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Explicit moduli of superelliptic curves with level structure

Olof Bergvall and Oliver Leigh

Abstract. In this article we give an explicit construction of the moduli space of trigonal super-
elliptic curves with level 3 structure. The construction is given in terms of point sets on the
projective line and leads to a closed formula for the number of connected (and irreducible) com-
ponents of the moduli space. The results of the article generalise the description of the moduli
space of hyperelliptic curves with level 2 structure, due to Dolgachev and Ortland, Runge and
Tsuyumine.

1. Introduction

As Mumford describes in [25, §2], 2-torsion divisors on a hyperelliptic curve corres-
pond precisely to degree zero linear combinations of ramification points. Hence, if one
takes distinct points P1; : : : ; P2gC2 on P1 and considers C , the unique hyperelliptic
curve ramified over these points, then one can hope to explicitly describe symplectic
bases for the 2-torsion Jacobian Jac.c/Œ2� in terms of P1; : : : ; P2gC2. Indeed, after
choosing an ordering for the branch points, it turns out that there is a natural way to
obtain a (full) symplectic level 2 structure on C from combinations of P1; : : : ;P2gC2.
One can then obtain any level 2 structure on C via the symplectic group Sp.2g;F2/.
On top of this, since each choice of ordering will give rise to a different symplectic
level 2 structure, this construction naturally defines an embedding of the symmetric
group S2gC2 into the symplectic group Sp.2g;F2/.

Using this construction, Dolgachev and Ortland [13] considered Hypg Œ2�, the mo-
duli space of hyperelliptic curves with level 2 structure. They showed that each irredu-
cible component of Hypg Œ2� is isomorphic to M0;2gC2, the moduli space of smooth
rational curves with 2g C 2 distinct markings, and that the irreducible components
of Hypg Œ2� are indexed by the set of cosets C WD Sp.2g;F2/=S2gC2. Dolgachev and
Ortland also posed the question: What are the connected components of Hypg Œ2�?
This question was answered independently by Tsuyumine [37] and Runge [30], who
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showed that the irreducible components are also the connected components. Thus, if
we let Xc be a variety isomorphic to M0;2gC2 and indexed by the coset c 2 C, then
there is an isomorphism

Hyp3Œ2� Š
G
c2C

Xc :

It is natural to ask which parts of the above discussion extend to other types of
ramified covers. In the present article we proceed in this direction by investigating
cyclic covers of P1 called superelliptic curves [23, §1]. We pay special attention to
the simplest non-hyperelliptic case, namely trigonal curves. We find (somewhat sur-
prisingly) an almost perfect analogy between the case of cyclic trigonal curves with
symplectic level 3 structure and hyperelliptic curves with level 2 structure. Our main
result is the following.

Theorem 1.1. Let g be a positive integer and take the unique integers n and k such
that 0� k � 2 and gC 2D 3n� k. The moduli space Sup3g Œ3� of trigonal superelliptic
curves with level 3 structure has

jSp.2g;F3/j �
� X
0�i<dgC2�2k6 e

1

.3i C k/Š.g C 2 � .3i C k//Š
C

X
¹i2ZWiDg2C1º

1

2.iŠ/2

�
connected components. Each connected component is irreducible and is isomorphic
to the moduli space M0;gC2 of smooth rational curves with g C 2 marked points.

It is plausible that the above theorem can be useful in the context of the conjec-
tures of Bergström–van der Geer [8, Sec. 12] and the present work may be useful
in the moduli theory related to 2-spin Hurwitz numbers via [20] and [21]. Other
possible directions for future work include cohomological computations, see, e.g.,
[7] and [10], and investigations of special kinds of superelliptic curves, e.g., Picard
curves, Belyi curves or plane curves. Relevant previous work include Accola’s char-
acterization of cyclic trigonal curves in terms of vanishing properties of theta func-
tions [1], Kontogeorgis’ study of automorphism groups of rational function fields [17],
Kopeliovich’s computations of Thomae formulae for cyclic covers of the projective
line [18], Wangyu’s characterization of cyclic covers of the projective line with prime
gonality [38], as well as Previato, Shaska and Wijesiri’s study of thetanulls for cyclic
curves of genus 2 and 3 [29]. For further references, and a survey of the field, see [23]
and [33].

