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Abstract. In a combined mean-field and semiclassical regime, we consider the time evolution of
N fermions interacting through singular pair interaction potentials of the form +|x — y|™%, which
includes the Coulomb and gravitational interactions. We prove that the many-body dynamics of
mixed states are well approximated by solutions of the Hartree—Fock and Vlasov equations in terms
of Schatten norms. The errors in these approximations are expressed in terms of the expected num-
ber of particles, N, and the Planck constant, /. For cases where a € (0, 1/2), we obtain local-in-time
results when N~1/2 « h < N71/3, Notably, this leads to the derivation of the Vlasov equation
with singular potentials. For cases where a € [1/2, 1], our results hold only within a small time scale
or require an N -dependent cut-off. A fundamental ingredient in our analysis is the propagation of
regularity for solutions to the Hartree—Fock equation uniformly in the Planck constant, which holds
fora € (0, 1].

Keywords: mean-field limit, semiclassical limit, Hartree—Fock equation, many-body Schrodinger
equation, Vlasov equation, singular interaction.
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Part I
Introduction

1. Background

1.1. The equations

We consider a system of N identical fermions with unit mass interacting through a pair
potential K(x — y). The state of the system at time ¢ is described by an N-body anti-
symmetric wave function ¥y = ¥ (¢, X1, ..., xy) belonging to the Hilbert space §) =
L?(R3N , C) of square-integrable complex-valued functions, with evolution given by the
N -body Schrodinger equation

N
h2
indiyn =Y ——Agyn+ Y KCwe—x)yn, 1)

k=1 1<k<I<N
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where / is the Planck constant and # = % is the reduced Planck constant. In applica-

tions, one is typically interested in systems where the number of particles N is large,
thus making the microscopic description given by the solution to equation (1) unsuitable
for studies. In fact, the high-dimensionality of the problem presents a formidable barrier
for understanding qualitative behaviors of the many-body dynamics from the wave func-
tion at the microscopic scale. Instead, one could consider the problem at a macroscopic
scale and look at the classical phase space distributions of particles f = f (¢, x, £), where
(x,£) € R3 x R3 are the spatial and momentum variables. In particular, we consider scales
where the dynamics of a large number of interacting particles can be approximated by the
Vlasov equation

0 f +& - Vif +Ef-Vef =0, (2)

where Ey = —V V75 is the force field corresponding to the mean-field potential

V) = (K xp) = [ Kee=pr()dy

and py is the spatial distribution of particles defined by

o) = [ s ®

To explore the connection between the microscopic and macroscopic scales of the
system, we consider an intermediate mean-field quantum equation. Roughly speaking, we
approximate the many-body effects exerted by the system on each particle by an effective
interaction potential obtained by averaging the pair potential K with the underlying spa-
tial density of the system. To draw a parallel with classical mechanics, one could consider
the mean-field equation called the Hartree equation which is the quantum analogue of the
Vlasov equation. More precisely, let us take a positive self-adjoint trace class operator
p acting on L2(R3, C), which can be seen as a positive linear convex combination of
projections onto one-particle wave functions. We use the same notation to denote both
the operator p and its integral kernel p(x, y). Here, p plays the role of the quantum
one-particle phase space distribution of particles. Moreover, the effective one-particle
Hamiltonian is given by H = —%A + Vp, called the Hartree Hamiltonian, where V),
is the mean-field potential V, = K * p(x) and p(x) is the quantum spatial distribution of
particles defined by

p(x) = diag(p)(x) := h*p(x, x). 4)

With these notations, the Hartree equation reads
ihdip = [H, pl,

where [A, B] := AB — BA is the commutator of the operators A and B. If the particles
obey the Fermi statistics, a more accurate description of their evolution is given by the
Hartree—Fock equation

h2
ihd;p = [Hp.pl. H, =—7A+V,,—h3xp, ©)
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where the exchange term X, is the operator with integral kernel

Xp(x,y) = K(x —y)p(x,y). (6)

1.2. Mean-field and semiclassical scalings

Our goal in this paper is to study simultaneously the mean-field limit, corresponding to the
approximations made when the number N of particles is large and each pair interaction is
weak, and the semiclassical limit, corresponding to a change of scales where the Planck
constant & becomes negligible. Let us elaborate more on the two scalings.

To understand the dynamics generated by the many-body Schrodinger equation (1) at
different scales, it is convenient to recast the equation in its dimensionless form. Suppose
L is some characteristic length of the problem and T is some characteristic time scale.
Then we define the dimensionless variables

¥:=x/L and T:=1t/T
We also recast the interaction potential in its dimensionless form via the change of scale

~ NT? NT?
K(X) = mL2 K(X) = WK(LX),
where m denotes the mass which we set to 1. If we define the rescaled dimensionless

parameter

~ hT
h= ——
mL?
and the new rescaled wave function

UN@ X1, 5N) = LY 2yn . xq, . xw),
then multiplying (1) by mT—L22 yields the dimensionless equation
-~ - N o720 1 ~ -
ihdpyn =)~ Bg v+ Y K@ -

2
k=1 1<k<I<N

Moreover, in the case of a homogeneous interaction of the form K(x) = «|x|™ for some
parameter k € R, this gives K(X) = &|X|™ where ¥ = kNT2/(mL?*%). From now
on, we consider the case of space-time scales where i is of order 1 and we simply set
K = 1. This provides an N ! prefactor in front of the interaction potential which is usually
referred to as the mean-field scaling. In this class of scales, the dimensionless parameter
% is of the order L?/(kNT). Furthermore, we shall refer to the scale where % becomes
negligible as the semiclassical regime. For convenience, let us express L and T in terms
of the parameters N, k and %:

(o) TR ()
L= _ r=" _ . %)
mi N h2 h \mkN#H2

From now on, we impose the condition N h? <k 'to guarantee that L >> 1. In particular,
we could set k = N1,
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Lower densities of 111t Higher densities of bosons

bosons or fermions  ~_ . . .
“\_ Maximal density of fermions

N1somh=10D

Schrodinger > Hartree(—Fock)
P h—0
~ (N = o0)
Newton > Vlasov

N1s0kh=0

Fig. 1. The different scalings for the combined mean-field and semiclassical limits. The dashed
(red) curve corresponds to the equation h = N ~1/2 and the continuous (blue) curvetoh = N —1/3,

While % and N can a priori be considered as independent parameters, certain con-
straints arise when dealing with fermions. In Section 1.4, it is explained that the Pauli
principle imposes a limitation on N /A3, which must remain bounded to ensure conver-
gence of the one-particle density operator to a nonzero function on the phase space. This
is in contrast to bosonic systems, which are systems of particles that have permutation
symmetry as opposed to the anti-permutation symmetry of fermions, where the Pauli
principle does not apply.

In addition, observe that the particle density, defined as the number of particles per
unit of characteristic volume, scales as NL ™3, where N is the total number of particles.
By using the scaling given by (7), we can express the density as

N/L3? ~ N¥ah7"ax>2a.

This explains why the region of Figure 1 closer to the Hartree—Fock equation corner
corresponds to relatively high densities, while the region below corresponds to relatively
low densities. Moreover, note that in this work, we consider % satisfying the constraint
N~Y2 « h < CN~'/3, which corresponds to the dark shaded region in the figure. It
should be noted that the constraint N ~1/2 « h, meaning N h2 — o0, could be technical
and it arises in the proof of the main result (see Proposition 10.1).

With a little abuse of notation and language, we shall drop the tildes and study the
equation

N

. K2 1
ihdyn = Hyyy, Hy = ;—gmk + 5 Kk;w K(xx —x1),  (8)



J. J. Chong, L. Lafleche, C. Saffirio 4928

where N is large and # is small, and with
K(x) = «/|x|%, )

where ¥ € R is of order 1 and a € (0, 1].

More precisely, we study the time evolution of N -body fermionic mixed states, which
are self-adjoint, positive trace class operators of rank larger than 1. By the spectral theo-
rem, they can be expressed as

o0
py =Y A 1) (| with A; >0, (10)
j=1
where {{/;}jen C H®¥ is an orthonormal set of anti-symmetric wave functions. The oper-
ator p  is called a pure state provided it is a rank one projection, thatis, py = |[¥n ) (VN |-
The time evolution equation for density operators is given by the Liouville—von Neumann
equation
ihdipy = [Hn.py] (11)
where the Hamiltonian Hy is given in (8), which is the quantum analogue of the classical
Liouville equation, equivalent to the N-body Newton laws.

1.3. State of the art

Both the problems of the mean-field limits and the semiclassical limits are well-known
questions that are largely addressed in the literature. However, the derivation of the
Vlasov—Poisson equation, i.e. the case of the Coulomb and gravitational potentials,
remains an open problem, both in the case of quantum mechanics and in the case of
classical Newton laws.

1.3.1. The classical mean-field limit. In the context of classical mechanics, the problem
of justifying the Vlasov equation (2) starting from the dynamics of N -particles obeying
Newton’s laws was first considered for twice differentiable potentials in the pioneering
works by Neunzert and Wick [58], Braun and Hepp [19], and then by Dobrushin [27] using
the Wasserstein-Monge—Kantorovich distance (see also [74] for an introduction to the
topic). The class of potentials was then extended to less regular potentials but still locally
Holder continuous by Hauray and Jabin [42,43], which was later improved by Jabin and
Wang using entropy methods in [45], where the potential is only required to be bounded.

From another point of view, it was also proved in [17,43] that it is possible to obtain
the mean-field limit for potentials with a vanishing cut-off, converging to potentials almost
as singular as the Coulomb potential when N — oo. This is in particular interesting from
a numerical point of view. These results were then improved by Lazarovici [50], allow-
ing the cut-off potential to converge to the Coulomb potential, and by Lazarovici and
Pickl [51], with N -dependent cut-off of the order of the inter-particle distance.
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1.3.2. Combined mean-field and semiclassical limits. The first rigorous derivation of the
Vlasov equation (2) from the N-body Schrodinger equation (1) was obtained by Narn-
hofer and Sewel [57] in the case of smooth potentials and with # = N ~'/3. Subsequently,
the restriction on the potential was substantially relaxed by Spohn [73] to twice differ-
entiable potentials. For the same kind of potentials, a more explicit rate of convergence
without assuming 4 = N ~1/3 was later obtained by Graffi, Martinez, and Pulvirenti [39]
in the case of weak convergence, and more recently by Golse and Paul [36] in the quan-
tum Wasserstein metrics, and by Chen, Lee and Liew for fermions [22] in the scaling
h=N"13

1.3.3. Quantum mean-field limit. It is also possible to first look at the mean-field limit
with # = 1, that is without taking the semiclassical limit, leading to the Hartree and
Hartree—Fock equations. In this case, the situation is better understood, even for singular
potentials such as the Coulomb and gravitational potentials. For bosons, weak conver-
gence was proved in [8, 10,30], and explicit rates in stronger norms were obtained in [23,
24,40,46,56,59,62,66]. For fermions, weak convergence was proved in [9] for bounded
potentials, and estimates in trace norm and singular potentials such as the Coulomb poten-
tial were obtained in [5, 34,60, 61].

Some of these results have been extended by taking into account the semiclassical
parameter #. For fermions, taking # = N ~'/3, convergence of the Husimi transform has
been proven in [29] for analytic interactions and short times. Schatten norms estimates
have been obtained in [13, 14, 61] for at least twice differentiable potentials. Assuming
a certain semiclassical structure on the solution of the Hartree equation, a result was
obtained in the case of pure states and singular potentials in [63,67].

For bosons, results were obtained for at least twice differentiable potentials in
[35,37,38].

1.3.4. Semiclassical limit. Another possible direction is to look only at the semiclassi-
cal limit & — 0, either for the number of particles N fixed or in the mean-field regime.
This last case corresponds to going from the Hartree or the Hartree—Fock equation to
the Vlasov equation. In the case of the Hartree equation, this was proved in [54, 55] in
weak topology, but including singular potentials such as the Coulomb interaction (see
also [32] for the case of quantum Liouville dynamics). Explicit rates in stronger norms
were then obtained in [1,4, 12, 36] for at least twice differentiable potentials, and then
in [47-49, 68, 69] for singular interactions.

To our knowledge our work is the first one addressing mixed states (see (10)) in the
case of singular interactions of the form (9) and proving in this context the approxi-
mation of the mean-field dynamics with the Hartree—-Fock equation on time scales of
order 1 when a € (0, 1/2) and up to time scales of order ~/ when a € [1/2, 1]; see also
Remark 3.9.
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1.4. Constraints on the scalings

Let €, > 0 be a constant bounded above independently of N and %. We restrict ourselves
to the class of initial data p of the Hartree—Fock equation (5) that satisfies the conditions

Tr(p) = h™>, (12)

where ||-||co denotes the operator norm, that is, the largest eigenvalue of p is bounded
uniformly in 7 and the sum of its eigenvalues are normalized to 2 ~3. These quantities are
invariant under the Hartree—Fock dynamics. As will be clarified in Section 2.1, this choice
of normalization makes the connection with classical kinetic theory. In particular, we see
that [p3 p(x)dx = h3Tr(p) = 1. For such an operator, we define its Wigner transform by

fo(x.b) 1= /R (et y /2.~ /2 dy.

so that it is a function of the phase space with mass [[' f, dx d§ = h3 Tr(p) = 1. It is
well known that, under some regularity assumptions, the Wigner transform of solutions p
to the Hartree—Fock equation (5) converge to solutions of the Vlasov equation (2) in the
semiclassical limit # — 0 (see e.g. [54]). We refer to [54] for a listing of the properties of
the Wigner transform. One of them is

I follL2sy = B*21pll2. (13)

where we denote by
loll, = (Te(lpl?)"? (14)

the Schatten norm of order p. Here, the absolute value of an operator A is defined by
|A| = v/A*A. Since we want to address the case when f, converges in L?(R®) to a
solution f of the Vlasov equation, this implies that 232 p|l, — || f || L2(R6)» SO that
lloll2 is of size h—3/2. h=0

For an N -particle density operator p 5, we will consider its corresponding one-particle
reduced density operator p ., defined as the partial trace of p with respect to the vari-
ables 2 to N, that is,

oy =Tra  n(py).

Since we also want the corresponding Wigner transform fx.; of the operator p.; of the
N -particle density operator to converge to f, we have as well

I fniillo@ey = B2 lpnills = 1/ ll2@ey as N —ocoandh — 0. (15)

However, in the case of fermions, we also know that (see for instance [53, equation
12.5.12], or [72, Theorem 8.4])

0<py <Tr(py.1)/N =h7>/N. (16)
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Therefore, by bounding the square of the Hilbert—Schmidt norm by the product of the
trace norm and the operator norm, we deduce that

lon:alz < lonaliloyallo < H78/N. (17)
Combining inequality (17) and formula (13) with p = p,.;, we obtain the bound
h<e PNV, (18)

where € = || fn:1/lL2(rs) converges to || f || L2(res), Which remains of order 1. Hence, we
are mainly interested in the case when N /3 is bounded above by a constant independent
of N and h. In particular, the case when N /3 is of order 1 is called the critical scaling
regime. This corresponds to the blue line in Figure 1.

Notice that our analysis still makes sense if N h3 — oo. However, in this situation,
even though the solution to the N-body Schrédinger equation and the solution to the
Hartree—Fock equation are close, they will not converge in the semiclassical limit to a
nontrivial solution of the Vlasov equation, but to zero.

2. Function spaces

2.1. Semiclassical spaces

The Fourier transform is defined by
g = / T g(x) d (19)
R

for g € L%(R3). Since we want to look at the convergence in the semiclassical limit # — 0
towards probability distributions of the phase space, we define the semiclassical versions
of the Lebesgue norms of the phase space as the following scaled Schatten norms:

lpller = H3Pllpll, = h3P Tr(|p|?)!/?. (20)

More generally, given any positive operator m, we define the corresponding weighted
spaces by the norm ||p||¢»m) = ||pm| g». With this choice of scaling of the norm, for
any operator p > 0 satisfying the scaling assumptions (12), one obtains

loller =1, llollez = [follL2msy.  llollge = Coo.

One useful property of the norm (20) is that it is compatible with taking powers of the
operator, in the sense that for any ¢ > 0, [[p°||£» = [|p[|% - In particular, in the rest of
the paper we will often work with the operator ,/p, which satisfies, as one would expect,
I /pllz> = 1 and || /Bl o = +Eoo.

The fact that these norms are good analogues of the classical Lebesgue norms can
be better understood in light of particular examples. One class of examples is when the
density operator has the form f(x)g(p), where p = —iAV is the momentum operator.
Then the Kato—Seiler—Simon inequality [71, Theorem 4.1] reads

If)gp)lgr = 1 fllLrligler if p € [2,00), 21
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with equality when p = 2, and where L? = L?(R3). It is the analogue of the identity
IIf(x)g(€) ||Lp = fllL|lgllL». Another class of examples is the class of Toeplitz oper-
ators, namely when p is an averaging of coherent states, as presented in Remark 3.3.

We also want to consider the semiclassical version of Sobolev spaces of the phase
space. Thus, as in [49], we introduce the operators

X
pr = [V) p] and V{"p = [55 P], (22)

which can be seen as an application of the correspondence principle of quantum mechan-
ics. More precisely, one can observe that these operators correspond to the gradients of
the Wigner transform, since

Svo =Vxfp and  fy.o = Ve fp.

In the rest of the paper, we shall refer to V. p and Vg p as the first-order quantum gradients,
or simply the quantum gradients.

We define the semiclassical analogues of the weighted kinetic homogeneous Sobolev
norms by

3
10110 Z(IIVgipllép(m,,)HlV P12 )

[ollgp1.00gm,y = sup (Vg pllgooma). I Va1l 220 0my))
je{1,2,3}

and consider the particular case of the weight defined for n € N by

my =1+ |p|". (23)
where p = —ihV so |p|? = —h?A. We also define the inhomogeneous version by
1001y = 101y + 10151 (24)

with the usual modification when p = oo. In particular, for p = 2, we have ||p||w1.2 =
I follfr1 (ro)-

2.2. Fermionic Fock space

Let ¥ := h A --- A | be the n-fold anti-symmetric tensor product of h = L2(R3, C).
We define the fermionic (anti-symmetric) Fock space over ) to be the closure of

(o)
F) =% :=Cae Py (25)
e
with respect to the norm induced by the inner product

Wlos =0+ 3 [ Y000 (s 26)

n>1
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for any pair of vectors ¥ = (¥ @,y . )and ¢ = (9@, M, ..))in F where x; =
(x1.....xx) € R3*_ For simplicity of notation, we will also denote the closure by % . The
vacuum, defined by the vector

Qe =(1,0,...)e ¥,
describes the state with no particles. We define the number of particles operator by

NY = (Y P)pen 27)

whose meaning can be interpreted as counting the number of particles in each sector of ¥ .
A class of operators on ¥ that is important to our studies is the class of mixed states
on ¥, which are high rank density matrices on ¥ . More specifically, we are interested in
operators of the form

py =D A Y)Yl (28)

jeN

for some orthonormal set /; of vectors of ¥ with the normalization

Tr(py) = Y Aj=h"> and h’Tr(Npy) = N. (29)

]

Here, N is the mean number of particles. Moreover, for each (1, m) € N2, we define

pg,”m) as the operator with integral kernel

o™ Gon ym) = 3 A0 Gon) Y™ (ym)- G0
jeN

As in the case of the one-particle operator given in (20), we define the Fock space semi-
classical Schatten norms by

lowller @) = h*7 Trg (lpy|7)7. (31)

sothat [[py [£1(z) = 1and [N py |l g1y = N. We also define the one-particle reduced
density matrix, i.e. the analogue of the classical one-particle marginal, by

n
PN = Z N Trz,,..,n(pg\r/l’n))a
neN

where Tr,, .., indicates the partial trace with respect to all variables except the first.

3. Main results

3.1. Propagation of regularity

Our first result gives the local-in-time and uniform-in-A propagation of regularity of the
solution to the Hartree—Fock equation (5). Let us notice that there are no constraints on
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the scaling here since we are only considering the mean-field equation. Moreover, this
result also holds uniformly in % in the case of the Coulomb potential.

Recall that we work exclusively with the singular interaction potential K(x) = «|-|™¢
for 0 < a < 1. We define the parameter

3
b= —, 32
a+1 32)
which corresponds to the integrability of the force field since VK € L%,
Theorem 3.1 (Propagation of regularity). Leta € (0, 1] and m, = 1+ | p|* withn € 2N
satisfying n > 6, and let p be a solution to the Hartree—Fock equation (5) with initial
condition p™ € £ (m,,) satisfying (12) and such that

p" € W2 (my) N W (my ). (33)
Then there exists T > 0 such that
p € L=(0, T], W2 (mn) N W (my—2)) (34)
uniformly in b € (0, 1).

