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Two approximation results for divergence free measures

Jesse Goodman, Felipe Hernandez, and Daniel Spector

Abstract. In this paper, we prove two approximation results for divergence free measures. The
first is a form of an assertion of J. Bourgain and H. Brezis concerning the approximation of
solenoidal charges in the strict topology: Given F € My (R9;R¥) such that div F = 0 in the
sense of distributions, there exist oriented C'1 loops I'; ; with associated measures ur; , such
that

I F Nl re R
F = lim LIMMEGED S
|—00 ny-l : ’
i=1
weakly-star in the sense of measures and
]

> ler g, e ray = 1.

i=1

lim
I—ocong -1

The second, which is an almost immediate consequence of the first, is that smooth compactly
supported functions are dense in {F € My, (R¢;R%) : div F = 0} with respect to the strict
topology.

1. Main results and discussion

In this paper, we prove two results concerning the approximation of divergence free
measures. We explain how these results relate to other recent developments involv-
ing the dimension of measures with differential constraints and estimates for elliptic
systems.

1.1. Main results

To state our first result, we note that for a piecewise C! curve I' C R¢ parametrized
by arc length via y: [0, /] — R? with |y(¢)| = 1, the mapping

l
CoRY:RY) SR, @ fo S(y(1)) - (1) dt.
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is a bounded linear functional on Co(R?; R?). By the Riesz representation theorem
we can identify I' with a finite Radon measure ur € Mp(R?; R¢) characterized by

l
/ - dur = / S((1)) - (1) di
R4 0

for all ® € Co(R?,R¥). We also recall that the distributional divergence of F €
M, (R4; R?) is characterized by the formula

(div F, @) := —/ Vo -dF
R4

forall p € C/ (RY).

Theorem 1.1. Suppose F € My(R?;R?) is such that div F = 0 in the sense of dis-
tributions. Then there exist oriented C' closed curves I'; 1 with associated measures
Mr; , such that

. NF g, e ira)
F=lm ————— E M,
[—00 nj- l =1 ’
weakly-star in the sense of measures and

n;
ll_lglom ; s, Iag, ey = 1.

A C' closed curve I naturally yields a divergence free Radon measure. Indeed,
forp € C} (R%), we compute

)
(div pir. @) = — /0 Vo (1) - 7(0) di

Ld
- [ Gerond

—o(y() + ¢(y(0))
=0.

Therefore, Theorem 1.1 allows one to handle problems concerning the generic case
of a divergence free Radon measure with finite mass, provided one can handle the
simpler case of C! closed curves, modulo weak-star convergence. This has a number
of useful applications. For example, we use Theorem 1.1 to prove the following result,
which states that smooth compactly supported functions are dense within the space of
all divergence free Radon measures.
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Theorem 1.2. Suppose F € My(R%;R?) is such that div F = 0 in the sense of dis-
tributions. Then there exists a sequence of smooth, compactly supported divergence
free functions F; such that

F = lim F

[—>o00

weakly-star as measures and
11_1)120 I F1llr raray = |1 F ||l pg, (R iR -

Theorem 1.2 is one of a class of results stating that functions satisfying a differ-
ential constraint can be approximated by smooth compactly supported functions sat-
isfying the same constraint, see, e.g., [11, Proposition 3.16 on p. 290] or [6, Lemma 1
on p. 177]. A naive attempt to produce compact support — multiplying F by a cut-
off function — does not work, as it destroys the differential constraint div /' = 0. The
arguments in [6, 11] use the differential constraint to lift ' to another object; apply a
cutoff argument to this lifted object; and then project back to F. For example, when
the differential constraint from Theorem 1.2 is instead curl F = 0, A. Bonami and
S. Poornima [6] lift F to a potential u € W1(R?) such that F = Vu. Even with
the vast literature concerning the properties of gradients, the rest of the argument is
non-trivial: Bonami and Poornima prove that W1 (R9) is dense in W' (R?), using
the boundedness of certain singular integral operators on functions with constrained
Fourier support. By contrast, Theorem 1.1 allows us to prove Theorem 1.2 using only
standard mollification arguments.