The paper is structured as follows. In Sections 2 and 3, we review the necessary
background on hyperelliptic and superelliptic curves. We also rephrase some of the
classical material into a setup which is mutually compatible and generalisable. In
Section 4, we study divisors on superelliptic curves. In particular, we study divisors
generated by ramification points and how the Weil pairing behaves on pairs of such
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divisors. Finally, in Section 5, we specialize to the case of trigonal curves. Among
other results, we obtain an explicit description of the moduli space of superelliptic
trigonal curves with level 3 structure and an explicit formula for the number of con-
nected (and irreducible) components of this space (see Theorem 1.1 above).

2. Background on hyperelliptic curves

2.1 (Overview of section). In Section 2, we recall facts about hyperelliptic curves
and give an overview of an explicit construction of the moduli space of hyperelliptic
curves with level 2 structure. This construction, which is based upon finite subsets
of the projective line, can be mainly attributed to Mumford [25] and Dolgachev–
Ortland [13]. We will present this material in a way that can be readily generalised to
superelliptic curves. Throughout Section 2, and the rest of the paper, we work over
the complex numbers.

Definition 2.2 (Hyperelliptic curves). A hyperelliptic curve is a degree 2 morphism
(of schemes) � W C ! P1 such that C is a smooth (connected) curve of genus g > 1.

Two hyperelliptic curves � W C ! P1 and � 0 W C 0 ! P1 are isomorphic if there
are isomorphisms ˛ W C ! C 0 and ˇ W P1 ! P1 such that � ı ˛ D ˇ ı � 0.

Remark 2.3 (Equivalent definition of hyperelliptic curves). A much more standard
definition of a hyperelliptic curve is a curve C with genus g > 1 such that a degree 2
morphism � W C ! P1 exists. However, it is well known that any such degree 2
morphism is unique up to isomorphism, so the two definitions are equivalent (see, for
example, [16, Ch. IV, Prop. 5.3]). We use the definition of hyperelliptic curves from
Definition 2.2 since it is more in-line with the definition of superelliptic curves which
will be given in Definition 3.2.

2.4 (Moduli space of hyperelliptic curves). Definition 2.2 extends naturally to give a
moduli functor. We denote by Hypg the (coarse) moduli space parametrising hyper-
elliptic curves. Moreover, by the uniqueness of the hyperelliptic morphism pointed
out in Remark 2.3, we have that there exists a natural inclusion Hypg ,! Mg . The
image of this inclusion is called the hyperelliptic locus.

Remark 2.5. In this article, the main focus is on the coarse moduli scheme of hyper-
elliptic curves Hypg instead of the moduli stack of hyperelliptic curves Hypg . A key
difference between the two is that Hypg keeps track of the automorphisms of the
hyperelliptic curves. The stack theoretic viewpoint for this space and the analogous
superelliptic case (appearing in Section 3) was considered in [3].
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Remark 2.6. Since we have defined Hypg as a moduli space of maps, this moduli
space can also naturally be viewed as the Hurwitz space Hurg.2/.

2.7 (Affine models for hyperelliptic curves). It is a well-known result that a genus g
hyperelliptic curve � W C ! P1 has a non-unique affine model of the form

s2 � f .t/ D 0

where f 2 CŒt � has unique roots and is either of degree 2g C 1 or 2g C 2 (see,
for example, [25, p. 3.28]). Moreover, if C ı is the smooth locus of the above affine
variety, then C is the smooth completion of C ı and � is the associated projection map
arising from the projection to the t coordinate.

The equivalence relation between two isomorphic affine models is described via

s2 � f .t/ � s2 � .ct C d/2gC2f
�at C b
ct C d

�
for

 
a b

c d

!
2 GL.2;C/:

Note that if s2 � h.t/ is the resulting polynomial on the right-hand side, f and h can
have degrees differing by 1 depending on whether a root was moved to or away from
infinity.