Remark 3.2. When a € (0, 1/2), we further extend in [25] the local-in-time and uniform-
in-A propagation of regularity result of Theorem 3.1 to a global-in-time result.

—|x|?/2

Remark 3.3 (On the initial data of the Hartree equation). Define ¢(x) = e and

Oxe(y) 1= #g) %)eiy 4/h Then one can define an approximation of the Dirac delta

on the phase space by p, ¢ := |¢x¢){(¢x¢l. Now for any g : R® — R such that g €
WL (1 + |E1") N WE2(1 + |£]™) N L2, one can define the averaging of coherent states,
also called a Toeplitz operator (see e.g. [35,36]) or Wick quantization (see e.g. [52]), as

the operator
o= || e 6posare
RO6

This defines a positive compact operator such that

[pgllgoe < I8llLowe), P lle2 < I8llL2RS)s

and more generally, as proved for example in [54], such that for any convex function
with ®(0) = 0 we have

P0G < [ o ards.
RO6

In particular, in Theorem 3.1, we can take p" = pg with |gllL2rey = 1 and [|g]| oo (re)
= ‘C’;{ 2, and then p™" satisfies the assumptions (12).

However, we can consider more general operators than simply the averaging of coher-
ent states. Given a function g on the phase space, one can take the inverse of the Wigner
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transform, called the Weyl quantization, to define p, as the operator with integral kernel

Pg(X,Y) _ /R3 e—zin(J’—x)-Sg(X +y E) dt. (35)

This operator satisfies the hypotheses on the initial condition of Theorem 3.1 if g is suffi-
ciently smooth and decays at infinity, as proved for example in [49, Section 3].

3.2. Mean-field and semiclassical limits

To state our mean-field results, we assume there exists a constant C > 0 independent of N
and 7 such that

N7V2«h<CNT3, (36)
where a < b means thata/b — 0 as N — oo. We further assume that the constant €5, > 0

satisfies the bound
Coo < (NB?)7L. (37)

We define the following trace class norm over the Fock space weighted by the number
operator:

lonllgs ) = IV + Npyller ) (38)
In what follows, for technical reasons related to well-posedness of the auxiliary dynamics
given in Appendix A, we will assume that the initial quantum spatial distribution (4) of
particles satisfies

[ e v lxpa < c.
R3
where C may depend on /.

Theorem 3.4 (Mean-field limit). Let a € (0, 1/2) and assume that conditions (36)

and (37) are satisfied. Let n € 2N satisfy n > 6. Let p be a solution to the Hartree—Fock
equation (5) with initial condition p™ € £ (my) satisfying (12) and such that

" e W (my) N W (mp—y), (39a)

pm € W2 (my) N WH (my2), (39b)

with q € [ﬁ, 00]. Then there exist T > 0, pi]'\l,'o € £Y(F), A > 0and C > 0 such that

Sfor any solution p 5 of the second quantized version of (11) (see (51) below) with initial
condition pi]'\‘, € £Y(F) commuting with N, for anyt € [0, T] and p € [1, 0],

Cekt
min(N /2, N h3/7")

lon:: —pller < (14 [lpf — pr”x}((yf'))

forany k > 35t 3 [pln(th)] where p' = p/(p — 1) is the Hélder conjugate of p.

Remark 3.5. The N-body operator pil‘c,, o s explicitly created from p" via the
Bogolyubov transformation (see (77) in Section 4.3). In particular, p‘z'\‘,’ o is so constructed
that its one-particle reduced density matrix coincides with the initial data p™ of the
Hartree—Fock equation.
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Remark 3.6. If h = N -1/3 ||pN pr”;gl(j;:) SCN_4, and ||¢N4(pN—pN,p)||;g1(¢,)
< C, then for any ¢ € [0, T'], one obtains

I /i = folle = lpwa = pllg2 < Cr /N2,
where fy.1 denotes the Wigner transform of p ..

One can combine the above theorem with the result proved in [49] by two of
the present authors to obtain an estimate directly between the solution of the N-body
Schrodinger equation (1) and the Vlasov equation (2). To simplify, we restrict our atten-
tion to the case when p < 2.

Theorem 3.7 (Combined mean-field and semiclassical limits). Under the assumptions of
Theorem 3.4, assume that f is a positive solution of the Viasov equation (2) with initial
condition satisfying

(14 |x|3 + [E[®)VEVE ™ e L®(R®) N L2(R®)  where Lo + £ < 9.

Moreover, assume pij‘c, € $Y(F) is such that [N, p}‘\‘,] = 0. Then, for any p € [1,2], there
exist T > 0,Ct > 0 and an operator pil':, € £Y(F) such that for any solution p  to the
second quantized version of (11) (see (51) below) with initial condition pi;\‘,, the estimate

1 in
lowet —pyllze < CT(W/ o+ h)(l 6% — ot 5

holds forany t € [0,T] and any k > 5~ > T3 [plrir(llilvhz)]

Remark 3.8. In particular, if || o' — PN, F Hi}c('ﬁ) < C and p = 2, then, by (13), we again

obtain L2 convergence with the quantitative bound

1
I /v = fllezwey < CT( 13/2 + h)

where fy.; is the Wigner transform of pp.;.

In our result, the semiclassical error / is larger than the mean-field error when N >
h~5/2_ and smaller when N < h~5/2, When the two are of the same order, one obtains an
error of order h = N2/ 5 which is optimal in terms of the number of particles, while the
rate is of order & = N~1/3 in the critical scaling. However, we do not claim our results
yield the optimal rates.

Remark 3.9. In the case of the Coulomb potential, we can still obtain an estimate for
small times or with an N-dependent cut-off (see Theorem 4.1 and Remark 4.3). Our
results are summarized in the following table.

Time of validity
ac€(0,1/2) ae(l/2,1]
Semiclassical regularity t<T t<T
Mean-field t<T t < h®=1/2 or cut-off

Mean-field + semiclassical t<T <K =12 or cut-off
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4. The strategy and the general result

4.1. Second quantization

The method of second quantization provides a mathematical framework for studying the
notion of quantum fluctuations. The goal of this section is to recast the original Cauchy
problem (11) with a mixed state initial data on HVV as a problem on the Fock space ¥ .
We briefly present the method of second quantization and state the corresponding Hamil-
tonian evolution problem on % . We refer the interested reader to [6, 15,26, 33, 65] for a
more complete presentation.

For every f € §, we define the associated creation operator a*( f) and its adjoint, the
annihilation operator a( f), on ¥ by their actions on the n-sector of F:

1 < ,
@* ()™ (xn) == 7 DT YT @),

Jj=1
@)D () = Vi F T / T v (. x0) dx,
]R3

where xp\; = (xq,... x i,...,Xn). Moreover, the action of the annihilation operator on
the vacuum of ¥ is defined to be a( /)2 = 0. Then, we extend the operators linearly
to the whole ¥ . It can be easily checked that the collection of creation and annihilation
operators on ¥ satisfies the canonical anti-commutation relations (CAR)

[a(f).a*(@l+ = (f.8)y. [a(f).a(@+ =[a"(f).a"(&]+ =0 (40)

for all f, g € § where [A, B]+ = AB + BA is the anti-commutator of the operators A, B.
Moreover, from (40), we have the identity

la(HYIF = la*(NVIF = 1/ IE. so lla*(Nllo = 1/5 (1)

forall f € Iy where at is either a* or a. Thus, both the creation and annihilation operators
are bounded operators on % .

At times, it is more convenient to deal with creation and annihilation operators at a
given position, say x, as opposed to a*(f) and a(f). Thus, it is useful to introduce, at
least formally, the fermionic creation and annihilation operator-valued distributions at x,
denoted respectively by a} and ay, as follows:

1 & .
@)™ (xn) = ﬁ; (1) 1 8(x —x) Y "V (). (42a)
(@x¥) ™ (xn) = Vn + 1yt (x, x,). (42b)

It is also straightforward to check that a and a satisfy the anti-commutation relations

[aXsa;]-i- = 8()(7 _y)v [ax,ay]+ = [a;sa;]-i- = 0’ (43)
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and that the creation and annihilation operators can be rewritten as follows:

(= [ foaiar an)= [ Feacar @)

To every observable O on }j corresponds an induced linear operator dT'(O) : ¥ — ¥
called the second quantization of O on ¥, defined as

dr(0) = 0® P dr,(0). (45)

n=1

where dI',, (O) is the n-particle operator

n
dT(0) = D 151 ® O ® . (46)
j=1

An important example of a second quantized operator is the number operator which is
simply the second quantization of the identity operator. Another relevant class of operators
is the trace class operators. It is straightforward to check that the second quantizations of
trace class operators on } are also trace class operators on ¥ .

If the observable O has the distributional kernel O(x, y), then we can rewrite dI"(O)
in terms of the operator-valued distributions a} and ay:

dr(o) = /R6 O(x,y)ayay dxdy. 47)

In particular, the number operator can be rewritten as

N =/ ayay dx. (48)
R3

4.2. State purification and time evolution

We define the Fock space Hamiltonian by

h? 1
Hy = /R3 at (_ij)ax dx + o /]RG K(x — y)ayayayay dxdy. (49)

By direct computation, Hy commutes with the number operator, which implies that the
expectation of the number of particles is conserved under the Hamiltonian dynamics.
Moreover, its action on the n-sector is given for any ¢ € ¥ by

n

h? 1 &
Hyp)® = HPY® =37 = Ay + 53 K —xyp ™. (50)
k=1 k<l

which, on the N-sector of ¥, coincides with the mean-field Hamiltonian defined in (8).
We consider the Cauchy problem

ihdipy =[Hy.py] with py(r=0)=ply =Y A [¥;) (w1, (51)
j
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where the data are defined as in (28). Following the idea of [11], we reformulate (51) as
an evolution problem of a pure state' in the fermionic Fock space

g =FHah) (52)

which hereinafter will be referred to as the double Fock space. This procedure is com-
monly known as purification of mixed states. For completeness, we devote the remainder
of this section to review the state purification process.

For any operator p 5 as defined in (28) and any orthonormal basis ¢; of ¥, we con-
struct the following Hilbert—Schmidt operator on ¥ :

vy = ZEJ' 1Y) (95l (53)
jeN

where |&|? = A;. Then py = |vy|?, which is called the Schmidt decomposition of p . In
particular, the scaled Hilbert—Schmidt norm of vy, defined by ||v/|| = 3 Tr(|v|?),
is

2
£2(F)

||UN||§62($) = llonllgrz) =1 (54)

It is important to observe that the decomposition is not unique. In fact, we will need to
make a definite choice later.

Recall that the space £2(¥) of Hilbert-Schmidt operators is isomorphic to the ten-
sor product ¥ () ® ¥ (), as Hilbert spaces, via the linear mapping J, = J that maps
|¥ ) (@] — h~3/2¢ ® . One can then associate to vy an element of ¥ (§) ® F () as
follows:

Juy = h_3/228j$j ® Y. (55)
jeN
Furthermore, we can associate to every element (55) a vector in the double Fock space §
via the isomorphism U : ¥ ® ¥ — § defined by setting, for F € h* and G € h™,

|
UF ®G) = ,/% (JE"F) ®q (JE"G), (56)

where J;, Jr 1 h — § @ b are respectively the canonical embeddings of §) into the left
and right coordinate of ) @ b, and ®, is the anti-symmetric tensor product. Then we
extend the mapping linearly to the entire ¥ ® F . The unitary map U is known as the
exponential law for Fock spaces and it has the following properties (see [26, Theorem
3.43] or [6, Chapter 3]):

Qe =UQs ® Ly), (57a)
af(f) = d*(f ®0) = U@*(f) ® NU*, (57b)
af(f):=d* (0@ ) = U(-D" ® a*())U*, (57¢)

'Here, we make the identification of |¥)(W| with ' € §. In other words, pure state density
matrices are simply vectors.
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where a is either @ or a* and f € B. The presence of the operator (—1)*" ensures that
the operators satisfy the CAR. It can also be readily checked that a?( f) anti-commutes
with ag(g) forall f,g €b.

Just as in the case of ¥, it is useful to define the left and right creation and annihilation
operator-valued distributions at x by

1 < . _
(@9 o ym) = 2 37 0= )W v,
j=1

(@x W)™ (p, ym) = vV + 1O (x x y),
1 & . _
T 2 DM = ) D s, ).
j=1

(@x,r W)™ (X, ) 1= (1" + T (x, xy ).

(a;,r \p)(n,m) (Xn, Zm) =

This allows us to express ag (f) for f € b in terms of operator-valued distributions:

wlf) = | TWargds and ay(f) = [ fai,de. 69

where o € {/,r}. Itis again straightforward to check the CAR relations: [ax ¢, ay ;]+ =
8(x —y) and [ai,a,ai,a,]Jr = Owhereo,0’ € {l,r}.

For every observable O on ), we can define the left and right induced linear operators
dI;(0),dI’»(0) : § — § by

dI;(0) :=dI'(0 @ 0) = UdI'(0) ® HU* = / O(x,y)ay ;aydxdy,
RS ’

dl,(0) :=dl' (0@ 0) = U(1  dT'(0))U* = / O(x, y)ay ,ay,dxdy.
RO ’

The number operator on § is defined by
N=M+~N=UN®L+1 N)U" (59)

We shall denote by
lg := UJ (60)

the transformation from £2(¥) to ¥ mapping density operators to vectors of the double
Fock space. Then for an operator vy € £2(F), the action of the operator N in § becomes
Nig(vy) = lg(Nvy + vyN).

With the above purification process, we can recast our Cauchy problem for mixed
states as a Cauchy problem for pure states defined on the double Fock space §. Recall
that the solution to the Cauchy problem (51) in the Schrodinger picture is given by

py = e HE/MRN pin pit/RHN 61)
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We define the time evolution of vy with initial state vi}\‘, by

vy = e—i(t/h)HN Ui;\lyei(t/h)HN. (62)

Then py = [vy|? solves (11) with initial data p'y = v’y |. In the double Fock space &,
this corresponds to saying that the evolution is given by ® = ®(¢) with

D= lg(vy) = e WPV (pil) = 71/ pin, (63)

where the Liouvillian Ly is defined by Ly = U(Hy ® 1 — 1 ® Hy)U™. In particular, for
any observable O of ¥, we have the relation

Try (Opy) = (P (0 ® 1)®)g = Trg (0 ® 1)|P) (D). (64)

which allows us to compute the mean value of the observable O with respect to the mixed
state p in terms of the purified state ®. In particular, we could express the one-particle
reduced density matrix of p in terms of ®: the integral kernel of p 5., is given by

1 *
pya(x,y) = W(¢|ax,lay,l©)~ (65)

Notice that we are using the normalization Tr(p y.;) = h™3.

4.3. Bogolyubov transformation and quasi-free states

In general, we do not know if the evolution of the Cauchy problem (51) can be well-
approximated by its mean-field dynamics. Therefore, it is natural to restrict our studies
to a subclass of initial data. As stated in [11], equilibrium states at finite positive temper-
ature are believed to be well-approximated by mixed quasi-free states. In the particular
case of noninteracting fermions at positive temperature, equilibrium states are exactly
described by mixed quasi-free states (see [18]). Furthermore, mixed quasi-free states have
the important property that they can be represented by the action of a Bogolyubov trans-
formation on the vacuum of the double Fock space &, which is a key object in our study
of the mean-field limit.

In this section, we give a brief overview of rudimentary facts about Bogolyubov trans-
formation in the framework of the double Fock space § and construct a class of quasi-free
states exhibiting the structure of pure states in &, with average number N of particles and
pairing density equal to zero. We follow closely the presentation given in [72].

4.3.1. Bogolyubov transformation. Forthepairs f = f1 @D 2,8 =81 D g€ h Db, we
define the corresponding field operators by

A(f.g) = a(f) +a*(3) = ai(f1) +ar(f2) + a7 (81) + a7 (Z2).
A*(f ) = (A(f.g)" = ai(g1) + ar(82) + aj (/1) + a7 (f2).

Notice that the field operator A( f, g) and its adjoint satisfy the relation

A*(f.8) = A(C(f.8)) (66)
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forall f,geh@dh,whereC: (H D H D (Hh DY) —>_(E) @_f)) @ (h @ b) is the anti-linear
map defined by C(f1 & f2,81 D g2) = (g1 D g2, /1 & f2). We can also readily check
that the collection of field operators satisfy the anti-commutation relations

[A(f. ). A*(h. )]+ = ((£.9) | (h.K) genewes). [A*(f.g). AHh.k)]y =0, (67)

where A¥ = Aor A*and f, g, h.k e h @ b.

A linear isomorphism v : () & hH) & (hdh) > (Hh & h) & (h @ h) is called a
Bogolyubov (canonical) transformation of () @ b)) & (h @ b) provided it preserves the
anti-commutation relations (67), that is,

[AW(f. 2)), A*(W(h, k)4 = ((f. &) | (h. k) pen@men) (68)

forall f,g,h,k € h @ b, and likewise for the other relations. Hence, it follows from (66)
and (68) that v is a Bogolyubov transformation provided it satisfies the conditions

vC =Cv and vv=w*=1, (69)

where [ is the corresponding identity map.
It is more convenient to express conditions (69) as follows: v is a Bogolyubov trans-
formation on (§ @ b) & (h @ b) if there exist operators U, V : h @ h — b & b satisfying

U*U +V*V =1 and U*V +V*U =0 (70)

Uu v
v:(V U). (71)

Moreover, we say that the Bogolyubov transformation v is (unitarily) implementable on §
if there exists a unitary map R, : § — § such that

RIA(f. g)Ry = A (1. 8)) (72)

for all f,g € h @ §. A necessary and sufficient condition for the transformation v to be
implementable is given by Shale and Stinespring [70]: v is implementable if and only if
V is a Hilbert-Schmidt operator. In particular, if Tr(V*V) is finite, then v is an imple-
mentable Bogolyubov transformation. It is common to refer to R, as the Bogolyubov
transformation on §.

such that v has the form

4.3.2. Quasi-free states. A fermionic state p on ¥ is said to be quasi-free provided it
has the following factorization properties:

Trg (a* (f1) @™+ (fant1)py) = 0, (73a)
Trg (a® (/1) - a®" (fan)Pw)

n

=Y ()7 [ Trw (@@= (fo@j-1)a* ) (fo@i)pn).  (73b)
o j=1

where fj € b and the sum is over all permutations o of {1, ..., 2n} satisfying

Viel{l,...,n}, o@2j—-1)<0o2j), and oc(2j—1)<0c2j+1)ifj <n.



From many-body quantum dynamics to the Hartree—Fock and Vlasov equations 4943

In short, a state is said to be quasi-free if the higher-order reduced density matrices of p
are completely determined by the generalized one-particle reduced density matrix. We
could also express conditions (73) in terms of the purified state ®. This means that
any quasi-free mixed state can be viewed as the partial trace of a quasi-free pure state.
Moreover, using the fact that pure quasi-free states are completely characterized by their
generalized one-particle reduced density matrix, it can be shown that a pure quasi-free
state @ on § can be written as & = R,, 2 for some Bogolyubov transformation R,,.

Let us now construct the Bogolyubov transformation and its corresponding class of
quasi-free states that we will study in Part III. Let @ be a one-particle density operator on
hwith0 <w <1and Tr(w) = N.Definev: () ® 5 dGHdhH —> HehH d(Hhah)
by (71) with U and V having the explicit forms

u 0 0 v
U:(O ﬁ) and V:(—v 0) (74)

u:=+1—-w and v:=Jo. (795)

with

Notice that U and V satisfy (70), which means v is a Bogolyubov transformation. Fur-
thermore, V is a Hilbert-Schmidt operator. Indeed, since Tr(V*V) = 2 Tr(w) = 2N is
clearly finite, it follows that, by the Shale—Stinespring condition [70], v is implementable.
Hence, there exists a unitary map R,, : § — § implementing v. Consequently, (72) yields
the relations

Riay Ry = a;(ux) —ay(vy),

Ryax,rRy = a, (i) + aj (vy).

where we have used the notation u (y) = u(y, x) and vy (y) = v(y, x).

