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Gaussian elimination for flexible systems of linear inclusions
Nam Van Tran and Imme van den Berg

Abstract. Flexible systems are linear systems of inclusions in which the elements of the co-
efficient matrix are external numbers in the sense of nonstandard analysis. External numbers
represent real numbers with small, individual error terms. Using Gaussian elimination, a flexible
system can be put into a row-echelon form with increasing error terms on the right-hand side.
Then parameters are assigned to the error terms and the resulting system is solved by common
methods of linear algebra. The solution set may have indeterminacy not only in terms of linear
spaces, but also of modules. We determine maximal robustness for flexible systems.

1. Introduction

We study systems of linear inclusions, with imprecisions in the coefficients and the
right-hand side. We model the imprecisions asymptotically, however not function-
ally by O(.)’s and o(.)’s but instead by convex groups of nonstandard real numbers,
called (scalar) neutrices; we were inspired by Van der Corput’s program for the Art
of Neglecting [35], with neutrices in the form of groups of functions, which are gener-
alizations of the O(.)’s or o(.)’s notations. A sum of a nonstandard real number and a
neutrix is called an external number. An external number can be seen as a real number
with a small error term and captures the intrinsic vagueness of perturbations by the
Sorites property of being invariant under some additions.

A system of linear inclusions whose coefficients and right-hand side are given in
terms of external numbers was called a flexible system in [18]. The main theorem of
this article presents a special form of Gaussian elimination applicable to all flexible
systems, which is as effective as Gaussian elimination for real systems and leads to
a solution in closed form, giving an explicit relation between the imprecisions of
the system and the imprecisions of the solution. The method extends the parameter
method of [38] from non-singular systems to singular systems, and also generalizes
the results of [18] and [36] on Cramer’s Rule and Gauss—Jordan elimination for non-
singular systems which are uniform, i.e., all neutrices on the right-hand side are equal.
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The central part of the solution method of a flexible system applies Gaussian elim-
ination in a careful form, always rearranging the system in order to be able to deal first
with the smallest possible errors. In this way, we obtain an equivalent system with real
coefficient-matrix in increasing row-echelon form, i.e., the coefficient matrix is in
row-echelon form and the neutrices on the right-hand side corresponding to non-zero
rows are increasing from top to down. The criterion for consistency of such a system
is similar to the classical case: now the elements corresponding to zero rows in the
coefficient matrix should be neutrices instead of zeros. If the system is consistent, we
apply the parameter method and obtain an explicit solution in a form which is again
similar to the solution of a classical non-determined system. Indeed, the solution set
is the sum of a real vector and a neutrix part, which is the solution of a homogeneous
flexible system. The neutrix part is the direct sum of a bounded neutrix and a linear
subspace. The linear subspace is unique, but like the real support vector, the bounded
neutrix is not unique. However, it is the direct sum of scalar neutrices and has a well-
defined dimension, which is unique; we observe that neutrices are modules over £, the
(external) set of limited real numbers.

The explicit formula improves the formula obtained in [38], which still contem-
plated the intersection with the so-called feasibility space, a more-dimensional neutrix
obtained from the neutrix parts of the coefficient matrix.

We will apply the results on flexible systems to the problem of robustness for
non-singular systems P |8, where P is a real coefficient matrix and 8 a vector with
external numbers. This means we search for a matrix £ = (E;;), where the E;; are
individual neutrices such that P |8 and (P + E)|8B are equivalent, i.e., have the same
solution. We determine the maximal neutrices E;; with this property in the case that
det(P) is not too small.

There are many approaches to study propagation of errors in linear systems, but
to our knowledge in none of these settings straightforward Gaussian elimination has
been applied to imprecise values in full generality. Other methods to deal with impre-
cisions have been developed in the context of statistics and stochastics, fuzzy set
theory, introduction of parameters, classical perturbation and error analysis, and inter-
val calculus.

The latter methods are deterministic, hence conceptually closer to our approach.
We note that the calculation rules of external numbers (see Proposition 2.2) are the
same as those for error analysis [33]. However, like in the case of interval calcu-
lus the formulation of general algebraic laws and advanced methods is restricted
by complications due to the precise bounds of the error sets, for instance subdis-
tributivity, intersection problems and loss of convexity; also upper bounds tend to
be rapidly growing [1, 15,26]. These problems are even worse in the case of more
variables [28]. As in the case of the present article, [8] studies systems of the form
(A + AA)(x + Ax) = b + Ab. An upper bound of the relative error of the solu-
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tion % with respect to ATb can be given with the help of the condition number
cond(A) = ||A]| - ||A~1||. However, only examples of Gaussian elimination are given,
with 2 and 3 variables. The study of propagation of errors and imprecisions has been
carried out in the setting of multiparametric dependence by [16, 1 7] and in the setting
of classical asymptotics by, among others, [5, 35]. In these settings the underlying
structures are functional, and though some algebraic laws hold, they are not ordered,
which complicates the development of an effective general theory of error propa-
gation. In the asymptotic approach, problems also arise from the difficulty to treat
dependence of more variables.

In the context of fuzzy set theory, non-singular systems of any order were studied
by, among others, B. Li and Y. Zhu in [23]. In the case of a squared crisp matrix A,
a fuzzy right-hand side b and a fuzzy variable x explicit solutions of the system
Ax = b were given for two classes of distribution functions, of type exponential
decay and piece-wise linear. The solution method involves matrix inversion for means
and standard deviations. Fully fuzzy linear systems were studied by, among others,
M. Dehghan, B. Hashemi, and M. Ghatee [7] using approximations by various well-
known iterative methods. However, to our knowledge there do not exist general results
on error-propagation for Gaussian elimination in a fully fuzzy setting including sin-
gular systems.

This seems also true for sensitivity analysis based on statistics and stochastics, see,
e.g., [6,22,31]. The study involves in one way or other the propagation of errors for
operations on functions, and in a general setting, due to complexity, results concern
more specific properties or aspects of the solution, like mean, variance and bounds,
than the solutions themselves.

Finally, this article has the following structure. In Section 2, we give some back-
ground on neutrices, external numbers and flexible systems. In Section 3, we state
the main theorem on the solution of flexible systems, describe the solution strategy,
and give an illustrative example. Section 4 deals with the algebraic structure of neu-
trices in higher dimension. The various steps of the solution strategy are described in
detail in Section 5, and Section 6 considers the algebraic structure of the solution. In
Section 7, we prove independence of rank when choosing real representative systems.
The proof of the main theorem is completed in Section 8. In Section 10, we present a
model for robustness, and determine the maximal error allowed in each coefficient to
not alter the solution of a flexible system. This section uses a result of Section 9, on
the possibility to neglect rows of a system with small-enough errors.
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2. Preliminaries

2.1. Scalar neutrices and external numbers

The article is written within the axiomatic form of nonstandard analysis HST given
by Kanovei and Reeken in [19]. This is an extension of a bounded form of internal
set theory IST of Nelson [27], which in turn is an extension of common set theory
ZFC. To the language {€} of ZFC a new predicate “standard” is added, denoted by
“st”. Formulas containing only the symbol {€} are called internal and if they contain
the symbol “st” they are called external. Introductions to IST are contained in, e.g.,
[9,10,25], and an introduction to a weak form of nonstandard analysis sufficient for
a practical understanding of our approach is contained in [13]. An important tool is
the principle of external induction stating that induction is valid for all IST-formulas
over the standard natural numbers.

The system IST distinguishes itself from Robinson’s original model-theoretic
approach [30], by postulating that, next to the standard numbers, infinitesimals and
infinitely large numbers already occur within the ordinary set of real numbers R.
A real number is limited if it is bounded in absolute value by a standard natural
number, and unlimited if it is larger in absolute value than all limited numbers. Its
reciprocals, together with 0, are called infinitesimal. Appreciable numbers are lim-
ited, but not infinitesimal.

The notion “limited” refers to the predicate “standard”, and the set £ of all limited
real numbers is an external subset of R in the sense of HST. Also the set of infinites-
imals @, the set of positive unlimited numbers g6, and the set of positive appreciable
numbers @ are external subsets of R.

The Minkowski operations on subsets A, B of R are defined pointwise. With
respect to addition we have, with some abuse of language,

A+B={a+b:aec A, be B}

The remaining algebraic operations on sets are defined similarly.

Definition 2.1. A (scalar) neutrix is an additive convex subgroup of R. An external
number is the Minkowski-sum of a real number and a neutrix.

Each external number has the form o« = a 4+ A, where A is called the neutrix part
of @, denoted by N«), and a € R is called a representative of o. We call « neutricial
if ¢ = Na) and zeroless if 0 & «. The external class of all neutrices is denoted by N,
which is not a proper external set in the sense of HST, for “being a neutrix” amounts
to an unbounded property [12]. The external class of all external numbers is denoted
by E.
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The rules for addition, subtraction, multiplication and division of external num-
bers follow directly from the Minkowski operations.

Proposition 2.2. Let a,b € R, A, B be neutrices and x =a + A, = b + B be
external numbers. Then

(@ axBf=a+b+ A+ B.
(b) af =ab + Ab + Ba + AB.

(¢) Ifa is zeroless, é = % + aiz-

External neutrices are appropriate as a model for the Sorites property and orders
of magnitude, for they are stable under some shifts, additions and multiplications. If
an external number & = a + A is zeroless, one shows that its relative imprecision
R(o) = N(«)/« satisfies

R(a) = A/a C @. 2.1)

In combination with the intrinsic vagueness of the Sorites property, the neutrix A
could be seen as a small error term for the real value a. Observe that the algebraic
rules of Proposition 2.2 correspond to the rules of informal error analysis [33]. In
particular, we may recognize the property of neglecting the product of errors in the
product rule given by Proposition 2.2 (b). Indeed, if « or B is zeroless, by (2.1) we
have AB C Ab + Ba, so we may neglect the neutrix product AB.

