 1;2.�IRn// such that

�.h/ * � in Cw.Œ0; T �IW 2;q.QIRn//;

@t�
.h/ * @t� in L2.Œ0; T �IW 1;2.QIRn//;

u.h/ * u in L2.Œ0; T �IW 1;2.�IRn//:

Proof. Using the estimates from Lemma 4.11, we know that E.�.h/.t// is bounded inde-
pendently of t and h and that

´ T
0
R.�.h/; @t�

.h// dt is also uniformly bounded in h. Thus
by Assumptions 1.7 and 1.10 we can pick a subsequence and a limit � such that the first
two assertions hold.

Finally, we use the global Korn inequality of Lemma 2.11 to show that´ T
0
ku.h/k2

W 1;2.�/
dt is uniformly bounded and find a limit u (after possibly choosing

another subsequence) such that the last assertion is true.

Exactly by the same argument as for Lemmas 3.8 and 3.9 we get:

Corollary 4.17 (Aubin–Lions & Minty (coupled solid)). Let b.h/ W t 7!
ffl t
t�h

@t�
.h/ds.

Then for a subsequence of h’s .not relabeled/ we have

b.h/ ! @t� in L2.Œ0; T �IL2.QIRn//; �.h/ ! � in Lq.Œ0; T �IW 2;q.QIRn//:
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In particular, for almost all t 2 Œ0; T � we have

DE.�.h/.t//! DE.�.t// in W �2;q.QIRn/:

We now want to prove a similar result for the Eulerian velocity u.h/. While we have an
estimate on the time derivative of

ffl 0
�h
�.h/u.h/.t C s/ds in Proposition 4.15, this estimate

is in a dual space of functions which are divergence free on the fluid domain and thus in a
time- and h-dependent space. As a consequence, we are no longer in the realm of classical
Aubin–Lions-type theorems and instead we need to prove a similar result directly.

Lemma 4.18 (Aubin–Lions (fluid)). For each t 2 Œ0; T � and h > 0 define zm.h/.t/ 2
L2.�IRn/ by

zm.h/.t/ WD

 0

�h

.�.h/u.h//.t C s/ ds:

For all .sufficiently small/ ı > 0 there exists a subsequence of h’s .not relabeled/ such
that for all A 2 C10 .Œ0; T � ��IR

n�n/,
ˆ T

0

h.u.h//ı ; A zm
h
i� dt !

ˆ T

0

h.u/ı ; A�ui� dt;

where .�/ı is the regularization operator defined in Lemma 2.22, since u.h/ plays the role
of a test function here.

Proof. We begin with a couple of observations. First, as the operator .�/ı introduced
in Lemma 2.22 is bounded and linear, we find that (for a nonrelabeled subsequence)
.u.h//ı * .u/ı as h! 0 in L2.Œ0; T �IW 1;2.�//; cf. also Lemma 4.16.

Next, as zm.h/ is uniformly bounded in L1.Œ0; T �I L2.�// (see Corollary 4.13),
we find that (after possibly choosing another subsequence) there exists an zm 2
L1.Œ0; T �IL2.�// such that zm.h/ *� zm in that space. Since for � 2 C10 .Œ0; T � � �/
we have

ˆ T

0

h zm.h/; �i� dt D

 0

�h

ˆ T

0

h.�.h/u.h//.t C s/; �.t/i� dt ds

D

ˆ T

0

�
.�.h/u.h//.t/;

 0

�h

�.t � s/ ds

�
�

dt !

ˆ T

0

h�u; �i� dt;

we also know that zm D �u almost everywhere.
Take a sequence .hi /i with hi ! 0 chosen such that all convergences outlined above,

including the one in Corollary 4.17, hold true. Next fix � > 0. We aim to show that there
is an N� such that for another (nonrelabeled) subsequence and all j > i > N� ,ˇ̌̌̌ˆ T

0

h.u.hi /.t//ı ; A. zm
.hi /.t/ � zm.hj /.t//i� dt

ˇ̌̌̌
� c�; (4.6)

which implies the result. Our strategy is based on the approach introduced in [75, Theo-
rem 5.1]. Thus, we will split the time interval Œ0; T � into a finite number of subintervals
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of length � , and depending on � we will first choose the regularizing parameter ı and
then the length parameter � which will finally yield the sought number N� . Due to the
changing fluid domain, we first need to ensure that .u.hi /.t//ı are all divergence free on a
fixed domain in which, for a given t , all �.hi / are included. For this, we use the uniform
convergence of �.hi / ! � that allows us for any given ı > 0 to take hi small enough (N�
large enough) such that O�ı.t/ D

T
i�N�

�.hi /.t/ and L�ı.t/ D
S
i�N�

�.hi /.t/ satisfy a
small Hausdorff distance condition

sup
t2Œ0;T �

sup
i�N�

�
sup

y2�.hi /.t/

dist.y; O�ı.t//C sup
y2 L�ı.t/

dist.y;�.hi /.t//
�
� ı: (4.7)