Let us now use the Bogolyubov transformation to represent quasi-free mixed states.
The construction we present here is an example of the well-known Araki—Wyss represen-
tation [2,3,26]. More precisely, we are interested in constructing a quasi-free mixed state
with one-particle reduced density p on the double Fock space §. To this end, we define
R, as the Bogolyubov transform with

w=Nhp
and let the unitary map R, act on the vacuum Qg, i.e.
®, =R,y € 9. (76)

We can now compute the integral kernel of the one-particle reduced density matrix asso-
ciated with the state ®,:

1

1
pya(x,y) = W(q)p laf ya1,x®p) = W(Qﬁ |Rgaj ,RpRpaixRpS2g)
1

1 e
= N_h3<Qg |al(vy)ar (vx)QRg) = N3

W) (x,y) = p(x.y).
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Therefore, the one-particle reduced density matrix associated with ®, corresponds to the
operator p. Furthermore, the off-diagonal term associated with the state ®,, referred to
as the pairing density, is zero. Indeed,

ag,(x,y) 1= (RpQg |arya; xRpRg) = (Qg |a;(uy)a;(vx)Qg) = 0,

where we have used [a; (4, ), a; (vx)]+ = 0. Undoing the purification process, we can now
define the reference state (mean-field approximation) p ,, associated to the solution p
of the Hartree—Fock equation (5), as stated in Theorem 3.4, by

pr.p =g (Do) (77)

4.4. The general result

In this section, we state a more general result from which our main results will follow.
The result is obtained by controlling the growth of the weighted norm

1W)lg, := [N + DF .

Theorem 4.1. Let a € [0, 1] and assume condition (36) is satisfied. Let (k,n) € N? and
a € [0,1] satisfyn > 6 and « > a — 1/2. Let p be a solution of the Hartree—Fock equa-
tion (5) with initial condition p™ € £>°(my,,) satisfying (12) and such that

P € W2 (my) W24 (my2). (78)
Vot € W2 (ma) 0 W (my—2), (79)

with q € [2, o0] satisfying
3/ge2@—a—-1/4),0—a+1/2]. (80)

Let W™ € §. Then there exist T > 0 and C > 0 such that for any t € [0, T| and any
p € [1,00),

< Ceth™t win |12 Zk(a_l)tz Win |12
lon:a —pller < min(N 12, NI3T7) [ ||f;3k/2+ﬁ + ez 1Y s -

where A = Cy o |K|Cp for some constant C,, depending only on T and the initial condition
of the Hartree—Fock equation.

In the above theorem, we have assumed we know the perturbation of the vacuum,
Win As done in (77) for the reference state p N,p» WE can associate to Wi an operator
pn = |Ig' (R, W)|* which solves the Schrodinger equation (51).

Remark 4.2. In particular, notice that

h2k@=1) In N
Nk=1/p =1 kz pIn(Nh2(-)’
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More specifically, if N = h~¢, then this is equivalent to k > m. For instance,
take ¢ = 3. Then for any a < 1/2, we can take @ = 0 and k = 3, leading to
At )
||pN21 - p||$p E Nmin(l/z,l/p) ||\IJ||“§5

In the case of the Coulomb potential ¢ = 1, we can take k = 2 and any « > 1/2, leading
to

C A‘ ha
lona —pller < m”‘p”éf v
which is small only for small times r <« N ~'/6 = 11/2_ This is an improvement in com-

parison to nonsemiclassical estimates which are valid only for ¢ < h.

Remark 4.3. When a > 1/2, one can also consider the potential with an A#-dependent
cut-off. For example, a way to get a potential bounded at distance |x| < R is to take

R72
Kr(x) = 2 sal2 e mlxPs g o (81)
2 Jo

R—0 |x|¢ ’

Coulomb interaction potential for example, assuming R < 1 and N = h~¢ and taking
¢ =3 and p < 2, this leads to

which is a radial decreasing potential satisfying Kg(x) < |«| max(#, ~%a). For the

Ce/\t/«/ﬁ

2
WH‘I’”%‘

loy:a —pller <

Thus, one obtains a quantitative convergence result as long as R > 4A%t2/(In N)?2.

Remark 4.4. Let p . o be defined by (77). Then the standard deviation of the number of
particles, 0%, := h> Tr(N2py ,) — (h* Tr(N py ,))?, is given by

0% = Tr(® —w?) = N(1 —€;Nh?).

In particular, o < JN.

Notice also that oy = 0 & @ = w? & €ZNh* = 1. This implies that in order for the
reference state p , to have a fixed number of particles, it has to be a pure state and the
scaling has to be the critical scaling N43 = [y 2. In this case, the regularity conditions
(33) are not expected to hold. However, it is a good question to ask whether it is possible
to find a state py = |I}T;1 (R, ¥)|* with a fixed number of particles but still close to p N.p>

in the sense that the associated W satisfies ||W|g; < N 172,

Part I1
Propagation of regularity

This part is devoted to the proof of Theorem 3.1 about the propagation of the semiclassical
regularity of the solutions of the Hartree—Fock equation (5), and also of higher regularity
properties needed to obtain Theorem 3.4.
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5. The classical case: Regularity for the Vlasov equation

As a warm-up and an explanation of our strategy, we start by the analogue of our method
in the classical case of the kinetic Vlasov equation. We define

Np x :=/ Ve f|Pm and Npg:= // [Ve f1Pm.
RO RO
Denoting T := § - V, 4 E - Vg, we have
0 (Vaf) = —TVaf =VE-Vef 0:(Vef)=-TVef = Vi [ (82)
Proposition 5.1. Let n > 3 and f be a solution of (2) with initial condition satisfying
Veef™ e LP(1+[E")

for any p € [1,00). Then there exists a time T > 0 such that

Vagf € L0, T), LP(1 + [E[")).

Proof. Letm := 1+ |£]"P. To simplify the computations, we observe that T* = —T and
T(uv) = uT(v) + T(u)v, so that by writing u? := |u|?~'u, we have

//Ré Tu)-uP~'m = _//RG u-Tw? Yym + |[u|PT(m).

u-TW?™) =u?™' - T() + (p —2)(T(w) - w)u|?> = (p — Du?~" - T(u).

—p//R6 Tu) - uP~'m = //RG|u|pT(m).

Therefore, differentiating the weighted L? norms, we obtain

But

We deduce

dN, « _
Wowr _ [fR UV 1PTn) = p(¥ f)P -V E - Ve fr]dx

dNpe

e //Re[lvfﬂpT(’”) — p(Ve )PV fm] dx dE.

Then by Young’s inequality for the product,
T(m) = npE -§"7~" < np| E||Leom.
We decompose VK = F; + F, € LP1 4+ LP2 The difficult term is

[ @epytVE Ve fmav g < VK Voluoe [ 190177 Ve fmax g
RO R6

_ 1
< (IFillor 1Vl + 1 P2l o VPl w)NJZ 2N 2P
_ 1
< Br(IVpll, u, + V0]l o) N2 NP
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with Bx = VK| 6, ;y6, and where we have used Holder’s inequality three times.
When n > 3/b, we get

B/
||vp||L1,/=H [ deH < IV S+ 8y < CNG/Y
R3 LY x.& ’

Therefore, taking respectively p = b’ and p = b/, and using the notation ux = ug(t) :=

N /B 1/},

, Kand vy = vi(t) := N, [ fork = 1and k = 2, we obtain
by ,x =3

d

Euk < n|E||pccurx + Br (U1 + uz)vg,
d

3 Uk = n||E||Leo vk + ugvg,

so that defining U := u; + uy + vy + v, we get
d 1 5
EUfn”E”LOOU-F BK+5 U=, (83)

where we have used the fact that 2uv < u? + v2, and by Gronwall’s inequality we find
that U remains finite as long as ¢ < T where T depends on the growth of || E(z, )| L,
which we can control by

1/c] 1/c}
1Bl < CIVpl, g + Vo) < CkNYS + N/

with Cx = || K||Lc1 +Le2 - In particular, for the Coulomb interaction, one can choose ¢; =
51<3/2and02=52>3. |

6. The quantum case: Propagation of regularity for the Hartree-Fock equation

In this section, we prove the semiclassical analogue of the propagation of regularity for
the Vlasov equation shown in Section 5. The main difficulty is to close the Gronwall
inequality, which we manage to do by propagating at the same time the £°°(im,), the
‘W12 (m,), and the W9 (m,,_,) norms with g > 2 and

m, =1+ |P|ny
where n € 2N. This first step allows us to prove that the W14 (m,,) norm remains bounded
on some time interval for ¢ € [2, g,) with g, := o0 if b := % > 2 and
11 1
q4a b 2

when b < 2. It is the content of the following proposition, where we only consider
q € [2, 4] for simplicity.
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Proposition 6.1. Fixa € (0, 1]. If p™™ € W12(m,) N WH*(m,_) N £°(my,), then there
exists T > 0 such that

p € L=((0.7), Wh?(myp) N WhH(mp—3) N £%°(my)).
p e L®0,T), H' nwh*n L' N L™®).

Now that we know that the first-order semiclassical Sobolev norms remain bounded
for some finite time 7" > 0 for ¢ € [2, g,), we can use this first result and a similar strategy
to prove the propagation of higher Sobolev norms on the same time scale. This is done in
the following proposition.

Proposition 6.2. Under the hypotheses of Proposition 6.1 and assuming moreover that
o € W22(m,) N W2*(m,_,), we have

p € L¥((0.T), W»?(mp) N W>*(my—2) N WP (my)),
p € L®(0,T), H> N W24,

Remark 6.3. The propagation of second-order Sobolev norms will allow us to remove
the constraint g € [2, ¢,) and to get the boundedness of first-order Sobolev norms also for
q > qgq. This is relevant when a > 1/2.

In order to tahe the mean-field limit, we actually need to prove the propagation of
these norms for ,/p instead of p (cf. (162a)-(162b)), which works in a similar way.

Proposition 6.4. Under the hypotheses of Proposition 6.2, if \/pi® € W4 (m,,) for some
q € [2,00], then
VP € L2((0,T), W (my)).

This proposition then also implies the regularity of p as indicated in next lemma.

Lemma 6.5. Let p > 0 be a compact operator. Then for any q € [1, 00],

||P||whq(mn) =2 ﬁ”éﬁoo(mn) [ Jﬁllwl.q(mn)- (84)

Proof. By the product rule for commutators and Holder’s inequality for Schatten norms,
for any n € {x, &},

IVapliza = | (Va(V/PIVP + /B Vn(V/B)) M 4
< IV (WD)l zell /B mallzos + | V/Pll 2o | Vo /B mall 2,

which implies (84). ]

6.1. The strategy

Both the Hartree and the Hartree—Fock equations can be written in the form

ihdep = [H, p]
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with H = |p|?/2 + V, — h3X, (with X, = 0 in the case of the Hartree equation). If
we look at the time derivatives of quantum gradients, since VyHH = VV, = —F, and
#[VEH, pl = %[p,p] = —V,p, and since [x,X,] = X[x,p] and [V, X,] = X[v ] (see
Lemma 6.18 below), we obtain

1 1 1
0/ Vip = E[Hv Vip] — E[hsxvxpv el — E[Ep’ pl,

1 1 (85)
0 Vep = —[H, Vep] — —[1*Xv,p, p] — Vs p.
1Vep = — [H.Vep] — —[h"Xvp. p] = Vup
These equations are of the form

with A and B self-adjoint. Our goal is to propagate the weighted Schatten norms for
solutions of these equations, where we recall that Schatten norms were defined in (14).
Computing the time derivative of such quantities, we get the following result.

Lemma 6.6. Let p, A and B be self-adjoint operators and p = p(t) be a family of self-
adjoint operators satisfying (86). Then, formally, for any even integer q > 2,

d 1 1
lrmally < <A mally + = (8. plnaly

Applying this lemma for g = p solving the Hartree—Fock equation or for &t = Vyp
or i = Vgp, and with m, =1 (forn = 0) or my, = p{" for some j € {1,2, 3}, we obtain

d 1 1
a”ﬂmn”q = %“[Vp,mn]/’”q + %”[h3xpamn]p”qv (87)
d 1 1
d_t”Vmen”q =< }TIH[Vp’mn]Vxl’”q + ;l”[Ep’l’]mn”q
1 1
+ gll[h3xp,mn]VxP||q + £|I[h3xvxp, plmnllg. (88)
d 1
E”V’g”l’mn”q = ;l”[Vp’mn]VEP”q + ”prmn“q
1 1
+ gll[h3xp,mn]Vgp||q + %Il[h3xvgp,p]mn||q, (89)
where we have used the fact that [H,m,] = [V, — h3X,, m,] since [|p|?, m,] = 0. In
the next sections, we will bound all the weighted Schatten norms of the commutators

appearing on the right-hand sides of inequalities (87)—(89) in order to get a Grénwall-
type inequality.

Proof of Lemma 6.6. First notice that

1 1
dn® = —[A 1w’ + —([B.plp + p[B. p)).
ih ih
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Therefore, using the fact that 2p := ¢ is even and the cyclicity of the trace, we get
Siln 35 = 5 T = p e (302 Y
dt P dt dr
= L Te(ma (A 12) + [B. I + [B. plmn (k2 my)" ™)
=:Ip+ I (90)

For I, we use again the cyclicity of the trace to write

P — _
In = 7 Tr(A;Lszl (W2m2)P2u?m2 — w?Amz(p*m?2)? 2;L2mf,)
P 2,22

= - Tr(mp Ay (w2m) P2 = Amp (w2mp) P> umy p?)
P _
= = Tr(lmg, Alw>m) P~ p?).

This can also be written as

In = L Te( (. Ay + mglmg. Al el g 200)

2 _
= 2 m(Tr(um g Al m, w2770)).
Therefore, by Holder’s inequality for the trace, we obtain

2p 2(p—1
[l < = lmallzp . Alill2plmape 5~

4 -
< 3 lwma|G7H A malnlly, 1)

where we have used the fact that since g and m, are self-adjoint, and since the Schatten
norm is invariant by taking the adjoint, we have ||m, |2, = ||wmpy||2p. For the B term,
we get more easily

2 _
Is = % Im(Tr(mn (B, p]pmy |mnl"|2(p 1)))-
By using again Holder’s inequality and the commutation in the Schatten norm, we obtain
q -
6] = 5 mn[B. plllgllmmallg . (92)

We conclude the proof by combining inequalities (91) and (92) with formula (90) and
using the fact that || pm, |, = %Humn lg ? S lmmalld. n

6.2. Preliminary inequalities

In order to simplify the computations, we will sometimes use weights of the form

3
my, =1+ |p|* and rﬁn=1+2pj".
=1

Thanks to the following lemma, these weights define equivalent weighted Schatten norms.



From many-body quantum dynamics to the Hartree—Fock and Vlasov equations 4951

Lemma 6.7. Let n € N be even. Then there exists C > 0 such that for any p € [1, 00]
and any operator p,

C_IHPVﬁn”p = ||Pmn||p = C“Pﬁin”pv (93)
3

Cpp}lp < Nomally < € (1ol + 3 102} 1)- 94)
=1

Proof. We observe that m,, and m,, commute, m,, is invertible, and m;lmn = g(p) with
llgllLee < C uniformly in %. Therefore,

lormnlly = llomug(P)lp < Cllomnllp.

which proves the first inequality of (93). The second one follows by reversing the roles of
my and my, and the first inequality of (94) by replacing /m, by p;'. The second inequality
of (94) follows from the second inequality of (93) and the triangle inequality for Schatten
norms. |

We will need the following operator rearrangement inequality similar to [49, (56)].

Lemma 6.8. Let p > 1 and (n,m) € N2. Then for any self-adjoint operators A and B,

|B"AB™|, < 2| AB™+™,. (95)
Proof. Assume first that A > 0. Then by Holder’s inequality,
|B"AB™ |y < | B AT | s, | A7 B | i, 96)
Now observe that since by definition of the absolute value we have |BA| = ||B |A|, and
since the Schatten norm is invariant by taking the adjoint,
1A B |, = | B AT |z, = [||BI" AT | i,
Now, by the Araki-Lieb—Thirring inequality,
[1BI" A7 [ wem , < [IBI™™ A 757 = | AB™" |5+,
[1BI" AT [ wm , < || B A 757 = | AB™" |57
Combining these inequalities with (96) leads to
IB"AB™ [, < |AB"*™|l,. O7)

In the more general case of a self-adjoint operator A possibly not nonnegative, we write
A=Ay —A_with A4 = WTJFA and WT_A. Then by (97) and the triangle inequality for
Schatten norms, we get

IB"AB™ |, < A+ B" ™|, + | A-B" ™|,
1 + + + +
2([141B™ + AB™ ™|+ [JAIB™ — 4B )

[AIB™"] + 148",

IA

IA

and we conclude by using again the fact that ||4|B| = |AB]|. "
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Let us define the adjoint representation of A as
adq(B) := [A, B].
Then, using the above lemma, we can prove the following inequality.

Lemma 6.9. Let n € N. Then for any self-adjoint operators A and B,
lady (A)]l, < 21| AB™,.

Proof. This follows from the expansion

n

ad’l (4) = Z(Z)(—l)kB”_kABk

k=0

together with the triangle inequality for the Schatten norms and the rearrangement

inequality (95). ]
Lemma 6.10. Let (pg, p1) € [2,00)? and (ng,ny) € Ri. Then for any A self-adjoint and
0 €[0,1],

1AB" |lpy < [ AB™ |, ? IAB™ |7, (98)

1 _1-0 , 6 -(1—
where 26 = 20 1 20 andng = (1 — 0)ng + On;.

Proof. Let S be the set of values of 8 € [0, 1] such that (98) holds. Then 0 and 1 are in S.
Moreover, if 0, and 6, are in S, then for 6 := (6; + 6,)/2, since the Schatten norms are
invariant by taking the adjoint and A and B are self-adjoint,

1/2
|AB" ||y = |B" Alp, = || AB>" A}/,

Hence, as 2ng = ng, + ng,, pg > 2and 2/pg = 1/ng, + 1/ne,, by Holder’s inequality
we get
1/2
1482 4|12, < | AB" 12| 48" |}

pol2 — pPoy’
where we have used again the invariance of Schatten norms by taking the adjoint. Hence
6 € S, and so we deduce finally that S is a dense subset of [0, 1]. |

The next proposition allows us to control ||[Vp|Lr by ||[Vxp my|gr for some
weight m,,.

Proposition 6.11. Let p € [1,00] and n > 3/ p’. Then there exists a constant C > 0 such
that for any compact self-adjoint operator |,

[diag(p)llr < Cllmnl|gr
withm, =1+ |p|".

Remark 6.12. In particular, since for k € N, Vkp = diag(V)’Cc p), the above estimate
implies
IV pllr < CIVEpmallzr.
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Proof of Proposition 6.11. Let py (x) := diag(p)(x) = h®p(x, x). Then, using the dual
formulation of the L? norm and separating ¢ into the sum of its positive and negative

parts, ¢ = ¢4 + ¢—_, we have
/ Pu(p—‘ ‘/ PuP+ ),
R3 R3

from which we deduce that we can actually restrict ourselves to nonnegative functions ¢
and identifying the function ¢ with the operator of multiplication by ¢, we get

loullr < sup (

lell, ,y <1

loulr <2 swp | [ pu¢‘=2 sup 1 Te(g)]. (©9)
©>0 R3 »>0
lell, pr<1 lell, pr<1

Taking m,(y) := /1 + |y|"* and w(y) = m,(y)~!, we see that m := m,(p) is a pos-
itive invertible operator and its inverse w := w(p) is a compact operator. By Holder’s
inequality for the trace, we have

h? Tr(pe) = h> Tr(mpmwow) < |mpm|zr|wew||q, . (100)
However, since ¢ is a nonnegative function, it is also a positive operator. Hence

lwowllgr = [IVE W] g = IVOWI52, < @l W7,

where to get the last inequality we have used the Kato—Seiler—Simon inequality (21) since
2p’ > 2. Combining the above inequality with inequalities (99) and (100) yields

2
louliLr = Conllmpm|zr < Cppllpm=|gr,

where the second inequality is a consequence of Lemma 6.8, and Cp , = 2||w||]242 et

finite because n > 3/ p’ by assumption. ]

6.3. Commutators involving the direct term

In the semiclassical case, instead of VE, - V¢ f (see (82)), the time derivative of the gra-
dient brings about the term # [Ep. p] (see (85)). Hence we will need to get semiclassical

estimates on this quantity, which is the purpose of the following proposition.
Proposition 6.13 (Commutator estimates). Leta € (0,1], b = %
be such that 1/r + 1/q = 1/2. Then for any compact operator p,,

and (q,7) € [2, 00]?

1

7 IEp. polllzs = Clipllgi—sarr—1/m [ Vepalla- (101)

When g = 2 and r = oo, we also have

1
%||[Ep»/’z]||x2 < CVolpe 1 Vepslle2 (102)
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fora € [1/2,1], and

1
FEp. palllez = Clipll, 2 1 [1Vep2ll22 (103)
fora € (0,1/2).

From the fact that (L, W'"); 1 = Bf, forany r € [1,00) and 5 € (0, 1), we deduce
the following inequality in terms of more classical Sobolev spaces.