A neutrix N is invariant under multiplication by appreciable numbers, i.e.,
@N = N. Anabsorber of N is areal number a such thata N C N and an exploder is
areal number b such that DN D N. Hence appreciable numbers are neither absorbers,
nor exploders. Notions such as limited, infinitesimal, absorber and exploder may be
extended in a natural way to external numbers.

A neutrix N also satisfies £N = N, so from an algebraic point-of-view neutrices
are modules over £. Division of neutrices is defined in terms of division of groups.

Definition 2.3. Let A, B € N. Then we define
A:B={ceR:cBC A}
An order relation for external numbers is given as follows.
Definition 2.4. Let o, 8 € E. We define
a<B & Vaecadbef(a <bh).
IfanNp =0@anda < B, then Va € aVb € f(a < b) and we write o < B.

It is shown in [13] and [20] that the relation < is indeed an order relation, which
is compatible with the operations. If the neutrix A is contained in the neutrix B, one
has A < B and we say that B = max(4, B).
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The close relation to the real numbers and the group property of neutrices make
practical calculations with external numbers quite straightforward. We always have
subdistributivity and distributivity when multiplying with a real number, but in some
cases related to subtraction distributivity does not hold. Necessary and sufficient con-
ditions for distributivity are given in [11, Theorem 5.6].

For more complete introductions to external numbers, including illustrative exam-
ples and lists of axioms, we refer to [12, 13,20].

2.2. Neutrices in higher dimension

Let n > 1 be standard. As in the one-dimensional case a set N C R” is called a
neutrix if it is a convex additive group. In analogy to external numbers we define
external points as follows.

Definition 2.5. Let n € N be standard, p € R” and N C R” be a neutrix. Then
& = p+ N C R”iscalled an external point.

Also in analogy to external numbers a representative point p of an external point &
is not uniquely determined, in contrast to the neutrix part N(§) = {x’ — x : x,x’ € £}.

Definition 2.6. Let n > 1 be standard. A neutrix N C R” is called bounded if there
exists d € R,d > O such that || x| < d forall x € N.

Definition 2.7. Letn > 1 be standard and N € R” be a neutrix. The linear part N(p,)
of N is defined by

N = U{S : S C N, S linear subspace of R"}. 2.2)

A modular part Ny of N is defined as a complement of Nz in N, i.e., it holds that
Ny ® Ny = N.Let x € R” and £ = x + N be an external point. Then we also
call N(z) the linear part of £ and N(»s) a modular part of £, and we write £y = N(1)
and §(ary = Ny

The linear part of a neutrix is uniquely defined, but a neutrix can have various
modular parts. For instance,

1 0 1 1
Definition 2.8. Let n > 1 be standard and N € R” be a neutrix. The dimension
dim(N) of N is defined by

dim(N) = max#{z : z C N, z linearly independent}.

A linear subspace V' of R” is a particular case of a neutrix, and its dimension
corresponds to the common dimension in the sense of linear algebra.
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2.3. External vectors and matrices

For a detailed account of vectors and matrices of external numbers we refer to [37].
Here we recall some basic definitions and properties.

Convention 2.9. From now on we always assume that m,n > 1 are standard natural
numbers.

Definition 2.10. Let Ay, ..., A, be neutrices. Then A = (A4, ..., A,,)T is called a
neutrix vector.
Let B = (81,.. .,,Bn)T € E", where B8; = b; + B; for 1 <i <n.Then 8 is called

an external vector. The vector b = (by, ..., b,)T is said to be a representative vector
of B and the neutrix vector B = (By, ..., Bn)T is said to be the associated neutrix
vector of B.

An external vector 8 = (B1,..., Bn)T € E” can be identified with an exter-

nal point with neutrix part in the form of a direct sum Bie; & --- & Bye,. How-
ever, the notion of an external point is more general, for example, the external point
£( 1 ) fa ®( 4 ) is not an external vector.

Definition 2.11. Let
@11 Q12 - Ulp

A = : o . 2.3)
Om1 Om2 - Umn

where oj; = a;j; + A;j € Efor1 <i <m,1 < j < n.Then # is called an external
matrix and we use the common notation &4 = (t;j)mxn. For r < m we write A™ =
(@ij)1<i<r,1<j<n. We denote by M,, ,(IE) the class of all m x n external matrices.
A matrix A € M, ,(E) is said to be neutricial if all of its entries are neutrices, a
special case is given by the zero matrix. We denote by M, , (R) the set of all m x n
real matrices. With respect to (2.3) the matrix P = (@ij )mxn € Mm,»(R) is called a
representative matrix and the matrix A = (A;j)mxn the associated neutricial matrix.
If m = n we may write M, (E) instead of M, ,(E) and M, (R) instead of M, ,(R).

Definition 2.12. Let 8 = (B1,...,Bm)T € E™ and A = (tij)mxn € Mm.n(E). We
define

|B] = max |B;], B = min B;, B = max Bj, A; = max A;j
1<i<m 1<i<m 1<i<m 1<j<n
forl <i <m,and
|| = max lotij | and A= max Aij.
l<ism,1<j<n 1<i<m,1<j<n

The external matrix #4 is said to be limited if |o| C £ and reduced if @ = a1 and
a1 = 1+ Aqq, with A1; € @, while all other entries have representatives which in
absolute value are at most 1.



N. Van Tran and I. van den Berg 272
By the last part of Definition 2.12 a reduced external matrix always has a reduced
representative matrix.

Definition 2.13. For A = (¢tjj)mxn, A = (alfj)mx,, € M »(E) we write A C A if
aij C oelfj foralli, j suchthat1 <i <m,1 <j <n.

2.4. Flexible systems

Flexible systems were introduced in [18] and studied in [38] and [36]. We recall the
basic notions for flexible systems and introduce some new useful notions.

Definition 2.14. Let 4 = (i} )mxn € Mma(E), x = (x1,...,x,)T € R" and B =

(B, ... ,,Bm)T € E™. Then the set of linear inclusions
anx; + opxz + -+ awmxp S Pi.
2.4)
Om1X1 + AmaXz + o0+ ApaXp S ,Bm

is called a flexible system and denoted by Ax C B or #4|B. The solution of (2.4) is
the set £ of all vectors x € R” such that Ax C B. The solution is exact if AE = B.

The solution £ of the simple inclusion @|£ is not exact, but as we shall see, the
solution of 4|8 is exact if # is a real matrix.

For flexible systems we will use throughout the notations of Definitions 2.10
and 2.11.

Definition 2.15. The system 4|8 is called reduced if 4 is reduced, limited if A is
limited, homogeneous if B is a neutrix vector, upper homogeneous if E is a neutrix
and uniform if the neutrices of the right-hand side B; = B are all the same. When
m = n, the system is called non-singular if 4 is non-singular.

Definition 2.16. Let A € My, »,(E) and 8, B’ € E™. Let p € N, p > 1 be standard
and A" € M, ,(E). The systems 4| B and A'| B’ are equivalent if Ax C B < A'x C
B’ for all x € R". Let H € M, (R) be a permutation matrix. We say that 4|8 and
A'|B’ are H-equivalent if Ax C B <& A’y C B’ whenever x € R” and y = Hx.

It is also possible to define the equivalence of systems as in Definition 2.16 locally,
say, for all points with limited coordinates. However, if the matrices are singular,
Theorem 3.2 shows that solutions may be unbounded, so here it is preferable to define
equivalence for variables ranging over the whole space.

We will transform a general flexible system into a system with real coefficient
matrix in increasing row-echelon form, i.e., in row-echelon form, while the neutrices
on the right-hand side of the non-singular part are increasing from above to below.



Gaussian elimination for flexible systems of linear inclusions 273

It will be shown that such a system is equivalent to the original system up to a
renumbering of the variables. We recall first the notion of feasibility space, whose
components correspond to constraints for each individual variable [38]. We incorpo-
rate these constraints into the system, giving rise to the notion of integrated systems.
Then we define the increasing row-echelon form, and finally we introduce some nota-
tion for the non-singular part of a system in increasing row-echelon form. The main
theorem of Section 3 affirms that the transformation can be carried out for any flexible
system and the procedure is illustrated in Section 3.2.

Definition 2.17. Let A € M, ,(E), B € E™ and A|B be a flexible system. For each
Jj with 1 < j < n we write

Fj = min Bi CAij.

1<i<m
The feasibility space is defined by F = @7_, Fje;.

Note that some components of the feasibility space may be a vector space. In par-
ticular, a component corresponding to a variable appearing only with real coefficients
is equal to R, and a component corresponding to a variable appearing with a non-zero
neutrix in a row with zero neutrix on the right-hand side is reduced to {0}.

Definition 2.18. Let A € M, ,(E), B € E™ and A|B be a flexible system. Let
F = Fie1 @ --- ® F,e, be the feasibility space corresponding to #4|B. Let k with
0 <k < n be maximal such that Fj,,..., F;, CR,with1 < j; <--- < jir <n.Then
we call F©) = (Fj..... F ik)T the constraint, k the constraint dimension, and the
k x n-matrix K = (dn1)1<h<k,1<1<n defined by

1 1= jp,
dh1={

0 else,

the constraint matrix.

The matrix K is a sort of shifted identity matrix, with modified Kronecker symbols
dy;, and indicates which variables do not range over the whole of R. Observe that K
is uniquely determined and that if #4 € M, ,(R), both () and K are empty.

Definition 2.19. Let A € M, ,(E), B € E™ and A|B be a flexible system. Let P be
a representative matrix of 4, ¥ (©) be the constraint having constraint dimension £,
and the k x n-matrix K € My ,(R) be the constraint matrix. Then the system with

real coefficient matrix
P B
( K| 7 C)) 2.5)

is called the associated integrated system generated by P.
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Notation 2.20. Let QO = (¢;j)mxn € Mm »(R) be of rank » > 1 and € € E™. Then
we write
911 - q1r
o =1: - .
qr1 " Yrr

the jth column of Q by q].T and the first r elements of the jth column of Q by
(q;)T.Wewrite‘C’ = (yl,...,ym)T =1 +Cq,...,cm +Cm)T =c+C,€" =
(v1,.. .,yr)T,‘C’m_’ = (Yr+1,-- .,ym)T,c’ = (cl,...,cr)T, andC" = (Cl,...,Cr)T.