Next we may use the approximation introduced in Lemma 2.22 for u.hi /. The regularity
of the domain allows us to assume that

div..u.hi //ı.t// D 0 in L�ı.t/:

Moreover, Lemma 2.22 implies that for almost every t and every m 2 N,

k.u.hi /.t//ıkWm;2.�/ � c.ı;m/ku
.hi /.t/kW 1;2.�/;

k.u.hi /.t//ıkL2.Œ0;T �IW 1;2.�// � cku
.hi /.t/kL2.Œ0;T �IW 1;2.�//;

k.u.hi /.t//ı � u
.hi /.t/kL2.Œ0;T �IL2.�// � cı

2
2Cn ku.hi /.t/kL2.Œ0;T �IW 1;2.�//:

(4.8)

The parameter ı will be chosen later depending on �. Furthermore, we choose (in depen-
dence on ı) � > 0 and N 2 N such that T D N� .

Now for any k 2 ¹0; : : : ; N º,

k zm.hi /.�k/k2� �

 k�

k��h

k.�.h/u.h//.t/k2� dt � Ck�
.h/
k1 � C�max

by the volume density preserving nature ofˆ and by Lemma 4.11. Here, �max is a uniform
upper bound on the density in the fluid and the solid; the latter can easily be derived from
the energy bounds. As usual we continue v and @t� to negative times by their initial data.
We can thus use compact embeddings to find a subsequence of hi! 0 such that zm.hi /.�k/
converges strongly in .W 1;2.�IRn/ \ ¹div vj L�ı.t/ D 0º/

� for all k 2 ¹0; : : : ; N � 1º. In
particular, we can choose N� in such a way that for all i; j � N� ,

k zm.hi /.�k/ � zm.hj /.�k/k.W 1;2.�IRn/\¹divvj L�ı.t/
D0º/� � �: (4.9)

Now we rewrite, for t 2 Œ�k; �.k C 1//,

h.u.hi /.t//ı ; A. zm
.hi /.t/ � zm.hj /.t//i�

D h.u.hi /.t//ı ; A zm
.hi /.t/�A zm.hi /.�k/i�Ch.u

.hi /.t//ı ; A. zm
.hi /.�k/� zm.hj /.�k//i�

Ch.u.hi /.t//ı ; A zm
.hj /.�k/�A zm.hj /.t/i�

DW I.t/C II.t/C III.t/:
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For i; j � N� we find, using (4.9) and (4.8),
ˆ T

0

II.t/ dt � C�:

The other two terms are estimated using the continuity of zm.hi / in time. Indeed,

@� zm
.hi /.�; y/ D @�

� 0

�hi

.�.hi /u.hi //.� C s/ ds

�
D

1

hi
@�

�ˆ �

��hi

.�.hi /u.hi //.s/ ds

�
D

.�.hi /u.hi //.�/�.�.hi /u.hi //.��hi /
hi

and thusˇ̌̌̌ˆ T

0

I.t/ dt
ˇ̌̌̌
D

ˇ̌̌̌ˆ T

0

�
.u.hi /.t//ı ;

ˆ t

�k

A@� zm
.hi /.�/ d�

�
�

dt

ˇ̌̌̌
�

X
k

ˆ .�C1/k

�k

ˆ t

�k

ˇ̌˝
.u.hi /.t//ı ; A

.�.hi /u.hi //.�/�.�.hi /u.hi //.��hi /
hi

˛
�

ˇ̌
d� dt

D

X
k

ˆ �.kC1/

�k

ˆ �.kC1/

�

ˇ̌˝
.u.hi /.t//ı ; A

.�.hi /u.hi //.�/�.�.hi /u.hi //.��hi /
hi

˛
�

ˇ̌
dt d�

�

X
k

ˆ �.kC1/

�k

ˆ �

0

ˇ̌˝
.u.hi /.� C s//ı ; A

.�.hi /u.hi //.�/�.�.hi /u.hi //.��hi /
hi

˛
�

ˇ̌
ds d�

� kAk1

ˆ �

0

ˆ T

0

ˇ̌˝
.u.hi /.� C s//ı ;

.�.hi /u.hi //.�/�.�.hi /u.hi //.��hi /
hi

˛
�

ˇ̌
dt ds

� kAk1

ˆ �

0

k.u.hi /.� C s//ıkL2.Œ0;T �IWm;2.�// ds

� kAk1Cı�ku
.hi /kL2.Œ0;T �IW 1;2.�//

using Proposition 4.15.
Using an analogous estimate on III.t/, we find (4.6) by choosing � small enough.

Observe that due to the strong convergence of @t�.h/ (and consequently of u on the
sets �.h/.t;Q/) we also find

ˆ T

0

h.u.h//ı ; A zm
.h/
i�.h/.t/ dt ! �f

ˆ T

0

h.u/ı ; Aui�.t/ dt (4.10)

for all A 2 C10 .�/.

