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Abstract. We prove an analog of the Tits alternative for endomorphisms of P1. In particular, we
show that if S is a finitely generated semigroup of endomorphisms of P1 over C, then either S has
polynomially bounded growth or S contains a nonabelian free semigroup. We also show that if f
and g are polarizable maps over any field of any characteristic and Prep.f / 6D Prep.g/, then for all
sufficiently large j , the semigroup hf j ; gj i is a free semigroup on two generators.

Keywords. Tits alternative, semigroups, preperiodic points, height functions, rational functions,
free semigroups

1. Introduction

The Tits alternative [65] is a celebrated result in the theory of linear groups. It says that
a finitely generated linear group contains either a solvable subgroup of finite index or a
nonabelian free group. In general, a group G is said to satisfy the Tits alternative if each
of its finitely generated subgroups contains either a solvable subgroup of finite index or a
nonabelian free group. Many classes of groups have now been shown to satisfy the Tits
alternative [4, 10, 16, 17, 30, 35, 39, 46].

When one instead considers the structure of linear groups as semigroups, an even
stronger dichotomy is obtained. A result of Longobardi, Maj, and Rhemtulla [44] (see
also Milnor [48] and Wolf [66]) combined with the Tits alternative implies that a finitely

Jason P. Bell: Department of Pure Mathematics, University of Waterloo,
Waterloo, ON, N2L 3G1, Canada; jpbell@uwaterloo.ca

Keping Huang: Institute for Advanced Study in Mathematics, Harbin Institute of Technology,
Harbin, P.R. China; keping.huang@rochester.edu

Wayne Peng: Mathematics Division, National Center for Theoretical Sciences,
Taipei, 106 Taiwan; wayne.peng@ncts.tw

Thomas J. Tucker: Department of Mathematics, University of Rochester,
Rochester, NY 14627, USA; thomas.tucker@rochester.edu

Mathematics Subject Classification (2020): Primary 20M05; Secondary 14H37, 11G50

https://creativecommons.org/licenses/by/4.0/
mailto:jpbell@uwaterloo.ca
mailto:keping.huang@rochester.edu
mailto:wayne.peng@ncts.tw
mailto:thomas.tucker@rochester.edu


J. P. Bell, K. Huang, W. Peng, T. J. Tucker 4904

generated linear group is either virtually nilpotent or contains a nonabelian free semi-
group. Okniński and Salwa [57] later showed that if S is a finitely generated cancellative
linear semigroup, then either S contains a nonabelian free semigroup or the group gen-
erated by S is virtually nilpotent (recall that a semigroup S is said to be cancellative if
ab D ac and ba D ca each imply that b D c for all a; b; c 2 S ). Rosenblatt [62] showed
that a polycyclic group either has a nilpotent subgroup of finite index or contains a free
subsemigroup on two generators. Results from the theory of growth of groups then give
that the growth of a finitely generated cancellative linear semigroup is either exponential
or polynomially bounded. The cancellativity condition here is crucial as Okniński [56]
has also produced finitely generated non-cancellative linear semigroups of intermediate
growth (see also [12]).

We note that a semigroup S contains a nonabelian free semigroup if and only if it
contains a free semigroup on two generators. As with groups, it is not difficult to see that
a free semigroup on two generators must contain a free semigroup on n generators for any
positive integer n.

We prove the following variant of the Tits alternative for semigroups of endomor-
phisms of P1C .

Theorem 1.1. Let � � C.x/ be a finitely generated semigroup of endomorphisms of P1.
Then either � has polynomially bounded growth or � contains a nonabelian free semi-
group.

We say that an endomorphism of P1 of degree greater than 1 is special if it is conjugate
by a homography to a monomial, a Chebyshev polynomial, or a Lattès map; if it is not
conjugate to such a map, then it is nonspecial. When � contains a nonspecial rational
function of degree greater than 1, we obtain a stronger dichotomy.

Theorem 1.2. Let � be a finitely generated semigroup of endomorphisms of P1C such that
some element of � is nonspecial and of degree greater than 1. Then either � has linear
growth or � contains a nonabelian free semigroup.

Let f W X ! X be a self-map of a set X . Recall that x0 2 X is a preperiodic point
of f if the orbit ¹x0; f .x0/; f 2.x0/; : : : º is a finite set. Let Prep.f / denote the set of
preperiodic points of f . We derive Theorem 1.1 from a result relating common preperi-
odic points of endomorphisms of P1 with free subsemigroups. The techniques used for
this result also work in the setting of morphisms of projective varieties that are polarized
by the same ample line bundle. For V a projective variety, a morphism f W V ! V is
said to be polarized by the ample line bundle L if there is an integer d > 1 such that
f �L Š L˝d . The notion of polarization is due to Zhang [70]. Any endomorphism of
degree greater than 1 of the projective space Pn is polarized by OPn.1/; it is also true
that any polarized morphism on a variety V comes from restricting an endomorphism
of projective space to V for some embedding of V into a projective space (see [5, 18]).
Polarized morphisms give rise to canonical height functions with good properties (see [9]
and Section 3.2). In the theorem below and throughout this paper, we let hf; gi denote
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the semigroup generated under composition by f and g whenever f and g are two maps
from a set to itself.

Theorem 1.3. Let V be a projective variety over a field K, and let f; g W V ! V be
endomorphisms polarized by the same line bundle L. If Prep.f / 6D Prep.g/, then for large
enough positive integer j , the semigroup hf j ; gj i is a free semigroup on two generators.

Remark 1.4. One can use results of Jiang and Zieve [31] to extend Theorem 1.1 to char-
acteristic p when the elements of � are all polynomials whose degrees are not divisible
by p. In this setting, one can use their techniques to give a more precise version of Theo-
rem 1.3.