If r <n,forl <i <n—r we denote the i th canonical unit vector in R"~" by e}'™"
We now define the increasing row-echelon form, where for convenience we as-

sume that the pivots are all on the principal diagonal.

Definition 2.21. Let Q € M,, ,(R) be of rank r > 1, reduced, in row-echelon form
and such that ¢;; = 1 ifand only if 1 <i <r, and € € E™. We say that Q|€ is in
increasing row-echelon form if C; C --- C Cy.

Observe that in Definition 2.21 we only require that the neutrix parts of the right-
hand side corresponding to non-zero rows of the coefficient matrix are non-decreasing
from top to down.

Definition 2.22. Let A € M, ,(E), x € R", 8 € E™, and Ax C B be a flexible
system. Let P € M,, ,(R) be a representative matrix of +. Assume the associated
integrated system by P is H-equivalent to a system Qy € € in increasing row-
echelon form obtained by Gaussian elimination, where ¢ = m + k, O € M, ,(R),
€ € E9 and H € M, (R) is a permutation matrix. Then we call Qy € € a system in
increasing row-echelon form associated to Ax C B by P.

3. Main theorem, solution set

In this section, we establish the main theorem, on the existence and properties of the
solution set of flexible systems. In Section 3.1 we formulate the theorem and show
that it leads to a procedure for solving a flexible system. In Section 3.2 we give a
concrete example illustrating this procedure.

Remark 3.1. Let 4|8 be a flexible system, and x be a real vector. In some cases we
apply a change of variables, and then we may make the variables explicit by writing,
say, Ax C B, or Ax € B in case A is real. We may still write the abbreviated form
A| B, if the variables are clear from the context, or if the symbols for the variables are
not essential for understanding. We always assume that the neutrices on the right-hand
side of a system -4 |8 are different from R.
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3.1. Main theorem

The main theorem contains a general method for solving flexible systems 4|8, con-
ditions for consistency and a closed form for the solution set. It gives additional
information on the neutrix part of the solution set and the rank of the coefficient
matrix of an associated integrated system.

Theorem 3.2 (Main theorem). Consider the system Ax C B, where A € My »(E),
x € R"and B =b + B € E™. Let P be a representative matrix of 4 and ( £ | }.1(3’(,))
be an associated integrated system, where K € My, (R) is the constraint matrix and
F(© e EX is the constraint, with k the constraint dimension. Let r = r( II;) be the
rank of the coefficient matrix of the associated integrated system, where we assume
thatr > 1.

(@) There exists a permutation matrix H € M, (R) such that the system Ax C B
is H-equivalent to a system Qy € € in increasing row-echelon form which
it is associated to Ax € B by P, where Q € My n(R) has rank r and
€C=c+C E()/l,...,ym+k)T cEmtk withy; =c¢; + Ci for1 <i <m + k.

(b) The system Qy € € is consistent if and only if y; is neutricial forr + 1 <
i <m + k; from now on, if we consider solutions and their properties, we
will tacitly assume that Qy € €, or equivalently Ax C B, is consistent.

(¢) The solution ¢ of Qy € € is exact, and given by

_ (@) e | - (G el
() ()
+ R(_(Q(r)Z:;(q’i)T)- G.1)

e
k=r+1 k—r

The matrix (Q )™V is upper triangular. Moreover; the solution of the origi-
nal system Ax C B is given by £ = H™¢.

(d) The linear part ¢ is given b =37 R (@)~ gp)" d
part{py of Cis givenby {1y = D p—, 11 e an

has dimension n — r.

. (0N =1 . .
(e) The neutrix Lapy =Y oy ( €€ :)) eir) is a modular part of {, and its
dimension is equal to the number of non-zero neutrices of C”.

() The rank of the coefficient matrix of the associated integrated system, the
neutrix part and the linear part of the solution of Ax C B, and the dimension
of its modular part do not depend on the choice of a representative matrix

of A.

The main theorem suggests the following solution method for flexible systems. To
begin with we choose a representative matrix P of -, write the constraints originat-
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ing from the neutrix parts in the matrix form K|% ) and join it to the system P |8
to obtain the associated integrated system (11; | ,f:(f)’c) ) with rank r, say; it is shown in
Section 5.1 that this is always possible. Then the integrated system is transformed
into an equivalent system Q|€ in increasing row-echelon form; in Section 5.2 it is
shown that this can be done by using a Gaussian elimination procedure involving, if
necessary, interchanging columns of the coefficient matrix. Then we verify the con-
dition for consistency, which simply amounts to verifying whether the components of
€ of index larger than r are neutricial. In case of consistency we apply the parameter
method of [38, Theorem 4.3]. This means that parameters are assigned to the neutri-
ces of €, then the system is solved by the usual means of linear algebra, which could
be done by repeated substitution, since the non-singular part of Q is upper triangular.
Finally, the closed form (3.1) is obtained by replacing the parameters in the solution
formula by their range.

Some elements of the solution procedure are not completely determined, in par-
ticular the choice of the representative matrix, and the choice of rows and columns in
the Gaussian elimination process. The choices will influence the solution formula, in
particular the support vector, the modular part and the basis of the linear part, in case
the system is undetermined. However, part (f) of Theorem 3.2 ensures the invariance
of the rank of the associated integrated matrix, hence also of the rank of the associated
matrix in increasing row-echelon form, of the linear part of the solution, and of the
dimension of its modular part.

The proof of Theorem 3.2 consists of several steps. In Section 4, we verify that
properties of linear algebra still hold for neutrices. Section 5 deals with the solution
strategy sketched above. In Section 6, we investigate the shape of the solution, and in
Section 7 we prove invariance of ranks, when choosing representative matrices and
vectors. In Section 8, we put the results together and complete the proof.

3.2. Example

With the help of the system defined below, we discuss in detail various aspects of the
notions which were introduced, the properties of the solutions as mentioned in the
main theorem and the steps of its proof.
Let ¢ >~ 0, € > 0. Consider the flexible system
(=1 + e@)x1 + x2 + (—0.2 + £2£)x3 € 2 + &f,
(14 28)x; —x2 + (0.1 + £2Q)x3 C 1 + £0, (3.2)
(1 4+ @)x1 —x3 + (0.154+ e@)x3 € —0.5 + @.

Then F; = min(ef: 60,6 :e2£,0: @) =£, F, =@ : {0} = R and F3 = min(ef :
e2£,60 : 2@, @ : @) = £/¢. Hence the feasibility space is given by ¥ = £e; ®
Rex @ (£/¢)es.
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The constraint of the system (3.2) is () = (£, £/¢)T and the constraint matrix
K= (499).

We obtain a representative matrix P of the coefficient matrix of the system (3.2)
by neglecting the neutrix parts of the entries. Let B be the right-hand side, written in
matrix form. Then the integrated system associated to the system (3.2) becomes

-1 1 —02| 2+¢£

I -1 01| 1460
P| B
(K 37(6))= I -1 015|-05+0|. (3.3)
1 0 0 £
0o 0 1 £/e

We put now the system (3.3) into increasing row-echelon form. The procedure
asks first that all non-zero rows of the coefficient matrix are situated above the zero
rows, which is trivially verified. Secondly each non-zero row should be reduced in
such a way that some coefficient should be equal to 1, while being maximal in absolute
value. Again this is already verified.

Then we interchange the first two rows since the neutrix on the right-hand side of
the second row is smaller than the neutrix on the right-hand side of the first row. We
get

1 -1 0.1 1+¢e@
-1 1 —-02] 2+¢f

1 -1 0.15|-05+0@
1 0 0 £

0 o0 1 £/e

Gaussian elimination of the first column leads to

1 -1 01 | 1+
0 0 —0.1]| 3+4ef
0 0 005|-15+0
0 1 -0l £

0 0 1 £/e

We put again the non-zero rows into reduced form, observing that the increasing order
of the neutrices on the right-hand side is preserved. We get

1 -1 01 ] 1+e0
0 0 1 |[-30+¢f
00 1 |-30+0
0 1 -0l £

0 0 1 £/e
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For the pivot to be 1, we switch the second and third column, and obtain

1 01 —1] 1+e0

0 1 0 |-30+ef

0 1 0|-30+0]|. (3.4)
0 —0.1 1 £

0 1 0 £/e

We apply Gaussian elimination to the second column of (3.4), and obtain in a straight-
forward way

1 01 —-1| 1+¢@

0 1 0 |-30+4¢£

0 0 O @ . 3.5)
0 0 1 £

0 0 0 £/e

Finally, we interchange the third and the fourth row in (3.5), and get

1 01 —1| 1+e0

0 1 0 |—30+ef

0 0 1 £ = Q|e. (3.6)
0 0 0 %)

0 0 0 £/e

The system Qy C € of (3.6) is in increasing row-echelon form, with the neutrices

(¢@, €£, £) on the right-hand side corresponding to the non-singular part Q) =
10.1 -1 . . . .

(8 1o ) of the coefficient matrix Q increasing from above to below.

To solve the system, we ignore the last two rows, and let a parameter ¢ range over
£Q, t, range over e£ and ¢3 range over £. Then we get an ordinary upper triangular
system, given by

1 01 —1| 1+1
0 1 0 |-30+nrn
0 0 1 13

We find (y1, y2,y3) = (4 +t; — 0.1¢;, + t3,—30 + 5, ¢3). Finally, noting that
(x1,x2,x3) = (y1, y3, y2), and substituting the parameters by their range, we obtain
the solution in vector form

£ 4 1 —0.1 1
t=|el=] 0 |+eolo|+e£] o |+£|1]. 3.7)
£ ~30 0 1 0

Geometrically, we could interpret the solution given by (3.7) as a sort of affine space
in the direction (1, 1, O)T, truncated to £ and with support vector (4, 0, —BO)T, having
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a thin thickness &£ in the direction (—0.1, 0, l)T and still thinner thickness £@ in the
direction (1,0, O)T.