Proof of Theorem 1.2, Step 3a: Passing to the limit with the coupled PDEs. In the fol-
lowing we assume that T is small enough such that there is a sequence .�.h/; u.h// of
approximate solutions on the interval Œ0; T C h�. Later it will be discussed how to pro-
long the solution up to the point of contact.



A variational approach to hyperbolic evolutions and fluid-structure interactions 4683

As before in the proof of Proposition 2.20 and Theorem 4.2, we use Lemma 2.22 to
restrict ourselves to test functions � 2 C10 .�IR

n/ with div � D 0 in a neighborhood of
�.t/. We then construct �.h/ WD � ı �.h/ and pass to the limit h! 0. Most of the terms
in the weak equation (4.4) converge by the same arguments as in the previous sections.

What is different is the inertial term of the fluid. Again we transfer the difference
quotient to the test function. For that we have to take into account the flow map ˆ.h/

h
:

ˆ T

0

˝u.h/.t/ıˆ.h/
h
.t�h/�u.h/.t�h/

h
; �.t/ ıˆ

.h/

h
.t � h/

˛
�.h/.t�h/

dt

D �

ˆ T

0

˝
u.h/.t/;

�.tCh/ıˆ
.h/

h
.t/��.t/

h

˛
�.h/.t/

dt

D �

ˆ T

0

˝
.u.h/.t//ı ;

�.tCh/ıˆ
.h/

h
.t/��.t/

h

˛
�.h/.t/

dt

C

ˆ T

0

˝
.u.h/.t//ı � u

.h/.t/;
�.tCh/ıˆ

.h/

h
.t/��.t/

h

˛
�.h/.t/

dt DW �Iı;h C IIı;h;

where .u.h/.t//ı is a regularization in space, as defined in Lemma 2.22. Since the right
hand side in the scalar product of IIı;h is uniformly bounded inL1.Œ0;T �IL2.�.t/IRn//,
using (4.8) we know that IIı;h vanishes as ı ! 0 (uniformly in h). For the first term we
expand

Iı;h D
ˆ T

0

�
.u.h/.t//ı ;

 h

0

@s.�.t C s/ ıˆ
.h/
s .t// ds

�
�.h/.t/

dt

D

ˆ T

0

�
.u.h/.t//ı ;

 h

0

.@t�.t C s/�u
.h/.t C s/ � r�.t C s// ıˆ.h/s .t/ ds

�
�.h/.t/

dt

D

ˆ T

0

 h

0

h.u.h/.t//ı ıˆ
.h/
�s .t C s/; @t�.t C s/�u

.h/.t C s/ � r�.t C s/i�.h/.tCs/ ds dt

D

ˆ T

0

 h

0

h.u.h/.t//ı ; @t�.t C s/�u
.h/.t C s/ � r�.t/i�.h/.tCs/ ds dt

C

ˆ T

0

 h

0

h.u.h/.t//ı ; u
.h/.t C s/ � r.�.t/� �.t C s//i�.h/.tCs/ ds dt

C

ˆ T

0

 h

0

h.u.h/.t//ı ıˆ
.h/
�s .t C s/� .u

.h//ı.t/;

@t�.t C s/ � u
.h/.t C s/ � r�.t C s/i�.h/.tCs/ ds dt:

Since kr.�.t/ � �.t C s//kL1.�/ � Chk@tr�kL1.Œ0;T ���/, the second term in the
last sum converges to zero as h ! 0. For the third term, we may use Lemma 4.14
to see that the L2 norm of the left hand side in the scalar product is bounded by
ChLipy..u

.h/.t//ı/, which is in turn bounded by hCıku.h/.t/kW 1;2.�/, so that this term
vanishes for h! 0. For the first term we aim to apply Lemma 4.18. To do so, we take
Aı 2 C

0.Œ0; T �IC10 .
O�ı// such that Aı.t/! ��.t/ almost everywhere in �. Hence by
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Lemma 4.18 in the form of (4.10) we find that

lim
h!0

Iı;h D lim
h!0

ˆ T

0

 h

0

h.u.h/.t//ı ; @t�.t C s/ � u
.h/.t C s/ � r�.t/i�.h/.tCs/ ds dt

D

ˆ T

0

h.u.t//ı ; @t� � u � r�Aı.t/i�.t/ dt

C lim
h!0

ˆ T

0

 h

0

h.u.h/.t//ı ; u
.h/.t C s/ � r�.t/.Aı.t/ � ��.h/.t C s//i� ds dt:

The last term is estimated by Hölder’s inequality and Sobolev embedding. Indeed, for
a < n

n�2
we find, by (4.8),ˇ̌̌̌ˆ T

0

 h

0

h.u.h/.t//ı ; u
.h/.t C s/ � r�.t/.Aı.t/ � ��.h/.t C s//i� ds dt

ˇ̌̌̌
�

ˆ T

0

k.u.h/.t//ıkL2a.�/

 h

0

ku.h/.tCs/kLa.�/kAı.t/���.h/.tCs/kL2a0 .�/ ds dt

� ck.u.h/.t//ıkL2.Œ0;T �IW 1;2.�// sup
t2T

� h

0

ku.h/.tCs/k2 ds

�1=2
�

� h

0

kAı.t/���.h/.tCs/k
2

L2.Œ0;T �IL2a
0
.�//

ds

�1=2
� c

� h

0

kAı.�/���.h/.�Cs/k
2

L2.Œ0;T �IL2a
0
.�//

ds

�1=2
:

By the uniform convergence of �.h/ ! �, we find that

lim
h!0

� h

0

kAı.�/ � ��.h/.� C s/k
2

L2.Œ0;T �IL2a
0
.�//

ds

�1=2
D kAı � ��kL2.Œ0;T �IL2a0 .�//:

Finally, by passing to the limit ı ! 0 we have

lim
ı!0

lim
h!0

.�Iı;h C IIı;h/ D �
ˆ T

0

hu; @t� � u � r�i�.t/ dt:

Thus we have shown that we obtain the right equation in the limit:

ˆ T

0

Œ��sh@t�; @t�iQ � �shv; @t� � v � r�i�.t/

C hDE.�/; �i C hD2R.�; @t�/; �i C �h"v; "�i�.t/� dt

D

ˆ T

0

Œ�shf ı �; �iQ C �f hf; �i�.t/� dt � �sh��; �.0/iQ � �f hv0; �.0/i�0 : (4.11)
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Proof of Theorem 1.2, Step 3b: Reconstruction of the pressure. As we do not want to
consider the time derivatives of the operator Bt , we cannot follow the same lines as in the
proof of Theorem 2.2. Instead, we have to proceed in a global manner. We construct the
pressure as a distribution.

Let  2 C10 .Œ0; T � ��/. Take B to be the operator from Theorem 2.21 with respect
to the domain�. To apply this operator to  , we need to normalize its mean by picking a
Q 2 C10 .Œ0; T � ��/ with supp. Q .t// \�.t/ D ; and

´
�
Q .t/ dy D �

´
�
 .t/ dy for

all t 2 Œ0; T �.
Now let �.t/ WDB. .t/C Q .t//, �.t; x/ WD �.t; �.t; x// and define a linear operator

by

P. / WD

ˆ T

0

ŒhDE.�.t//; �i C hD2R.�.t/; @t�.t//; �i C �h"u; "�i�.t/

� �f hf; �i�.t/ � �shf ı �; �iQ � �sh@t�; @t�iQ � �f hu; @t� � u � r�i�.t/� dt:

Note that P. / is independent of the choice of Q : If Q 1 and Q 2 are two such choices with
corresponding �1 and �2, then �1 � �2 D B. Q 1 � Q 2/ has divergence 0 on �.t/ and thus
the above integral is the same because of (4.11). In particular, if supp. .t// � �.t; Q/
(for all t 2 Œ0; T �), we may choose Q �  , which implies (by the linearity of B) that
P. / D 0. Hence supp.P / � Œ0; T � ��.t/.

Furthermore, it can be estimated that

ˆ T

0

ŒhDE.�.t//; �i C hD2R.�.t/; @t�.t//; �i C �h"u; "�i�.t/

� �f hf; �i�.t/ � �shf ı �; �iQ� dt � Ck�kL1.Œ0;T �;W 2;q.Q// C k�kL2.Œ0;T �IW 1;2.�//

via the known bounds on the terms in the weak equation. Finally, using Proposition A.4 we
know that k�kW 2;q.Q/ � Ck�kW 2;q.�/. Consequently, by the properties of the Bogovskiı̆
operator we find

Ck�kL1.Œ0;T �;W 2;q.Q// C k�kL2.Œ0;T �IW 1;2.�//

� Ck kL1.Œ0;T �;W 2;q.Q// C Ck kL2.Œ0;T �IL2.�//;

where we note that Q .t/ can be chosen as a multiple of a fixed C10 -function and thus
its norm only needs to depend on j

´
�
 .t/ dyj � ck .t/k�. Additionally, for the other

remaining terms we haveˇ̌̌̌ˆ T

0

h@t�; @t�iQ dt

ˇ̌̌̌
� k@t�kL2.Œ0;T ��Q/k�kW 1;2.Œ0;T �IL2.Q//;ˇ̌̌̌ˆ T

0

hu; @t�i�.t/ dt

ˇ̌̌̌
� kukL2.Œ0;T ���/k�kW 1;2.Œ0;T �IL2.�//;ˇ̌̌̌ˆ T

0

hu; u � r�i�.t/ dt

ˇ̌̌̌
� ku2kLa.Œ0;T �ILb.�//k�kLa0 .Œ0;T �IW 1;b0 .�//;
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where a; b 2 .1;1/ are chosen in such a way that juj2 2 La.Œ0; T �ILb.�//, which is
possible since juj2 2 L1.Œ0; T �IL1.�// \ L1.Œ0; T �; Lp.�// (with p D n

n�2
for n > 2

or p arbitrarily large for n D 2). Now bounding the norms of � and � in terms of  
as before proves that P 2 D 0.Œ0; T � ��/. Thus p is well defined via that operator, and
expanding