Corollary 6.14. Let (q,r) € (2, 00] x (b/, 00) be such that 1/r + 1/q = 1/2. Then

1 -
7 IEp. pollzes = Clolz= ol . Vepallea

withs =1—-3(1/r' —1/b).

From the factthat 1/r 4+ 1/g = 1/2 and r > b’, when a > 1/2, the above results only
work when ¢ < g4 with 1/q, = 1/b—1/2.

Proof of Proposition 6.13. First observe that the integral kernel of the operator [E,, p,]
can be written as

[Ep. p2](x,y) = (Ep(x) — Ep(¥))pa(x,y)
_Ep(0) - E()®x—y)
lx — y|?

(x = y)pa(x, ).

Thus, we can explicitly compute its Hilbert—Schmidt norm by computing the L2 norm of

the kernel, and since the kernel of the operator Vg p, is xl._hy po(x,y), we get

1 E —E ® _ 1/2
£||[E,,,p2]||2=(//1;6|( 2= 2B y)-Vsﬂz(x»ydeXdy)

<|IVEp|lL=IVep2l2- (104)

In particular, for a € [1/2, 1], since VE, = VK * Vp with VK € L% we deduce
inequality (102) using the fact that the dual of LY s L0 (see e.g. [44])

Ifa € (0.1/2), we use VE, = V2K * p with V2K € La+2®_ Thus (103) follows
from Holder’s inequality for Lorentz norms.

A second possibility is to use the fundamental theorem of calculus for £, and then
the Fourier inversion theorem to rewrite the integral kernel of the commutator as

1 1
Enpale0) = [ VER(1 = 6)x +63)d8 - (Vepy)(x.)
0
— / V/E\p (Z)€2i7rz.(1—9)x . (Vgpz)(x, y)ezinz-Gy df dz,
[0,1]xR3
which implies that denoting by e,, the operator of multiplication by e?**®* we have

1 o~
Bl = [ VE,Gleqoo:(Vepsens a0z,
l [0,1]xR3
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Since the operators e,, are bounded of norm ||ey ||co = 1, we deduce the following estimate
on the operator norm of the commutator:

1
HEpplec < [

[0,1]x

R3|V”Ep(z)| IV palloo 46 dz = [IVE, 11 [ Vepslloo:  (105)

In order to get a result for a general g € [2, co], we proceed by complex interpola-
tion. Defining the vector-valued Hilbert—Schmidt operator y := Vgp,, we observe that

po(x,y) =ih | ;__yy|2 - i (x, y) and the commutator can be rewritten as the bilinear oper-
ator {
X—Yy
AE, p) = |E,—— -pn|=—[E,p,l
(E. p) [ g u] 7 [E-pol

Thus, using the fact that BY, ; € L and B3 € F (L"), inequalities (104) and (105)

imply
IACE, w2 = CIElg: lelz. IAE. wWlleo = CIE]g1+3/2 ]I 100

By the same proof, one obtains the inequality for any vector-valued Hilbert—Schmidt oper-
ator w. Finally, we use the fact that the complex interpolation space between the Besov
spaces involved is given by [Bolo,l’ lejyz]z/, = Brlj3/r (see for example [16, Theorem
6.4.5]), while the complex interpolation of Schatten spaces &7 gives [&2, 8®];_5/, =
&1 (see for example [75, Section 1.19.7]), so that by bilinear interpolation (see [16, Sec-

tion 4.4]) we obtain
IACE.wllg = CIE ] gisarrllmlly  with 1/ =1/2-1/g.

If we take E, = VK * p with p € L' N L? for some p € (1,00) and VK € L% we
know that E, € L for some 7 € (1,00). Moreover, E, is proportional to (—A)@=3/2v p,
so we can apply [7, Proposition 2.30] to deduce that

1Eplg1arr = Cllpllg3rra=t = llpll g1—sarr=1/o.
Taking p = Vgp, yields the results. ]

To get estimates with weights, notice that we can write [E,, p] pj2" in the form
L (Epplp?" = - (Ep pp?") — - Ep. p2"]
To control the £9 norm of the first term of the right-hand side we use Proposition 6.13,
which gives

1

7 I[Ep. pP7"l2a < C ||P||3173<1/r'—1/b) IVe(pp?™)ll e

and we can also replace ||,0||Bl_3(1/,r_1/b) by [|Voll sr.1 when g = 2.
r.1
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To bound the second term, we will write the potential K(x) as a sum of a singular
part localized near x = 0 and a long-range part and use Propositions 6.15 and 6.17 below.
More precisely, for some infinitely smooth and compactly supported function y satisfying
Tixj<1 < x(x) < 1|x|<2, We can write

K = Ko + Koo (106)

with
Ko =K and Ko = (1-—y)K.

Now the first part of K satisfies VKo € L forany b < 3/2, while Koo € L® N C®. We
start with the following proposition to control the singular part of the potential.

Proposition 6.15 (Weighted commutator estimate). Let Eg =—VKy*pwith Ko = K
as described above and let m,, := 1+ | p|". Take (q,7,71) € [3/2,00] x [1, 00)? such that

1111
T (107)

Then for anyng > 3/b—1, k' >3/r' —2and k > 3/r — 1 there exists a constant C > 0
such that

1
ED. P2z

< CUIVgp mutnollger lman—illga + | Vagp moni |2 |l emnsicller).

Replacing Eg by V,? = Ko * p just amounts to replacing Vx,p by p, hence by the same
proof,

1

£II[V,?,17J-2”]ILII$(1 < Clpmpsnollge lpman—tllga + | pmantr L7 |wmaticller).
Proof of Proposition 6.15. To shorten notation, let £ := Eg. We notice that [E, p;] =
Ep; — p;E = ihd;E is the operator of multiplication by x > i%d; E(x), and since pj2 =

p;p;» we get

1 1
—ZLE. pjl = —(E. plp; + p|[E. pi]) = G, E)p; + (%),

and more generally, for any n € N,

1 i k1 2n—1 o
E[E,szn] = Zszk(ajE P+ pjajE)sz(” ) _ Z pjkajEpjz” -k
k=0 ~

From this formula and the triangle inequality for Schatten norms, we deduce

2n—1

1 —1-
SIE. P lize < 3 1P OE p7" ™ ula.
k=0
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We cannot directly apply Holder’s inequality here since pjk E is an unbounded operator,

therefore we have to make some commutations between pjk and 0;E. By the Leibniz

formula
k

k _
PIOE = Z(z)gepf £

£=0

where gy is the function defined by g, (x) = ( pf (0£))(x), as usual also identified with
a multiplication operator. This yields

2n—1
1 1
SE " lllee < 37 Cellgep?™ il o,
{=0
where Cy = il}l (IZ) We will now distinguish two cases to bound the terms of the sum

depending on the values of £.

1. Case £ small. Take £ < n. In this case, we use Holder’s inequality for Schatten norms
and the fact that the norm of the operator of multiplication by a function is the L° norm
of this function to deduce that

lgep?" ™ ullze < ligelloe | pP" ™ " mllze < Igellzoollmmanillze.

where we have used inequality (94). Now, observe that
ge = —VKo * (p{d;p) = —VKo * diag(ad}, (Vx;p)).
Therefore, since VK, € L? with b < 3/2, by Young’s inequality
lgellzee < Crl|diag(ady, (Vi) o

where Cx = ||VKy| 5. By Proposition 6.11 and Lemma 6.9, for any ng > 3/b —1 > 0,

lgellzoe < Crngllady, (Vi 0)masngllgs < 27! Chong Vi 0 Mmoo
where we have used the fact that £ <n — 1.

2. Case £ large. Take{ € NN [n,2n — 1] and define 1/§ =1/q + 1/3. Thensince § < ¢,
llea = B9 \lq < B¥9)lg = B ga-

Since 1/r = 1/ — 1/ry, multiplying and dividing by my := 1 + | p|* we deduce

2n—1—4 -1 -1 2n—1—1
lgepi" “mllgs < h™ llgemy miepi"™ "l ga
< G/ gl lwmn il en
where C,,, = ng (H—?% is finite because k < 3/r and we have used the fact that £ > n.

Note that since £ > 1,

g = —0;VKo * p‘p = ih(3;VKo) * diag(adf,:l(ij 0)).
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Hence, to control g¢, we can use the fact that the convolution by 3;VKj is continuous
from L" to L" by the Calderén—Zygmund Theorem (see e.g. [28, Theorem 5.1]) to obtain

lgellLr < Chlldiag(ady " (Vxp)lLr -
By Proposition 6.11 and Lemma 6.9, this yields, forany e = k' +2 —3/r" > 0,
h ' geller < CKs”ade YV pImsyreller < 25Crpol| Vg p Mangkr | L

Thanks to Lemma 6.10, we can modify Proposition 6.15 in a way depending only on
the £2 and £* norms.

Corollary 6.16. Assume n > 3. Then there exist 6 € (0, 1) and C > 0 such that

T IES. P12z < IV p manll 2’ [V p man—allga lmman| 2

1/3
+ 1V 0 mon | g2 | mmon 135 | mman—2 |3
and
C 0 n 0
SED. PPl e < 1V p mansall Vi p iz | gl o s
2/3
+ (Va0 a2l 5 [ Vi 0 a2 2 | 4.

Proof. In the case ¢ = 2, use Proposition 6.15 with r = 2, r; = 3 to get, for any ngy >
3/b—1landk > 1/2,

1
5I|[E2,pj2"]ﬂllxz < CUIVxyp mutnollgo lwmanll g2 + Va0 manll g2 [ mn k|l £3)-

Since VK, € L® for any b < 3/2, we can in particular take b € (4/3,3/2) so that b’ €
(3,4) and we can apply Lemma 6.10 with pg = 2, p; = 4 and py = b’, leading to

4
1Va,0 Mmoo < | Vs 0 manll 52”1 Vi 0 mil|

where 6 = 4(1/b—1/2) € (2/3,1) and 71 > (20716)"+"0 € ("+23"°,n + ng). On the other
hand, taking py = 3 yields

2/3
lpmasilles < lpmanll Qs lmal s

with 77 > (n 4 3k)/2. In particular, when n > 3, taking b close to 3/2, k close to 1/2 and
no close to 1 allows one to take 1 < 2n — 2.

In the case ¢ = 4, take r = 3 and r; = 4 in Proposition 6.15 to get, for any no >
3/b—1landk’ > 0,

1

—IER. P71kl s < CUUIVgp sl gw [ manll g4 + Va0 Manikr |23 | mman | 4)-
A i

As previously, we interpolate the £ norm between the £2 and the £* norm, leading to

0
||Vij Mp+ng ”;Cb’ = ||Vij mg ”;@2 ”Vx pMan ”;54
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with again 6 = 4(1/b —1/2) € (2/3, 1) but with 77 > w possibly negative. On
the other hand, taking pg = 3 yields

1/3 2/3
Va0 manii |23 < V0 mi | 5 Ve, 0 m2n |3

with 77 > 2n + 3k’. In particular, taking b close to 3/2, ng close to 1 and k' sufficiently
small allows one to take n < 2n + 2. n

Now we treat the long range part K, of the potential.

Proposition 6.17. Let E;° = —VKoo * p and V;° = Koo * p with p = diag(p) and
n > 1 be an integer. Then there exists a constant C > 0 independent of h such that for any
q € [1, 00] and any positive compact operators p and p,

1
%II[E,?",ij”]MIIxa = C(llpmanllg2 + 7l Va;p man| g2) [ eman| 24,

1
£||[Vp°°»Pj2"]ﬂ||xq = C(lplipr + Rllpman| g2) [ wman| a.

Proof. As in the proof of Proposition 6.15, and with the same notations, we have

2n—1

1 _1—
SNER. pP"nllea < 3 Collgep?™™ ~ llza,
£=0
where Cy = i":_zl (’E ) We use Holder’s inequality for Schatten norms and the fact that

the norm of the operator of multiplication by a function is the L°° norm of this function
to deduce that

—1-¢ —1-¢
lgep?" "~ nllga < llgelroo PP " pllza < llgellLoellpmanllga.

where we have used inequality (94). Now, observe that
g0 = —8 VKoo * (P} p) = =0}V Koo * diag(ad;, (p)).

Therefore, since 9;V Koo € L?, by Young’s inequality, which is just the Cauchy—Schwarz
inequality in this case,

lgellee < Cx |l diag(ady, (o).,
where Cg = [|0;V Ko || 2. By Proposition 6.11, we get
lgellzee < Cllady, (p)ma ]| g2
When £ = 0, since 2n > 2, this implies
lgellLee < Cllpmanl|g2-

When £ > 0, we use the fact that adp, (p) = —i7Vyp, £ <2n — 1 and Lemma 6.9 to get

Igellzoe < Chllads (Ve pImall gz < 2°Croh][ Vigp man]l 2.
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When EZ° is replaced by V,;°, one obtains the same estimates with £ >0 and Vy;p
replaced by p. The only remaining point is the case £ = 0, that is, defining g, =
—0; Ko * (pjlp), it remains to notice that since 0; Koo € L,

lgollzoe = 119;Koo * plliLoe < CkllpllL1

with Cx = ||V Kool|Loo. -

6.4. Preliminary properties of the exchange operator

6.4.1. Preliminary identities. Let X = X, be the operator with integral kernel X(x, y) =
K(x — y)p(x, y) with K(x) = |x|~% and recall the notation of the adjoint representation
of A, adyg(B) = [A, B].

Lemma 6.18. Letr a € (0, 1]. Then the following identities hold:

[X. Xo] = Xpx,01: [V Xp] = X[v,01:

and more generally, with the adjoint notation, ady (Xp) = Xuaz (o) and ady (Xp) = Xuat (o)-

In particular, since Vyp = adv(p) and Vgp = % ady (p), this can be written as Vg‘ Xp) =
Xy, and Vi (Xp) = Xy,

Proof. The first identity follows immediately by looking at the integral kernel of the oper-

ator

(x=y)p(x,y)

[x. Xpl(x. y) = g = Xpx,o1 (¥, 2)-

To get the second we take ¢ € C°, integrate by parts and use the fact that V, K(x — y) =
-V, K(x — y) to get

_ p(x,y) _ p(x’J’)
Ve lo) =V [ EED gy - [ 3—|x_y|aw(y)dy
Vy+V ,
/(V +Vy)(|p( y)) () dy (Vx + V) (p(x y))w(y)dy’

|4 R3 |x — yl®

and we conclude by noticing that (V. 4+ V,)(p(x, y)) is nothing but the integral kernel
of the operator [V, p]. L]

Lemma 6.19. Let n = 1, p; or xj. Then

n
n _
"X = Z(k)xadg(p)n” K, (108)
k=0
n
n _
[nnsxp] = Z(k)xad]f,(p)nn k (109)

k=1
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Proof. Since A¥B = (A¥"'B)A + A*~1 ad4(B), we easily obtain the commutator

expansion
n
n
A"B = dk(Byan*.
Z ( k ) ady(B)
k=0
Hence we deduce the result by taking B = X, and using Lemma 6.18. ]

6.4.2. Preliminary inequalities. We know from [49, (39a)] thatif a € [0,3/2) and g = 2,
then
IXollq = CA™llp|p|*]2. (110)

Since Schatten norms of smaller order control Schatten norms of higher order, we deduce
that this inequality actually holds for any g € [2, oo]. The next proposition will allow us
to put the weight | p|* on another operator g instead of p.

Lemma 6.20. Let . and i be compact operators. Then for any q € [2, 00] and any
0 € {0, 1},
IXarlg < Cah™ IR1PI" ™2 21" |1 llo. (11

where * is the adjoint operator of .

Proof. Let u, be a compact but possibly non-self-adjoint operator. Then

" 13 Yo (Y, )
s = 0 X = [ 2 |x_y|zza drdy

a6, )1 o,y + )7
= /f v |2“ dxdy | |2a dxdy,
R6 R6 y

so that by the Hardy—Rellich inequality,

X, |2 < € // 1AL gy + WP dvdy =€, // 1882y, )P dxdy
R R

< C 2 // kol I P dx dy,
R

where €, is the constant appearing in the Hardy—Rellich inequality and C, = (27)?€,
From this we deduce the generalization of (110) for possibly non-self-adjoint operators:

[Xu,ll2 = Cah™ ol p1* Il2- (112)

By Holder’s inequality, taking w, = fi, this implies (111) when 6 = 0. Now, noticing that
we have the following integration by parts like formula:

Tr(Xip) = [fR 6 (xlxyj"y ﬁﬁ BODROD0) 54y = Te(ix,,),
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and using the cyclicity of the trace, Holder’s inequality and inequality (112) with p, =
Xagpp™, we get
X l13 = Tr(X X ™) = Tr(in* X uu+))
< Il Xz uunllz < Cah™ 1 ll21Xg ™1 p1* 2.

By Holder’s inequality, this leads to

IXarlz < Cah™ I Rll21Xa 20| PI oo

We deduce the result by dividing both sides by ||Xg |2 and then using the fact that for
q =2 [Xarlg = [Xamll2- m

The following lemma will allow us to replace the Hilbert—-Schmidt norm on the right-
hand side of (110) by another Schatten norm with higher index at the expense of using a
less sharp power on | p|.

Lemma 6.21. Let p be a compact operator. Then for any o > a and any q € [2, 00,
IXpllg = CA™*[ln (1 + |pI*)llq (113)
for a constant C depending only on a and «.

Proof. Take (¢, ¢) € (L?)2. Then

(@ | Xud)r2 = //Ré ’L(x’gc)ip(yx'l‘ﬁ(y) dxdy = (27)39C, Tr(pp(—A)@=3/2),

where ¢ and ¢ are seen as multiplication operators and C, = w‘;’“ . By the definition
—a
of p, this can be written as

(@ | Xud) 12 = Cah> ™ Tr(pop|p|*73p) = Cah> @ Tr(mgpumomy og(p)pmyt)

with g(x) = [x]*73 andmy = 1 + | p|*. Now taking 1 <3/« < p{ <3/a < p} < ocosuch
that 1/py + 1/p| =a/3, wehave g € LP° 4+ LP! hence we can write g = go + g1 With
(go,g1) € LPO x LP! Let g = gg or g = g1, or more generally, take g € L? for some
p > 1 satisfying p’ > 3/a. Then, by Holder’s inequality for Schatten norms, Lemma 6.8
and the Kato—Seiler—Simon inequality (21), we have

h3|Te(m))? um *my g (p)pmy'/?)|

_ ’ 1 - 1
< Im&2pml oo llmz 20 P || g2 |07 §(p)2 | 220 11E(P) /207 || 20

NP my 2 g
< CM7 | pmalloolil 2 IE e 1.2,

where we use the notation z0 = |z|>~1z and C, = 3 (Hliﬁ. This constant is finite

since ap’ > 3. This proves inequality (113) when ¢ = co. When g = 2, the inequality
follows from (112). The other cases follow by complex interpolation. ]
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6.5. Commutators involving the exchange term
Proposition 6.22. Let a € [0, 1]. Then there exists C > 0 such that for any compact self-
adjoint operators p and j, any q € [1, 00] and any integer n > 2a — 1,

1 _
£||[h3xp,p}']ﬁb||;cq < 3BT | Vg p | g2 | mma | 2a

where my, = 1 + |p|".

Proof. By (109), and the triangle inequality, we have

n

n —
10 27l = 3 () P 271
k=1 ’

Now, Lemma 6.20 gives the bound
—k — k —6 —k| .10
”Xad];,i(p)pjn wllg = Cah™llady (0)|p1* Pl P!~ 1" oo

Using the fact that adp, (p) = —ihVy,p and expanding the k — 1 commutators in adll‘,j_1
by Lemma 6.9, we get

ladly (0) P10~ 12 < 2%AI| Vs pl p|* OO .

Now whenk > a,wetake 8 = 1sothatn —k +0a <nanda(l1-0)+k—1=k—1<n.
When k < a, wetake # = 0sothatn —k +6a=n—k <nanda(l—0)+k—1<
2a — 1 < n. In all cases, this leads to

1 an(n
10270l < €72 3 ()24 05l
k=1

We conclude by using the fact that || wmy||eo < ||mn ||, and the definition (20) of the £2
norm. (]

Proposition 6.23. Leta € [0,1], b = % and n € N satisfy n > 2a. Then for any a €
(a,n —a]and any q € [2, 00,

I[h3X . p1p} 2o < 3"CH3MAH2TD) o | poo || iy | 2. (114)

123X p1PT g0 < 3"C lpmnllgoo (B¥B' || wmu |l ga + 13>~ Vi pmy | 2).
(115)

where m,, = 1+ |p|" and B = ﬁ.