As for error analysis, with b = (2, 1. — 0, 5) the solution u of the unperturbed
system P |b of rank 2 becomes

u = (ur,uzuz) = (4,0,30)" + R(1,1,0)7.

The neutrix terms of the perturbed system generate an error set for the support vector
in the form of the two-dimensional neutrix

M = e£(—0.1,0, DT + e @ (1,0,0)T.

This error set has a principal part of order ¢ in the direction (—0.1,0, 1)7, and a
thickness which is small with respect to ¢, for which we may as well choose the
orthogonal direction (1, 0,0.1)7. The effect of the perturbation on the unbounded
component R(1, 1, 0) of the solution is the truncation to its limited part.

Further, the example serves to illustrate that Gaussian elimination tends to give
smaller errors than Gauss—Jordan elimination. Indeed, it is straightforward to verify
that elimination of the element 0.1 on the first row and the second column of (3.4)
transforms M into M’ = ¢£(—0.1,0, 1)T + ¢£(1,0,0)7.

4. Algebraic properties of neutrices

In analogy with systems of linear equations, the solution set of a flexible system 4|3
is the sum of a particular solution and the solution of a homogeneous inclusion. The
latter is a neutrix. Theorems 4.6 and 4.9 give additional information on neutrices in
higher dimension. If a neutrix is a direct sum of a linear space V' and a bounded neutrix
W, the former is necessarily equal to the linear part of the neutrix, and the dimension
of W is uniquely determined. The latter is also true for a modular part, since, as we
will see, any modular part is a bounded neutrix. We will use these properties to prove
part () of the main theorem.

Proposition 4.1. Let A € M, ,(E) and B € N™. Then
N={xeR": Ax C B} 4.1)
is a neutrix.

Proof. Let x,x’ € R". By subdistributivity 4(x — x’) € Ax — Ax’ € B+ B = B.
Let 0 < A < 1. Again by subdistributivity A(Ax 4+ (1 —A)x") S AAx + (1 —A)Ax’ C
AB + (1 — A)B = B. We conclude that N is a convex group. ]
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Theorem 4.2. Let A € My, ,(E) and B = b + B € E™. Let £ be the solution of
the flexible system 4|8, and N be given by (4.1). If & is non-empty, it holds that
&€ =x+ N forany x € &. Moreover, N(§) = N.

Proof. Letalsoy € £. Then A(y —x) C Ay —AX CB—-—B =B,soy—x € N.
Hence y € x + N and we derive that§ C x + N.

Conversely, let y € x + N. Then y —x € N, so A(y — x) € B, hence Ay =
AX+ (Y —x)) S Ax + Ay —x) C B+ B = B.Hence y € &, which implies that
x+ N CE&.

Combining the above, we obtain that § = x + N. Then N(§) = N. ]

We show now that the linear part of a neutrix is uniquely determined, and any
modular part is bounded, with uniquely determined dimension.

Notation 4.3. Let n > 1 be standard and N C R” be a neutrix. We write
Ny = J{Rv:Rv € N},
Ny = [ JiRv : Ron N 5 {0}} U {0}.

Proposition 4.4. Let n > 1 be standard and N C R" be a neutrix. Then Ny is a
linear subspace of R" and
Ny = Nwy. 4.2)

Proof. Firstly, we prove (4.2). The inclusion Ny € N(z) is obvious. Let v € Ny,
and V € N a linear subspace of R” such that v € V. Then Rv € N. It follows that
v € N(y). Hence N1y C N(,). Combining, we obtain (4.2).

Secondly, we prove that N(ry is a linear subspace of R”. Clearly 0 € N(z). Let
v, w € Nz). Then, by the definition of N(z), we have Rv € N and Rw € N. In
particular, v, w € N. Because N is a group, it holds that v + w € N. Let ¢t € R.
Then t(v + w) =tv+tw € N + N = N. Hence R(w + v) C N, meaning that
v+ w € N(z). We conclude that Nz, is a linear subspace of R". [ ]

Proposition 4.5. Let n > 1 be standard and N C R" be a neutrix. Then N(,) is a
linear subspace of R"™ and

dim(N(,)) = dim(N). (4.3)

Proof. Firstly, we prove that N, is a linear subspace of R". Clearly 0 € N,,. Let
v, w € N,). Then there exist s € R, s # 0 such that sv,sw € N. Then s(v + w) =
sv+sweN.Ifw+v=0,clearly w +v € N,). If w4+ v # 0, also s(w + v) # 0,
so R(w +v) N N D {0}, which implies that v + w € N(,). Obviously Rv C N,,.
We conclude that N(,,) is a linear subspace of R”.
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Secondly, let d = dim(N), m = dim(N,)). If N = {0}, also N(,) = {0}, and
d = m = 0. Assume now that N D {0}, then also N, D {0}. There exists a linearly
independent set z C N such that d = #z. Because z C N, we have

d <m. 4.4

Conversely, there exists a linearly independent set of vectors w = {wq, ..., Wy} C
N(u)- There exist sy, ..., 5, € R\ {0} such that {s;wy,...,Snwy,} S N. This implies
that

m<d. 4.5)

Combining (4.4) and (4.5), we conclude that d = m. [ ]

Theorem 4.6. Let n > 1 be standard and N C R" be a neutrix. Let V be a linear
subspace of R™" and W C R” be a bounded neutrix such that N =V @& W. Then

(a) it holds that V = N(p,;

(b) the dimension of W is given by dim(W) = dim(N) — dim(N(z,)).

Proof. (a) If V= {0}, or V' = R" it is easy to see that N(z) = V. In the remaining
case {0} C V C R".

By (2.2) itholds that V' C N(y,). Conversely, we show first that N3y € V. Observe
that since W is bounded, there exists b € R, b > O such thatforall x € W

l[x]l < b. (4.6)

Letv € Ny, v # 0. Suppose that v ¢ V. Letk = dim(V). Then1 <k <n — 1. Let
{v1, ..., v} be an orthonormal basis of V. Because V is a linear subspace of R”, it
holds that {v1, ..., vk, v} is linearly independent. Let U be the linear subspace of R”
spanned by {vy,...,vg,v}. Then U € N + N = N. Applying the Gram—Schmidt
orthogonalization procedure [29], we find a vector vg 4 such that {vq,..., Vg, Vk+1}
is an orthonormal set of vectors in U. Then also Rvg+; € U € N. We may complete
{v1,... Vg4+1} to an orthonormal basis {vy,... v,} of R”.
Lets € R, ¢t > b. Then

(tVk41. V1) > b. 4.7)

It follows from the fact Rvg; € N thattvgyy € N =V @ W. Asaresult, tvg4q =
y 4+ wwhere y = yjv; + -+ ypvg € Vand w = wyvy + -+ + wyv, € W, with
Viseeoy Vi, W1, ..., W, € R. Hence

(w1 + y)vy + -+ + (Wi + Ye)Vk + Wep 1 V41 + -0+ Waty
= V41

= (tVk+41, V1) Vk+1-
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Because of the uniqueness of the representation of the vector fvgy; in the basis
{vi,..., vy}, one has wg4; = (tVgy1, Vg+1). Then |wgsq| > b by (4.7), while
|wk+1] < [lw|| < b by (4.6), a contradiction. Hence v € V, and we derive that N3y C
V. Because Ny = N(z), it holds that Ny C V.

Combining, we conclude that Ny = V.

(b) Because V' N W = {0}, also V N W,y = {0}. Hence V & W) = N, and
being all linear spaces, dim(V') + dim(W(,;)) = dim(N,,). Then it follows from (4.3)
that

dlm(W) = dim(W(M)) = dim(N(M)) — dlm(V) = dlm(N) - dim(N(L)).
The previous equation finishes the proof. ]

We now recall a definition and a theorem of [34].

Definition 4.7. Let n > 1 be standard and N C R” be a neutrix. Then the neutrix
AN)={LeR:FueR|u| =1, Au C N}
is called the length of N.

Given a neutrix N C R”, Theorem 4.8 states that there exists always a vector u
such that its intersection with the line Ru is maximal, i.e., it is equal to A(N )u. This
property will be used to show that a modular part of N is uniformly bounded in any
direction, which proves the first part of Theorem 4.9.

Theorem 4.8 ([34, Theorem 5.2]). Let n > 1 be standard and N C R" be a neutrix
with length A. Then there exists a unit vector u € R" such that Ru N N = Au.

Theorem 4.9. Let n > 1 be standard and N € R”" be a neutrix. Let M be a modular
part of N. Then

(a) the modular part M of N is a bounded neutrix;

(b) the dimension of M is given by dim(M ) = dim(N) — dim(N(yz,)).
Proof. For part (a), suppose A(M) = R. By Theorem 4.8 there exists u € R” such
that Ru N M = Ru, i.e., Ru € M. Hence M N Ny D {0}, a contradiction. Hence

A(M) C R. This implies that M € (A(M))" is bounded. Then part (b) follows from
Theorem 4.6 (b). [ ]
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5. Solution strategy

5.1. Integrated system

Let 4|38 be a flexible system. Theorem 5.1 states that an associated integrated system
is equivalent to the original system. In a sense, it is a reformulation of [38, Theo-
rem 3.3].

Theorem 5.1. Let A = (Olij)an € Mm’n(]E) with ojj = ajj + Aij forl1 <i <m,
1<j<nand B = (by,....,bm)T + (By1,...,Bm)T € E™ Let P = (aij)mxn €
M n(R) be a representative matrix of A. Let k € N be the constraint dimension,
F©) e Nk be the constraint and K € Mi.n(R) be the constraint matrix. Then the
associated integrated system (II;- | ,ﬁ‘%) ) is equivalent to 4|38B.