ˆ T

0

hrp; �i dt D P.div �/

proves that it fulfills the right equations for � 2 C1.Œ0; T � � �/. Moreover, it can be
decomposed as

p 2 L1.Œ0; T �IW �1;q.�//C L2.Œ0; T � ��/

CW �1;2.Œ0; T �IW �1;2.�// \ La
0

.Œ0; T �IW �1;b
0

.�//: (4.12)

Proof of Theorem 1.2, Step 4: Energy inequality & maximal interval of existence. Above,
we have shown existence of coupled weak solutions u; � on Œ0; T � for some T > 0. As
before, we can now pick a maximal interval Œ0; Tmax/ and use the energy bounds to con-
clude that either Tmax D1 or there exists a limit �.Tmax/ 2 @E .

Finally, we observe that (1.12) follows by Lemma 4.11.

Appendix A

A.1. Some technical lemmas

Here we gather the proofs of some technical lemmas.

Lemma A.1 (Expansion of the determinant). Let A 2 Rn�n. Then

det.I C �A/ D 1C � trAC
nX
lD2

� lMl .A/;

where Ml .A/ is a homogeneous polynomial of degree l in the entries of A. Note that this
is a finite sum.

Proof. Consider the Leibniz formula

det.I C �A/ D
X
�2Sn

sgn.�/
nY
iD1

.ıi;�.i/ C �Ai;�.i//;

where Sn is the set of permutations of ¹1; : : : ; nº. We expand the product and order the
terms by the exponent of the factor � l and thus by the number of terms �Ai;�.i/ that
are taken while expanding the product. This will directly yield the homogeneous polyno-
mial Ml .A/.
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For �0 and �1, the only nonzero terms occur for � D id, otherwise there will be at
least one factor ıi;�.i/ for i ¤ �.i/. For �0 this means we only choose the ıi;i terms and
for �1 we can choose any one �Ai;i term. Thus M0.A/ D 1 and M1.A/ D trA.

Lemma A.2 (Invertible maps). Let � 2W 2;q.QIRn/ be injective and such that detr� >
�0 >0 for some �0 <1 and �jP D 
 . Then ��1 2W 2;q.�.Q/IRn/ and k��1kW 2;q.�.Q// �

ck�k2n�1
W 2;q.Q/

=�20 , where c depends only on q, Q, 
 and n.

Proof. Due to the condition on the determinant,r� is invertible, and furthermore we have
the well-known formula

r.��1/ D .r�/�1 ı ��1 D .cofr�/T

detr� ı �
�1:

Now we take the derivative of r.��1/ ı � to get

.r2.��1// ı � � r� D r.r.��1/ ı �/ D r.cofr�/T

detr� �
.cofr�/T˝.cofr�/

.detr�/2
� r

2�:

Integrating then yields
ˆ
�.Q/

j.r2.��1//jq dy D

ˆ
Q

j.r2.��1// ı �jq detr� dx

D

ˆ
Q

ˇ̌
r.cofr�/T

detr� �
.cofr�/T˝.cofr�/

.detr�/2
� r

2�
ˇ̌q detr� dx:

Now the determinants in the denominators can be estimated by �0, while the numerators
all consist of one second derivative multiplied with a number of first derivatives, which
we can estimate by their supremum:

�

ˆ
Q

C
�
jr2�jkr�kn�21

�
1�1=q
0

C
kr�k2n�21 jr2�j

�
2�1=q
0

�q
dx � C

kr2�k
q

Lq.�.Q//
kr�k

q.2n�2/
1

"2q
:

Using the Morrey embedding kr�k1 � kr�kC˛ � Ck�kW 2;q.Q/ and collecting the
terms then shows

kr
2.��1/kLq.�.Q// � C

k�k2n�1
W2;q.Q/

�2
0

:

Finally, as we have partially known boundary values because ��1j
.P / D 
�1, the lower
order estimates follow from a Poincaré inequality.