2.8 (Construction via choosing ramification points). Consider the above relationship
between the affine model and a hyperelliptic curve � W C ! P1, described in Section
2.7. An immediate observation from this relationship is that the ramification points of
� occur at the roots of f .t/ for deg.f / D 2g C 2 and also at ��1.1/ if deg.f / D
2g C 1.

A result of this observation is that one can construct a unique hyperelliptic curve
by choosing a set of 2g C 2 points in P1. Taking into account the equivalence de-
scribed in Section 2.7 we arrive at the following theorem.

Theorem 2.9 ([14,22], scheme structure of Hypg ). It holds, that there is an isomorph-
ism of schemes

M0;2gC2=S2gC2 ! Hypg :

Remark 2.10. Versions of the isomorphism from Theorem 2.9 also exist for compact-
ified moduli spaces, e.g., [15, Exm. 6.25] and [5, Cor. 2.5].

Convention 2.11 (Notation for choice of hyperelliptic curve). For the remainder of
Section 2 we will assume that � W C ! P1 is a hyperelliptic curve of genus g.
Moreover, given the equivalence of affine models described in Section 2.7, we will
make the assumption that1 2 P1 is a branch point of � and the affine model is

0 D s2 �

2gC1Y
iD1

.t � ai /:

We will denote the ramification points as Qi WD ��1.ai / and Q1 WD ��1.1/.
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2.12 (Natural principal divisors). Recalling Convention 2.11 we observe that there
are natural principal divisors on C given by:

(i) Horizontal: .s/ D
�

u
vgC1

�
D
P2gC1
iD1 .Qi �Q1/.

(ii) Vertical ramified: .t � ai / D
�
1�aiu
u

�
D 2Qi � 2Q1.

(iii) Vertical unramified: .t � a/ D
�
1�au
u

�
D ��Pa � 2Q1.

Here, a 2C� n ¹a1; : : : ; a2gC1º and Pa 2 P1 is the corresponding divisor. The divisor
��Pa consists of 2 distinct points.

2.13 (2-torsion in the Jacobian of a hyperelliptic curve). A key focus of Section 2 is
related to the study of 2-torsion within the Jacobian of hyperelliptic curves. In this
direction, an immediate observation from Section 2.12 is that for i 2 ¹1; : : : ; 2g C 1º
we have

2 � .Qi �Q1/ � 0:

This shows that each Di WD ŒQi �Q1� is a natural element of Jac.C /Œ2�. We can
also now consider the natural F2-vector subspace spanned by the classes

� WD F2-Span
®
D1; : : : ;D2gC1

¯
� Jac.C /Œ2�:

On top of this, the horizontal principal divisor from Section 2.12 gives the relation-
ship 0 D

P2gC1
iD1 Di : This shows that � is spanned by any choice of 2g classes from

D1; : : : ; D2gC1. Indeed, it was shown by Mumford [25, Ch. IIIa, Lem. 2.5] that any
of these choices gives a basis for � since � Š F2g2 . Moreover, combining this result
with a basis constructed by Dolgachev and Ortland [13, §3, Lem. 2] gives the follow-
ing key result.

Proposition 2.14 (A symplectic basis for Jac.C /Œ2�). There are F2-linear isomorph-
isms Jac.C /Œ2�Š�Š F2g2 . The basis .A1; : : : ;Ag ;B1; : : : ;Bg/ of Jac.C /Œ2� defined
by

Ai WD D2i�1 CD2i and Bi WD D2i C � � � CD2gC1;

is symplectic with respect to the Weil Pairing. Moreover, the linear map taking this
basis to the standard symplectic basis for F2g2 is an isometry.

Remark 2.15. The methods used in [13, §3, Lem. 2] to prove Proposition 2.14 are
more analytic in nature than the methods employed in this article. Indeed, the authors
of [13] consider � W C ! P1 as a two-sheeted covering and consider a symplectic
basis of cycles in H1.C;Z/ corresponding to the basis elements of Proposition 2.14.