We continue the introduction with a discussion of the connections with Smirnov’s
theorem, the dimension of singularities of measures, estimates for elliptic systems,
and a further approximation which gives uniformity over the curves before providing
proofs of Theorem 1.1 and Theorem 1.2 in Sections 2 and 3.

1.2. Discussion

1.2.1. Smirnov’s theorem. The basis of Theorem 1.1 is a result of S. Smirnov [19,
Theorem A on p. 847], quoted here in part. Write €; for the space of rectifiable curves
in R of length [. Given F € My (R%;R%) such that div F = 0 in the sense of distri-
butions, for each / > 0 there exists a measure y on €; such that

(F.0) = [ (r.®)du()
€
Moreover, the measure p satisfies |||, ce;) = =1 I F |l a1, (R ;R and

F
% = / 8b(R) dpL(R) = / Se(R) d:u'(R)’
€ €
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where b(R) and e(R) are the beginning and endpoints of the curve R; here the total
variation measure | F| is the non-negative measure on R? defined by

(IFl.o) = sup (F,p®).
deC.(RY;RY),
"q)llc()(Rd:Rd) =1

In contrast to Smirnov’s theorem, the curves in Theorem 1.1 are closed, C1, and
need not have length /. The gain in smoothness is possible because Theorem 1.1
is not a decomposition but an approximation, while the change in length is a result
of the process of closing the curves. This closing of Smirnov’s curves yields curves
whose lengths may in principle lie anywhere in the interval [/, 2/]; however, the second
convergence assertion of the theorem shows that these lengths are typically of length /
in the limit. That one approximates a given divergence free measure by closed curves
is important for estimates, see Section 1.2.4 and in particular equation (1.3) below.

1.2.2. Dimension of singularities of measures with differential constraints. The
question of the dimension of the space

[F e Mp(RY;R¥): LF =0}

where L is a homogeneous differential or pseudo-differential operator has a long and
involved history. Here we recall that the Hausdorff dimension of a finite Radon mea-
sure is defined as

dimg F := sup{f : #P(E) =0 = |F|(E) =0}
B>0

where | F| is the total variation measure associated to F defined in the preceding
section, while the dimension of a closed subspace X C Mj(R?; R¥) can be defined
as

k := inf dimg F.
FeX

Smirnov’s result [19, Theorem A on p. 847], Roginskaya and Wojciechowski’s
[17, Corollary 4 on p. 220], and our Theorem 1.1 are manifestations of the fact that

{F € Mp(RY;R?) : div F = 0}

has dimension ¥ = 1. Indeed, the decompositions provide the lower bound, while
the fact that closed curves are divergence free measures gives the upper bound. By
contrast, the space

{F € M(RY;R?) : curl F = 0},
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has k = d — 1. This can be seen from the identification
F = Vu € BV (RY),

whereupon the BV(R?) theory yields k = d — 1, see [1, Lemma 3.76 on p. 170].

Similar phenomena also apply for pseudo-differential constraints. For example,
a classical result of F. Riesz and M. Riesz states that a measure on the circle whose
Fourier transform is supported on the positive integers is absolutely continuous with
respect to the Lebesgue measure, see, e.g., [12, p. 13]. Note that supp i C Z* is equiv—
alent to [|n| — n]fi(n) = 0, which can be expressed as L = 0 for L = (—A)/2 — id—
Thus, their result implies that the pseudo-differentially constrained space

{w e Mp(S';C): Ly =0}

has dimension k = 1 (= d).
For further results on differential constraints and dimension, we refer the reader
to [2-5,16,23,24].

1.2.3. From curves to divergence free measures: Estimates for integrals opera-
tors. The following result was established by the second and third named authors
in [14].

Theorem 1.3 ([14, Theorem 1.1]). Letd > 2 and a € (0, d). There exists a constant
C = C(a,d) > 0 such that

o F | pasa—ew.1ra,gay < ClIFlp1ra.ra)
for all fields F € L' (R%;R?) such that div F = 0 in the sense of distributions.

Here we use I, to denote the Riesz potential of order o € (0, d) (for a precise
definition see [22, p. 117] or [14]).