For the next result we need an interpolation. We begin by recalling the follow-
ing result, which follows for instance from the interpolation estimate in [87, Theorem
2.13] which implies together with the usual Sobolev embeddings [88, Theorem 2.5.1 and
Remark 2.5.2] that for all m 2 Œ0;1/, ˛ 2 Œ1;1/ and all Lipschitz domains � satisfying

m � l and
1

˛
�
m

n
�
1



�
l

n
D
k � l

ka
C

l

2k
�
l

n

we have the estimate
kgkWm;˛ � Ckgk

l=k

W k;2kgk
.k�l/=k
La : (A.1)
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Lemma A.3. Let Q � Rn be a bounded Lipschitz domain, q > n, and let k 2 N be
defined as

k D 2C
nC 1

2
if n is odd; k D 3C

n

2
if n is even: (A.2)

For every � 2 W 2;q.Q/ \ W k;2.Q/, there is a constant c depending on Q, n, k and
k�kW 2;q.Q/ such that

kX
lD1

X
a2¹1;:::;nºl




rk�l lY
iD1

@ai�



 � ck�kW k;2.Q/:

Proof. Observe that since r� is uniformly bounded by the W 2;q.QIRn/ norm, we find
that X

a2¹1;:::;nºl




rk�l lY
iD1

@ai�



 � c X

ˇ2Nl
0
; jˇ jDk�l




 lY
iD1

jr
ˇir�j




:
The estimate for l D 1 is direct. Next assume that l � 2 and ˇ 2 Nl

0 with jˇj D k � l is
such that all ˇi ¤ 1. Now by Hölder’s and Young’s inequalities,

lY
iD1

kr
ˇir�k � c

X
ˇi>1

kr
ˇi�1r

2�k
.k�l/=ˇi
2.k�l/=ˇi

:

Next we seek to interpolater2� betweenW 2;q andW k�2;2. For that we wish to use (A.1).
Hence we have to prove that

ˇi

2.k � l/
�
k � 1 � ˇi

q.k � 2/
C

ˇi � 1

2.k � 2/
: (A.3)

Since l � 2 we find (by multiplying (A.3) with k � 2) that (A.3) holds true whenever

1

2
�
k � ˇi � 1

n
” n � 2.k � ˇi � 1/;

which is satisfied by the definition of k as long as ˇi � 2.
Hence we may use (A.3):

kr
ˇi�1r

2�k
k�l
ˇi
2.k�l/
ˇi

� ckr2�k
k�l
ˇi

k�1�ˇi
k�2

Lq.Q/
kr

2�k
k�l
ˇi

ˇi�1

k�2

W k�2;2.Q/
� ckr2�kW k�2;2.Q/;

using k�l
ˇi

ˇi�1
k�2
� 1.

The last case is proved inductively. First with no loss of generality we take ˇ1 D 1.
Then

Pl
iD2 ˇi � k � l � 1 and using Hölder’s inequality and Sobolev embedding implies


jr2�j l�1Y

iD1

jr
ˇi�j




 � kr2�kn


l�1Y
iD1

jr
ˇi�j





2n
n�2

� c



l�1Y
iD1

jr
ˇi�j





W 1;2.Q/

:
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If now ˇi ¤ 1 for all i > 1, the estimate follows by the above case forrk�.l�1/
Ql�1
iD1 @ai�.

If not, we may assume that ˇ2 D 1 and repeat the argument again. After at most l steps
(in which case k � 2l), we get the result.

Proposition A.4 (Space isomorphisms). Let � 2 W 2;q.QIRn/ be such that det r� >
�0 > 0 and �jP D 
 . Then the map

�#
W W 2;q.�.Q/IRn/! W 2;q.QIRn/; � 7! � ı �;

is a linear isomorphism with operator norm k�#k � Ck�k2
W 2;q.Q/

=�
1=q
0 , where c only

depends on q; Q; 
 and n. Moreover, if q > n and additionally � 2 W k;2.QIRn/ and
� 2 C k.�.QIRn//, for k defined in (A.2), then

k� ı �kW k;2.Q/ � ck�kW k;2.Q/k�kCk.Q/;

where the constant depends on �, n, k and k�kW 2;q.Q/ only.

Proof. Linearity follows immediately from the definition. Now we calculate

kr
2.� ı �/kLq.Q/ D k..r

2�/ ı � � r�/ � r�C .r�/ ı � � r2�kLq.Q/

� C
�
kr�k21k.r

2�/ ı �kLq.Q/ C kr�k1kr
2�kLq.Q/

�
;

and use

�0k.r
2�/ ı �k

q

Lq.Q/
�

ˆ
Q

j.r2�/ ı �jq detr� dx D kr2�kq
Lq.�.Q//

to estimate the first term. Then using Poincaré’s inequality and the usual Morrey embed-
dings we get

k� ı �kW 2;q.Q/ � Ck�kW 2;q.�.Q/

k�k2
W 2;q.Q/

"1=q
;

which proves that �# is a linear map with the given operator norm. Now as .�#/�1 D

.��1/# we conclude that it is also an isomorphism by the previous lemma.
For the second estimate we observe that

kr
k.� ı �/k � c

kX
lD1

X
a2¹1;:::;nºl

k�kC l .�.Q/




rk�l lY
iD1

@ai�



;

which finishes the proof by Lemma A.3.