To be more precise, Ai corresponds to a path which goes from Q2i�1 along one
sheet to Q2i and then returns along the other sheet, while Bi corresponds to a path
which goes fromQ2i along one sheet toQ2gC1 and then returns along the other sheet.
The symplectic basis of cycles inH1.C;Z/ is then combined with a normalised basis
of H 0.C;�C / to construct a branch point period matrix.
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2.16 (Inclusion of the symmetric group into the symplectic group). The symmetric
group S2gC2 permutes the points Q1; : : : ;Q2gC1;Q1 and thus defines an action on
the set D WD ¹D1; : : : ;D2gº. Since any permutation ofQ1; : : : ;Q2gC1;Q1 will give
the same hyperelliptic curve, the action of S2gC2 on D extends to give a change of
symplectic basis. This defines a group homomorphism S2gC2! Sp.2g;F2/ which is
in fact an embedding (see [9, p. 60] for details and further references).

2.17 (Natural morphism to Hypg Œ2�). We denote the (coarse) moduli space of hyper-
elliptic curves with level 2 structure by Hypg Œ2�. This is a moduli space parametrising
pairs consisting of a hyperelliptic curve � W C ! P1 and an isometry � W F2g2 !
Jac.C /Œ2�, where F2g2 uses the standard symplectic form and Jac.C /Œ2� uses the Weil
pairing. Now, Proposition 2.14 (which extends easily to families) naturally gives a
morphism

M0;2gC2 ! Hypg Œ2�:

Moreover, it is shown in [13, §3, Thm. 1] that this morphism is an isomorphism onto
an irreducible component of Hypg Œ2�. On top of this, if we consider the morphism that
forgets the isometry, Hypg Œ2� ! Hypg , then we obtain the following commutative
diagram:

M0;2gC2 Hypg Œ2�

M0;2gC2=S2gC2 Hypg :
Š

In fact, the morphismM0;2gC2! Hypg Œ2� actually defines an isomorphism to a con-
nected component of Hypg Œ2�. Using this construction, one can describe all of the
connected components of Hypg Œ2� and arrive at the following theorem.

Theorem 2.18 ([37, Thm. 2] & [30, Thm. 4.1], Decomposition of Hypg Œ2�). Consider
the inclusion of the symmetric group in the symplectic group described in 2.16 and
denote the quotient set Sp.2g;F2/=S2gC2 by C. Then, ifXc denotes a copy ofM0;2gC2

indexed by c 2 C, there is an isomorphism of schemes

Hypg Œ2�
Š
�!

G
c2C

Xc ;

so Hypg Œ2� is smooth and the number of connected components of Hypg Œ2� is given
by jSp.2g;F2/j=jS2gC2j.

Remark 2.19. The result of Tsuyumine from [37, Thm. 2] is actually slightly dif-
ferent from the one stated in Theorem 2.18. He shows the more general result that
Hypg Œn� has jSp.2g; F2/j=jS2gC2j connected components whenever n is divisible
by 2. However, components are only explicitly computed in the case n D 2.
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Remark 2.20. Modulo minor mistakes (pointed out in [30]), Dolgachev–Ortland
[13, §3] presented a weaker version of the above theorem showing that the irredu-
cible components of Hypg Œ2� are indexed by C and are isomorphic to M0;2gC2.

Remark 2.21. Historically, a key purpose of level structures is to rigidify moduli
problems. That is, to eliminate the automorphism groups of the objects being para-
metrised. However, one observation from the constructions in Section 2 is that level 2
structures do not rigidify hyperelliptic curves. To see this, we note that the symplectic
basis given in Proposition 2.14 is invariant under the hyperelliptic involution.

3. Background on superelliptic curves

3.1 (Overview of section). In Section 3, we will take the results from Section 2 as
inspiration and consider a generalisation of hyperelliptic curves. To be precise, we
will consider cyclic morphisms of degree p where p is a prime. We note, however,
that many of these concepts can also be extended to the non-prime case. We will also
assume that g > 0.

Definition 3.2 (Superelliptic curves). A superelliptic curve is a degree p morphism
� W C ! P1 such that C is a smooth (connected) curve and the Galois group of
� is cyclic. Two superelliptic curves �1 W C1 ! P1 and �2 W C2 ! P1 are said to
be equivalent if there are isomorphisms  W C1 ! C2 and ' W P1 ! P1 such that
�2 ı  D ' ı �1.