Note that the power of & in the first formula is nonnegative only for ¢ < ¢, with
1/g4 = 1/b —1/2. In the second formula, this is true for every ¢ but involves a semiclas-
sical derivative of p.
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Proof of Proposition 6.23. Since the exchange term is vanishing when A — 0, we can
estimate the two parts of the commutator separately by writing

IXw- 1P} lg = 112§ Xuws £1llg < 127 0Xullg + 127 Xupllg-
J ] ] ]

The first term in the right-hand side can be bounded using Holder’s inequality for Schatten
norms and Lemma 6.20 with 8 = 0, leading to

1P pXullg = Ch™|p} pllocllelp|®ll2 < Ch™ | pmnlloo | 1 ||2- (116)
We can also use Lemma 6.21 with o € (a, n] to get
1P pXullg < Ch™*[Ip] plloclln (1 + [p|*)lg < Ch¥[pmnlloollpmnlly.  (117)

To treat the second term, we want to put the first weight m,, either on u or on p. To
obtain this effect, we use (108) to get

n
n _
17Xl = 3 () 020l 11
k=0 ‘
Now we use Lemma 6.20 and then expand the commutators by Lemma 6.9 to get, for any
0 €{0,1},
—k - k (1-6) —ky 10
Xaaty Gy i Pllg = CH™llady () [pI* N2 llp P}~ |1 lloo
<2°Ch™ | + 1pF D) a1 + [pI" ) oo,

and similarly to the proof of Proposition 6.22, if k > a, we take 6 = 1 and if k < a, we
take 8 = 0 and use the fact that 2a < n. In any cases, the power on | p| is smaller than 7.
Therefore, recalling inequality (118), we obtain

1P Xupllg < 3"Ch™ | pma ool a2 (119)

Combining inequalities (116) and (119) and using the definition (20) of £ norms
yields (114).

To get (115), we start from inequality (118). If k > a, so that in particular k > 1, we
use again Lemmas 6.20 and 6.9 but we use first the fact that adp; (k) = —i%Vyp to get
an additional %. This yields

Xoat, o 25 Pllg = 2°CHI= Vw1 + D 2oL+ 21" oo
If k < a,weuse Lemma 6.21 with o € (a,n — a] to get
IIXadl;j(,L)p}’_kpllq < 2°Ch™lp(@ + 1P llglle(1 + 11" )lloo-
Therefore, inequality (118) implies
1P Xupllq < 3"Cllomalloo (| mnllg + 1= Vx pmall2), (120)

and together with inequality (116) and the definition of the £¢ norm, this implies (115).
(]
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6.6. Proof of the propagation of regularity

Proof of Proposition 6.1. The strategy to prove Proposition 6.1 is to look at equa-
tions (87)—(89) and find a Gronwall-type inequality on [p|ly1.4(p,,)> Where we
renamed n as 2n as we need the number of moments to be even. In particular, we will
see that to close the Gronwall argument for ¢ = 2, we need to estimate || p || 1.4 (., for
q € {2,4}. We will therefore proceed by interpolation and define

Ma(t) == |lpllwi2gn,,).  Ma() := [pllwiagny, ). Moo(t) := llpmanllgee.
For a € [1/2, 1] we will find a Gronwall-type inequality on M5 (t) + Ma(t) + Moo (2),
whereas for a € [0, 1/2) it suffices to apply Gronwall’s lemma to M (t) + Ma(t).

We now look at equation (87). Splitting the interaction K as in (106), by Proposi-
tions 6.17 and 6.15 we find that, for 1/r + 1/r; = 1/q + 1/3,

1
7 IVo.manlpllga = Cllpmn-snoll o lpman—illes + lpman-ticlerlpmn-vicll i)
+ Cllplipr + 2lloman|l g2) | pm2n | 4

with
nog>3/b—1, k'>3/r"-2, k>3/r—1.

The contribution given by the exchange term on the right-hand side of (87) can be bounded
by Proposition 6.22 with u = p. Therefore, we obtain the following bounds on the right-
hand side of (87):

d
g7 lemanllzs = CAlpmninoll e llpman—rliga + llomonicller | pmnillen

+ lloletllomanllzs + llomanll 21lomznll a
+ W27 Ve p manll g2 ]| pman| 24).

In particular, for ¢ = oo we get

d
g 1manllzes = CUlpmaninollgw loman—tllze + llpman-sic - llpmn-icll

+ llpllp1llpmanllgee + llpman |l g2 ||pman || £
+ 1327V p mag || g2 || pman || £00).

Note that in order to close the Gronwall inequality we will need bounds on Vy p and Vgp.
To this end, we look at equations (88) and (89). We start bounding the right-hand side
of (88). By Propositions 6.15 and 6.17 we obtain

1
% | [Vp M2 Vi pllga

< CUlpmusngl o IVxp man—1llga + |omoantiller | Vep Myl 2r
+ ol IVxp manllga + Allpman || g2 || Vep manll£a) (121)

with the usual constraints on r, r1, ng, k, k'.
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By writing [E,, plman = [Ep, pman] + p[E,, m2y], applying Proposition 6.13 with
p, = pmy,, and Propositions 6.15 and 6.17 with u = p, we get

1 -
7 IEp. plman|lga = CUpllz= ol - | Vep manll g

+ IVxp matng v lpman—1llga + 1Vep mantic ll2r | pmaviller
+ llomanll g2l pmanllga + 7l[Vap manl g2 llomanll£a) (122)
forg >2and s = 1—3(1/r" — 1/b’), where we have used the interpolation of Besov

spaces stated in Corollary 6.14.
For g = 2, we have

SIEp. phmanllg = CAIT Pl [Vep manlg2
+ Ve manl'° | Vo man—2 )| gl oman | 22
+ [ Vep manll g2 llpmanl| L5 | pman—2 |35
+ lomanlls + BlIVep manll g2 | pmanl £2) (123)
fora € [1/2,1], and

1
7 IEp. plmanllez = Clpll, 2.1 [Vep manlle2

N Vep man—sl|%allpmanl| 22

+ IVep man g
1/3 2/3
+ [ Vap manll g2 lomanl| 35 | pmzn—2 |7
+ lpmanll%s + 1l Vep manll g2 llpmanll £2) (124)
fora € (0,1/2).
The contributions of the exchange term can be bounded using Propositions 6.22
and 6.23. Combining them with (121) and (122) leads to, for g > 2,

d
E”Vxl’mZn”iq

< C(lpmntnoll o | Vxp man—1llea + [lpmantir |l e | Vi p mnti | 271
+ Lt [Vxp manllga + hllpman| 2| Ve p man | £4)
+ Clplz 1015y 1. 1 Vep manliga + 1 Vap Mugng |l go | pman—1llza
+ | Vxp mantirller lomnticll e + [|omzn | 21l pman || £a
+ || Vxp man|l g2 | pman |l £a)
+ CIPI2 | Vi p mapl| g2 Viep manl| 2o

+ Ccp3Q/ati/2=1/b) lpman || £oo || Vip manllg2.

To bound the right-hand side of (89), we use Proposition 6.15 for the contribution due
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to the direct term and Propositions 6.22 and 6.23 to estimate the contributions of the
exchange term. Hence,

d
g IVepmanlize = Cllpmning |l o IVep man—illza + llpmanticler Vep mn-ricll £
+ ol Vep manllga + Rllpman|| 2| Vep manll £a)
+ [[Vxp manl| g4
+ CHY2 | Vep man| 22| Vep man | 2o
+ CHIUTHZTD| pingy || oo | Vep man | 2.
To get an estimate in &£2 we need a bound on the £¢ norm for ¢ € (2, 4). Therefore we
look for a bound when g = 4 using Corollary 6.16 and proceed by interpolation.

To establish a Gronwall-type inequality for a > 1/2, we observe that the sum M, (t) +
My(t) + Moo (2) satisfies

S M(0) + Ma(0) + Mao(0)) = COM0) + Ma(0) + Moo 1)
+ C(l + h3/2—a + hB/B/ + h3(3/4—1/5))
X (Ma(t) + My(t) + Ms(1))?,  (125)

where we have used an interpolation inequality with 6 € (0, 1) and Young’s inequality
for products to bound the £", £" /, LY norms with r,r’, b’ € [2,4]. Furthermore, we have
used the following simple inequality: for an operator .,k € (0,2n) and g > 2,

lrman—iclgs < |mmanlgalmi'lges.

We observe that (125) is a Gronwall-type inequality of the same form as (83). Thus there
exists a time 7 > 0, depending only in the initial data, such that M5 (¢) + M4(t) + Moo (?)
is bounded for all t € [0, T].

For a < 1/2, we consider the quantity M5 (t) + M4(t) and use the fact that

llomanllgoe < Ch™3/9) pman| g

Hence

d
a(Mz(l) + M4(2))
< C(Ma(t) + My(2)) + C(1 + h327 4 3O/ (Mo (1) + Ma(r))?.

Therefore there exists 7 > 0, depending only in the initial data, such that M, (¢) + M4(t)
is bounded for all ¢ € [0, T], thus p € L®((0,T), W'2(m3,) N W4 (ms,) N £ (may)).
Moreover, p € L>®((0,T), H' N W4 N L' N L°) thanks to Proposition 6.11 and the
bounds on M5 (t), M4(t) and Mo (2). [
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Proof of Proposition 6.2. Similarly to what we have done for the first-order quantum gra-
dients, we can compute the time derivative of the second-order quantum gradients of p:

ihatv;%/’ = [H, V)%P] —2[Ep, Vxp] — [VxEp, p] — 2[h3XVXp, Vip] — [h3xv_§p»/’]’
ihd,V¢p = [H,VZp] — ihVeVip — 2[h°Xv,p. Vep] — [h3xV§p, pl.

ihd,VeVep = [H,VeVipl —ihVip = [Ep, Vep) — [PXv,v,p, p] — [PXv, 0, Vep),
(126)

that are of the form
ihde e = [A 1] + [B. Vxp] + [C. p, (127)

with A, B and C being self-adjoint operators. The proof of Lemma 6.6 proves also the
following statement.

Lemma 6.24 (Lemma 6.6 bis). Let p, A, B, C be self-adjoint operators and . = j(t) be
a family of self-adjoint operators satisfying (127). Then, formally, for any even integer
q > 2 we have

d 1 1 1
g 1#manlla = 2 llIA manliellg + 2 [1[B. Vxplmanlg + +IlIC. plmanllg-

We consider the identities (126) and bound them by Lemma 6.24. This yields

h%llVﬁp manllq < Cll[Vep.m22]V2pllg + CI[Ep, Vxplmanllg
+ Cl[VxEp. plmaullg + ClIh*Xp. m2u] V20l
+ Cllh*Xv,p. Veplmanllg + CllXy2,. plm2nllq.  (128)
||Vgpm2n||q < C||[Vp.manlV2pllg + C IV Vap manlly
+ Cll*Xo. m2a]VE pllg + CllIR*Xvp. Veplmanllg
+ Cllh°Xy2,, plmanllg. (129)
—IIVstp manllg = Cll[Ve.m2a]VeVaplly + CIIEp. Veplmanlly
+ ClIVZpmanllg + ClI[1°Xp, m24] Ve Vapllq
+ C[1°Xv,p. Veplmanllg + C A Xv, v, p. Plmanllg.  (130)
We now estimate the right-hand side of (128). The first three contributions are related

to the direct term in the Hartree equation, whereas in the others the exchange operator
appears. By Propositions 6.15 and 6.17 we have

1
5II[Vp,Mzn]V§pllxq < Cllpmutnoll ger IVEp m2n—1] 4

+ Cllomanii | er |VZp mnsillers + Cllpllpi | VEp man |l ga
+ Chllpmanll g2 VZp manll£a. (131)
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As for the second term on the right-hand side of (128), we rewrite it as follows:

1 1 1
7 WEp. Vaplmanllzs = Sll[Ep. Vepman]llze + £ [Ep. m2n]Vaplza-

By Proposition 6.13 and Corollary 6.14, we get

1 -
7 IEp. Vipmanlllgs = Cliplz* 1p151.- Ve Vap manll 24 (132)

for1/r +1/qg=1/2ands =1—3(1/r’ — 1/b). By Propositions 6.15 and 6.17 we have

1
%”[Epvmn]vxp”:ﬁq < C||Vxp mn+n0||;cb’ |Vepman—1|ga
+ [IVxp man i | [Vep mugilgr + llomanllg21| Vxp man |l £a

+ 1| Vip Moyl g2 || Vip man| 2a.

This, together with (132), controls the second term on the right-hand side of (128). The
third term can be dealt with analogously to the second by using the fact that Vo E, =
Ev., and Proposition 6.15. This gives

1 -

7 IIVxEp. plmanllze = CllollL* 1ol Ve Vap man | 2o
+ V20 Mgl o I pman—1ll 2 + 1VEp Monsir r [ 0mnsic | 2
+ [IVxp manl g2 llpman | g0 + BIIVEp manl 22 [l omanlleq.

We now turn to terms to which the exchange term contributes. By Proposition 6.22 we
obtain

1 -
X, manlVipllza < CH¥270|Vxpmonl| g2 | VEp manllza.  (133)

By Proposition 6.23 we get the bound
1 -
XY, Veplmanliga < CH TV p oy g2 ]| Vep manllgoe. (134)

Finally, by noticing that VxXy, , = Xy2 o We apply Proposition 6.23 to the last term on
the right-hand side in (128): )

1 -
X2, plmanllge < CHAVIT2D ooy || oo | V2p man 2. (139)

Therefore, using Proposition 6.1 and estimates (131)—(135) we obtain a bound on the time
derivative of ||VZp may, | ¢a.

We now look at the right-hand side of (129). By using Propositions 6.1, 6.15, 6.17,
6.22, 6.23, and by Proposition 6.23 with VngE o = ngp’ we obtain a bound on the time

derivative of || Vgp Moy || ga.
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As for the mixed term (130), its right-hand side can be bounded as follows. By Propo-
sitions 6.15 and 6.17 we get

1
7 1Ve.man]VeVipllga = Cllpmningllgv [ Ve Vap man—il 24

+ loman i ller | VeVip mpiillgr
+ (lpllipr + llpmanll£2) | Ve Vi p man | ga. (136)

As for the second term on the right-hand side of (130), we rewrite it as

1 1 1
ME. Veplmanlizs = —l[Ep. Vepmanllizs + 2 [Ep.man]Veplzs.

and use again Proposition 6.13 and Corollary 6.14 for the first term on the right-hand side
and Propositions 6.15 and 6.17 for the second term. We now turn to the terms to which
the contribution of the exchange term appears. By Proposition 6.22 we obtain

1 -
7 1Xo. m2n] Ve Vipllga = CH/>|Viep man || g2 | Ve Vip man | a. (137)
By Proposition 6.23 we get the bounds
1 -
XV, 0, Veplmanlga < CH VT2V Vep oy || oo | Vep manll g2, (138)
1 3(1/q+1/2-1/b)
7 IXvev.p. Vaplmanlles <Ch IVxp manllgoo || VeVap manll g2 (139)

Therefore, using Proposition 6.1 and estimates (136)—(139) yields

d _
E”V&'pr Map ||l ga < C(”VEVmeZn [l £r1 +||V§2P Moy || 2a +h3/2 a”VSVxP Manllga)
+CHPWATZTD (19 0 moy | o0 4[| Ve Viep manl| £2)

fors = 1 —3(1/r’ — 1/b) and with the constraints 1/r + 1/ry = 1/q + 1/%’ and
1/r +1/g = 1/2. Now we define

Nx,q(t) = ”V)%PmZn”:C‘l, Nv,q(l) = ”ngmen”:C‘h Nxv,q(t) = ”VEVmeZn”ii‘l
and denote by N, 4(t) the quantity
N2n,q(t) = Nx,q(t) + Nv,q(t) + Nxv,q(t)-

Then we proceed as for the first-order gradients. Using Proposition 6.1, we obtain a bound
on the time derivative of N, 2(¢) + Nap—2.4.
For a € [1/2, 1], we consider the quantity

F2n,oo(t) = N2n,2(l) + N2n—2,4 + ”men“Wl,oo

and look for a Gronwall-type inequality. From (88) and (89) with ¢ = oo, we obtain an
upper bound on the time derivative of F», o (f), and using (105) and Proposition 6.11 and
standard interpolation allows us to conclude by Gronwall’s lemma.
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For a € (0,1/2), since p € W*(m5,_,) by Proposition 6.1 and

[Vap man—sllgoc < Ch™3/*||Vp man_sl|gs,
[ Vep man—sllgee < Ch™*|Vep man—s]ga,

we get an estimate on the time derivative of Ny, 2(¢t) + Nap—2,4(¢). By Gronwall’s
inequality we conclude that p € W22(my,) N 'W2*(my,_») fora € (0,1/2). |

Proof of Proposition 6.4. We observe that analogously to (87)—(89), the following bounds
hold:

d
h VB manlly < Vo, manl/Pllg + 73X 0. m20] /P g

hd%lle\//_)mznllq < Ve m2nlVai/pllq + IEp. /PIm2nllg

+ 118> X o, m2n] Vi /pllg + I0* XV, p. /pImanllg,  (140)
h%”VE\/ﬁmZn”q < 1Ve-m2nlVe/pllg + I Ve /P m2nllq

+ 11X, m2n]Ve/Pllg + 11XV, p. /PIm2nllg.  (141)

As in Proposition 6.1, we look for a Gronwall-type inequality. To this end, we define

My(t) = Il 22(may) + | v/P 20 (nn)

for ¢ € [2, o0] and notice that, because of Propositions 6.15, 6.17 and 6.22,

d -~ ~ -

gy Ma(1) = CM (1) My, (1) + CMa(1) My (1),

which implies the boundedness of Mq (1) for g € [2, o] thanks to Proposition 6.1.
We now define the quantity

Nq(t) = “ﬁHW‘J(mz,,) + ”\/'B”’WUI(mz,,)

for g € [2, o0] and using (140) and (141) we compute
d ~ ~
E(Nz(l) + Ng(1)). (142)

The contributions due to the direct term in (142) can be estimated in terms of M, and ]Vr
by Proposition 6.15, in terms of M} +? (for § € (0, 1)) and N, by Proposition 6.13,
together with N, by Proposition 6.15. The contributions due to the exchange term in
(142) can be estimated in terms of M, and N by Proposition 6.22, and in terms of Mq,
N and N, by Proposition 6.23. Hence, in the same spirit of the proofs of Propositions 6.1
and 6.2, using these propositions and Gronwall’s lemma we obtain the boundedness of ﬁq
forq € [2, <] L]
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Part 111
Mean-field limit

7. Scaling

In order to define the Bogolyubov rotation as explained in Section 4.3, we define
w:=Ap with A= Nh3 (143)

so that Tr(w) = N and 0 < w < A€ < 1. Notice that in the critical scaling N = Ch3,
A is a constant, while in the other cases when N = h~¢ with ¢ < 3 we have A — 0. We
also define

v=+vo and u=+1-o,

which are well defined bounded positive operators since 0 < @ < 1. With these definitions,
we obtain the following behavior for the Schatten norms for p € [1, o<]:

/ 1/2 —
loll, = GNI?' . ull, = 2N Y2302,

where €, = ||p|lg» and p’ = %. The operator u satisfies ||u |0 < 1, but of course u is
not bounded in other Schatten norms. However, one can prove that 0 < 1 —u < w, hence
1 — u is of the same order of magnitude as w. Since V,u = —V,(1 — u), this explains
why we can expect the gradients of u to be of the same order as V,w, as indicated more
precisely in the following lemma.

Lemma 7.1. Assume ||®|lcoc = A€o0 < 1. Then
C||V,7u m”p = ||Vnwm||p + ||a)V,,m||p,
with C = 2/1 = ACw. In particular,
CllVsum|, < DyNI7',
where Op = ||Vepm||gr + ||pVem|| gr is of order 1 in the semiclassical limit.

Proof. Since ||@l|loo < 1, we can writeu = (1 —w)"/2=3"° (1,/12)(—1)”(0”. Therefore,

for n € {x, &}, we obtain
(12 19strm,

e o]

IVyum|p = [|Vy(u = Dmll, <>

n=1

n

Expanding the gradient with the product rule for commutators gives
n
Vy(@"m) = 0" Vym + Z a)k_l(Vna))w”_k,

k=1
(%)

which leads to

o0
—1
IVqumll, <> nllol’s (IVyomll, + |loVym],).
n=1
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Moreover, for n > 1, \(1,/12)| = (—1)”_1(1,/12) and (1,/12) = %(;1_/12), from which we
deduce

o0 o0
1/2 _ 1 -1/2 _ _ 1
[ | e o (i [ e
n=1 n n=1 n— 21— ”a)”oo
and the conclusion follows by combining the last two inequalities. ]

8. Preliminary inequalities

In this section, we provide estimates which are crucial for controlling the growth of the
particle number operator with respect to the fluctuation dynamics in the subsequent sec-
tions.