A.2. Proof of Lemma 2.22

The proof is split into two parts. The first part constructs an extension of solenoidality.
The second part shows how this extension can then be convoluted. We will also need the
following Poincaré-type lemma:
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Lemma A.5 (Poincaré’s lemma for thin regions). Let S0 �Rn be an .n� 1/-dimensional
rectifiable set and ˆ W S0 � Œ0; "0�! Rn an injective L-bi-Lipschitz function such that
ˆ.�; 0/ D id. Define S" D ˆ.S0; Œ0; "�/ for " 2 Œ0; "0�. Then for all f 2 W 1;a.S"/ with
f jS0 D 0 in the trace sense we have

kf kLa.S"/ � c"kf kW 1;a.S"/
for all f 2 W 1;a.S".t/IR

n/ with f j�.t/ D 0, (A.4)

where c is independent of ".

Proof. By density arguments it is enough to prove the theorem for smooth functions. Now
for z 2 S0 and s0 2 Œ0; "0� we find

jf .ˆ.z; s0//j D jf .ˆ.z; s0// � f .ˆ.z; 0//j D

ˇ̌̌̌ˆ s0

0

@sf .ˆ.z; s// ds

ˇ̌̌̌
�

ˆ s0

0

j.rf /.ˆ.z; s//j j@sˆ.z; s/j ds �

ˆ s0

0

Lj.rf /.ˆ.z; s//j ds:

But then integrating over the whole domain yields
ˆ
S"

jf .y/jady D

ˆ
S0

ˆ "

0

jf .ˆ.z; s0//j
a
jJ.z; s0/j ds0 dz

�

ˆ
S0

ˆ "

0

�ˆ s0

0

Ljrf .ˆ.z; s//j ds

�a
jJ.z; s0/j ds0 dz

�

ˆ
S0

ˆ "

0

 "

0

"aLajrf .ˆ.z; s//jajJ.z; s0/j ds ds0 dz

D "aLa
ˆ
S0

ˆ "

0

Lajrf .ˆ.z; s//jajJ.z; s/j kJ k1kJ
�1
k1 ds dz

D La"akJ k1kJ
�1
k1

ˆ
S"

jrf .y/ja dy;

where J.z; s/ is the Jacobian of ˆ which is bounded from above as well as away from
zero because ˆ is bi-Lipschitz.

Lemma A.6 (Extension of the solenoidal region). Fix a function

� 2 L1.Œ0; T �IE/ \W 1;2.Œ0; T �IW 1;2.QIRn// with sup
t2T

E.�.t// <1;

such that �.t/ … @E for all t 2 Œ0; T �. As before, set �.t/ D � n �.t;Q/.
Let � 2 L2.Œ0; T �IW 1;2

0 .�IRn// be such that div �.t/ D 0 on �.t/. Then there exists
"0 > 0 such that for all " 2 .0; "0�, there exists �" such that div �.t; y/ D 0 for all y 2 �
with dist.y;�.t/[ @�/ < " and there are constants c independent of � such that for a.e.
t 2 Œ0; T �,

k�"kW 1;2.�/ � ck�kW 1;2.�/ and k�" � �kL2.�/ � c"
2
nC2 k�kW 1;2.�/:
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Additionally, for any k 2 N and a 2 .1;1/ such that � 2 L2.Œ0; T �IW k;a.QIRn// we
have

k�" � �kL2.Œ0;T �IW k;a.�// ! 0 as "! 0;

and similarly if � 2 W 1;2.Œ0; T �IW 1;1.�IRn// then also

k@t .� � �"/kL2.Œ0;T �IW 1;2.�// ! 0 as "! 0: (A.5)

Proof. We begin by defining

S".t/ WD ¹y 2 � j dist.y; �.t; @Q// � "º

and introduce the cutoff function  " W Œ0; T � ��! Œ0; 1� such that

�S".t/ �  ".t/ � �S2".t/ and k ".t/kC l � c="
l for l 2 N:

Due to the regularity of �, we may assume that @t " is uniformly bounded and such that

k@t "kL2.Œ0;T ���/ ! 0 as "! 0: (A.6)

We also pick Q 2 C10 .Œ0; T � ��IR
n/ such that supp. Q .t// \ S"0.t/ D ; for some

"0 > 0 and
´
�
Q .t/ dy D 1 for all t . Using this we then define

�".t/ WD �.t/ �B
�
 ".t/ div �.t/ � b".t/ Q .t/

�
;

where B is the Bogovskiı̆ operator on� and b".t/ WD
´
�
 ".t/div �.t/ dy is used to keep

the mean. Then by definition the function

div �".t/ D .1 �  ".t// div �.t/ � b".t/ Q .t/

vanishes on S".t/ as required, and

k� � �"kW k;a.�/ D


B

�
 ".t/ div �.t/ � b".t/ Q .t/

�


W k;a.�/

� ck ".t/ div �.t/ � b".t/ Q .t/kW k�1;a.�/ � ck ".t/ div �.t/kW k�1;a.�/ C cjb".t/j

is the main quantity we need to estimate.
Let us begin with the special case k D 0; a D 2. Here we use the embedding