Proof. A vector x = (x1,...,x,)T € R”" is a solution of the system +|B if and only
if
(a1 +Am)x1 + - + (@ntAwm)xn < b + B,
(am1+Aml)xl + -+ (amn+Amn)xn - bm + Bm-

This is equivalent to Px € B and A;;x; € B;foralll <i <mand 1 < j < n;the
latter is equivalent to
X € Bi . Aij, (51)

forl1 <i <m,1 <j <n.Forl < j < n the restriction (5.1) is equivalent to

X;j € lg}lsnm B; IAij = FJ (5.2)
Let j; <--- < j be such that ¥ = (Fj,,..., F;,)T is the constraint, with k the

constraint dimension, while F; = R for j € {I,...,n}\{j1...., jk}. Then (5.2)
amounts to
xj, € Fj, CR (5.3)

for 1 < h < k. We may write (5.3) in the form Kx € & (©) with K the constraint
matrix. Combining with the fact that Px € B, we conclude that x is a solution of the
system (£ | 3,‘%) ). Hence 4|8 and (£ | ;ﬁ.) ) are equivalent. ]

5.2. Increasing row-echelon form

Theorem 5.2 states that every flexible system with real coefficient matrix can be put
into increasing row-echelon form. However, column permutations may be needed, so
the variables may appear in different order.
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Theorem 5.2. Let P € M, »(R) be of non-zero rank and B € E™. Then there exists
a permutation matrix H € M, (R) such that the system Px € 8B is H-equivalent to
a system Qy € € which is in increasing row-echelon form and obtained by Gaussian
elimination, where Q € My, ,(R) is of the same rank as P, € € E™ and y = H x.

The proof of Theorem 5.2 is based on the following lemma and its generalization.
They imply that in a reduced matrix the Gaussian operation of adding a multiple of
one row to another does not change the set of real admissible solutions, provided
on this row we can take a pivot equal to 1, and the neutrix on the right-hand side is
minimal.

Lemma 5.3. Consider the reduced flexible system with real coefficients

X1 4+ apaxs 4+ -+ ay,x, € by + By,
{ 1 12X2 1nXn 1 1 (5.4)

az1X1 + anpxy + -+ + azpxy € by + Bs.

If B1 C B», the system (5.4) is equivalent to the system with equal neutrices and with
coefficient matrix of equal rank

(5.5)

X1+ apzxz + -+ ainXn € by + By,
(azz —aziaiz)x2 + -+ (azn —aziain)xn € by —az1by + Bs.

Proof. The Gaussian row-operation does not modify the rank of the coefficient matrix.
Observe that |az1| < 1 and B; C B>, so

Bz + a2131 = Bz. (56)

Hence the row-operation leaves the neutrix on the right-hand side of the second row
unchanged. We conclude that the neutrices on the right-hand side of the system (5.5)
are equal to the neutrices on the right-hand side of the system (5.4).

To show the equivalence of the systems, assume x = (xq,..., xn)T satisfies the
system (5.4). It follows directly from (5.6) that x satisfies the second row of (5.5).
Then x satisfies the system (5.5), because it obviously satisfies the first row. Con-
versely, if x = (x1,...,x,)7 satisfies (5.5), again using (5.6),

az1X1 + anxXy + -+ dapXp
= (a2 —azi1a12)x2 + -+ + (a2n — a21a15)Xn
+az (x1 +apxs + -+ anxy)
€ by —anby+ By +azi(by + B1) =by + By +ax By = by + Bs.
We conclude that x satisfies (5.4). Hence the two systems are equivalent. ]

The following lemma on subtraction of rows in order to create zeros below some
pivot on the principal diagonal is more general. It can be proved similarly.
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Lemma 54. Let P = (pij)mxn € Mmn(R) be reduced and of rank r > 1, B =
Bi,....Bm)T € E™ with B; = b; + B; for 1 <i <m. Let k € N be such that
1 <k <r.Assume that p;j; =0 fork <i <m, 1< j <k, pxx =1, and B C B;
fork <i <m.Let QO = (qij)mxn € Mmn(R) be defined by

Pij l<i<k 1=j=n,
qij = . .
pij —PikPkj k+1=<i=m 1=<j<n,
and the external vector € = (y1,...,ym)! by
; 1 <i <k,
vi=c¢ +C = & - T
i — PpikBe k+1=<i=<m.

Then
(a) it holds that C; = Bj for 1 <i <m;
(b) onehasqij =0fork+1<i<m1=<j=<k;
(c) the matrix Q has the same rank as P;

(d) the systems P|B and Q|€ are equivalent.

Proof of Theorem 5.2. Let P = (ajj)mxn and r =1(P),r > 1. We prove the theorem
by external induction, increasing stepwise the part of the system P|8B having the
desired form.

We push all rows such that P has at least one non-zero element to the upper side,
and all zero rows of P |8 to below, so between them there are possibly rows with zero
elements within P and a non-zero right-hand element.

To avoid notational complexity, we suppose that the rows with index 1, ...,k of
P all have a non-zero element, and, if ¥ < m, the rows with index k + 1, ...,[ have
a non-zero right-hand element, with / < m. We thus obtain a system P©x ¢ 8©
which is equivalent to P |8, with the same rank for the coefficient matrix.

For1 <i <k, welet|a;| = maxi<;<n |aij|, choose a; ; such that |a; ;| = |a;|, and
divide row i of P©@|8© by a; ;. Among the first k rows we choose a row such that
the neutrix part on the right-hand side is minimal and permutate it with the first row.
Some coefficient on the new first row is equal to 1, and we permutate the correspond-
ing column with the first column. Then we apply Gaussian elimination to the part
below the new first element. The resulting system will be denoted by P x™M ¢ 81,
where x(V = HWx, with H® e M, (R) a permutation matrix. It is reduced and in
increasing row-echelon form as far as the first row is concerned, the first column of
P has zero elements below the pivot, and the elements of its remaining columns
are all limited. It follows from Lemma 5.4 that the Gaussian operations used lead to
an equivalent system with equal rank for the coefficient matrix and equal neutrices on
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the right-hand side. Hence 8" < 8" for2 <i <k, ((PM) = r(P) and PM|8W
and P|B are HW-equivalent.

Suppose that s < r and the system P®)x®) € 8¢ is reduced and in increasing
row-echelon form up to row s, where x® = H®x with H® ¢ My (R) a permuta-
tion matrix, and such that the system is H ¢)-equivalent to P |8, withr(P®)) = r(P),
while the elements in the first s columns of P ®) below row s are zero, and its remain-
ing elements are limited. We insert the rows of P®)|8) such that P has zero
coefficients into the existing group of rows with non-zero neutrix on the right-hand
side. Then the rows of P are non-zero up to k), say. We repeat the procedure
sketched above, and start by constructing a reduced coefficient matrix by dividing
the rows of P |8 below row s by an element which in absolute value is max-
imal; note that this element is at most limited, so its inverse is not an absorber of
the neutrices on the right-hand side. Hence the neutrices of the right-hand side up to
s continue to be contained in the neutrices of the following rows; one of these rows
with minimal neutrix will be interchanged with row s 4+ 1. Then we permute columns,
such that the first element of row s 4 1 equal to 1 occurs in column s + 1. We apply
Gaussian elimination to the column s + 1 below row s + 1. The resulting system will
be denoted by PEFTDx6+D ¢ 6+ where x6+D = §x© for some permutation
matrix S € M, (R). The column of P©+V below row s + 1 has only zero elements.
The submatrix of P¢*1 below and to the right of this element is limited. It follows
from the induction hypothesis and Lemma 5.4 that

8¢ = 30 < 32, = 31" < 8%
forl <i <s.

Hence P+ | 86+ is in increasing row-echelon form up to the (s 4 1)th row.

By construction and again by Lemma 5.4 we have Bs(fll) - 58[.(”1) for s +
2<i<k®, r(PED) = r(P®) and PEHDx6+D e B6+D js S-equivalent to
P®x®) ¢ 86) This implies that r(P V) = r(P) and that PE+Dx6+D ¢ g+
is H@*+V_equivalent to Px € B, with the permutation matrix H ¢+ = SH®),

By external induction we may thus continue up to row r, and obtain a system
Qy € € in increasing row-echelon form up to row r, where y = H x for some per-
mutation matrix H € M, (R), such that Qy € € is H-equivalent to Px € B, with
O = (qij)mxn € Mmn(R) of the same rank as P and € € E™. Observe that the
elements ¢;; for i > r and j < r are zero by the induction hypothesis, the elements
below g, are zero by construction, and then the elements ¢;; fori > r and j > r
must be also zero, otherwise r(Q) > r, a contradiction. Hence the system Q|€ is in
increasing row-echelon form. ]
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5.3. On consistency

In this subsection, we give first a criterion for consistency for a system with real coef-
ficient matrix in row-echelon form. We apply it to obtain a criterion for an arbitrary
flexible system.

Proposition 5.5. Let Q € My, ,(R) be in row-echelon form and € = c + C =
(V1s -+ Ym)T € E™. Assume t(Q) = r. Then Q|€ is consistent if and only if y; is
neutricial forr + 1 < j < m, and then the systems Q|€ and Q™" |€" are equivalent.

Proof. Assume that Q|€ is consistent. If y; is zeroless for some j withr + 1 < j <
m, we would have 0 € y; atrow j, a contradiction. Hence y; = Cj is neutricial. Then
forr + 1 < j < m all rows are of the form 0 € C;, which is automatically satisfied.
Hence the systems Q|€ and Q""*|€" are equivalent.

Conversely, if y; = C; is neutricial for r + 1 < j < m, the corresponding rows
are all of the form 0 € C;, which, as we saw, is always satisfied. Hence the system
Q€ is equivalent to the remaining system Q""|€". Because r(Q"") = r, the system
Q"|c" is consistent, hence also Q" |€". By equivalence, Q|€ is consistent. ]

We now characterize the consistency of the original flexible system 4 |3.

Theorem 5.6. Let A € My, 4 (E), B € E™ and A|B be a flexible system. Let P €
Mm.n(R) be a representative matrix of A. Let ¥ be the constraint, k < n be
the constraint dimension and K € My, (R) be the constraint matrix. Let r( 11;) =r.
Assume that Q € My a(R), € € E™t% and Q|€ is a system in increasing row-
echelon form associated to A|B by P. Then

(a) there exists a permutation matrix H € M,(R) such that the systems 4|38
and Q|€ are H -equivalent;

(b) it holds thatr(Q) = (&) =r;

(c) the system A|B is consistent if and only if €™ %77 is neutricial.
Proof. (a) By Theorem 5.1 the system 4|8 is equivalent to (% | 373(6) )- By Theo-
rem 5.2 there exists a permutation matrix H € M, (R) such that the systems (£ | ;(30) )
and Q|€ are H-equivalent. Hence + |8 is H-equivalent to Q|€.