Remark 3.3. The term superelliptic curve has been used as a generalisation for
hyperelliptic curve since at least 1978; appearing in the work of Lang [19, Ch. VI
§7]. The term is used to describe the zero set of an equation yd D f .x/ where f .x/
has no multiple roots. In later work, Baker [6] and Mason [24] used the term super-
elliptic equation to refer to equations yd D f .x/ with general f .x/, while others
(such as Shorey and Tijdeman [34]) use the term generalised superelliptic.

As will become clear in 3.6 below, our use of the term superelliptic curve aligns
more closely with that of Baker and Mason, and with the work of Beshaj, Hoxha
and Shaska [11], and Beshaj, Shaska and Zhupa [12]. Such objects are also called
cyclic curves by Sanjeewa and Shaska in [32], and generalised superelliptic curves of
level d by Malmendier and Shaska in [23, §5.1]. In other work, such as that of Obus
and Shaska [27], the term superelliptic curve is used to describe curves whose affine
model yd D f .x/ has the property of f .x/ having distinct roots.

3.4 (Moduli space of superelliptic curves). Definition 3.2 extends naturally to give a
moduli functor. We denote by Suppg the (coarse) moduli space of superelliptic curves
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of degree p and genus g. Here are some well-known relationships with other moduli
spaces:

(i) For d D 2 and g >1, Definition 3.2 matches with that of hyperelliptic curves
and gives rise to an isomorphism Hypg Š Sup2g . This is because a hyper-
elliptic curve uniquely determines a morphism � W C ! P1 of degree 2 and
because the Galois group of such a morphism is automatically cyclic.

(ii) There is a natural morphism Suppg !Mg to the (coarse) moduli space of
smooth genus g curves. In general, this morphism is not an immersion
such as in the case of d D 3 and g D 3; 4 (see, for example, [16, Ch. IV,
Exm. 5.5.2]). However, it is an immersion in special cases such as for d D 3
when g > 4 (see, for example, [2, Ch. III, §3, Exer. B-2]).

(iii) For g > 2, a curve cannot be both hyperelliptic and degree 3 superelliptic,
meaning that the images of Sup2g and Sup3g are disjoint in Mg . (This is a
simple application of the base-point-free pencil trick [2].)

3.5 (Ramification of superelliptic curves). Since they have a cyclic Galois group,
degree p superelliptic curves have the property of being totally ramified at each rami-
fication point (see, for example, [35, Prop. 3.2.10 & Thm. 3.3.7]). In other words,
each branch point has a unique preimage. Hence, by the Riemann–Hurwitz formula
the number of ramification points is

m D
2g

p � 1
C 2:

This places a strong condition on the possible choices for g and p. An equivalent
condition on g is obtained by specifying m and p to give

g D
.p � 1/.m � 2/

2
:

We note that when p D 2 or p D 3, superelliptic curves exist for all g by Riemann’s
existence theorem (see, for example, [16, App. B, Thm. 3.1]). Indeed, for d D 2 we
recover m D 2g C 2 as in Section 2 and when d D 3 we obtain m D g C 2.

3.6 (Affine model for superelliptic curves). It is a well-known result from Kummer
theory (see, for example, [36, Tag 09I6]) that a superelliptic curve � W C ! P1 has a
(non-unique) affine model given by

0 D sp � f .t/

where f 2 CŒt � has roots with orders less than p. In particular, if C ı is the smooth
locus of the above affine variety, then C is the smooth completion of C ı and � is the
associated projection map arising from the projection to the t coordinate.
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We can construct an affine cover of C by considering a second chart. First, define
an integer via the ceiling function n DW ddeg.f /=pe and also � WD pn� deg.f /. We
now define the second chart by

0 D up � v�h.v/

where h 2 CŒv� is the unique polynomial with h.v/ D vdeg.f /f .1
v
/. The change of

coordinates is then defined by .t; s/ 7! .1
v
; u
vn
/.