The first step in the proof, inspired by [15,20,21] and a suggestion of Haim Brezis,
is to use Theorem 1.1 to write F as a weak-star limit of convex combinations of closed
rectifiable curves. This approach is based on H. Brezis and J. Bourgain’s assertion
[7, p. 541] and [8, p. 278] that

F = lim Za,, T (1.1)
||Mr‘ll||M,,(]R<d ]Rd)

for some choice of closed rectifiable curves I';; and scalars «; ; > 0 which satisty
SoiLy @i < | Fllpg, e :ray- If we define
0 ”F”MhrE]Rd;]Rd)”/LFi.l 71, ®4 R4
’ il
then our Theorem 1.1 implies (1.1) and thus verifies Bourgain and Brezis’s assertion
[7, p. 541] and [8, p. 278], with additional smoothness in the curves.

’

il ”Mb(]Rd;]Rd)
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1.2.4. Uniformity over curves. Theorem 1.1 converts Theorem 1.3 to the estimate
restricted to curves, the inequality

[ apirllpas@—e (R4;Rd) = C'llur ||M,,(]Rd;]Rd) (1.2)

for any smooth, closed curve I'. That is, one must estimate the fractional integral of a
curve I in a Lorentz space in terms of its length, which by rescaling can be assumed
to be one.

Because ur is an oriented closed loop, there is a minimal surface that spans ur.
An argument based on maximal functions leads to the useful inequality

[lapr|lpr.comaray < CUIr g, ma:R2) + ||MF||§4b(Rd;Rd)), (1.3)

see [14, Lemma 4.1 and its consequences]. In order to obtain (1.2), a second estimate
is needed, and the relevant quantity (see [13, equation (1.5)] or [14, equation (1.18)])
turns out to be the norm on the Morrey space M (R?),

,_ |l (B(x, 7))
el per ey == sup  ————
r>0,xeR4 r
for locally finite Radon measures . The curves provided by Theorem 1.1 need not
admit a uniform bound on their Morrey norms. However, because they are curves they
lend themselves to further geometric manipulation. This was the basis for the Surgery
lemma [14, Lemma 5.1].

Lemma 1.4. Suppose T is an oriented C' closed curve. There exist oriented piece-
wise C1 closed curves {T'; }N(F) NI Such that

=1 with associated measures {ir; };
(1) it holds

NT)

Mur = Z MT; 5
j=1

(2) the total length of the curves obtained in the decomposition satisfies

N
Z a1 ar, ma;rey < 10041 || a1y (R ;R
Jj=1

(3) each pr; satisfies the ball growth condition

lir, g gay = sup e | BE ) 600,
xeR4,r>0 r
The combination of Lemma 1.4 and Theorem 1.1 shows that any divergence free
measure can be approximated by sequences of sums of oriented closed loops with a
uniform bound in the Morrey space M (R¢), [14, Theorem 1.5]. This allows one to
deduce (1.2) and in turn Theorem 1.3.
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2. Approximating general integrals by sums

Smirnov’s decomposition [19, Theorem A] represents a divergence free function in
terms of an integral over the space of curves. We begin by observing that such integrals
can be expressed as limits of finite sums.

Theorem 2.1. Let €; denote the set of curves of length [, equipped with the Borel
o-algebra G. Suppose that [ is a finite positive measure on €; and let h;, j € N, be
a sequence of G-measurable functions for which f‘C/ hj d exists. Then there exists a
sequence of curves x; € €, i € N, such that

lim MZ’W(W:/ hj(x)du(x) forallj €eN.  (2.1)
n l

The idea in Theorem 2.1 is that an integral [, & du over a general space € can be
expressed as a limit of weighted sums,

n
/ hdp = lim Y ¢;nh(xin). (2.2)
where c; , are suitably chosen scalars and x; , € € are suitably chosen points.

For common choices of the space € we may select the points x; , € € explic-
itly. For instance, when € is a finite interval [a, b], we can choose equally spaced
points x;, =a +1 1%, with ¢; , = % for all i. Many other choices are possible:
for instance, Simpson’s rule for integration (with n = 2k + 1 odd and, for con-
venience, i running from O to 2k) takes x;, = a + il% and (copn,...,Cnpn) =
2(1,4,2,4,2,...,2,4,2,4,1).