Let us begin by defining some convenient notations. For any pair (0, 0”) € {/, r}?
and a bounded operator O : » — b, we generalize the standard notation of the second
quantization of the one-particle operator by setting

dle 6 (0) = / O(x,y)ay yay,q dx dy, (144a)
R6 ’
drt (o) = / O(x, y)ay ,a, o dx dy, (144b)
g RS o9y,
dI'; ,/(0) = / O(x,y)ax,cays dx dy, (144c¢)
g RS

where the operators are expressed in terms of operator-valued distributions (44). When
o = o', we write dTy := dI'; ; where o denotes either +, —, or null. Moreover,

T/ (0)* = dlg5(0*) and dI'} (0)* =dly ,(0%). (145)

We begin by extending [11, Lemma 4.2] to the case of Schatten class operators
between different Hilbert spaces. See [76, Chapter 7].

Lemma 8.1. Let (0/,0) € {{,7}? and O : Y4 — b4 be a compact operator. Then, for
every p € [1,00], we have the estimate

[dTs(0)¥[lg < O[NP ¥|g (146)

for every W € G, where N = dI';(1) + dT',(1). Moreover, for p € [1, 2] we have the
estimates

14T,/ (0)¥[lg < [|O[l,[|N /7' W] (147a)
4T, (0)®llg < 01,V + 27" ¥]|g (147b)

forevery W € §.
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Proof. The p = oo case of (146) and the p = 2 cases of (147a) and (147b) are proved in
[11, Lemma 4.2].

For any compact operator O, we can write down a singular value decomposition of O,
thatis, O = _; u;(¢;,)g; where (¢;)jen C hor and (¢;)jen C b are two orthonormal
sets, and p; > O are the singular values of O (see e.g. [76, Theorem 7.6]). Thus, using at
to denote either a or a*, we have

where qs_,- is either ¢; or q;j. Since ||ag((p)||oo < |l¢llL2 = 1, we obtain

/R Oy gaf , dxdy H < Zu,-||a§(<2>,-)a§,<¢,->||oo,
J

[e¢]

[ otnatdhavar| < =10,
b J

Hence, for any o € {4+, —, }, we have ||dT"° _,(O)¥|l¢ < |O|l1||¥|¢. Finally, we deduce

o0’
the desired result by weighted interpolation. ]

As an immediate application, we can bound the expectation values of the operators
(144) in terms of the expectation values of powers of the number operator.

Lemma 8.2. For any p € [1, 00|, we have the estimate
(W [dT5(0)¥)g < Ol (¥ | N7 ¥)g (148)

for every U € §. Similarly, for any p € [1,2], we have the estimates

(W[dT,,(0)W)g < 227 O], (¥ ]| (N + D/P' W), (149)
_1 /
(W [dT, . (0)W)g <227 [0, (¥ | (N + D/7 W)g (149b)

for every ¥ € §.
Proof. For € > 0, one has the equality
(WD (0)W)g = (N + €)27 W[ (N + ) 27 dT(0)W)g
— (N + )27 U |dT(O)(N + €) 27 U)g.
Applying the Cauchy—Schwarz inequality and Lemma 8.1 yields
(WAL (0)W)g < [0V + )27 W5 | N7 (N + )72 W|lg
< 0l IN + )77 W] ¥ 27 Wllg.

Then inequality (148) follows by passing to the limit € — 0. With a similar argument and
the observation that for any nice function g, g(N)a* = a*g(N + 1), we obtain

_1 _1
(W1dTy, (0)W)g < Ol N 277 Wlig|(N +2)27 Vg,

g,0’

from which we deduce (149a). Inequality (149b) follows immediately from (145). [
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9. Quantum fluctuations and the mean-field limit

In this section, we prove how the error of the mean-field approximation of the fermionic
system can be controlled by the mean number of particles of the fluctuation dynamics
about a quasi-free state. To this end, it suffices for us to specialize our study to the state
vector

Wpe = R ®, = RieO/Mv R, gin (150)

and consider its mean number of particles
(Whae | N Whae)g = |V U]
More specifically, we control the error of the mean-field approximation by the norm
Whicllg, = 1N + D Whuclls (151)

for k > 0, which allows us to handle additional small error terms. For the rest of this
section, we drop the subscript of the fluctuation vector and the dependence on time to
reduce cumbersome notations.

One can see that the quantity (151) controls the difference of the one-particle density
operators in the sense of the following proposition.

Proposition 9.1. Define WV and p ., as in Theorem 4.1. Then, for any p € [1, 0],

Cp
min(N1/2, Nh3/r")

2
lon:a —pller < Wl |
25

where Cp = 22Y27 if p > 2and C, = 24 25/4€"? if p <2.
2—p
Proof. Following [11, proof of Theorem 2.1], we have

NIPpy.y(x.y) —o(x,y) = (Un | ay 021 ¥n)g = (Y| Rpay jaxRe V) g
= (W] (a] (up)as ux) — af (uy)a (Ts)

—dar (ﬁy)al (ux) — a:(ix)ar (Ey))q/)g~

Since p = ﬁ(u, we deduce

(s = D). 3) = o (0 | ] Gy )ag ) — ] )5 52)
—ar(vy)a(ux) _a:(ﬁx)ar(ﬁy))\p)g~ (152)

In particular, pairing the operator (152) with an observable O yields

Tr(O(py.1 — P))

1 . B
= W(\p | (dT;(uOu) — dT, (V0 v) — dT}, (vOu) — dT'7; (vOu)) W),
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In the case p € [2, 0o], we apply the fact that |1 ||co, [|V]lcc < 1 and Lemma 8.2 to

deduce the estimate
2455

Nh3

Tr(O(py.y — ) < O]l (¥ | (N + 1)/PW)g.

Then, by duality and the fact that ||||¢» = h3/?||p I, we obtain the result when p > 2.

For p € [1,2], we can bound the terms with dI';(xOu) and dI',(TO v) as in the
previous case. For the other two terms, we begin by applying Holder’s inequality to get
lvOulz < ||v||l+|1O|lp» where 1/r = 1/2—1/p’. Then, by Lemma 8.2,

(| (dFlJ;(UOu) +dI (vVOu))W)g| = 2|(¥ |dI, ; (vOu) W)y |
< 2 ull Ol (W[ (N + 1! W)g.
Since ||v]|, = ‘€rl//22N1/2h3(1/2*1/’) and 1/2 —1/r = 1/p’, this implies
(W] (dT}, (vOu) +dI',; (vOu)) ¥)g|
< 25/4||0||p,'€r1//22N1/2h3/17 <\p | (:/V + 1)1/2\11)#'
So, we have the estimate

/2
) 25/4¢! ;
Tr(O(py:1 — ) = ||0||p/( + o

1/p
T T ) I D),
which yields the desired result. ]

To better understand what it means to have a small number of particles after having
performed the Bogolyubov transformation, it is useful to see how the latter acts on the
number operator. From the definition (72), we obtain the following formula for o € {r,[}:

ReNoRy = As +C + C*, (153)

where
A, =N+ N—-dl'(w®®w) and C= dI‘r‘"l(uv).

Since changing v to —v changes R, to Rj, we deduce similarly that
Ry NoRp = A; —C —C™. (154)

From these formulas, we deduce the following interesting fact: the operator v, acting on
the single Fock space ¥ and corresponding to the Bogolyubov transform of the vacuum
in ¥ commutes with the number of particles operator.

Lemma 9.2. Let v, := I (R, Q). Then
[M,vo] =0.

This also implies that py o = [V, |2 commutes with N .
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Proof. Let ®, := R,Q = lgv,. Then N;®, = lg(Nv,) and N, D, = lg(v,N), so
g [N, vp] = (N — N)®p = (N — N;)R, Q.
Now we use (154), yielding
(N — NIRpQ = Ro (A — A)Q = Ry (N — N)Q = 0,
which proves the result. u

Since the number operator on the double Fock space § is given by N = N; + N,
equations (153) and (154) imply

RpNR} = A+ 2C +2C*, (155)
R;NR, = A—2C —2C", (156)

with A=A + A, =N + 2N — 2dI'(w @ ®). This allows us to prove the following
bounds.

Lemma 9.3. Let k € N. Then for any ¥ € Gy,

[N REWlg < 35|I(N + 2N + 2k)* W|g,
MR, Wl < 3K|[(N + 2N 4 2k)FW|g.

Remark 9.4. With a similar proof, one obtains
IRpWlig,,, < 32N +2N)! /20l
and so by interpolation, for any s € [0, 1/2],
IRG Wllg, < 3°[(N +2N)"V]g. (157)

Proof of Lemma 9.3. Since Ry N R, and Ry N Ry are positive operators, by adding (155)
and (156) we deduce that A is also a positive operator. Therefore, since dI'(w @ @) is a
positive operator, from the definition of A we obtain

0<A<N+2N,
which implies that for any ¥ € §,
A2 Wl < |V +2N)2¥g.
Since A commutes with N + 2N, we deduce that
[AW]lg < [[(N +2N)¥]g.

On the other hand, by (147a) and (147b) and the fact that ||u]le < 1 and ||v|, = N'/2,
we have
IC*Wllg < [uvll2 (N +2)2W|g < TNV + N +2)¥|g,
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and similarly ||CW¥|g < %H(a\/ + N)V|g. From these inequalities, using the fact that A
commutes with N and the fact that NC = C(N —2) and N C* = C*(N + 2), we deduce
that for any j € N, by defining ¢; := 2N + 2j, we have
IV + ¢;)) Rp NREW g < AN + ¢;)/ Wllg +2[C(N + ¢ —2)/ ¥lg
+2[CH(N +¢; +2) Vg
<3N +¢j+) g,
By induction, this implies that for any (j, k) € N2,
IV + ¢ ReNRY) Wiy < 3N (N + ¢j ) T W5
Taking j = 0 and using the fact that R, is unitary and therefore (Ro N R;“,)k =ReN k R%

we get
IN*REWlg = [[((RyNREFWlg < ¥ (N + )  Wg.

The case of A'¥R, can be handled in the same way. m

10. The fluctuation dynamics

With the scaling provided in (143), we have p(x) = N~'w(x,x). Letus define, asin [11],
Xo(x,y):= N"1K(x — y)w(x, y). This gives X,, = h*X,. Thus, the Hartree-Fock equa-
tion (5) can be rewritten as

2

h
ihdw = [Ho.0] with Hy=——A+K%p—Xo. (158)

By [11, Proposition 3.1], we know that the dynamics of Wy, satisfies
ihdiU;s = GiUss with Ugy =1 foralls e R
and the generator G; is given by
G =dIy(H,) —dl(H,) + D+ Q+Q* + Q + Q*, (159)
where

1

D=—
2N RO

K(x — y)(af (ux)a] (uy)a;(uy)a(ux) — ay (ix)ay (iy)a, (iy)ar (ix)

+ Zaf(ux)a: (Ux)ar (l)y)al (My) — 2617 (ux)a:(ﬁy)ar(ﬁy)a[(ux)

+ 2a (U )a) (vy)a; (vy)ay (i) — 2ar (ix)a; (vx)a;(vy)ay, (iy)

+ af (Uy)ay (Vx)ar (Vx)ar(Vy) — aj (vy)a) (vi)ag (vy)a;(vy)) dx dy
@ = % /Ré K(x = y)(aj (ux)aj (uy)ay (0:)ar(uy) — a7 (i@x)aj (vy)aj (vx)ar(vy)

+af (ix)a) (iy)a) (vx)ar (iy) — af (ux)ak (Oy)a; (Vx)a, (Uy)) dx dy
1

Q* o AG K(x — y)(a) (ux)a) (uy)a) (vy)ay (vx)

—ay (ix)a; (iy)aj (vy)aj (vx)) dx dy
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with u,(y) := u(y, x) and vy (y) := v(y, x); D contains quartic terms that commute with
N = N, + N, whereas Q* and Q* contain quartic terms that do not commute with V.

10.1. Bounds on the fluctuation dynamics

In this section, we use the uniform (in #) regularity of the solution of the Hartree—
Fock equation to estimate the growth of the mean number of particles for the fluctuation
dynamics.

We fix p € [1, 2] with

<b= 160
P a+1 (160)
and take 1 < go < g1 < oo such that
1(1+1)_1 1 (161)
2\q1 g/ p b
We choose T' > 0 so that the following two quantities are uniformly bounded on [0, T']:
Dyo.qr = [ Ve/Dm gy | Ve /o mI £ (162a)
Dyo.a1 = (DgyDq;)'"?, (162b)

with £, defined in Lemma 7.1 and m = 1 + | p|” with n > a + 1. The main result of this
section is the following inequality.

Proposition 10.1. Let (kg, k) € [0,1/2] x N. Then, forany W € § andt € [0, T],

(a—1)k
Cp A
U0, = Core (1814 + s ¥ )

where o :=3/p —3/2, Cpyy = CkTko(1 4 N=V21=1) for some constant C > 0, and

Ao = Cpaglk|h™(1 + N/213/2) [su}a](up(r)nm,:oqo,ql(t), Dyo.qy (1)) (163)
0,

. 3
with Pa = 3—2a"

Remark 10.2. With the cut-off given in Remark 4.3, one obtains

R3o¢kt

Cpr A

”UI,O"I"HgkO =< CMe M Rt(”\p”f;ko_;,_y(/z + W”\Ij”g3k/2)
with

AR = Cpagolc|R7>*(1+ N'/2h%/?) [SU%(HPU)”LPG s Dy, (1), Dgg.q (1))
0,

To prove Proposition 10.1, we will first obtain uniform (in #) estimates for the gen-
erator (159). This is done by proving a series of lemmas. In particular, we will estimate
each of the terms of the generator that do not commute with N separately.
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10.1.1. Bounds for Q. For convenience, let us begin by recalling the following lemma.

Lemma 10.3 ([49, Proposition 4.6]). Let a € (—1,3/2), p € [1,b), and qo, q1 satisfy
(161). Then, for n > a + 1, there exists a constant C > 0 such that

1K plllp < CH*>/° Ve pm )| Vep mil 2.
Here, K denotes the multiplication operator by K (y) := K(x — y).

Then we have the following result.

Lemma 10.4. Leta € (—1,3/2) and p € [1,2] satisfy p < b. Then, for any (¥1,¥,) € §2,

(U |Q*Ws)g < k| (C13V2YP) 4 G NV2RP) Wy g, [ Wallg,, . (164)

S| =

where Cy = Co‘[)qo,q1 and C; = C(Nh3C€u0) /2Dy, 4, for some constant C > 0 depend-
ing only on a, p and qy.

Proof. Recall the definition of Q* given in (159). By the anti-commutation relations (40),
the products of creation operators in Q* can be written as follows:

a;(ux)a;k(uy)a;k(gy)a:(gx) = a?(ux)a: (Ex)af(uy)a;k(gy),

a (i)} (i) (vy)af (vx) = af (v)a} (W)af (vy)a (iTy).

Moreover, using the notations defined in (144) and the notation K, (y) = K(x — y), we
set dI‘l‘; uKyv) := ng K(x — y)aj (uy)ay (vy)dy. Therefore, we can rewrite Q* as

- 1
a* = N / 2[drlfr(quv)dr,Tr(usxv) — dI}f (8,u)dT (UK v)]dx.  (165)
R,

Here, ud,v denotes the operator with integral kernel (u8,v)(y, z) = u(y, x)v(x, z).

Asin [11, proof of Proposition 4.3], we need to exploit the hidden commutator struc-
ture in (165) to handle the #~! on the left-hand side of (164). We begin by using the fact
that ¥ commutes with v to deduce the identity

uKyv = vKyu + u[Ky,v] — v[Kx,u] =: vKyu + cx (166)
for any x € R3. Moreover, the symmetry of K allows us to write
[R . ;5 (K u)dlf (udyv) dx = /R . dr;f, (v8xu)dT;, (UK v) dx. (167)
By (166)—(167), we make the commutator structure appear more explicitly:
1
(165) = N A . [dT, (VK xu + ¢x)dT}! (ubxv) — AT} (v8,u)dT ), (UK xv — cx)] dx

s

|
=z /R AT (e0)dT], (u80) + AT, (08,0, (e)] d.



From many-body quantum dynamics to the Hartree—Fock and Vlasov equations 4981

Again, using the fact that the creation operators anti-commute, we obtain
- 1 _ _
Q* = N /]1;{3 (af (ux)a) (Vx) + al*(vx)a;‘(ux))dFlTr (u[Kx,v] — v[Kx, u]) dx.

Expanding the product in the integrand gives four terms. We define J; and J> as the terms
with [Ky, v], and J3 and J4 the terms with [Ky, u]. Let us look at J;. By the Cauchy-
Schwarz inequality,

(W) | 1W2)g = [ (a1 (ux) Wy | ay (U2)dT;, (u[Ky, v]) Wa)g dx

R3
1/2

1/2
< ([ aowiigax) ([ e @oary, aike opwa a)

The first factor can be written as

[ ol ax = (s

/ a;‘(ux)al(ux)dxw1> = (0, [dTY (1 — 0)¥))g.
R3 g

which is smaller than (¥, | N; W )g. To estimate the second factor, we use the fact that
lay @3 = llvxll72 = Np(x)
together with Lemma 8.1 and the fact that ||u||,, < 1 to get
lay (T)dT; u[K e vDW2llg < (Np()) 2 ([[Kee. 0] [l (N +2) 7 Wy .

Combining the above inequalities leads to

y 1/2 )
| dvat < N2 [ 1K o200 ax ) (0 | W01 + 2017l

Applying Lemma 10.3, since p < b, and the scaling relation (161), we get
I[Kx.vlllp < Cle|N12RIH3ARTUD Dy g (168)

Therefore, we finally obtain the inequality

1 - ~ _
37 (U 11¥2)s = Clkl Do 271D W15, 1923, -

The term J, is treated similarly, leading to the same bound.
The terms J3 and J4 can also be treated in a similar manner, except that in this case,
we apply Lemma 7.1 and the fact that [|v]|eo = €XL2(NA3)1/2 to get

[v[Kx ulll, < Clc|N32p1H36/2=Upelizg, (169)

So, we have obtained the claimed bound for Q*. [
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Remark 10.5. In the case of the cut-off potential described in Remark 4.3, we can take
go = ¢q1 = oo and p = 2 in the above inequality, with an extra factor R31/2-1/%) leading
to

1 - _ -
5 (W1 Q" W)y < [k RAZTUDC + CNYZR)|Willg, [ Wallg, o (170)

More precisely, (170) is a direct consequence of the estimate

1 -
KR pllz2 = Clel X270 Vepm|| o,
which follows directly from [49, proof of Proposition 4.6].

10.1.2. Bounds for Q*. We label the terms of Q* given in (159) by
Q* =1+ I+ I3+ L. (171)

Using the fact that the creation operators anti-commute, we get
1 * — \ %
I, = - / K(x — y)aj (uyx)ay (vx)aj (uy)a;(uy) dx dy,
RO
1 _
== | K= )ai e} oaj ()ar(vy) dx .

I3 and 1, have similar forms with the “/”” and “r” labels interchanged and (u, v) replaced
by (u, v). To reveal hidden commutator structures, which are necessary when estimating
Q* uniformly in 7, we need to further decompose equation (171).

Let us start with the following decomposition lemma.

Lemma 10.6. Let Q* be as in (171). Then
I+ 1L=J+Jo+ Jia+ 112,

where

=~
Il

%/ﬂ; ay(uy)ay (vx)dy (ufu, Ki]) dx,

Jr = %/ﬂ;s aj (vy)ay (ix)dI (v[v, Ky]) dx,

Do = [0 0 Kol + (K oo} @) .
he == [ a7 000 Gar (K .