3.7 (Superelliptic plane curves). An immediate observation from the two chart cover
constructed in 3.6 is that the (singular) affine models for superelliptic curves are nat-
urally embedded in the weighted projective plane P .1; 1; n/.

Furthermore, in the special case where f has no multiple roots and �D 0 or �D 1,
we have that the smooth superelliptic curve itself is a sub-variety of P .1; 1; n/.

Lemma 3.8 (Equivalent affine models for superelliptic curves). The equivalence rela-
tion of superelliptic curves from Definition 3.2 is extended to affine models by the
relations

(i) sp � f .t/ � sp � .ct C d/2gC2f
�
atCb
ctCd

�
, for

�
a b
c d

�
2 GL.2;C/;

(ii) sp �
Q
j .t � aj /

kj � sp �
Q
j .t � aj /

� �kj , for � 2 F�p and where � � kj
should be interpreted as multiplication in Fp .

In other words, two affine models give rise to equivalent superelliptic curves if and
only if they are related by (i) and (ii) above.

Proof. Property (i) is straightforward and also arises in the hyperelliptic case, hence
we consider only property (ii). For this we define � W C ! P1 and �0 W C 0 ! P1 to
be the superelliptic curves defined by sp �

Q
j .t � aj /

kj and sp �
Q
j .t � aj /

� �aj

where p divides the sum
P
j kj . Also, since ki 2 F�p for each j as well as � 2 F�p , we

can assume that k1 D 1.
We begin by considering the monodromies on C arising from the ramification

points. Let x 2 P1 be distinct from the branch points and consider m different loops
on P1 starting and finishing at x. The constraint for the loops is that each contains
exactly one branch point and different loops contain different branch points.

The monodromy arising from the preimages of the loop around ai can be de-
scribed by considering the equation sp D r while considering the preimage of the
unit circle and identifying x with 1. In this case, the preimage of the unit circle is®�

e�2�i ; e
�
p 2�i

�
j t 2 Œ0; p�

¯
:

The points in the preimage of 1 are the p-th roots of unity and we label them by their
power of the primitive root of unity e

2�i
p . Then the associated permutation from the

monodromy representation is the p-cycle

.1; 2; : : : ; .p � 1//:
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Similarly, for the other branch points we consider the equations sp D rkj . In this
case, the associated permutation from the monodromy representation is the p-cycle

.ki ; 2 � ki ; : : : ; .p � 1/ � ki /:

Now we apply the same process on C 0 beginning with � � k1 D �. In this case, the
preimage of the unit circle is®�

e�2�i ; e
��
p 2�i

�
j t 2 Œ0; p�

¯
and we again label the points in the preimage of 1 by their power of e

2�i
p . In this way,

the ramification monodromy on C 0 is described by the permutations

.� � ki ; 2 � � � ki ; : : : ; .p � 1/ � � � ki /:

Now, define � to be the inverse of the permutation defined by n 7! � � n. This gives

.� � ki ; 2 � � � ki ; : : : ; .p � 1/ � � � ki / � D .ki ; 2 � ki ; : : : ; .p � 1/ � ki /

and shows that the � and �0 have the same monodromy data (only a different choice
of labelling). The uniqueness part of the Riemann existence theorem now shows that
� and �0 must be equivalent.

Remark 3.9. Lemma 3.8 can be compared with constructions in [32] (see also [31]).

Remark 3.10 (Constructing superelliptic curves from points). A key aspect of the
results from Section 2 was the observation (described in Section 2.8) that there is
a unique hyperelliptic curve associated to a given choice of branch points. Among
other things, this observation leads to the isomorphism HypgŠM0;2gC2=S2gC2 from
Theorem 2.9.

However, in the superelliptic case, things are more complicated. The affine model
for superelliptic curves (described in Section 3.6) is of the form sp D f .t/ and sug-
gests that we must also take into consideration the root-orders of f .t/. Indeed, this is
confirmed by Lemma 3.8.