(b) Also by Theorems 5.1 and 5.2 we have r(Q) = r( I};) =r.

(¢) By part (b) it holds that r(Q) = r. Then by Proposition 5.5 the system Q|€ is
consistent if and only if €5~ is neutricial. This implies part (c). ]

Example 5.7. Consider the flexible system
(—14+e2)x1+ (1 +@)xz2 + (—0.2 + ef)x3 C 2 + &f,
(1+ef)x1 + (1 +ef)xy + (0.1 + Q)x3 € 1+ 0, 5.7
1+ @)x1 + (=1 4+ @)x2 + (0.15 + £@)x3 € —0.5 + Q.
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The coefficient matrix of (5.7) has the same representative matrix as (3.2), having
larger neutrices. With this representative matrix the integrated system becomes

-1 1 —-02] 2+¢f
1 -1 0.1 1 +e0
1 -1 015 |05+
1 0 0 %)

0 1 0 e
0 0 1 e

Putting the second, fifth and sixth row on top, and applying Gaussian elimination, we
find the system in increasing row-echelon form

—1 01| 14¢e0
et
ef

34 £

1.5+ 0

-1+ 0

=l el ool
=l el el
oS O O = O

The rank of the coefficient matrix is 3. We see that the fourth, fifth and sixth compo-
nent of the right-hand side are zeroless, so by Theorem 5.6 the system is inconsistent.

5.4. Extended parameter method

We will now solve the system (2.5). A system with rank equal to the number of
inclusions is solved by the parameter method in [38], which admits a solution in
closed form. In the case of a system P |8, where P € M, ,(R) is a real coefficient
matrix and 8 = b + B is an external vector, the parameter method is as follows. Let
B = (Bi,....By)T. Welets = (s1,....5m)T, where s; is a real parameter such that
s; € B; for 1 <i < m.We solve P|(b + s) with common methods of linear algebra,
and in the end we substitute the s; by their range B;.

We will see that the parameter method also works for a system in increasing row-
echelon form Q|€. This implies that the system (2.5) can also be solved, after the
transformation into an equivalent system in increasing row-echelon form as described
in the proof of Theorem 5.2.

The next theorem presents the solution in closed form in the case that P ™ is
non-singular. In addition to representatives of bounded scalar neutrices we have also
parameters ranging over linear spaces of one dimension. The solution is therefore
exact.
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Theorem 5.8. Let1 <m <n €N, P = (a;j)mxn € Mmn(R) be of rank m and such
that P is non-singular, and B = b + B € E™. Let £ be the solution of the system

P|B. Let
n
o P(m) —laT
V= ZR((en_)m k). (5.8)
k=m+1 k—m
m
B;(Pm)~lem
W=§:<A o)%)' (5.9)
i=1
Then

(a) the set V is the solution of the system P |0;

(b) the equality PW = B holds;

(c) the set W + V is the solution of the system P|B;

(d) the solution & of P|B is given by § = ((P(m(;)flb) +W+V;

(e) the solution & is exact.

Proof. The set £ is non-empty, because P |b is consistent.
(a) It is obvious from linear algebra that V' is the solution set of P|0.
(b)Lets; e Rforl <i <m,s =s1ef’ +---+ siejr and

(PUD)715\ _ i (si(Pe) e
()T

i=1

Assume first that s € B. Then s; € B; for 1 <i <m, hence w € W, while Pw = s.
Hence PW 2 B.Conversely, let s € P W. Then there exists w € W such that Pw =s.
Because w € W, by (5.9) it holds that s € B. Hence PW C B. We conclude that
PW = B.

(c) Let £p be the solution set of P|B. Clearly

PW +V)=PW+ PV =B+0=B,

so W + V C &p. On the other hand, let s € B and & be the solution of P|s. By
part (b) there exists wg € W such that Pwg = s. Then it follows from linear algebra
that & = wg + V is the solution of P|s. Hence ép = | J;ep & = U ep(ws + V) C
W + V. We conclude that Eg = W + V.

(d) Clearly ( 0 (m()))_lb ) € £. Then part (d) follows from Theorem 4.2 and part (c).
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(e) The matrix P has real coefficients. Then by distributivity, part (d), part (b) and
part (a) it holds that

P& = P(((P(M)g_l(b)) + W + V)

=P<((P(m)3_l(b)))—}—PW—I—PV=b+B+0=b+B'

Hence the solution £ is exact. u

6. The neutrix part of the solution of a system with real coefficient
matrix

Let P|8B be a flexible system, where P € My, »(R) is a real coefficient matrix of
rank m. We will see that the solution set & is exact. Its neutrix N(§) has the form
of a direct sum of its linear part ) and a modular part §7). The dimension of
£(1) depends on the rank of P and the dimension of £(37) on the number of non-zero
neutrices on the right-hand side.

Theorem 6.1. Let 1 <m <n €N, P = (a;j)mxn € Mmn(R) be of rank m and such
that P is non-singular, and B = b + B € E™. Let £ be the solution of the system
P|B. Let V be given by (5.8) and W by (5.9). Then

(a) the set V is a linear space, equal to the direct sum

—(P (m))—l al

- @ a(Tr ).
k—m
with dimension
dimV =n —m;

(b) the set W is a bounded neutrix, equal to the direct sum

( P (m))—l e

W= P B 0 k), (6.1)
B D{0}

with dimension
dim(W) = #{k : By D {0}}; (6.2)

(¢) the neutrix part of € is given by N(§) = W @ V;
(d) the set V is the linear part of &€, and the set W is a modular part of €.
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Proof. (a) Being the solution of P |0, the set V' is a linear space. The set of vectors

_ =P ag (PO lay
Gy = en—m retes en—m
1 n—m

is linearly independent. Hence

n (P~ —(pmH—
v= 3 (RN @ w ()

k=m+1 -m m+1<k<n -m

anddimV =n —m.
(b) Formula (6.1) is a consequence of the fact that the set of m vectors

GW _ _(P(m))—le;n _(P(m))—lez
= 0 Sy 0

is linearly independent. Being a direct sum of scalar neutrices, the set W is a neutrix.
By Remark 3.1 the components of the neutrix B are bounded. Then it follows from
(6.1) that the components of the neutrix W are bounded, hence also W is bounded.
Formula (6.2) follows from the fact that Bk(P(’”))_lef D {0} if and only if By D {0},
forl <k <m.

(c) Clearly Gy U Gy is linearly independent. This implies that N(§) =V & W.

(d) By part (c) it holds that N(§) = V @ W, while V is a linear space by part (a),
and W is a bounded neutrix by part (b). Then Theorem 4.6 implies that V' is the
linear part of N(§). Then it follows from Definition 2.7 that V' = &) and that W is a
modular part of &. ]

7. Invariance of rank of integrated matrices

Representative matrices of an external matrix may have different ranks; this is obvious
for a neutricial matrix, which has both a zero representative matrix and non-zero rep-
resentative matrices. In contrast, Proposition 7.1 shows that the rank of the coefficient
matrix of an integrated system associated to a flexible system is always the same.

Proposition 7.1. Consider the system A|B, where A € My, ,(E) and B € E™ with
N(8B) = B. Let (£ | ;ﬁ)) and (119</ | ,F‘f(}()) be two associated integrated systems,
where P, P’ are two representative matrices of A and K is the constraint matrix.
Letr =v(B)andr' =1(%). Let C € N™,C' € N™, and Qy € C be a system in
increasing row-echelon form associated to Ax C B by P, and Q'z € C' be a system
in increasing row-echelon form associated to Ax € B by P’, where y = Hx and
z = H'x for some permutation matrices H, H' € M, (R). Let & be the solution of
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the homogeneous system (I}; )x € ( J,J?C) ) and &' be the solution of the homogeneous
system (1;(/ )x € (;;%) )
Then
(a) it holds that &1y = SEL)"
(b) the set HE is the solution of Q"™ |C" and the set H'E' is the solution of
@)
(¢) itholdsthatr =1(Q) =1(Q) =r'.

Proof. Being homogeneous, the system #4x C B is consistent. Then its solution is a
neutrix N. By Theorem 5.1 the homogeneous systems (II; )x € ( }.lfc) ) and (};{/ )x €
( ﬁlfc) ) are both equivalent to 4|8, hence they are equivalent. Consequently,

E=N=¢. (7.1)

(a) From (7.1) we derive that £z = EéL).
(b) It follows from Theorem 5.2 that H ¢ is the solution of Qy € C and H'E is
the solution of Q’z € C’. Again by Theorem 5.2,

r(Q)=r (2) =r, 1(Q)=r (?) =r'. (7.2)

Then it follows from Proposition 5.5 that H ¢ is the solution of Q™" |C" and H'§' is
the solution of (Q’)"*|(C")"".
(c) By parts (a) and (b)

1(Q) =1(Q™) =n—dim((H&) ) =n —dim(H&z)) = n — dim(§z,))
=n—dim(§;)) = n —dim(H'§;)) = n — dim((H'E) (1))

=1((Q")"™) = 1(Q"). (1.3)

Formulas (7.2) and (7.3) imply part (c). ]

8. Proof of the main theorem

Proof of Theorem 3.2. (a) By Theorem 5.1 the system +Ax C B is equivalent to
(B)x e (3,.%, ), where (£) € Myi10(R) and ;?c) € E™+k_ By Theorem 5.2
there exists a permutation matrix H € M, (R) such that the system (11; )x C ( f'%)

is H-equivalent to a system Qy € € which is in increasing row-echelon form and
obtained by Gaussian elimination, where Q € M, ,(R),1(Q) =rand€ =c+C =
(Y1, - .,ym+k)T e Emtk with yi =c¢; + C; for1 <i <m + k.Hence also Ax C B

is H-equivalent to the system Qy C €.
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(b) Since r(Q) = r, it follows from Proposition 5.5 that the system Q|€ is con-
sistent if and only if y; is neutricial forr + 1 < j <m + k.