Ritt [61] studied the semigroup of polynomials under composition. He gave necessary
and sufficient conditions for two polynomials to commute under composition and deter-
mined relations for the semigroup of polynomials under composition. It is very possible
that in this case, some of the results here can be obtained using Ritt’s work, although
there do appear to be some additional subtleties involved. We also point out that the Tits
alternative has been considered for automorphism groups of algebraic varieties, with a
complete result for projective varieties in characteristic 0 (see [16] for a survey) as well
as some results in characteristic p (see [28]). The Tits alternative has also been proved for
the Cremona group Bir.P2/ in all characteristics (see [10]).

Pakovich [58] has proved that if � is a semigroup of nonspecial endomorphisms of P1

over the complex numbers satisfying a strong cancellativity property, then either � con-
tains a nonabelian free semigroup or � is left amenable. Hindes [26] has proved that
certain conditions on a semigroup of endomorphisms of P1 over xQ guarantee that the
semigroup is free; the conditions are much more restrictive than those of Theorem 1.3
but have the advantage of ensuring that certain semigroups are free (and do not merely
contain a nonabelian free semigroup).

2. Preliminaries

We give a brief overview of the basics of semigroups. See [27] for the theory of semi-
groups and [38] for generalities on growth functions. Let � be a finitely generated
semigroup and let S be a finite set of generators for � . Then we can form the growth
function of � with respect to the generating set S as follows. We define dS .n/ D jS�nj,
where S�n is the set of elements of � that can be expressed as a product of elements of S
of length at most n. The function dS .n/ is weakly increasing as a function of n and while
this function depends upon our choice of generating set, we observe that if T is another
generating set for � then there exists a positive integer c such that T � S�c and S � T �c ,
so we have the inequalities

dT .n/ � dS .cn/ and dS .n/ � dT .cn/:

Thus if we declare that two weakly increasing functions f; g W N ! N are asymptot-
ically equivalent whenever there is a positive integer C such that f .n/ � g.Cn/ and
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g.n/ � f .Cn/, then the growth function is independent of our choice of generating set
up to this asymptotic equivalence. One says that � has polynomially bounded growth if
dS .n/D O.n�/ for some positive constant �. More specifically, � has polynomial growth
of degree � if there are positive constants C1; C2; � such that C1n� � dS .n/ � C2n� for
all n; in particular, � has linear growth if there are positive constants C1; C2 such that
C1n � dS .n/ � C2n for all n; and � has exponential growth if there is a positive constant
C > 1 such that dS .n/ > C n for all n sufficiently large. It is not difficult to check that
these growth properties are all preserved under asymptotic equivalence, so we can speak
unambiguously of � having these properties without making reference to a generating set.

A semigroup � is left cancellative if whenever as D at with a; s; t 2 � we have s D t ;
right cancellativity is defined analogously. A cancellative semigroup is one that is both
left and right cancellative. Note that if � is a semigroup of surjective maps, then � is
right cancellative since sa D ta implies that s D t whenever a is surjective. Hence, in
particular, semigroups of nonconstant endomorphisms of P1 are right cancellative; on the
other hand x2 ı .�x/ D x2 ı .x/, so they are not always left cancellative.

3. Proof of Theorem 1.3

3.1. A variant of the ping-pong lemma

In our work here, the functions � and �f will be real-valued height functions (either Weil
or Moriwaki). The arguments in this section work in a more general setting, and we state
Proposition 3.1 accordingly.

Let U be a set, let � W U! R be any function that is not bounded in absolute value,
and let f W U ! U be a surjective map. Assume that there are positive real numbers
d1 > 1 and C.f / such that

j�.f .z// � d1�.z/j < C.f /: (3.1)

We say that d1 is the degree deg� .f / of f . Suppose now that g W U! U is a surjective
map of degree d2, so that for some positive real number C.g/ we have

j�.g.z// � d2�.z/j < C.g/: (3.2)

We let C D max.C.f /; C.g//. It automatically follows that deg� .f ı g/ D
deg� .f / deg� .g/ whenever these quantities are defined.

Recall that one can use (3.1) and (3.2) to construct canonical functions as follows:

�f .z/ D lim
n!1

�.f n.z//

dn1
D �.z/C

1X
iD0

�.f iC1.z// � d1�.f
i .z//

d iC11

;

�g.z/ D lim
n!1

�.gn.z//

dn2
D �.z/C

1X
iD0

�.giC1.z// � d2�.g
i .z//

d iC12

:

(3.3)
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Note that ˇ̌̌̌ 1X
iD0

�.f iC1.z// � d1�.f
i .z//

d iC11

ˇ̌̌̌
< C

1X
iD1

1

d i1
;ˇ̌̌̌ 1X

iD0

�.giC1.z// � d2�.g
i .z//

d iC12

ˇ̌̌̌
< C

1X
iD1

1

d i2
:

The telescoping sum argument above is due to Tate and was used by Call and Sil-
verman [9] in their construction of canonical heights. Kawaguchi [32, 33] has further
developed the theory of canonical heights in the context of semigroups. These kinds of
arguments also appear in many other contexts.

Let d D min.d1; d2/ > 1, and let

C 0 D C

1X
iD1

1

d i
:

Using the same telescoping series argument, we see that for any n, we haveˇ̌̌̌
�.f n.z//

dn1
� �f .z/

ˇ̌̌̌
<
C 0

dn1
;ˇ̌̌̌

�.gn.z//

dn2
� �g.z/

ˇ̌̌̌
<
C 0

dn2
:

(3.4)

We will prove the following variant of the ping-pong lemma of Klein and Fricke
[36, 37], which also played an important role in the proof of the Tits alternative.