The quantity in (2.2) resembles a Riemann sum approximation to the integral
/ ab h(x) dx. There are however notable differences: Riemann integration requires that
the limit in (2.2) should exist when /(x; ) is replaced by the supremum, or infimum,
of h over a suitably chosen subinterval to which x; , belongs, and the limit should
exist for any subdivision of [a, b] into small subintervals [18, Chapter 6 and Theo-
rem 11.33].

For a less structured space such as €, there may be no natural way to choose
points x; , a priori. We will avoid this difficulty by choosing random points X;.

Proof of Theorem 2.1. Normalize the finite measure u to produce a probability mea-
sure v = /|| llag, ce;y on (€, G). Construct 2 = €N, the set of infinite sequences
with values in €;, equipped with the product o-algebra ¥ = G®N. On the measurable
space (2, F), assign the product measure P = v®N_ Set X;: Q@ — € to be the ith
coordinate function: for a sequence w = (w1, w3, ... ), set X;(w) = w;. From the def-
inition of the product o -algebra, the function X;: 2 — €; is measurable as a mapping
from the measurable space (€2, F) to the measurable space (€, 9).
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In probabilistic language, the probability space (2, F, P) corresponds to a ran-
dom experiment where each point X; is chosen according to P(X; € A) = v(A) =
w(A)/u(€;) for any A € G. Furthermore, if A; € G for all i then the events {X; € A;}
are independent across different i. Thus the X;’s are independent and identically dis-
tributed (i.i.d.) random variables with values in €; and law v. (As is standard, this
formulation elides the role of the o-algebra G and the underlying probability space
(2,5,P).)

For each measurable function /2;: €; — R, we can define real-valued random vari-
ables H; j = hj(X;). Then for each fixed j, the random variables H; ;, i € N, are
themselves i.i.d. with common expected value

IEI(Hi,j):/th(Xi(a)))dIP)(a)):/th(a)i)dIP’(a))zL hj(x)dv(x)

by the properties of product measure.
In this setting, the Strong Law of Large Numbers, see for instance [9, Theo-
rem 2.5.10], asserts that

1 n
lim — E hj(X;) :f hj(x)dv(x) almost surely. (2.3)
n—oo p “ €

i=1 !

More precisely, the function
1 n
W nango - ;hj(Xi(w))
i=

exists and equals the constant ffz hj(x) dv(x) for P-almost-every . In other words,
each set

B; = {a) € Q:nli)ngo%Zhj(Xi(a))) = /1 hj(X)dv(X)}

i=1 2
has P(B;) = 1 and P(B}) = 0. Taking a countable intersection B = ﬂ]oil B;, it
follows that P(B¢) = 0 and hence P (B) = 1. In particular, B must be non-empty, so
there exists some @ € B. Defining x; = X; (@), the definition of B implies that

1 n
lim — Y " hj(x;) = / hj(x)dv(x) forall j € N (2.4)
n—oon = €
and multiplying both sides by ||1t|| s, ce;) yields (2.1). ]

Note that the random curves Xj, i.e., the functions w + X;(w), depend neither
on n nor on &. However, the proof is non-constructive: the fact that B is non-empty
implies the existence of some sequence of curves x; for which (2.2) holds, but does



Two approximation results for divergence free measures 255

not give a specific sequence. In particular, arguments based on (2.3) must contend
with the fact that (2.2) holds only almost everywhere, and the exceptional set 2 \ B
(and hence the chosen points x;) may a priori depend on the choice of functions /;.

The quantity inside the limit in (2.3) can be interpreted as the integral of /; with
respect to a random measure: if we define a measure 7, on €; by

1 n

i=1

(with 8, denoting the Dirac mass at x € €;) then

n

| b = -3y,
€ L
Since €; has additional structure, it is possible to argue that 1, converges P-a.s. to
v in the weak topology for measures on €;. In this case, (2.3) holds simultaneously
for all continuous bounded functions #, a.s., with a single exceptional set of measure
zero for all such functions /4. Specifically, this will occur if we can find a countable
collection of functions /; that are convergence-determining for the weak topology for
measures on €;. This is the case in the proof of Theorem 3.1 below, though since v
is not our primary focus we will carry out this part of the argument for F rather than
for v.