We have the same splitting for I3 + 14, interchanging “1” with “r” and replacing (u, v)
by (u,v). Hence,

Q* = (J1 + o+ T3+ Ja+ Jiz + J3a) + (I12 + [34) =: P* + P*. (172)
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Proof. To simplify our computations, we use the Fefferman—de la Llave formula (see
[31,41]) in its smooth version. For the potential K it reads

> a1
Ko=) =sa [ [ 5 e dzas
0

3=a na/2
where @5 - (X) = @s(x —z) = e~mlx=21%s and Kqg = 2% F(a/z)/( This allows us to rewrite
Iy and I, as
o0
K S ars
N 0 R3 Lr
(o)
K s
N 0 R3 lr

where g5 is seen as a multiplication operator. Since u?> = 1 — w, we have the identity
dr}, (ueu)dly (upu) = AT}, (upv)dTy (ulp, u]) + AT}, ([u, @]v)dT; (1 — w)@)
+ dl" L(puv)dl (1 — w)e)

2

where we have used the notation ¢ = @5 .. Similarly, since v = w, we have

I} (veu)dly (vpv) = AT}, (veu)dl; (v[p, v]) + dT} (v, plu)dT (@e)
+dI (puv)dly (wg).
Combining the two identities yields
dI’+ (upv)dI'; (ueu) + dF L(eu)dTy (vov)
= dr}, (uwv)dl“z(ukp u]) + dT}, (vpu)dTy (v[e, v])
+dL; (. ulv + [v. gp]u)dl"l(a)go) +dI}" (upv)dli(p).  (173)

Thus, using identity (173), we can write I1 + I, = J; + J5 + J12 + I12 with

Jp = — / [ idF+ L (uov)dly (ufu, ¢]) dz ds,
R3

Jr = —a/ / sTdFl+r(v(pu)dFl(v[v,<p]) dz ds,

Jip = — / / dF+ ([u, ]v + [@, v]u)dT;(we) dz ds,
R3

Iy (upv)dl;(¢) dz ds.

= )L

Reversing the Fefferman—de la Llave expansion gives us

n=y L
N Jr3 Jo Jr3

% /1;3 aj (ux)ay (vy)dLy(ufu, Ki]) dx.

5“3 af (u)al @e(x)dTy (ulu, p]) dz ds dx
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The same is true for J5. Lastly, we have
Ka o0 atl 4 *
Jia = N s 2 dl ([u, p]v + [, v]u)a; (wx)p(x)ay, dz ds
0 R3 ’
1
= —/ dT;" ([u, KxJv + [Kx, v]u)a] (0x)ax, dx.
N R3 ’

This completes the proof of the lemma. ]

Let us first estimate the J terms, which can be treated in a similar manner to the Q*
case. One obtains the following bounds.

Lemma 10.7. Assuming the same hypotheses as in Lemma 10.4. Then, for any (¥, V;)
in §2,

1 ,

S 1)y < CLN2R W5, , [ Wl (174a)
! 123300

7 (W1l 2Wa)g = Gole[NZR7E [Whllg, 2 12l - (174b)
1 1/233/p'
7 (Wil i2a)g < Colk N R Wil [ ¥2lls,,, (174¢)

where Cy = CDyy g1, Ca = CCL*Dyoqy and Ciy = CE (NI Co) 2Dy 41 +
Dyo,q1) for some constant C depending only on p and a. The same inequalities hold
respectively for J3, J4, J34.

Proof. Applying Lemma 10.3 and the fact that ||u ||, < 1 gives
|ulKyx ulllp < Cle|NRUFP Dy 4.

Then, following the proof of Lemma 10.4, this yields inequality (174a). Similarly, by
Lemma 10.3 and the fact that ||v]|ee = (CsoN/3)!/2, we have

[0[Kx, V]l < ClcINRFP 2D, 41

from which we arrive at (174b). Finally, by direct estimation, we see that

1 1/2
(W1 | J12W2)g < N( /R lar(@)dl (o[ K. ) —u[Kx,vl)wn;dx) 142l

Then (174c¢) follows from Lemmas 8.1 and 10.3. [

Lastly, let us estimate P* = [, + [34.

Lemma 10.8. Let p, = ﬁ Then there exists C > 0, depending only on a, such that
Jorany (W1, ¥,) € §2,

1ol (% [ N W) Y2 (s | N W) 2,

1 " Clk|
£|(‘I’1|P Us)g| < N7
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Proof. Let (¥, W,) € §2. By the Cauchy—Schwarz inequality and the boundedness of a*,
we have

1/2
(W1 ] 112W¥2)g]

IA

1 1/2
v (Lt o) ([ 1az@oarigowals o)

1 1/2 1/2
N1/2(\p1|"vilp1)g (A3p(x)||dF1(Kx)W2||§dx) .

where we use ||vy ||]242 = Np(x). Moreover, since

" \Ij(n’m)(icna Ym)
AL (K )W) ™™ (xp, ym) =60y ———— =

j=1

’

|x — x;|*

where x, = (x1,...,X,), Ym = (1, ---»Ym), it follows that

’

g(y)
1@ K)®) ™™ | 7 gy < [P0 /R S
where we have defined g(x) = || W) (x, Enfl»zm)”iﬂdx ., dy,y- Finally, it follows
from the Hardy-Littlewood—Sobolev inequality that -

p(x)g(y)
[ PONAT KOO sy b = e [ O aray

RS |x — y[*¢

2 2
< Cpaalcl™n”|lpllLrallgllL

where ||g||;1 = [|[w®™ ||22. This yields the desired estimate. The proof for the estimate
on [34 is the same. ]

10.2. Proof of Proposition 10.1

To control the growth of the fluctuation dynamics in the §; norms, the strategy consists
in splitting the generator G, defined in (159), into two parts and then solving the problem
perturbatively. More precisely, we define the splitting G = G + B with

G =dI(H,) —dTr(Hy,) + D+Q+ Q* + P + P*, (175a)
B =P+ P*, (175b)

where P and P are defined by (172). The idea is to view G as a small perturbation of G.
This is justifiable since, when N /2} is large, the effect of the operator B is small in the
following sense.

Lemma 10.9. Let2j € N and p, = ﬁ. Then there exists a constant C > 0 depending
only on a such that .
27 k|

TEALTE (176)

1
% ||B”§j+3/2—>§j S C
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Proof. This follows from Lemma 10.8. Notice that (N + 1)*P* = P*(N + 3)¥. Then,
by Lemma 10.8,

IP*Wllg, = sup ((N + 1)7V2W |[PX(N + 3)7T1/20),
willg=<1

Calx| 27 ||

= N1/2 N1/2

The estimate for P also follows immediately from Lemma 10.8:

1/2

1/2 /
ol IV +3Y T 12N Wg < Co o ol 1Wllg, s -

IP¥llg, = sup (P*(V + D70 (N = 1)/ FW)g

W1llg=<1
Calk| 1/2 j Calk| 1/2
< i eI IV = DTN 2 Wlg < Sl ¥l g, e
This completes the argument. ]

In light of the above lemma, we define the auxiliary dynamics Ut,s to be the unitary
dynamics generated by (175a), that is, for any (z,s) € R?, Ot,s satisfies the differential
equation

ihd, U, ¥ = G,0, ;¥ with U;,¥ =W (177)

for W sufficiently smooth. The existence of U +,s 1s proven in Appendix A. Let us begin by
showing the auxiliary dynamics propagates the §; norm under regularity assumptions on
the solution of the Hartree equation.

Proposition 10.10. Leta € (—1,3/2) and p € [1,2] satisfy p < b = %, and suppose

v, = U,,s\ll is a solution to (177). Then, for any k such that 2k € N, the inequality

d ~ _ /
ae Wil = Celkl(Dag.an 271+ CoN W) Wil 10017

holds for some constants Cy. of the form Cy, = Cp 4.4,C* and
CP = (1 + 8;42)(£)q0,41 + ‘1340,611)’

where Dy, 4, and 35‘10,41 are defined by (162a) and (162b).

Remark 10.11. Since Nh3€y, < 1, from Gronwall’s inequality we deduce that
10rsllg, g, =< e (178)

where

t
Crs = Cilk|h™(1 + NV/2p3/2) / [Dyo.q1 (T) + Dyo.q, (D] dT
S

with o := 3/p — 3/2 > 0, which is 0 if and only if p = 2, and N'/2h3/2 is bounded
above uniformly in N and % by assumption (36).
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Proof of Proposition 10.10. Let k € N. Since G = G*, we get

.d <
ih Wi, = (Ve[ + D, Gl

(U [(N + DTN, GUN + D05
1

k
j=

Note that the only terms in G that do not commute with N are (3, P, and their adjoints.
Since Nyay = a}(Ng + 1) for o € {r, [}, we obtain

[V.G] = [N.Q" +Q+P* +P] =4Q" - Q) +P* - P,

which leads to

k
d 2 j— 3 D% —J
I, = =30 (W |V + 17"+ PO + D). (179)
j=1

Using again the commutation relation between the number operator and the creation oper-
ator, we can balance the power of the number operators appearing on the left and on the
right of Q*. More precisely, if j > &L, then

N+ DTN + D = W+ DTQW + 5T W+ )
N+ DI (W + ¥ = (W + )T QW + 2~ F (W + 1)F,

and similarly if j < %, using the fact that Q*(N + 1)° = (N — 3)*Q*. Therefore,

applying Lemmas 10.4 and 10.7 to each term of the right-hand side of (179) and the fact
that N13€s < 1 and €, < €2, we obtain

d 2
el ,
< CHIk|Cp.age (Do BPV2HP) + CoN 2R Wy g, 10,

N =

”ff’k/2+(1/271/p)’

which leads to the desired result. [

Moreover, by Proposition 9.3 and by weighted interpolation, we deduce that for any
t > 0, Ry, is a bounded mapping from G to ;. More precisely, for any k € [0, 1/2], we
have a bound of the form (157), and the same bound is valid for R;. Therefore, recalling
that by definition U,y = R;‘,le_“-(’_s)/h Ry, and since e~""¢=9/% commutes with the

number operator, we obtain, for k € [0, 1/2],
IUrs®llg, <31Wg + SN0l (180)

Combining the three inequalities (178), (176), (180), and using the Duhamel formula,
we obtain the main result of this section.
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Proof of Proposition 10.1. Let By, := %B. Then the Duhamel formula can be written as
Uro = Uro + (U B,0)y 0,

where we use the notation * for the time convolution of operators,
t
(U * V)t,s = / U s Vs s dS/,
N

We now define the iterated time convolution U*®) by U*D = U for k = 1 and by
UCR) =y » U&=D) for k > 2. With these notations, one can write the following iterated
Duhamel formula:

k—1

Uo =Y (0 Ba0)*)0+ (U (B,0)*F) 0 (181)
j=0

and from (180), we deduce

k—1

U oWlig, <Y 10+ BO)*),0%]5,,
j=0

/ GIE0 D Wlg, + SN B W) ds

Since we know from Part II that C7 := supyo 7)(l|pllLra s Dgg.q; - Dyo.q;) is bounded, we
deduce that

Crs < CrC*Cph g ol 721 + NV2R32) (1 —5) =: X, CRO (1 — ).
From (176) and (178) we obtain, forany 0 <s <¢ < T,

- ZkOClo k(y_
||(Bhu)tssl|§ko+3/2—>§ko < Z 270, A CR G s)’

M
where M = N2}, which leads to
iy (ko+7)(j+1)
(x)) (Co)'2 =1 A CF (t=s)
1BrU) e 61y 13728k, = MG D) (t—s)""e .
Hence, for U, we obtain
-1
(C o) 2o+ NG+ x
IUt.0¥llg, < Z M 1] g*aC N lgey 1372
(ZkCAo) tkphaC 1 (pko(k+1 k
W 1(2 o )”\y”§k0+3k/2 + N 0||\P||g3k/2)
(2kC)kkk 1 K, Nkoj3a
=< CMeCMAat”\IJ”gkO-f-yc/z + Tzk Aac M—||‘-I/||g3k/2
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where Cpy = CK+ko(1 4 1/M). Observing that 1o = h%),, this implies

Ur0%ls, < Cue [ ®llg, s
2kC (2kC)k_lA§_l tk—le/lathNkOhakl
k (k —1)! Mk

||\D||g3k/2

and using the fact that for x > 0, % < e*, replacing the constant C k4 okc by C k for

some other numerical constant C in the second exponential and bounding 2¥C/k by C*,
we can simplify the result a bit and write
k k
k Aack ¢ N Oha t

Cpr A
||Ut,0‘1’||§k0 =< CM@ M af||\p||gk0+3k/2 +C"e T”\p”%k/z

Curis h(a—l)k
< Cpye-M' (||‘1’||§k0+3k/2 + mt||\y||§3k/2)‘ n

11. Proofs of Theorems 4.1 and 3.4

We can now prove our general theorem.

Proof of Theorem 4.1. We want to apply Proposition 10.1. Hence, we define
1 o 1

Iy =3 + >
The assumptions « € [0, 1] and o > a — 1/2 are equivalent to p, € [5/6,2] and py < b,
and imply that (80) is a nonempty condition. Therefore, p, satisfies the assumption (160).
Now we define

1 1 1 1
gi1:=q and — =2 ———|)——, (182)
90 Pa b q1
so that (161) holds with p = p,. Assumption (80) can be written as
1 1 1 1 1 1
1. [2(___)__,___}. (183)
a1 Pa b)) 2 pa b

Now (182) and (183) together imply that 2 < g¢ < gq; < 0.
Next, we have to check that we have a uniform (in /) bound for the quantity

sup (lo(1) |ra » Dyo,q (1), Dao.q1 (1))

[0.7]
appearing in the growth rate A, defined in (163). This is done by using the propagation of
regularity results for the Hartree—Fock equation of Part II. First, by our initial regularity
assumptions and Proposition 6.1, we deduce that ||o(¢)||L»« is bounded uniformly in &
and in ¢ € [0, T'] for some T = T,n depending on the initial condition of the Hartree—
Fock equation (5). Then, by Proposition 6.4 we deduce that ./p € W'4(m,) for any
q € [2,41), and so

~ 1/2 1/2
Dgoar = Ve /B mnll i I Ve /B i | 4



J. J. Chong, L. Lafleche, C. Saffirio 4990

is uniformly bounded on [0, T']. Moreover, by Lemma 6.5, we obtain
1/2 1/2 =
Dy.go = IVep mall fio | Vep mall far < Dag.an

$0 Dy 4, is also uniformly bounded on [0, T']. Therefore, by Proposition 10.1,

2 2 Cprrt/h 2 pPKEeD
M At/ h*
luo¥l, = Cie (||\If||g3k/2+21p T, ||\If||g3k/2) (184)
with A uniformly bounded in ¢ € [0, T'] and in the Planck constant /. Then, by Proposi-
tion 9.1,
Cp
min(N /2, N h3/7")

lowa —pller < el .
2p
We conclude the proof by combining (184) with the above inequality. ]

Next, we prove that from our general Theorem 4.1, we can deduce our simplified
mean-field results, i.e. Theorem 3.4. To this end, we come back to the setting of density
operators over the Fock space by means of the following lemma.

Lemma 11.1. Let py , := |I;1(R,‘,Q)|2 as defined in (77). Then for any py € £1(F)
that commutes with N, there exists ¥ € § such that

py = llg' Ro W) (185)

and
NG < Coll(N +2N)*(py — P21 () (186)

with Cy = 125(s + 1)°.

Proof. Let ®5 = RpQ = Ig(vn,p). Then |y p| = /Py ,. and by the polar decompo-
sition of vy ,, there exists a unique operator Uy , such that

UN,p = Unplun,l

with |Un,o¥ 5 = 1Y |7 if ¥ € (kervy,o)t and |Un,p¥ll7 = 0if ¥ € kervy,, (see
e.g. [65, Theorem VI.10]). Then we define

vy = UnplVonNls

and ® = Ig(vy), ¥ := Ry ®. In particular, py = vy |2, s0 (185) is satisfied. Now from
Lemma 9.3, we have

[N Wy = |N* (W = Q)]lg < 3°[(N + 2N + 25 +2)* (P — Dp)l5.

Using the fact that lg is an isometry, Nj® = lg(Nvy), N, = Ig(vyN) and vy com-
mutes with N, we deduce that

[N W[g < Cs|(N + N) (vy —vnp)lle2(5)-
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By our choice of Uy,
(N + N)*(vn —vn,p) = Unp(I(V + N)vn|— (N + N)vy,l)

with [|Un,p|lec < 1. Now recall the Powers—Stgrmer inequality [64, Lemma 4.1]: if A and
B are nonnegative operators, then

Tr(|A — BI?) < Tr(|A2 — B)).
Hence,
2
NG < C2loN(N + N 1> = [unp(N + N)*[“llgi )
S CAHN + N (oy — Pnp) N + N llgi(s). n

Proof of Theorem 3.4. In the setting of Theorem 3.4, since @ < 1/2, we can take ¢ = 0
in Theorem 4.1, and the hypothesis for ¢ implies that condition (80) is satisfied. With this
choice, Theorem 4.1 yields, for any k1 € N,

Ce* h—2k1
. (K[ 1+ —).
min(N /2, Nh3/P") 3k1/2+ A5 Nki—1/p

lon:a —pller <

Taking k = 3k;/2 + ﬁ, the hypothesis on k implies that Af};—z_kll/,, < C. Finally, by
Lemma 11.1 we get

W5, < 2THAPIZ + IVWIE) < G+ Loy = P plle) )

for some k-dependent constant Cy > 0. ]

Appendix A. Existence of the auxiliary dynamics

The purpose of this appendix is to extend the result on the existence of the auxiliary
dynamics for smooth potentials in the interaction picture given in the appendix of [11] to
the case of singular interaction potentials of the form K(x) = |[x|™% for0 <a < 1.

In this section, # will not play any role. Therefore, to simplify the presentation, we set
h = 1. By (172), the time-dependent operator G defined in (159) can be written as

G =dIy(H,) —dl-(H,) +Q+Q* + D+ P + P*, (187)

where Q* and D have already been defined after (159) and

B = % [ (af (3.0a} (ux)dT (UK, u]) + @ (i) (v)dTs (0] K, v])
RO
+ dFZFr([u, Ky]v + [Kx, v]u)dly(wy)

+ aj (vx)ay (ix)dl, (@[ Kx, u]) + af (ux)a; (0x)dT, (V[ Ky, 1))
+dU)f ([, K)o + [K, 0]it)dT s (@y)) dx.
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The goal is to show that the operator G generates a unitary dynamics U,, s in Fock space
that satisfies the differential equation

i3,0,,¥ =G,0,,¥ with U,V =0, (188)

for sufficiently smooth W € §. To this end, it is convenient to consider the dynamics in
the interaction picture. More precisely, define the operator

G = —Lo + UP*G, U,
where Lg = dI', (A) —dI';(A) and UEO) = U% is the free evolution, i.e. u§f’3 solves
i3, 00w = LU w

with U§f’3 v = ¥, We will show that é, generates a unitary operator l:lt,s in Fock space,
which in turn allows us to define the auxiliary dynamics by

Dt,s = Ugo)ot,sUgo)*,

which formally satisfies (188).

Since much of the result in this appendix is similar to that of the appendix of [11],
we will only focus on the part that relies explicitly on the regularity of the potential and
refer the reader to [11] for a more complete proof. Hence, the rest of this section will be
devoted to proving that the mapping t — G, W is Holder continuous when W is sufficiently
smooth. More precisely, we define the homogeneous Sobolev-type double Fock space by
the norm

W] 2= [ NE2d0((-4)) 2 W g (189)

In particular, ||¥|| O = | N*W|g. The main proposition of this section is the following
result.

Proposition A.1. Let p be a solution to the Hartree—Fock equation with initial condition
o™ satisfying (39a), (39b), and ng o™ (x)(1 + |x|3)dx < C. Then there exists T > 0 and
a constant Ct depending on p™ such that for any (t,s) € [0, T?,

3—2a
7

G =G Wl < Crlt —s| 7 (1¥]s, + 21 3/2)-

Remark A.2. For a fixed %, the global-in-time well-posedness of solutions to the
Hartree—Fock equation is a standard result (see for instance [21]). However, the bounds on
the propagated quantity may depend on 4. In particular, for a general fixed #, the constant
Cr in the above proposition may depend on 7.

Remark A.3. We know from Part II that the conditions (39a) and (39b) remain satisfied
on [0, T']. In particular, ||./p ||§2<|p|n) = Tr(p|p|*") is uniformly bounded on [0, T']. To

see that the third-order spatial moment [p3 p™(x)|x|? dx = Tr(p|x|?) remains bounded,
one can notice that

d
e Te(plx|*) = Tr([|p[?/2. |x*]p) + Tr([Xp. |x[*]p).
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The first term is controlled, using [48, (42)], by a term proportional to
Tr(o(lx]> + [p* + D).

The second term is zero since
lyI* —|x|?
1. 1xPlo) = [ lpten P2 avay
R6 lx — vl

is the integral of an anti-symmetric function of x and y. Then, by the standard Gronwall
argument, one obtains the desired result.

It will be convenient to use the fact that the above defined norm (189) controls quan-
tities of the form ||d['(AV)W||¢ as stated in the following lemma.