Proposition 3.1. Let U be a set, let � WU!R be a function that is unbounded in absolute
value and let f; g W U! U be surjective maps that satisfy (3.1) and (3.2). Let �f and �g
be as defined in (3.3). Suppose that there is some z 2 U such that �f .z/ 6D �g.z/. Then
for all sufficiently large j the following hold:

(i) wf j 6D ugj for all w; u 2 hf; gi;

(ii) the semigroup hf j ; gj i is free on two generators.

We begin with one more definition. Let w D 'm ı 'm�1 ı � � � ı '1, where each 'j
equals f or g. The degree of w is then

deg� w D
mY
jD1

deg� 'j : (3.5)

Since j�.w.z// � deg� w � �.z/j is bounded for all z (by (3.1) and (3.2)) and � is
unbounded, we see that the definition in (3.5) is independent of the word representing w.

Lemma 3.2. Let w D 'm ı � � � ı '1 where 'i is equal to f or g for each i . Let wi D
'i ı � � � ı '1 . for i � m/. With notation as above, we haveˇ̌̌̌

�.w.z//

deg� w
�
�.wj .z//

deg� wj

ˇ̌̌̌
<
C 0

d j
(3.6)

for j D 1; : : : ; m.
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Proof. Let e` D deg� '` for each ` D 1; : : : ; m. Then deg� wj D
Qj

`D1
e`. Thus, as in

(3.1) and (3.2), we have a telescoping series

�.w.z//

deg� w
�
�.wi .z//

deg� wi
D

m�1X
jDi

�.wjC1.z// � ejC1�.wj .z//QjC1

`D1
e`

: (3.7)

Now

j�.wjC1.z// � ejC1�.wj .z//j D j�.'jC1.wj .z// � .deg� 'jC1/�.wj .z//j < C

for all j by (3.1) and (3.2). Thusˇ̌̌̌
ˇ̌m�1X
jDi

�.wjC1.z// � ejC1�.wj .z//QjC1

`D1
e`

ˇ̌̌̌
ˇ̌ � 1

d j

1X
iD1

C

d i
�
C 0

d j
:

This completes the proof, by (3.7).

Proof of Proposition 3.1. (i) We choose x0 so that �f .x0/ 6D �g.x0/ and define " D
j�f .x0/ � �g.x0/j. Choose j so that C 0=d j < "=4, where d D min.d1; d2/ as above.
Let wf j and ugj be words in f and g such that deg� wf

j D deg� ug
j . Then, by (3.4)

and (3.6), we have ˇ̌̌̌
�f .x0/ �

�.wf j .x0//

deg� wf j

ˇ̌̌̌
< "=2;ˇ̌̌̌

�g.x0/ �
�.ugj .x0//

deg� ugj

ˇ̌̌̌
< "=2:

Thus,
�.wf j .x0//

deg� wf j
6D
�.ugj .x0//

deg� ugj
:

Since deg� wf
j D deg� ug

j , it implies that

wf j .x0/ 6D ug
j .x0/: (3.8)

(ii) Now, let w0 D 'm ı � � � ı '1 and w00 D �n ı � � � ı �1, where each 'i and �k is equal
to f j or gj . Suppose that w0 D w00. We will show by induction on max.m;n/ thatmD n
and �i D 'i for i D 1; : : : ; m. If max.m; n/ D 1, then m D n D 1. Because �f 6D �g ,
we have f j 6D gj , and hence �1 D '1 as words in f j and gj . For the inductive step,
consider an identity 'm ı � � � ı '1 D �n ı � � � ı �1. If '1 D �1, we can cancel from the
right because f and g are surjective and then apply the inductive hypothesis. If not, then
w ¤ w0 by (i).

3.2. Height functions

We will prove Theorem 1.3 in this section. The plan is to let � be a height function,
either a Weil height h or a Moriwaki height h, use Proposition 3.1, and use the fact that
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certain canonical heights will be zero at exactly the preperiodic points. There may be
other sorts of functions where Proposition 3.1 may be used though. For example, if we
let � W C ! R be defined by �.z/ D log max.jzj; 0/, and if f; g 2 CŒx� are polynomials
of degree greater than 1, we see that �f and �g vanish precisely on the filled Julia sets
of f and g respectively. Since the Julia set is simply the boundary of the filled Julia set,
Proposition 3.1 implies that if the Julia sets of f and g are not equal, then for all large
enough j , the semigroup hf j ; gj i is free on two generators.

For a more general exposition of the Weil height functions, see [6,40]. The Moriwaki
height functions we use were introduced in [52, 53].

3.2.1. Basics of height functions. Let K be a finitely generated field. If K is not finite,
then there is a set MK of nontrivial absolute values j � jv on K along with positive inte-
gers ev such that the product formula Y

v2MK

jzjev
v D 1

holds for all nonzero z 2 K.
WhenK is a number field, these are simply the usual archimedean and p-adic absolute

values, suitably normalized. When K is a function field over a field k, we choose the
absolute values from prime divisors on a variety V over k, such that the residue fields are

� finite extensions of Q when we are in characteristic 0,

� finite extensions of Fp when we are in characteristic p.

In either case, see [6, Section 1.4] for more details and [6, Sections 1.3.6 and 1.3.12] for
the issue of normalization. When K is a function field over k, the set of z 2 K such that
jzjv D 1 for all v 2MK is called the field of constants.

One can extend the j � jv to xK. We present here the extension of j � jv to Ksep, fol-
lowing [6]. We consider a finite-dimensional separable extension field L of K and a
place w of L with w j v. For any z 2 L, we define kzkw WD jNLw=Kv

.z/jv , jzjw WD
jNLw=Kv

.z/j1=ŒLWK�; and jzjv WD
Q
wjv jzjw :One can check the compatibility by the prop-

erties of the norm and the local degree. For the general case, see [6, Sections 1.3.6 and
1.3.12]. Thus we obtain a Weil height function on Pn. xK/ by defining

hPn.z0 W � � � W zn/ D
1

m

X
v2MK

mX
iD1

log max.jzŒi�0 jv; : : : ; jz
Œi�
n jv/;

where .zŒi�0 W � � � W z
Œi�
n /, i D 1; : : : ; m, is the set of Galois conjugates of .z0 W � � � W zn/

in xK over K (note that while this does depend on our choice of coordinates, a change
of coordinates will only change the definition by a bounded constant – see, for example,
[6, Lemma 1.5.3] for details).