3. Proofs

As we now explain, Theorem 2.1 and Smirnov’s decomposition allow us to represent
a divergence free function F' in terms of a sequence of curves. In the remainder of the
paper, we denote curves using the letter R instead of x as in Theorem 2.1.

By [19, Theorem A] we have

(F.®) = /8 (R. ®) dyu(R), 3.1

where the measure p satisfies ||| a,ce,) = 7 I £\l p1, (R4 ;R and

F
= [ s antr = [ sy duw)
€ €

where b(R) and e(R) are the beginning and endpoints of the curve R and the total
variation measure | F | is the non-negative measure on R¢ defined by

(IF|. @) = sup (F,p®).
deC.(RY;RY),
12l ra ra) =
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This implies the following auxiliary theorem.

Theorem 3.1. For any | > O there exists a sequence of curves R; € €; satisfying the
following conditions: for any ® € Co(R%:R?),

. I Fllag, e Ry < (Ri, @)
(.01 = iy Wz §5 (.91
i=1
Moreover, with b(R) and e(R) denoting the beginning and end points of the curve R,
we have for any ¢ € Co(R%)

. N Flly,®ere) <
(IF|.@) = Jim == 2EZE0 S M6y z,). 0)

n—00 4
i=1

lim I F Ml a1, me ;R4 i
n

n—>oo

<82(Ri)’ (ﬂ> .

i=1
Proof of Theorem 3.1 using Theorem 2.1. Letv = [|F || My, (RERE M be the measure
obtained by scaling the measure 4 in (3.1). Let {®;}22 and {pj}72, be dense se-

quences of functions in Co(R¢; R?) and Co(R?), respectively. For j € N, we define
the continuous functions /;: €; — R, hb € — R, and he € — R by

hj(R) := (R, ®;),  hY(R) := (8pr), 9j),  h§(R) := (Be(r). 95)-
Note that the inequalities
|hj (R)| = | D)l cyra;ra)! |h§7(R)| <llgillcomay. 1h5 (R < ll@jllcoma)

imply the moment conditions

/|hj|dv<oo, /|hj?|dv<oo, /|h;.|dv<oo.
7] € €

Applying Theorem 2.1 with the interleaved sequence of functions /1, hll’, h$, ha,
hg, ..., we obtain a sequence of curves R;,i € N, such that

n

F 1
(.0, = It oy Ly o)

l n—oon
i=1

. MF N, ra:re
(|Fl.¢;) = lim #Zwb(m,w;)

n—o0 n 4
i=1

lim I F Ml a1, (mt ;R Xn:
n

n—>oo

(Be(r;)- ¥7)
i=1



Two approximation results for divergence free measures 257

for all j € N. For arbitrary ® € Cy (Rd; R4 ), we utilize the equalities

(F,®) = (F,®;) + (F,® - ),
(R, @) = (R, ®j) + (R, ® — dj),

to write
F ) Rd l
(F.0) = (F.0 - @) + L I@R o Iy g
[ n—>oo y “ !
i
IFllp,mamay . 1 o
+ fn]i}n;o; ;(Ri,q)j — O).
i=
Then the bounds
(F, ®—®;)| < | Fllp,we:rey P — Pl cyra ;v
(R, @ — ®;)| <I]|® — Dl corara)
imply

n

F . 1
(F,®) = ””Mbw lim _Z<Ri’q)>

l n—-oon N
i=1

+ O F llp, e ) |2 — @ ll ¢y (R R 4))>

and it suffices to consider a subsequence such that ®;, — ®. The argument for the
other two limits is similar. ]

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let F € My(R%;R?) be such that div F = 0, and by scaling
let us assume || F[| 57, (re;ray = 1. By Theorem 3.1 there exists a sequence of curves
R;; € €; such that