L
2n
2Cn .�IRn/ � W �1;2.�IRn/ and apply Hölder’s inequality to show that

k� � Q�"kL2.�/ � ck " div �kW�1;2.�/ C cjb"j � ck " div �k
L
2n
nC2 .�/

� ck "kLn.S2".t//kdiv �kL2.�/ � cjS2"j
1=n
k�kW 1;2.�/ � c"

1=n
k�kW 1;2.�/:

For k � 1 we first note that jb".t/j � ckdiv �kL2.S".t// ! 0 for each fixed � and
furthermore

k ".t/ div �.t/kW k�1;a.�/ � c

k�1X
lD0

k ".t/kCk�1�l .�/kr
l div �kLa.S2".t//

� c

k�1X
lD0

"�.k�1�l/krl div �kLa.S2".t//:
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In particular, for k D 1; a D 2 we have k � 1 � l D 0, so this immediately proves that
k�"kW 1;2.�/ � ck�kW 1;2.�/ independently of �. For k > 1 we will apply the Poincaré
inequality of Lemma A.5. For this we make use of the fact that S"0 n�.t/ is a small neigh-
borhood of a uniformly Lipschitz boundary and thus can be written in the required way
using � itself. Furthermore, for any l < k we have rl div � D 0 on �.t/ and thus also on
@�.t/ in the trace sense. This then gives krl div �kLa.S2".t// � c"

k�1�lk�kW k;a.S2".t//
,

which is enough to finish the estimate.
Finally, let us consider the time derivative. As B is a linear operator, we have

k@t .�" � �/kW 1;2.�/ D c


@t� ".t/ div �.t/ � b".t/ Q .t/

�


L2.�/

� ck@t . ".t/ div �.t//kL2.S2".t// C cj@tb".t/j k Q .t/kL2.�/ C cjb".t/j k@t Q .t/kL2.�/:

For the last term we have already shown that jb".t/j ! 0 and Q does not depend on ".
For the second to last term we note that

j@tb".t/j D

ˇ̌̌̌ˆ
�

@t . ".t/ div �.t// dy
ˇ̌̌̌
� k@t . ".t/ div �.t//kL2.�/;

which is the same as the first term and for which we use the estimate

k@t . ".t/ div �.t//kL2.�/
� k@t ".t/kL2.�/k�.t/kW 1;1.S2".t//

C k ".t/kL2.�/k@t�.t/kW 1;1.S2".t//
;

which implies (A.5) by (A.6) and Hölder’s inequality.

Proof of Lemma 2.22. First we apply Lemma A.6 to find a function O� with O� D 0 on�.t/
and on an "-neighborhood of @.� n �.t//. Thus taking convolution with 
"2 does not
affect the zero boundary values (if " is small enough).

We will now apply Lemma A.6 again to O�" � 
"2 and call the result �", a function
which is smooth by Theorem 2.21. Moreover, since all operations are linear we find that
�" 2 C

1
0 .�IR

n/ is divergence free in �.t/ [ S". By collecting all the properties of the
approximation, we find that

k� � �"kW l;a.�/ ! 0

for l � k � 1. Moreover,

k� � �"kW 1;2.�/ � ck�kW 1;2.�/;

k� � �"kL2.�/ � c"
2
nC2 k�kW 1;2.�/:

Next we turn to the estimates for �" WD �" ı �. They follow by Proposition A.4 and stan-
dard convolution estimates. First, for k > 2 we find

k�"kW k;2.Q/ � ck�"kCk.�/k�kW k;2.Q/ � c."/k�kL2.�/k�kW k;a.Q/:
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Second, in case � 2 L1.Œ0; T �IW 2;a.�//, we find

k�" � �kW 2;a.Q/ � ck�" � �kW 2;a.�/ ! 0; as "! 0:

Finally, for the time derivative in case @t� 2 L1.Œ0; T �IW 1;2.�IRn// as well as � 2
L1.Œ0; T �IW 3;a.�IRn// with a > n we find by Sobolev embedding that

k@t .�" � �/kW 1;2.Q/ � ck@t .�" � �/kW 1;2.�/ C ckr.�" � �/kW 1;1.�/k@t�kW 1;2.Q/

� ck@t .�" � �/kW 1;2.�/ C ck�" � �kW 3;a.�/k@t�kW 1;2.Q/;

which implies the assertions for the time derivatives by (A.5).
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[9] Barbu, V., Grujić, Z., Lasiecka, I., Tuffaha, A.: Existence of the energy-level weak solutions
for a nonlinear fluid-structure interaction model. In: Fluids and waves, Contemporary Mathe-
matics 440, American Mathematical Society, Providence, RI, 55–82 (2007) Zbl 1297.35234
MR 2359449
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[76] Nečasová, Š.: Asymptotic properties of the steady fall of a body in viscous fluids. Math.
Methods Appl. Sci. 27, 1969–1995 (2004) Zbl 1174.76306 MR 2099812
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