When L is an ample line bundle on V , we can associate a height function h to L by
letting � W V ! Pn be an embedding such that ��OPn.1/ D L˝r (such � and r exist when
L is ample) and taking hL.z/ D

1
r
hPn.�.z//.
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3.2.2. The Northcott property and the Moriwaki heights.

Theorem 3.3 (Northcott, [55], [1, Section 1.2]). Let K be a number field or finitely gen-
erated function field in characteristic p with a finite field of constants. Let hL be as above.
For any constants A and B there are at most finitely many z 2 V. xK/ such that hL.z/� A

and ŒK.z/ W K� � B .

Northcott’s theorem does not hold over function fields of characteristic 0 for Weil
heights. However, Moriwaki [52,53] has used metrics on line bundles and Arakelov inter-
section theory to associate a height function hL to an ample line bundle L such that a
form of Northcott’s theorem does hold. We have the following (see [52, 53]).

Theorem 3.4 (Moriwaki). For any constants A and B there are at most finitely many
z 2 V. xK/ such that hL.z/ � A and ŒK.z/ W K� � B .

3.2.3. Canonical heights and polarized dynamical systems. Suppose V is a projective
variety defined over K, and L is an ample line bundle on V with associated height func-
tion hL. Suppose f is an endomorphism of V defined over K such that f �L Š L˝d ,
where d > 1, we have

jhL.f .z// � dhL.z/j < C (3.9)

for all z 2 V. xK/ and some C D C.f / > 0. We can attach a canonical height to f as in
(3.3) by letting hf .z/ D limn!1 hL.f

n.z//=dn. See [9, Theorem 1.1] for more details
and the uniqueness of the canonical height.

The same construction works for Moriwaki heights (see [69, Section 2.4]) and pro-
vides a canonical height hf . Note that hf .f .z// D dhL.z/ by construction, so if z 2
Prep.f /, then clearly hf .z/ D 0.

Corollary 3.5 (Northcott–Moriwaki). We have hf .z/ D 0 .resp. hf .z/ D 0/ if and only
if z 2 Prep.f /.

3.3. Proof of Theorem 1.3

We use Weil heights to treat the case where the fieldK is a number field or a function field
of characteristic p. For function fields of characteristic 0, we use Moriwaki heights. Note
that we could also treat the case of endomorphisms of P1 over function fields of char-
acteristic 0 using Weil heights rather than Moriwaki heights, since Baker [1] has proved
a dynamical form of Northcott’s theorem for Weil heights in the case of endomorphisms
of P1, assuming a nonisotriviality condition. This may be possible in higher dimensions,
too, as there are more general dynamical Northcott-type results for the nonisotrivial maps
due to Chatzidakis and Hrushovski [13,14] (see also [20]), but the nonisotriviality condi-
tions there are a good deal more complicated.

Proof of Theorem 1.3. If K is a number field or a function field with a finite field of
constants, set � D hL. For other function fields set � D hL. Equation (3.9) shows that
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we are in the setting of Section 3.1: �f and �g correspond to the canonical heights. By
Theorem 3.3 (resp. Theorem 3.4) and Corollary 3.5, Prep.f / 6D Prep.g/ implies �f ¤ �g .
So, the conclusion follows from Proposition 3.1.

The following corollary answers a conjecture posed by Cabrera and Makienko [8].

Corollary 3.6. Let f; g 2 C.x/ both have degree greater than 1. Let �f and �g be the
measures of maximal entropy for f and g, respectively. If �f 6D �g , then there is a j
such that hf j ; gj i is a free semigroup on two generators.

Proof. Theorem 1.5 of [69] (see also [11]) states that if Prep.f / \ Prep.g/ is infinite for
f; g 2 C.x/, then �f D �g .

Remark 3.7. In fact, Theorem 1.5 of [69] implies that if Prep.f / D Prep.g/ for f and
g polarizable endomorphisms of a projective variety defined over a finitely generated
field K, then the canonical measures associated to f and g are equal at every place of K.
However, equality of these measures at a single place is a much weaker condition than
equality of the set of preperiodic points. For example, polarized morphisms having good
reduction at a nonarchimedean place v will have the same canonical measure at v. Even
over C, one can have �f D �g but Prep.f / 6D Prep.g/: take f .x/D x2 and g.x/D ax2

where jaj D 1 but a is not a root of unity, for example. We need �f D �g over all places
to conclude that Prep.f /D Prep.g/. On the other hand, equality of measures of maximal
entropy for nonspecial rational functions of degree greater than 1 over C has powerful
consequences, due to work of Levin [41] and Levin–Przytycki [42]; the results of Ye [67]
that we use in the next section rely on the results of Levin and Levin–Przytycki.

3.4. Some counterexamples

Propositions 4.8 and 4.10 provide converses to Theorem 1.3 for endomorphisms of P1 in
characteristic 0. One might ask more generally if it is true that when f; g W V ! V are
morphisms polarized by the same line bundle, the equality Prep.f /D Prep.g/must imply
that hf; gi cannot contain a nonabelian free semigroup. It turns out that this is not true
for polarized morphisms of varieties of dimension greater than one in characteristic 0, as
Example 3.8 shows. In characteristic p, it is not even true for polynomials, as Example 3.9
shows.