(c) By Proposition 5.5 the consistent system Q|€ is equivalent to the system
Q"™ |€”. Because Q) is an upper triangular matrix of dimension r x r, so is

(Q)~1 Put
e [CeM) ey
v ()

i=1

n rN\—1¢,\T
v — Z R (_(Q(Q—r(qk) ) .
k=r+1 k—r

Then (3.1) follows from Theorem 5.8 (d). By part (a) the solution of 4|8 is given by
£E=H'¢.

(d) By Theorem 6.1 (d) it holds that {7y = V, and dim({(z)) = m + k —r by
Theorem 6.1 (a).

(e) By Theorem 6.1 (b) it holds that {(5sy = W is a bounded neutrix and

dim(Z(M)) =#{i <r:C; D{0}}.

(f) By Proposition 7.1 (c) the rank of a coefficient matrix of an associated inte-
grated system does not depend on the choice of a representative matrix. Let the neutrix
N be the solution of the homogeneous system Ax C B, with B the neutricial vector
associated to the external vector 8. Then N(§) = N by Theorem 4.2, so the neutrix
part of £ does not depend on the choice of a representative matrix. Also §z) = N(r),
so the linear part of £ does not depend on the choice of a representative matrix. Let M
be a modular part of §£. Then M is a modular part of N(§) = N,so N = N(1) & M. By
Theorem 4.9 (b) we have dim(M) = dim(N) — dim(N(z,)), which does not depend
on the choice of a representative matrix. |

9. Essential parts and feasible systems

Consider a flexible system «+|8. The appearance of neutrices in the coefficient matrix
induces feasibility inclusions in the associated integrated system ( II; | T,‘%) ) Some-
times they just restrict the range of some of the variables, such as in the example of
Section 3.2, but it is also possible that they interfere with the original system, which
was the case in Example 5.7. Indeed, the solution strategy of the main theorem may
involve change of rows, so a row of the “constraint part” K|% ) could be inserted
into the “representative part” P|8. We call a system feasible if this does not need to
happen, otherwise said, if 4|8 is equivalent to P|8. The equivalence will be a con-
sequence of a more general property, which divides a system « |8 into an “essential
part” and a “remaining part” of inclusions which may be neglected. Proposition 5.5 is
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a special case of this property, indicating that rows with zeros in the coefficient matrix
and a neutrix on the right-hand side may be omitted.

To start with we recall the notion of determinant and non-singularity given in [18]
and introduce some notation.

For A € M, (E), the determinant A = det(4A) = d + D is defined in the usual
way through sums of signed products. Also minors are defined in the usual way.

Definition 9.1. Let A € M, (E). Then + is called non-singular if A is zeroless.

Observe that a representative matrix of a non-singular matrix +4 is always non-
singular.

Notation 9.2. Consider the flexible system + |8, where A € M,, ,(E) and B € E™.
Let1 <r < m.Foreach j suchthat 1 < j <n we write

"= max A;;, ATT" = max Ajj,
7 i=i<r ¢ J 1+r<i<m

B"= max B;, B™ "= min B;.
1<i<r 14+r<i<m

Definition 9.3. Let A € My, ,(E), B € E™ and A|B be a flexible system. Let
AEg|BE be a subsystem of A |B. The subsystem Ag |BE is called essential if A|B
and A g |BE are equivalent.

Assume that the rows and columns of a flexible system 4|8 are ordered in such
a way that the submatrix AT is non-singular. Theorem 9.4 below gives a criterion
such that the first r rows of the system form an essential subsystem. In fact, r should
be the rank of a representative system and on the right-hand side the neutrices below
row r should be at least as large as the neutrices up to row r, while in contrast the
biggest neutrix in each column of the coefficient matrix should appear above row r.
In addition, det(A()) should not be an absorber of the maximal neutrix on the right-
handup to r.

Theorem 9.4. Let A = (ij)mxn € M n(E) be limited and B = (B, ..., Bn)T €
E™. Let N(ot;j) = Ajj and N(B;) = B; for1 <i <m, 1< j <n. Letr € N be such
that 1 <r < m. Assume that

(@) the matrix AT is non-singular;

(b) there exist a representative matrix P = (ajj)mxn 0f 4 and a representative
vector b of B such that t(P|b) = r;

(c) the determinant det(A") is not an absorber of BT;
(d) the neutrices on the right-hand side satisfy B" € B™™";
(e) the neutrices of the coefficient matrix satisfy A;"_r C A_;for alll <j <n.

Then A™|B" is an essential part of A|B.
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Proof. Obviously, a vector x = (xq,..., x2)T € R” which is a solution of the system
A|B is a solution of A™"|B”.
Conversely, assume that x = (xq, ... ,xn)T € R” is a solution of the system

A""|B". By assumption (b), there exists a representative matrix P = (a;j)mxn Of
/4 and a representative vector b = (by, ..., b,)T of B such that (P|b) has rank r.
Letr + 1 < k < m. We need to prove that x satisfies the kth inclusion of the system
A|B, i.e.,

n n n n
Zaij]' = Z(akj + Akj)xj = Zaijj + ZAijj < Bk. CRY
Jj=1 Jj=1 j=1 j=1

We prove first the neutrix part. Let 1 < j < n. Because A;”_’ C A", A_jr = A;,; for
some ig with 1 < iy < r and x is a solution of A" |B",

. M=y C ATx: = A; X . BT m—r
Akjx; € A7 x; € Alxj = Ajyjxj € Biy € BT S B C Bg.

Hence n
> Akjx; € By 9.2)
j=1
Secondly, we show that Z;’Zl axjx;j € Pr. For 1 <i < m we denote the ith row of
(P|b) by u; = (ai1. ..., ain, b;). Because r(P|b) = r and the matrix A is non-
singular, it holds that d, = det(P ™) # 0, i.e., P is also non-singular. Then there
exist real numbers 71, ..., such that

Up = iy + -+ ity 9.3)
. ) , det(P)) }
in fact, it follows from Cramer’s rule that #; = d—rr for1 <i <r, where
al “e alr
0 ag-n1 - ag-nr
1
Py =1 arr - agr
ag+nr A+ Dr
arl e Arr

By assumption (c), and the fact that det(Pr(]?) is limited, we have for 1 <i <r

_ BT N
BT = det(Pr(,?)d— = de((PW)B" C BT
r
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By assumption (d),

tBi+-+ 4B CtB +--+1,B"CrB"=B"CB""CB. (94)

Because x is a solution of the system A’ |87,

annxy + apxy + -+ 4+ apwx, € by + B,
arix1 + apxa + -+ + amx, € b+ By,
hence
tanxy + tiaiexa + -+ hainx, € ti(by + By),
trarx1 + tapxa + - + trarpx, € t(by + By).
Consequently,

(franx1 + fiaraxa + - + tiainXn) + -+ + (Grar1x1 + trar2 X2 + -+ + trarnXn)

€t1(by + By) + -+ t,(by + By),
hence

(tan + -+ trar)x1 + (iaz + -+ trar2)x2 + -+ (a1n + - + trarp) Xn
€ (t1iby + -+ + t;b;) + (1 By + -+ + 1, By).

Then (9.3) and (9.4) imply that
ag1x1 + -+ agpXn € by + (L1 B1 + -+ + 1, By) C b + By. 9.5

Formula (9.1) follows from (9.5) and (9.2). Hence A""*|8B” is an essential part of
A|B. [

Corollary 9.5. With the notations of Theorem 9.4, let A € M, ,(R) be limited.
Assume that

(@) the matrix AT is non-singular;

(b) there exists a representative vector b of B such that r(A|b) = r;

(c) the determinant det(A") is not an absorber of BT;

(d) the neutrices of the coefficient matrix satisfy BT < B™ ",
Then A™|B" is an essential part of A|B.

Proof. Because A is a real matrix, it holds that A;?’_’ = A_]’ = 0for1 < j <n.Hence
the result follows from Theorem 9.4. [
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Definition 9.6. A flexible system «+ |8 is said to be feasible if there exists a represen-
tative matrix P of «# such that 4|8 and P |8 are equivalent.

By Theorem 5.1 a system |8 is equivalent to its associated integrated system
(2 | ,f;i(’)c) ), here P is a representative matrix of A, % (©) is the constraint and K is
a constraint matrix. In case the system is feasible, the representative part P|8B is an
essential part, in other words we may neglect the constraint part K| ). Theorem 9.7
gives conditions for this to happen. For convenience it is formulated for systems of
full rank.

Theorem 9.7. Letm < n, A € My, »(E) be limited, B € E™ and A|B be a flexible
system. Let m be the maximum in absolute value of all minors of order m. Assume
that M # 0. Let F(© be the feasibility space of 4|B with components Fy, ..., Fg
and let F = min{Fy, ..., F}. Assume that

(a) the maximal neutrix on the right-hand side satisfies B C F;
(b) the maximum in absolute value of the minors m is not an absorber of B.

Then the system A|3B is feasible.

Proof. Because # has a non-zero minor of order m, there exist a representative matrix
P of 4 and a representative vector b of B such thatr(P) =r(P|b) = m. Let K be the
constraint matrix of #4|8. By Theorem 5.1 the system «+ |8 is equivalent to (II; | ;ﬁ) )
We may change the order of appearance of the variables to obtain an H -equivalent
system ( £, ;?C) rix
and H € M, (R) is a permutation matrix. Then det((P’)"™) is not an absorber of B,
while B € F. By Corollary 9.5 the system (Ily ;’;’L) ) is equivalent to P’|8B, hence

H -equivalent to P|8. Hence 4|8 is feasible. =

) such that det((P’ )™ = 717, where K is again a constraint matrix

10. On robustness

Informally, a property is robust if it is stable under small perturbations. Often, robust-
ness is studied in the context of optimization, and typically, if a minimum is attained
at some point u, one looks for a convex set V' in the neighborhood of u such that for
values in V' the same minimum is attained, and the determination of the largest set V'
becomes a maximization property, see, e.g., [2, 3,21, 32]. Strict robustness requires
that the property is totally unchanged in some neighborhood of a given value, in other
cases it is only asked that the property almost holds [4, 14, 24], if so one may speak
about light of recoverable robustness. In our context of the study of inclusions, we
choose to study a form of strict robustness, i.e., persistence of a property in a convex
neighborhood.
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Definition 10.1. Let v € R? with d > 1 and R(u) be a property. We say that R(u)
is robust if there exists a convex set ¥V € R? such that {u} C V and R(v) holds for
every v € V. The robustness domain W of R(u) is defined by W = {v € R? : R(v)}.