Lemma A4, Let A€ £® and ¥V € Jfll Then | dT(AV)¥|lg < ||A||oo||\IJ||JZ,11.
Proof. Using the fact that A is a bounded operator, we obtain

oo
2
[ArAVIRIG < 1412 D7 (D2 19, ¥ 2)

n=1 j<n
By the Cauchy—Schwarz inequality and integration by parts,
C 2 1/2
> (1Y P l2) = (MDA (-A) WP = AT, (—A) 2N P2,
n=1 j<n
which is bounded above by [|¥]| 1. L]
1

To simplify some of the calculation, it will also be convenient to employ the following
lemma.

Lemma A.5. For any self-adjoint integral operator A on ) = L?(R3), we have the iden-
tities

U@*4r, (AU = dry(4;), (190a)
UP*ar (AU = dryf (4p), (190b)
where Ay := e 1A Ae!'2 denotes the operator A in the interaction picture.
Proof. By a direct computation, we see that
[Lo.axt] = [dT1(=A), ax1] = Axax,. (191

Therefore, using the Baker—-Campbell-Hausdorff formula
1
eXYe X =Y +[X. Y]+ E[X’ (X, Y]] +---
and (191), one can show the conjugation formula

Ug())*ax,ngO) — eitAxax,l'
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Hence, we arrive at the desired identity

z1,l

uO*ar; (4)u® = / 6A(zl,zz)uﬁo)*a* a2, U9 dzy dzp
R
= /66_”A21A(zl,zz)e”Azza:hlaZZ,r dz; dz,.
R

This establishes (190a). The proof of (190b) is similar. ]

Proof of Proposition A.1. First notice that [U!”), dT'(—A)] = 0, which using (187) allows
us to write

G, = UO*(dTy(V, — Xp) — AT (V — X,)) U
+UP* @+ aHU® + uP*pul” + UO* (B + P*)UL”
= It + IIt + IIIt + IVI

We shall prove the Holder continuity of ¢ — G/ by proving the property for each term
I;, II;, 111, and IV,. This is the content of Lemmas A.6—A.9 below. Combining these
lemmas leads to the result. ]

Lemma A.6. Under the conditions of Proposition A.1, there exists a constant Ct depend-
ing on the initial conditions such that

19:1¢ ¥llLoo(0.7).9) < Cr(I1Wlg + W]l 51)-

Proof. 1t suffices to consider the left contribution since the proof for the right contribution
is exactly the same. Let us first handle the term with V,. Using (190a), we see that

i%(uﬁ‘”*dr,(vp)uﬁo)) = U (s ([V,, —A]) + dTy (i3, p % K))U?
=:J1 + Jo.
We start by estimating J; V. We rewrite the commutator in J; by using the fact that
dI ([V,, —A]) = 2dT(VV, - V) +dL1(AV,).
Then, since u§°) is unitary and commutes with V, we obtain
DT (VV, - VUl < IV llzoo |91 5

where since VK € L?% we have

[VVpllLee < sup /3|VK(x = MIp(»)dy < [[VK| oo lloll o1

xeR3

Similarly, for the second term, by Lemma 8.1 and since VK € L%, we have

0 0
U AT (AVHUL W g < AV, Lo W g, < VK500 Vol Lo [¥]l5, -
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By Proposition 6.1, the norm of p in LY remains bounded for 1 € [0,7T]. When b’ > 2,
the same holds for V p. Moreover, since i = 1, ||Vp| .1 < C Tr((1 — A)p) is also bounded
on [0, T'] by Proposition 6.1, and so Vp is in L*°([0, T'], L?) for any p € [1, 4]. Hence,

iWlls = CrlW¥lis, + 1] 51)- (192)
For the J, term, let us begin by recalling that p satisfies the equation
0ip+V-jo,=0

where j, = % diag(pp + pp) is known as the probability current. Similarly to J;, we
have the estimate

19295 = U Ty (V- Gp * KNUO®] g < pllpora VK oo @5, (193)
The term || j, || ;7.1 is bounded as for p by Proposition 6.11 and the kinetic energy of p.

Now let us handle the exchange term X, in I;. Note that

.d .
za(uﬁ")*dr, (Xp)U?) = UO* (dT ([Xp, —A]) + dT(i8,X,))U® =: s + Jg.

We start by rewriting the J3 term. Observe that

dl([Xp, —A]) = 2dT1((Xvp) - V) +dT1 (XA p)-

The two terms are handled in the same manner as before. We will only deal with the
second term. By Lemma 8.1 and (112),

IUO*AT; (XA U W g < [Xapll21®llg, < 1Axp P 12l1W]g,,  (194)

and since s = 1, we have Ay p = — Zj3=1[pj, [p; p]] and so by Lemma 6.9, A xp|p|*||2
< C|lp|p|?T2?|2, which remains bounded on [0, 7] by Proposition 6.1. Hence

N3Wlig = CrdlW¥lig, + 1] 51)- (195)
For the J4 term, we have
Ja = U™ (A0 (X-a 1) + AT1 X1y, 1) — AT7 (K00 Uy

To estimate the term with the Laplacian, we proceed as in (194) and use the fact that since
h =1, we have [-A, p] = | p|?p — p|p|*. To estimate the second term, we use (112) to
get

IXtv, p1llo0 < 11Va: p11P1% oo < 1Ve: p1(1 + |P1*)lloo-

Then similarly to Section 6.3, we write [V, p]lm = [V,, pm] — [V,,, m]p and use Proposi-
tions 6.13 and 6.15 with V, instead of E,. Similarly, to bound the last term, we use (112)
and then Proposition 6.23. Hence we have the estimate

[Ja¥]lg < Cr|¥]sg,. (196)

The bound on d;I; now follows by combining the inequalities for each part, i.e. (192),
(193), (195) and (196). |



J. J. Chong, L. Lafleche, C. Saffirio 4996

Lemma A.7. Under the conditions of Proposition A.1, there exists a constant C depend-

ing on the initial conditions such that for any (t,s) € [0, T]?,

3—2a
7 Wllgs,,-

Proof. To estimate term II, it suffices to focus on the first term of é*, which we will
denote by é’f Furthermore, we decompose the singular potential into a long-range part
and a singular part:

(I =) ¥|lg < Crlt —s|

-2

R (o)
K=K:k+K3:=c¢, (/ §42 1 ds +/ . §42 71y ds) (197)
0 R—

for some R which we will determine shortly, and with ¢ (x) = e~ 12 Consequently,
we have the decomposition

NQ; = /R6(K,% + KR)(x — y)dT} 8v)dT (uéyv)dxdy =: Q% + QY%

For the long-range part, we follow the proof of the bounded potential case in [11]
and show that QIL} is time differentiable. Applying Lemma A.5 and the operator identity
e "B A(x)e A = A(x —2i1V), we can now rewrite Qf , as

UgO)*élL’}U?) _ /3 Ké(y)dl-\l—kr(uleiy-(x—ZitV)vl)dFl—Fr (ule—iy-(x—2itV)v1)dy’
R , )

where A7 1= e™/2 4e''2 denotes the operator A in the interaction picture. To estimate
the time derivative of QlL g» We make the observation that
iat(uleiy~(x—2itV) l)]) — e—itA(u[eiy-x’ _A]v)eitA
+ e AV, = Xp, ule? v + ue? [V, — X,, v])et A,
Applying Lemma 8.1, we have the estimates

1T (ur e S 20 )Wl < 2lfu o[l ]12]¥]5, -

|dr (8 ure™ 2 Do) o < Cr(n)* [ullool{VIV ]2 Wllg, (198)

where Cr = C sup,cjo. (1 + [VpllLeo + [Xplloo) is finite, and (y)*> =1+ |y|>. In
particular, it follows from (198) that

d ~
el e AT ]

d <cr / KED) ()2 dy [@]lg,
]R3

g

To complete the estimate, we need to compute the L! norm of K 1% to get the explicit
dependence of the constant on R. Using the fact that o5 = s~3/2¢, /s» We have

o R2 —(a+2) —a

a—5 _x 3(R R
/ |1<,’;|(y)2dy:/ / s 2Se‘sy'z(y)zdyds=—(—+ ) (199)
R3 0 R3 T a

a+?2
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Therefore, provided R < 1, we obtain
TR T ST
which implies that for any (¢, s) € [0, T]?,
JUO*aEEU® — U= aEUO) ]l < 6a R g [W]lg,. (200)
For the singular part, by the Cauchy—Schwarz inequality, we have

|<w1|olRw2|—‘ / (1), | @ FAT], (K S 0)0s) dy

1/2 1/2
(/ ||az(ux)w1||gdx) (/ la @)dr (MKRxU)‘L’ZH:;dx) -

Applying Lemma 8.1 and ||u||cc < 1 yields

laf (@)dT KR v)Wallg < (Np(x)V2IKR ]2l W2s,),-

which gives

1/2
(W1 1G5 W2)] = CN'2(wy | Nw1>1/2( /. p(x>||1<,§,xv||%dx) 19113,

Since diag(v?) = Np, we see that

o0
[ s nsvds

o
=NV [ ) ) ds

00
1/2 — —
< N1/2||,O||L/oo/ . sa/2 1||‘/’s||L2 ds < CTN1/2R3/2 a

IA

s
KR, xvll2

Hence, by duality, it follows that [|Q5 , W[l < R¥?>7%||¥||g, ,. By a similar argument,
one can also show the same inequality for the dual operator éf "z Therefore,

107 % ¥ls < CrNRY>||W]g, . (201)
Combining (200) and (201), we find that for any (¢, s) € [0, T]2 and any R € (0, 1),
JUP QT — U QTUD) || < Cr(R™O)r — 5| + R W]l .
In particular, if # # s, one can take R7/2 = |t — 5|/ T < 1, leading to
JUP* QU — U GTU) g < Crlr — 5177 [Wllss .

Ift = s, we can let R — 0 to obtain the same inequality. ]
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Next, let us consider the type III terms.

Lemma A.8. Under the conditions of Proposition A.1, there exists a constant C depend-
ing on the initial conditions such that for any (t,s) € [0, T]?,

I, — 1) W)lg < Crle — 5| 7 (|W]lg, + 11l 3/2)-

Proof. Let us focus on the first term of D, which we denote by D;. The proof of Holder
continuity of Dy is similar to that for Q;. Using (197), we decompose D; into two parts,

2ND; =Dl +DJ 4

For the long-range part, we begin by writing
U(O)* DLRU(O) / KL (»)dIy (ule’y (x— ZttV)uI)dFl (ure™ iy-(x— 21tV)u1) dy.

Using the identity

iat(uleiy{x—zitV)uI) — e—ilA(neiyocu + ueiy~xn + u[eiy-x’ —A]u)eilA,
where n = [V, — X,, u], and Lemma 8.1, we deduce that

ATy up e =2V )W < [W]lg,,

[drs (9 ure™ 2 up) W, < (inlloo + 1y Il + YI1WI5.  (202)

By (202) and (199), provided R € (0, 1), we get

d
1=

1 U7 DE RUI)Wllg < Call + [nlloo) R ([ Wl1g, + 9] 5.

To handle the singular part, we begin by writing ¥ = 1 — w. Then it follows that
D = / K§(x — y)a® ja yar(uy)ar(uy) dx dy
+ [ KA = 3)a7 00)a a0y )ar ) dx dy
— [, KR = a0 oy ) d dy
- /R KR e n)ag ya oy Jar ) d dy

=11+l + 13+ 4.

To estimate |;, we begin by observing that

)" (o, ym) = Y KRlxi —x)@Da0 @) (x,, ),

1<j<k<n
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where u¥/) is the operator acting on the variable xj and x, = (x1, ..., X,). Defining
g(x,y) = |a®@uawerm (x y ) | 2R3 +m—2)y, it follows from the triangle inequal-
ity and the anti-symmetry of W that

2 1/2
1)) 2 < n(an 1)( | ezt dx)
|z|<R

|Z|2a
< n2R3/2—a (/
R3

2 1/2

dx) ,
LZ(B1)

where gg x(z) = g(x + zR,x) and Bj is the unit ball of R®. Now let 7, be the bounded

extension operator

gR,x(Z)
|z|

Tp, : H*(B1) - H*(R%), Vx € By,(Tp,8)(x) = g(x),

which exists as proved for example in [20, Theorem IX.7] when a € N; one can proceed
by interpolation when a € R. Then one has

gR,x(Z)
|z]“

TB,8Rx(2)
|z|4

H TB,8Rx(2)
L2B) |21

L2(B)) ‘ L2(R3)

and by Hardy—Rellich’s inequality

TB,gR.x(2)
H# < C(-=A)*?Tp, grxllL2®3) < Cry, 8R x|l Ha(B))-

|z|®

LZ(R3)

For |y, this leads to

1/2
1)) 2 < Cn? RY> ( // (-8 gr ()P + |gros ()] dx dz)
lz]<1

12
sc;ﬂ(/f [|(—A>z/2g|2+|R—“g|21dzdx) .
[zZ|<R

Now by Holder’s inequality and by Sobolev’s embedding, for any « > O and any f € H®,
/| | RIf(Z)IZ dz < (1 f 17, 118 llLr < CRP* (=) £ 117,
z|<

with p = 5> In particular, taking f = (~A)?g,a=3/2—a, f =R g anda =3/2
we obtain
101" 2 < Cn® R4 (=) gl 2.

Using ||u]loc < 1, we can control the L2 norm on the right-hand side of the above inequal-
ity by
_ 3/4_
=23 *gllL> = | @ (=A) 7@ C)x, y, )| o gt

= (A D)0, )| 2 gacrsm)
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and using the fact that u = 1 — w, we finally obtain

C _ 3
mWlle < NRW 9132 + PP w2 s,)-
The other |; terms are less singular and treated in the same way, leading to

[UDf U Wil < Cr R (IN Wl 2 + [ Wlls,).

By the same argument as in the case of (31, we see that Ugo)*Dluﬁo)\I‘ is also Holder
continuous in time. [

Finally, let us handle type IV terms.

Lemma A.9. Under the conditions of Proposition A.1, there exists a constant Ct depend-
ing on the initial conditions such that for any (t,s) € [0, T]?,

3=2a
1AV =IVo)¥llg < Crlt =57 (W51 + [1¥lls,)-

Proof. For this case, it suffices to consider
J1 = —/ dI';t (8 v)dly (u[ Ky, u]) dx,
R3 ’
Jis = —/3 dT;" ([Kx, uv + [v, KxJu)dTy (wy) dx.
R ,

Following the same routine as before, we decompose the operators into a long-range part
and a singular part using (197). Again, we will denote the decomposition by J lL rtJ IS R
and likewise for Jy». Applying Lemma A.5, we can now rewrite J IL R as

U Ul = /3 Kg)dT} (e =2y dTy (uyp [e 7 7Y g ]) dy.
R :
Since

iB,(u; [e—iy~(x—2itV), wl]) — e—itA([Vp _ Xp, u][e—iy-x7 w])eitA

+ e A ([, —AL w] 4+ u[e TV [V, — Xp, w]])e A

by Lemma 8.1 we have, since ||| < 1 and ||w| s < 1, the estimates

ATy (ur [e™ 721V )Wl < 2| ¥|g,, (203a)
[y (8¢ Gur [e™> &2y DY ||, < €7 (»)2[{p) w2l ]l5,. (203b)

where €7 = C supjo 71(1 + |V lloo + Xplloo)- In particular, by (198), (203), and (199),

we have q
—UP* LU

<CrR@™|y|g,.
< <Cr V],

g
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The singular part follows from Lemma 10.4 and Remark 10.5. More precisely,
U TS RUP W g < Cr RY2 W5, (204)

Repeating the argument for Q; shows that Uﬁ‘”* J1 Uﬁ"’ W is Holder continuous in time.
Lastly, let us estimate the operator J;,. We begin by writing

UgO)*leugo) = /2dFl‘fr([Kx,I,wl]vl)dFl(wx,I)dx (205a)
]R;
+A3 drlfr([Kx,,,vl]uI)dF,(wx,,)dx. (205b)

It suffices to handle (205b) since (205a) can be treated in a similar manner. Taking its time
derivative yields

i9,(205b) = /3 dl"f; (i0;([Kx.1,vr]ur))dl (o, 1) dx
R
+ /R A (Kt vrlun)AT) o, dx = s + e
Let us first consider lg. Notice that

i00x1 = e ARV 0y - V1 + Agwy + [V — Xp, 0]x)e A,

In particular, we can write
lg = UO* / AT} ([Kx, v]u)dT; 2V 0y - V) dx U
R3 ’
+ ulox / AT (K. o)y (Aseoy) d u®
R ,

U [ ar (K har @V, — Xp. 1) dx U
=:J1 +Jo + J3.

To bound Jy, it suffices to estimate the quantity

”/R3([Kx, vu)(z1. 22) Vio (. x) - VO™ (x, 1 xp, yp) dx

., (2006)
L2(dzpdx, an)

where dx, = dx;...dx, and dz, = dz; dz,. Let us also break the commutator, that is,

206) < / VELIUE 22 g 2y VOO (v ) dr dz
R6  |x —z1] L2(dz2 dxp dyn)
v(z1, 2)u(z, z2) (n,m)
+ —aVIa)(xn,x)-V\I/ M (Xp—1,Xn, yn)dx dz .
R6 |X — Zl - L2(dz dx, dyn)
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Since u = 1 — w where w is a Hilbert—Schmidt operator, we will focus on the identity
part. Using @ = v? and the Cauchy—Schwarz inequality, we see that

v(Z1,2
/ 22 G0t ) - Vi, WO (5, 0, ) i
R3 |x —z1|? -

p(x)'/? )
<sun( [ L 0 Yol 9102V s,

z1

L2(dz2 dxp an)

v(z, x
/ e v(z1, 22)Viv (X, 2) - Voo, W™ (x, 1 X, yp) dx dz
RS |X —z1]? =

L2(dz2 dxp an)

since ||vx||;2 = p(x)'/2. Note that by Young’s and Hélder’s inequalities,

1/2
[ =l o, = [ pwowtax
R3 |X — z1] L3=a R3

provided k > 3 — 2a. Hence,
I91¥]lg = Cr(|¥lize) + [¥]s,)-

The other two terms J, and J3 can be handled in the same manner since v is sufficiently
smooth and ||V [|zee and [[Xp [l ;0072 < C|lp|p|*T#|» are bounded. Thus,

Ns®lls < Cr¥llzer + [1¥ls,)-
Lastly, we handle the I5 term. Since

i0:([Kx.1.vrlup) = e 72Ky V][V — Xp. u)e’ "2
+ e A([[AL Kl v]u + [Kx [V — X, v]]u)e’2,

we can write
s = u* fR AT (K 0=V + Xp. w]dT () dx u®
+ U /R AT ([Ke [V = Xp. v]Ju)dTy () dx ul®

+ U0 / AT (1A K] vJu)dTy (o) dx ul®
R
=:Jg + J5 + Je.

The terms J4 and J5 can be estimated in the same manner as in the previous case, since
[—Vp + Xp, w] is a bounded operator and [V, — X,,v] is a Hilbert-Schmidt operator.
Thus, it suffices to estimate Jg.

To do so, it suffices to estimate the quantity

/3[AKx + 2VK, - V,v](z1, z2)0(xp, x)\IJ(”’m)(gcn_l,xn,Xn) dx
R

L2(dz3 dxp dzn).
(207)
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In the case a = 1, we have

207y < C H/ (v5x)(21,zz)a)(xn,x)\lf(”’m)(gcn_l,xn, VYn)dx
R3 =

L2(dz2 dxp dyn)

+C

X —Z1
/ - V10(z1. 22)@ (X, X)W (1, X, y) dx
R3 |x — z1] =

L2(dz2 dxp dyn)
For the first term, we have

v(z1, z2)@(xn, ZZ)W(n’m) (Xn—1,Xn, Xn)”Lz(dgz dx, dyn)

1/2
< Iollzgerzlollpee 12 19l L2(ax, apmy < Clloll = [ @lpl |, 1%l 2, dyn)*

For the second term, we have

X —Z1
/ = - V1v(z1. 22) @, X)W (1 X yn) dx
R3 |Xx —z1] =

L2(dz3 dxy dyn)

)O(X)l/2 1/2 (
<C 22 4 21V Q) )
< S;JIP(/]RS P ol s Vil W | L2 ax, ap,)

where the first integral term is controlled by || p||i/o% + I p||z/12 The case when 0 < a < 1
is similar, except that when a < 1/2, we need to estimate the last quantity with moments
in x. Thus, it follows that

Ns¥llg < Crll¥lls,.

which completes the proof. ]
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