Example 3.8. Let A be an abelian variety defined over a number field such that
End0.A/ ˝Q R is the Hamiltonian quaternion algebra H. (That such abelian varieties
exist is well-known; see [43, Theorem B.33], for example.) By [21, Theorem 2], 1C 2i
and 1C 2j generate a free multiplicative subgroup of H of rank 2. Let � be the Rosati
involution associated to the theta divisor ‚ (see [47, Section 17] for more details). We
also have ��� D Œ1 � 2i�Œ1C 2i� D Œ5� and  � D Œ1 � 2j �Œ1C 2j � D Œ5�. Therefore
� and  are both polarized by ‚ on A by [59, Proposition 3.1]. Since � and  both
commute with Œm� for any m, we must have Prep.�/ D Prep. / D Ators.
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Example 3.9. Let K D Fp and let d; e > 1 be integers such that p − de. If f .x/ D xd

and g 2 FpŒx� is any polynomial of degree e that is not a monomial, then hf; gi is a free
semigroup on two generators by [31, Lemma 3.1]. Note that Prep.f / D Prep.g/ D Fp
since f and g are both defined over Fp .

4. Proofs of Theorems 1.1 and 1.2

Throughout this section, � will denote a finitely generated semigroup of endomorphisms
of P1C , and �C will denote the set of elements in � of degree greater than 1.

We will now prove Theorems 1.1 and 1.2. We will do so by proving results on the
growth of finitely generated semigroups � such that Prep.f / D Prep.g/ for all f; g 2 �

with degrees greater than 1; these are Propositions 4.8 and 4.10. We then combine these
with Theorem 1.3.

Lemma 4.1. Suppose that S is a finite set of maps from a set X to itself, and f is a map
that sends all of X to a single element of X . Let S1 D S [ ¹f º. Then jS�nj � jS�n1 j �
2jS�nj.

Proof. It will suffice to show that the number of words in S�n1 containing f is bounded
by jS�nj. Let w 2 S�n1 contain f . We write w D w1f w2 where w1 does not contain
f (w1 and w2 may be empty). Let x0 be the element of X such that f .x/ D x0 for all
x 2X . Then w.x/D w1.x0/ for all x 2X . Since w1 2 S�n, there are at most jS�nj such
w1.x0/, and our proof is done.

Remark 4.2. While Lemma 4.1 allows us to treat semigroups of rational functions
containing constant maps, we cannot expect to obtain results in higher dimensions for
semigroups containing morphisms that are neither constant nor finite, because of the
examples in [56].

Lemma 4.3. Let f 2 C.x/ be a nonspecial rational function of degree greater than 1.
Then the set of � 2 C.x/ of degree 1 such that �f D ��f is finite.

Proof. Set � D �f D �g . Its support J is the Julia set of f and g. Then �.J/ D J.
Recall that by [41, Definition 1], the rational function � W P1.C/! P1.C/ is a symmetry
of J when f is nonspecial if the following condition is satisfied: x 2 J if and only if
�.x/ 2 J. Thus, � is a symmetry of J. Since f is nonspecial the set of such symmetries
is finite by [41, Theorem 1].

We will use the following result due to Ye [67]. Since his argument appears with
slightly different notation as an implication in the proof of [67, Theorem 1.5, p. 393],
rather than as a lemma or theorem, we provide here a proof using the same argument.
Recall that if f W P1! P1 is an endomorphism of P1 and x0 is a fixed point, one defines
the multiplier of f at x0 to be the complex number � such that the tangent map Dfx0

is
the multiplication by �. If x0 ¤1, then � is just f 0.x0/.
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Lemma 4.4. Let f; g 2 C.x/ be endomorphisms of P1 over the complex numbers such
that �f D �g and degf D degg > 1. Suppose that there is an x0 in Jf D Jg such that
f .x0/ D g.x0/ D x0 and the multipliers satisfy f 0.x0/ D g0.x0/. Then f D g.

Proof. We may assume x0 ¤ 1 (otherwise, conjugate by z 7! 1=z). Set � D �f D �g
and J D Jf D Jg . Since x0 is fixed by f and g and is in the Julia set of f and g, we
must have f 0.x0/ D g0.x0/ 6D 0, so f and g are both one-one in a neighborhood of x0.
Hence, there is a neighborhood W of x0 and univalent functions Qg; Qf on a neighborhood
of x0 containing W such that Qg ı g, g ı Qg, Qf ı f , and f ı Qf are all the identity on W .
There is then an open disc U around x0 contained in W such that f .U /, g.U /, Qg.U /,
and Qf .U / are all contained inW . Let R1 D f ı Qg and let R2 D g ı Qf ; then R1 ıR2 and
R2 ıR1 are both the identity onU . Then for any open subset V ofU , we have�. Qg.V //D
�.V /=degg, since g is one-one on Qg.V /, and �.f . Qg.V /// D .deg f /�. Qg.V //, since f
is one-one on Qg.V /. Since degf D degg, we therefore have

�.R1.V // D �.V /: (4.1)

Likewise, we have
�.R2.V // D �.V /: (4.2)

Suppose that R1 is not the identity on any neighborhood of x0. Then, since R1 has
multiplier equaling 1 at x0, it determines attracting and repelling petals near x0; note
that a repelling petal for R1 is an attracting petal for R2 (see [50, Definition 10.6]). The
union of the repelling and attracting petals for R1 contains a punctured disc D around
x0 [50, Theorem 10.7]. Furthermore, for any attracting petal P for R1, there is a choice
of coordinates such that jR1.z/ � x0j < jz � x0j for all z 2 P , and likewise for any
attracting petal of R2 by [50, Theorem 10.9] (see also [3, Theorems 6.5.4 and 6.5.7]).
Hence there is an open subset X of U \D [ ¹x0º such that Ri .X \ P / � X \ P for
any attracting petal P of Ri , for i D 1; 2. Let Y be an open subset of P \ X , where
P is an attracting petal for Ri . We may apply (4.1) and (4.2) to any Rni .Y / because
Rni .Y /� U for any n. Since Rni converges uniformly to P ! x0 on P (see [50, p. 108]),
we must have limn!1 �.R

n
i .Y // D 0, and thus �.Y / D 0. Hence �.P n ¹x0º/ D 0 at

each petal, a contradiction because a Julia set has no isolated point. Therefore, R1 must
be the identity.