Definition 10.2. Consider the system P |8, where P € My, »(R) is reduced. Let
Q € My n(N). If the systems P|B and (P + @Q)|B are equivalent, the system (P +
Q)| B is called a strict perturbation of P|8B. A strict perturbation (P + @)|8B is
limited if the matrix P + @ is limited. The robustness matrix is the maximal matrix R
in the sense of inclusion such that R|B is a limited strict perturbation of P |3.

Assume Px € B, where P is a real matrix, x a real vector and B an external
vector. Let (P + @)|B be a strict perturbation of P|8, where @ = (Q;j)mxn, With
Q;j aneutrix for 1 <i <m, 1< j <n.Consider a representative matrix § = (¢i; )mxn
of @, 1ie., qij € Qjj for 1 <i <m, 1< j <n. We may identify g with a vector
q € R™"_ Consider the property

R(g) :== (P +q4)x € B.

Then R(0) corresponds to Px € B. We see that R(0) is robust, with R(g) < R(0)
for g € D) <j<m.1<j<n Qij> Which is convex indeed.

The neutrices of a limited strict perturbation, and in particular the robustness
matrix, must be strictly contained in £, so are at most equal to @. Note a perturbation
by the neutrix £ tends to be too incisive, for it would lead to a coefficient matrix that
cannot be put in reduced form, and in many cases to inconsistency.

Example 10.3. Consider the system P |8 givenby P|8 = (1 1 |319), with solu-
tion set £ = (%Ig) By substitution we see that £ also solves the system (P +
(@)2x2)x € B, and we conclude that every real vector x satisfies Px € B if and only
if it satisfies Rx C B, with R = (}Ig _lltr%). Hence the systems P |8 and R|B
are equivalent. The matrix R is the robustness matrix for the system P |B. Indeed,
if a perturbation matrix P + @ of P contains a larger neutrix than @, this neutrix
is at least as large as £, and P + @ is no longer limited; note also that the system
(P + @)| 3B is inconsistent.

We consider now reduced non-singular systems P|8B. Theorem 10.4 indicates
that the robustness matrix R = P + E may be explicitly determined provided that
det(P) is not an absorber of B, and the perturbations are sufficiently small such that
R|B remains the essential part, when adding the constraint inclusions generated by
the neutrices of E.

Theorem 10.4. Let P = (aij)nxn be a real non-singular reduced matrix and d =
det(P). Consider the system P|B with 8 = (B1, ..., Bn)T, where B; = b; + B is
external for all 1 <i < n and d is not an absorber of B. Let d i = det(M;), where
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M is the matrix obtained from P by substituting the jth column of P by the column
vector b. Let the matrix E = (Ejj)nxn be defined by

Bid/d; d; #0, Bid/d; C @,
LB 4 #0.m4jd; o o)
@ else,
and R = P + E. Assume
B,:E,2B (10.2)

forl1<i<nandd + E is zeroless. Then the non-singular matrix R is the robustness
matrix of P|8.

Proof. Since E C @, the matrix (R is reduced. As a result, det(R) C d + E is zero-
less. Hence R|B is non-singular.

We show now that R|B and P|B are equivalent. The solution of the system P |3
is the external vector x + X, where

x=P'b=(d/d.....d,Jd)T (10.3)

and for 1 < j < n the components X; of X = > :_, B; P ~le; are given by

n
Xj =1/d ) (BiCi)):
k=1

here Cj; is the 7, j-cofactor of P. Because the cofactors of a reduced matrix are
limited, and 1/d is not an exploder of B, it holds that

X C B. (10.4)
We let now x be a real vector satisfying the system R|8B. We define for 1 <i <n
a neutricial vector G; = (Gi1, ..., Gin)T by
Gij = B,’ . E,‘ -

It follows from (10.1) that every component x; of x satisfies
Xj € Gij (10.5)

for 1 <i <n.Indeed, if d; # O and B;d/d; C @ we always have E;; = B;/x;,i.e.,
Xj € Bi  Ejj = Gij. Ifdj 2 0 and Bid/dj D @, wehave x;@ C B;, while © = Ej;.
Again, xj € B; : E;; = G;;. Finally, if d; = 0, x; € G;; is automatically satisfied, for
Xj = d]/d = 0.
Also, using (10.2),
G,‘j D B; ZF,‘ ) B (10.6)

foralli, j withl <i,j <n.
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By Theorem 5.1 and (10.5) the system |8 may be decomposed into

P | B

I |Gy

. . (10.7)
I |Gy

In particular, x satisfies P|B. Then P |8 is equivalent to / |(x + X ), hence the system
(10.7) is equivalent to the system

I | x+X
1 Gy
. . (10.8)
1 G,
If we take the representative vector (x, x, ..., x)T of the right-hand side of the sys-

tem (10.8), the rank of the extended matrix of the resulting real system is equal to
r(I|x) = n. Clearly det(/) = 1 is not the absorber of any neutrix, and also the inclu-
sions (10.6) and (10.4) hold. Then we derive from Corollary 9.5 that I|(x 4+ X) is
the essential part of (10.8). Hence (10.8) is also equivalent to P |8. We conclude that
R|B and P|B are equivalent.
Finally, we show that R is the robustness matrix. Let A = (a;j)nxn be such that
(P + A)|B is equivalent to P|B, where P + A is a limited matrix. Then for all i, j
withl <i,j <n
Aij € Q. (10.9)

The real vector x given by (10.3) is also the solution of the system (P + A)|8B. Then
foralli, j with 1 <i, j <nitholds that A;;x; = A;jd;/d C B; and, if d; # 0, also
A,‘j - B,d/dj Then Aij - Eij if Bid/d]‘ C @,and if @ C B,‘d/dj or dj = 0 the
inclusion 4;; € Ej;; follows from (10.9).

We conclude that (P + E)|B is the maximal limited strict perturbation of P |8,
hence R is its robustness matrix. |

The next corollary states that the neutrices occurring in the columns of the struc-
turally robustness matrix of a uniform system are all equal.

Corollary 10.5. Consider the uniform system P|8, where P = (aij)nxn is a real
non-singular reduced matrix and 8 = (B, ..., Bn)T, where B; = b; + B, with B an
external neutrix. Assume that d = det(P) is not an absorber of B. Let d; = det(M;),
where M; is the matrix obtained from P by substituting the ith column of P by the
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column vector b. Let the n X n matrix E be defined by

E, - E,
E=|: -~
E, - E,

where E; = min(@, Bd/d;) for1 <i <n.Let E = maX<j<, E; and R = P + E.
Assume d + E is zeroless. Then the non-singular matrix R is the robustness matrix
of P|8B.

Proof. The result follows from Theorem 10.4, observing that Ey; = Ey; = --- =
E,;j = Ejforall 1 < j < n, and that condition (10.2) is satisfied, since B : E;=B:
EDB:@2Bforl <i<n. [

We finish with some examples. We start with a flexible system for which the
robustness matrix J exhibits different neutrices for each entry. Then we give an exam-
ple of a uniform system with a robustness matrix having identical neutrices in each
column. The final example shows that Theorem 10.4 is no longer valid if the determi-
nant of the coefficient matrix is an absorber of the neutrices on the right-hand side of
the flexible system.

Example 10.6. Consider the system

PIE = (1 1 w+2+£/a))‘
1 -1 0+ O
Then
2
R = 1+£/0* 1+£/w
l+0/0o —-14+@
is the robustness matrix of Q|8. Indeed, det(P) = —2, which is not an absorber

of any neutrix and the verification of the remaining conditions of Theorem 10.4 is
straightforward.

Example 10.7. Let w € R™ be unlimited. Consider the uniform system

1 1
P =
|5 (1 -1

It is straightforward to verify that by Corollary 10.5 we obtain the robustness matrix

1+0/w 1+0
R = .
1+0/o —-140

0o+2+0
o+ '
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Example 10.8. Let ¢ be a positive infinitesimal. Consider the uniform flexible system
1 1 1+0o
P|B = .
| (1 I14+e |1+ @)

We have d = det({ lig) = ¢ # 0. Let us choose b = (}) as a representative of the

right-hand side. Then applying Cramer’s rule, we obtain d; = ¢ and d» = 0. Suppose
we define £ = (Ej;)1<i,j<2 as in (10.1), then E;; = @ for 1 <i, j < 2. The fact
that d is an absorber of the neutrix @ on the right-hand side and the fact that det(P +
E) = @ imply that two conditions of Corollary 10.5 are not satisfied. In addition, it
is obvious that the matrix P 4 E is singular. We show that

(P+E)|£:(1+® 1+®1+®)

I+o 1+0|1+0

is not equivalent to P |8B. Indeed, let £p be the solution of P|8B and &p4 g be the
solution of (P + E)|B. A straightforward application of the parameter method of
Theorem 5.8 shows that §p = (3) + @/&(%f) + @/&(7!), from which we derive
thatép = (1) + @(3) + @/&(7!). Also, the singular system (P + E)| 3B is equiv-
alent to

P18 =(14+0 1+0|1+0).

Its associated integrated system becomes
pl g 1 1]1+0
0 1]£
If we put it in increasing row-echelon form and apply the parameter method we find

thatépye = (5) +@(5) +£(7).
We see that §p g C €p, hence P|B and (P + E)|B are not equivalent.
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