Let us write Ei, ; for the measure which consists of a closed loop formed by adjoining
to R;; the straight line segment connecting the end point e(R; ;) to the beginning
point b(R; ;). Write I?,-,l for the measure which is integration along the straight line
segment in reverse, from beginning to end. Then the preceding result may be rewritten
as



J. Goodman, F. Hernandez, and D. Spector 258

We next show that

, , QN
lim sup lim sup — Z 7 I Ri1 1l p,, (R ;R) = O- 3.2)
=1

l—>00 n—>00 ni

To this end, recall from the preceding theorem that b(R), e(R) denote the beginning
and ending of the curve R, we can write

[N 1 1
p > 71 Ritllag, ®aray = - >, 7Rt llar, e e
i=1 |b(R;,1)—e(R; )<l
1 Qe
+ - > 71 Ritllyg, a:ra)-

n
|b(R; 1)—e(R; 1)>€l

For the first term, we can estimate by the length of the curve to obtain the bound

1 1 -
; Z 7”Ri,l”Mb(Rd;Rd) <e.
|b(R; 1)—e(R; 1)|<el

Meanwhile, for the second term we have that || R; ;|| M, (Rd:Rd) < [ and s0

Loy LRy
ll,l

n
[b(R; 1)—e(R; )|>el

#R;  [b(Rip) —e(Riy)| > el}
n

My (RE;RA) =

{Ri : [b(Ri;) —e(Rip)| > el}
C {R; : b(Ri ) € B(0.£1/2)°} U{R; : e(Ry ) € B(0.el/2)°},
we can bound the second term by

MR b(Rig) € BO.6/2°%) | #R : e(Rig) € BO.el/2)%)
n n '

We claim that the double limit in / and n of this quantity converges to zero. To this
end, we let ¢ € CC(Rd) be a cutoff function, i.e., 0 < ¢ < 1, suppe C B(0,¢&l/2),
and ¢ = 1 on B(0, el /2 — 1). For such a function we see that, for / sufficiently large,

n

1
[FI(B.&l/2—1)) = (|F|.¢) = lim - > (Bbr,.9)

i=1
< liminf #R; :b(R;) € B(0,81/2)}'

n—o00 n
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In particular,

#HR; :D(R; B(0,¢l/2
1—MWW®W%m<mmmm{ b(Riy) € BO.el/2)}

—>o00 h—>00 n

and therefore

: . #{Ri : b(Ri) € B(0,£l/2)°}
lim sup lim sup -
[—>o00 Nn—>00 n

#{R; : b(Ri ;) € B(0.¢l/2
<1 —liminfliminf {R; :b(R;) € B(0,¢l/2)}

|—»>o00 n—>00 n

=0.

Thus we have shown that

lim sup lim sup — Z —||R, Aar, maray < €

|00 N>

and it suffices to send ¢ to zero and the claim is proved.
As aresult of (3.2) we have, firstly, the weak convergence

) .1 1 =~
(F,®) = lgr&ngr&;_i;;(&,z, ),
=

and secondly, the estimate

n

1 1 ~
=3 (R @)
n l

1=

5124

i=1 l—l

1 <1
<1 —E—E-
=1+ lII,

i=1

—||Rz 1y (R R4

This shows convergence in the strict topology of measures.

As ﬁi’l are one dimensional rectifiable currents without boundary, we have that
Ei,l e I; (R9). Therefore, for each ﬁi,l we can apply [10, 4.2.20] to obtain a family
of one dimensional polygonal chains P;; , and a family of Lipschitz maps f7 for
which

=0.

lim |P;;, — "R
neO”lJm .ﬁ s

The fact that ﬁi,l are without boundary implies that the P;; ; obtained in the theorem

are Without boundary Moreover, the above convergence, the weak-star convergence
f# R; ;, and the bound