Lemma 4.5. Let f; g 2 C.x/ be endomorphisms of P1 over the complex numbers such
that Prep.f / D Prep.g/ and deg f D deg g > 1. Then Prep.w/ D Prep.f / D Prep.g/
for all w 2 hf; gi.

Proof. Let Prep D Prep.f / D Prep.g/. Then f .Prep/ � Prep and g.Prep/ � Prep. Let
w 2 hf; gi. Then we have w.Prep/ � Prep. Since Prep contains at most finitely many
points defined over any finitely generated field by Theorems 3.3 and 3.4, it follows that
for any z 2 Prep, the orbit of z is finite under w, so Prep � Prep.w/. Since Prep.f /
and Prep.g/ are infinite, it follows from [2, Theorem 1.2] that Prep.w/ D Prep.f / D
Prep.g/.
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Lemma 4.6. Let f; g 2 C.x/ be nonspecial rational functions of degree greater than 1
such that Prep.f / D Prep.g/ and degf D degg. Let J denote Jf D Jg . Suppose there
is a periodic cycle ¹x1; : : : ; xrº for f and g in J such that f .xi / D g.xi / D xiC1 for
i D 1; : : : ; r � 1 and f .xr / D g.xr / D x1. Then we have the following:

(1) f 0.x1/=g0.x1/ is a root of unity.

(2) If f 0.x1/ D g0.x1/, then f D g.

Proof. Let �i D f 0.xi / and let �i D g0.xi / for i D 1; : : : ; r . Note that none of the �i and �i
are zero since the xi are in the Julia set for f and g. Now letw1D fgr�1 and letw2D gr .
Then w1.x2/ D w2.x2/ D x2. Furthermore, Prep.w1/ D Prep.w2/ by Lemma 4.5. We
have

w01.x2/ D �1

rY
iD2

�i (4.3)

and

w02.x2/ D �1

rY
iD2

�i (4.4)

by the chain rule.
Since Prep.w1/ D Prep.w2/ D Prep.f / D Prep.g/ and J contains a point that is

periodic for both w1 and w2, it follows from [67, Theorem 1.5] that there is an n such that
wn1 D w

n
2 for the iterates wn1 and wn2 . By (4.3) and (4.4), .�1=�1/n D 1, so f 0.x1/=g0.x1/

is a root of unity, as desired. Furthermore, if f 0.x1/ D g0.x1/, then (4.3) and (4.4) imply
that w01.x2/D w

0
2.x2/, which means that w1 D w2, by Lemma 4.4. Now, if fgr�1 D gr ,

then f D g by right cancellation.

Lemma 4.7. Let � be a finitely generated semigroup of endomorphisms of P1C . Suppose
that �C contains a nonspecial endomorphism f and that Prep.g/ D Prep.f / for all
g 2 �C. Then there is a constant N such that for all d � 1, the number of elements of �

of degree d is less than or equal to N .

Proof. For all g 2 � , Prep.gf / D Prep.f /. Thus, by Lemma 4.3, the set ¹� 2 � W

deg.�/ D 1º is finite.
Now, let J be the Julia set, and let Prep.�C/ be the set of preperiodic points of the ele-

ments of �C. Then g.Prep.�C//D Prep.�C/ for all g 2 �C. Choose y0 2C \ Prep.�C/.
LetK be a finitely generated field over which y0 and every element of � are defined. Since
Prep.g/ \ K is finite for each g of degree greater than 1 (by Theorems 3.3 and 3.4), it
follows that the orbit O of y0 under �C is finite. After change of coordinates, we may
assume that O does not contain the point at infinity.

Let n be the number of roots of unity in K. Let g 2 �C have degree d . We will
show that there are at most n elements h 2 �C such that deg h D d and gjO D hjO .
Let ¹x1; : : : ; xrº be a periodic cycle for g in O (note that there must be one since O

is finite) such that g.xi / D xiC1 for i D 1; : : : ; r � 1 and g.xr / D x1. Then for any
h 2 � such that deg h D d and hjO D gjO , we may apply Lemma 4.6 to conclude that
f 0.x1/=g

0.x1/ is a root of unity in K. Furthermore, given any h1; h2 2 � of degree d
such that h1jO D h2jO D gjO , we have h1 D h2 whenever h01.x1/ D h

0
2.x1/. Thus, the
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number of h 2 � such that degh D d and hjO D f jO is bounded by the number of roots
of unity inK, which is n. Since O is finite, there are jOjjOj maps from O to itself, so there
are at most njOjjOj elements of � of degree d for any d > 1.

Proposition 4.8. Suppose that � is a finitely generated semigroup of endomorphisms
of P1C such that every element of �C is nonspecial and has the same set of preperiodic
points. Then

(i) there is some c � 2 such that every element of � has degree cn for some n � 0;

(ii) � has linear growth.

Proof. Since �f D �g for any f; g 2 �C (by [69, Theorem 1.5], as in Corollary 3.6),
there are m and n such that .deg f /m D .deg g/n (by [42, Theorem A]). Since the set D

of possible degrees of elements in �C is a finitely generated subsemigroup of the posi-
tive natural numbers under multiplication, it follows that D is contained in a semigroup
generated by a single element, and (i) follows.