Lip(f") <1417
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shows

. T n ~. _ "".
7}1_{1}) I Piinll = r}l_rﬂ) I /¢ Ritllag, e ;ray = 1 Ritllpg, R ;R Y

i.e., the measures P;;, converge to the measure Ei,l in the strict topology. It only
remains to smooth the corners, replacing P;;;, with ﬁi,l,n which are closed and
decrease the length for each 7, as depicted in Figure 1.
As the decrease in length can be made to go to zero as n — 0, these Ei,l,n also
converge to ﬁi,l in the strict topology, i.e., weak-star convergence
n

R I |
<F, CI)) = lim lim lim — T(Ri,l,naq)>

[—>ocon—>00on—>0n 4

and an upper bound for the total variations
n

. ) ) 1 L =~
lim sup lim sup lim sup o Z 7 | Ri1n

| —>o00 n—o00 n—0

lm,®eRY) = 1

i=1

which follows from the upper bound for P;; , and the decrease in length in their
smoothing to R; ; . From this a diagonal argument yields

nj

1 1, ~
F,®)=1lim — » —(R;;, ,®
(F.®) lggonlgl(l,z,n, )

and

nj

. 1 1, ~
lim sup — Z 7||Ri,l,n, ||M,,(Rd;Rd) <1
I—>oo M G2
The former limit is precisely the weak-star convergence of the convex sum of loops
claimed, while it implies
n

1 F Ml pr, (Rt iR = hln_l)égfa IZI: 7||Ri,l,m ll a1, (R4 ;R4

Figure 1. A depiction of the smoothing of corners.
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as the total variation is lower semicontinuous with respect to the weak-star conver-
gence. Thus, when combined with the latter inequality, using || F' 57, (ra;ray = 1 we
obtain the convergence of total variations claimed.

It only remains to adapt the notation to match the statement of the theorem.
Observe that we have found an approximation in terms of smooth curves ﬁi,l,fll’
which we identify with the Radon measures they induce and denote by ur;, =

R; 1.y, Then our result in this notation reads

 NFllag, e ra) <
F = lhm —Zup“

—00 njy- l :
i=1
weakly-star in the sense of measures and
n
lim
l—o0o Ny -+ l ;

lar ;I ma:ray = 1. "
=1

We conclude by proving Theorem 1.2.

Proof of Theorem 1.2. Let T';;,1 e N,i =1, ..., n;, be the smooth, closed loops
given by Theorem 1.1 for which

. N Fllp, e ;ra) "
F = ll—l>nolo ”l—l ;Mri’,
and
nj
l—>Igo m Z ”Ml"i,[ ”Mb(Rd;]Rd) = 1.

i=1
Denote by Gy the /th approximation of F by loops, i.e.,

I F [l p, (R R
G = % Zu’ri.l'

i=1
Then if {pg }ren is @ smooth, compactly supported approximation of the identity, we
claim F; := Gj * p; has the desired properties.

In particular, F; is smooth by properties of p;, compactly supported by the com-
pact support of the loops and p;, and for any ® € Co(R¢; R?) we have

(F,®) = (G % p;, @) = (G, D * py). (3.3)

This shows firstly that F; is divergence free, since if ® = V¢ for some ¢ € C/} (R%),
the fact that derivatives commute with convolution implies that

(F1,Vo) = (G, V(g x p)) = —(divG;, 0 x p;) =0,
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asxp; € C° (R?). Toward the convergence, letting [ — oo in (3.3), utilizing that
® % p; — @ in the strong topology of Co(R?; R¢) and G; — F weakly-star, we
obtain

lim (F} * py, @) = (F, D),
[—o00

which is to say that the sequence {F;} C C° (R?;R9) converges to F in the weak-
star topology. As this implies

1 F M| a1, (e :R) = lilIngHFlHMb(Rd;Rdy

it only remains to show that
limsup || F7 || pr, we ;) < I1F [l pg,, (R R )

[—00

to obtain the strict convergence. However, Fubini’s theorem and the fact that [ p; = 1
implies

1 Fillpg, rasray < | (GD1v * pr dx < |Gyl p, rara)s
R4

and since

I F llag, e R
m—~l Z i, , ||Mb(Rd;Rd)

lim sup ||Gl ”Mb(]Rd']Rd) S lim
’ [—o00 o1

[—o00
= || Fll p,, (r ;R4

the result is demonstrated. n
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