For (ii), it suffices to treat the case where every element of � is nonconstant, by
Lemma 4.1. Let f1; : : : ; fs be generators for � . Then for each i , there is some c � 2
such that deg.fi / D cmi , by the previous paragraph, since all fi 2 �C have the same set
of preperiodic points. LetM Dmax.m1; : : : ;ms/. Now, consider the set S�n of elements
in � formed by taking a words of length at most n in ¹f1; : : : ; fsº. These elements all have
degrees in ¹1; c; c2; : : : ; cMnº, so there is a natural number N such that jS�nj � MNn
for all n, by Lemma 4.7. Clearly, jS�nj � nC 1 since the elements id; f; f 2; : : : ; f n are
pairwise distinct for f 2 �C, and so we see that � has linear growth as claimed.

Lemma 4.9. Let E be an elliptic curve defined over C and let � W E ! P1 be a noncon-
stant morphism. Suppose that f W P1 ! P1 is a morphism of degree greater than 1 such
that there is a nonconstant morphism �f WE!E with f ı � D � ı �f .i.e., f is a Lattès
map associated to � and E/. Then for any g W P1 ! P1 of degree greater than 1 such
that Prep.g/ D Prep.f /, there is a nonconstant �g W E ! E such that � ı �g D g ı � .
Furthermore, �g can be written as mg C tg , where mg 2 End.E/ and tg is translation
by a torsion element of E.

Proof. Since Prep.g/ D Prep.f / implies that g.Prep.f // � Prep.f /, we may apply
[34, Theorem 27]. The last two lines of the proof of this theorem state that there
is an automorphism � W E ! E and a nonconstant morphism  W E ! E such that
.� ı �/ ı D g ı .� ı �/. Letting �g D � ı ı ��1 gives � ı �g ı � D g ı� ı � , which
implies that � ı �g D g ı � , as desired. The fact that �g can be written asmg C tg , where
mg 2 End.E/ and tg is translation by a torsion element of E, follows from [34, Theo-
rem 30] (see also [49, Theorem 3.1]).

Proposition 4.10. Let � be a finitely generated semigroup of endomorphisms of P1

over C. Suppose that for any f; g 2 �C, we have Prep.f / D Prep.g/. Then � has poly-
nomially bounded growth, and if �C contains at least one nonspecial rational function,
then � has linear growth.
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Proof. Let K be a finitely generated field such that every element of � is defined over K.
Again, we may assume that every element of � is nonconstant, by Lemma 4.1. Because
of Proposition 4.8, we need only treat the cases where every element of � is linear or
�C contains a special rational function. In the cases where �C contains a special rational
function, we will show both that �C has polynomially bounded growth and that every ele-
ment of �C is special. It follows from this that if �C contains at least one nonexceptional
rational function, then � has linear growth by Proposition 4.8.

Case I: Every element of � is linear. In this case, the result is contained in [57, Theo-
rem 1.5].

Case II: Some element of �C is conjugate to xm. There are f 2 �C and � 2 PGL2.C/
such that ��1f� D xm for some integer m with jmj � 2. Then we may assume that
f .x/ D xm is in �C. Then, for any g 2 �C, the Julia set Jg is the unit circle, so we
have g.x/ D axd for some d D d.g/ 2 Z and some a D a.g/ of modulus 1 by [3,
Theorem 1.3.1]. Since Prep.g/ consists of the roots of unity along with 0 and1, we see
that a must be a root of unity. All the elements of � are defined over K, and there are at
most N roots in unity inK for some N � 1. Thus, there are at most N elements in �C of
degree d for each d � 2. Every element � in � of degree 1 has the form �.x/D ax˙1 for
some root of unity a D a.�/, so there are finitely many elements in � of degree 1. Thus,
if S is a finite set that generates � , then jS�nj is bounded above byO.ns/ where s D jS j.

Case III: Some element of �C is conjugate to a Chebyshev polynomial. Let f 2 �C

be conjugate to ˙Tm where Tm is the Chebyshev polynomial of degree d with m � 2.
Thus, after change of coordinates we may assume that f D ˙Tm. Let g 2 �C. Then
Jg D Jf D Œ�2; 2�, so by [3, Theorem 1.4.1], we have g D ˙Td for some d . Let S be
a finite set that generates � . Then the number of possible degrees for elements of S�n is
bounded by O.ns/ where s D jS j, so the number of elements of S�n of degree greater
than 1 is bounded by O.ns/ since there are at most two elements in �C having the same
degree by the above. Since every element of degree 1 in � sends Œ�2; 2� to itself, there are
at most two elements of degree 1 in � . Hence � has polynomially bounded growth.

Case IV: Some element of �C is Lattès. Suppose that f 2 �C is Lattès; then there are
nonconstant �f W E ! E and � W E ! P1 with the property that f ı � D � ı �f . Let
End.E/ be the ring of endomorphisms of the algebraic curve E that preserve the group
law. After passing to a finite extension, we may assume that � is defined over K (which
implies that each �f is defined over K) and that every element of End.E/ is defined
over K. Since Prep.g/ D Prep.f / for every g 2 �C, Lemma 4.9 implies that for each
g 2 �C, there is a nonconstant �g W E! E such that g ı � D � ı �g . Each �g is defined
overK and �g Dmg C tg , wheremg 2 End.E/ and tg is a translation by a torsion point.
Because E has at most finitely many torsion points defined over K by [54, Chapter II,
Theorem 3], only finitely many �g of any given degree are possible. Let �1 denote the
set of elements of degree 1 in � . Since deg �g D degg for all � 2 �1, the set �1 is finite.
Let T be a finite set of generators for � . Enlarging T to another finite set if necessary,
we may assume that T contains all �q� where �; � 2 �1 and q 2 �C \ T . Since the
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mg commute, the number of words in mg C tg for g 2 T of length n or less is bounded
above by O.njT j/. Thus the number of words of length n in elements of T is bounded by
O.njT j/ as well. Now, let S D T [ �1. Then S�n � T �n [ �1, so jS�nj is bounded above
byO.njT j/ as well (since �1 is finite), and hence � has polynomially bounded growth.

Remark 4.11. The proof of Proposition 4.10 shows that for a finitely generated field K
and any rational function f 2 K.x/ that is not a Lattès map, there is a constant N.f;K/
such that for any d , the set of endomorphisms g of P1 of degree d such that Prep.g/ D
Prep.f / has at most N.f; K/ elements. This is clearly not true if f is a Lattès map
associated to an ellipticE with complex multiplication. Indeed, in that case,A WD End.E/
is an order in a quadratic number field M . Let � 2 A be a lift of f . Then deg.f / D
jNM=Q.�/j. Therefore, by [64, Proposition 6.37]), we have

#¹g 2 K.x/ j degg D degf º � #¹ 2 A j jNM=Q. /j D degf º=6;

which depends also on M , and hence cannot be bounded by a constant of the type
N.f;K/.

Proof of Theorem 1.2. By Theorem 1.3, the semigroup � contains a free subsemigroup
on two elements unless Prep.f / D Prep.g/ for all f; g 2 �C, in which case � has linear
growth by Proposition 4.10.

Proof of Theorem 1.1. As above, the semigroup � contains a free subsemigroup on two
elements unless Prep.f / D Prep.g/ for all f; g 2 �C, by Theorem 1.3, in which case �

has polynomially bounded growth by Proposition 4.10.

Corollary 4.12. Let f; g 2 C.x/ be two endomorphisms of P1C , each having degree
greater than 1. Then the following are equivalent:

(i) Prep.f / \ Prep.g/ is infinite;

(ii) Prep.f / D Prep.g/;

(iii) for any w1; w2 2 hf; gi, we have Prep.w1/ D Prep.w2/;

(iv) hf; gi has polynomial growth;

(v) hf; gi does not contain a nonabelian free semigroup;

(vi) for any ` > 0, the semigroup hf `; g`i is not free on two generators.

Proof. It is clear that (iii) implies (ii), that (iv) implies (v), and that (v) implies (vi).
Lemma 4.5 shows that (ii) implies (iii). Theorem 1.2 of [2] (see also [11, 51, 68, 69])
states that (i) and (ii) are equivalent. Proposition 4.10 shows that (iii) implies (iv). By
Theorem 1.3, we see that (vi) implies (iii).

The techniques used to prove Theorems 1.1 and 1.2 do not extend in an obvious way
to higher dimensions. We note, however, that for an abelian variety A one can use the
fact that A.K/ is finitely generated when K is finitely generated (see [54]) along with
[57, Theorem 1.5] to prove the following without difficulty.
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Theorem 4.13. Let A be an abelian variety. Let � be a finitely generated semigroup of
finite morphisms from A to itself. Then either � has polynomially bounded growth or �

contains a nonabelian free semigroup.

Corollary 4.14. Let C be an irreducible curve over C and let � be a finitely generated
semigroup of morphisms from C to itself. Then either � has polynomially bounded growth
or � contains a nonabelian free semigroup.

Proof. By Lemma 4.1, we may assume that every element of � is nonconstant. Any mor-
phism f W C ! C extends to a morphism Qf W C 0 ! C 0 for C 0 the normalization of the
projective closure of C . Hence we may assume that C is projective and nonsingular. If C
has genus greater than 1, then � must be finite (see [25, Example IV.5.2], for instance),
so we may assume that C is isomorphic either to P1 or to an elliptic curve. Applying
Theorems 1.1 and 4.13 then gives the desired conclusion, since every nonconstant map
on an irreducible curve is finite.

5. Further directions

Let K be a field of arbitrary characteristic.

Question 5.1. Are there endomorphisms f; g 2 K.x/ of P1 over K, each of degree
greater than 1, such that Prep.f / 6D Prep.g/ and hf; gi is not a free semigroup on two
generators?

One might also ask for something weaker, namely that there is a j depending only on
K such that hf j ; gj i must be free whenever Prep.f / 6D Prep.g/. This might be thought
of as analogous to the uniform version of the Tits alternative proved by Breuillard and
Gelander [7]. Recent work of DeMarco, Krieger, and Ye [15] suggests it may be possible
to do something along these lines using Arakelov–Zhang intersections of adelically-
metrized line bundles on P1 (see also [19, 60]).

Question 5.2. Let V be a projective variety, let L be an ample line bundle on V , and
let � be a finitely generated semigroup of morphisms f that are polarized by L. Is it
true that � must either have polynomially bounded growth or contain a nonabelian free
semigroup?

It might also be natural to ask for a version of the Tits alternative for semigroups
of dominant endomorphisms that says something about the structure of the semigroups
rather than the growth. For example, one might ask if it is true that any finitely generated
semigroup of dominant endomorphisms must contain either a nilpotent subsemigroup of
finite index or a free subsemigroup on two generators (there is a notion of nilpotence
for semigroups due to Mal’tsev [45]). The techniques of this paper can be adapted to
show that if � is a finitely generated semigroup of endomorphisms of P1 such that �C is
nonempty, then � contains either an abelian subsemigroup of finite index or a free semi-
group on two generators (see Remark 4.11). In higher dimensions, it seems likely that
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one might also have to allow for the more general possibility of nilpotent subsemigroups
of finite index. We note that Grigorchuk [22] has shown that finitely generated cancella-
tive semigroups have polynomially bounded growth if and only if they have a group of
left quotients with a nilpotent subgroup of finite index; this extends well-known work of
Gromov [23] from the group setting to the cancellative semigroup setting.
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