3.11 (Notation for indexing components of Suppg ). We will index the possible choices
of the affine model sp D f .t/ by indexing the possible combinations for the root-
orders of f .t/. In this light, it makes sense to group the ramification points with
same root orders. If we assume that the representative of the superelliptic curve is not
branched at1 2 P1 then this allows us to express the affine model in the form

0 D sp �

p�1Y
kD1

mkY
iD1

.t � ˛k;i /
k :
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An initial observation from this is that the vector .m1; : : : ; mp�1/ has the properties

(i)
p�1X
kD1

mk D m and (ii)
p�1X
kD1

kmk � 0 .mod p/:

Moreover, the equivalence relation from Lemma 3.8 shows that for � 2 F�p , we have
that .m1; : : : ;mp�1/ and .m� �1; : : : ;m� �.p�1// give equivalent superelliptic curves. On
top of this, there always exists a unique choice of � 2 F�p such that the first entry is
m1 D max ¹m1; : : : ; mp�1º. This leads us to define the following indexing set:

M D
²
.m1; : : : ; mp�1/ 2 .Z�0/

p�1
j �

p�1X
kD1

mk D m;

�

p�1X
kD1

kmk � 0 .mod p/; and

� m1 D max¹miº
³
:

3.12 (Group describing equivalent affine models). As was the case for hyperelliptic
curves, we have to account for the inherent labelling of ramification points that an
affine model gives. In the hyperelliptic case, all the ramification points were of the
same type, so this choice was accounted for by taking the S2gC2 quotient.

However, things are more complicated in the superelliptic case. To begin with, for
each m 2 M the group

Sm WD Sm1 ˚ � � � ˚ Smp�1

accounts for permutations of the ramification points within the groupings that corres-
pond to m.

Another complication is that eachm2Mmay define equivalent superelliptic curves
in multiple ways. This arises from the equivalence relations described in Lemma 3.8,
part (ii). The lemma shows that there is a natural action of F�p on the .p � 1/-tuples
.m1; : : : ; mp�1/ which is defined by

� � .m1; : : : ; mp�1/ WD .m� �1; : : : ; m� �.p�1//:

Moreover, this action preserves properties (i) and (ii) from Section 3.11. Hence we
consider the subgroup of F�p which stabilises a given m 2 M and denote it by

Stabp.m/ WD
®
� 2 F�p j � �m D m

¯
:

Both Sm and Stabp.m/ are naturally subgroups of Sm. Moreover, both of these
inclusions arise from the fact that for any given m 2 M with mD .m1; : : : ;mp�1/, we
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can uniquely describe each n 2 ¹1; : : : ; mº by a pair .i; k/ where i 2 ¹1; : : : ; p � 1º
and 0 < k � mi . Explicitly, this relationship is described by

n D k C
X
0<j<i

mj :

Using this relationship, we can now write:

(i) The inclusion ı W Sm ,! Sm is defined by

ı.�1; : : : ; �p�1/
�
k C

X
0<j<i

mj

�
WD �j .k/C

X
0<j<i

mj :

(ii) The inclusion 
 W Stabp.m/ ,! Sm is defined by


.�/
�
k C

X
0<j<i

mj

�
WD k C

X
0<j<� �i

mj :

We observe that as subgroups of Sm, we have that the intersection Sm \ Stabp.m/
is trivial and that � � � D � � � for all � 2 Stabp.m/ and � 2 Sm. Hence, we also have

Am WD Sm � Stabp.m/ Š Sm ˚ Stabp.m/:

The group Am describes the equivalent ways that m 2 M can give rise to a superelliptic
curve. This results in Proposition 3.13.

Proposition 3.13 (Decomposition of Suppg into connected components). The set M
defined in Section 3.11 indexes the connected components of Suppg to give

Suppg D
G
m2M

Suppg;m:

For each m D .m1; : : : ; mp�1/ 2 M there is an isomorphism M0;m=Am Š Suppg;m
where Am is the group defined in Section 3.12. The Am-quotient map composed with
this isomorphism gives a morphism

ˆm WM0;m ! Suppg;m

which is defined by mapping the equivalence class ŒŒa1 W b1�; : : : ; Œam W bm�� 2 M0;m

to the equivalence class of superelliptic curves with the representative

0 D sp �

p�1Y
kD1

miY
iD1

.a'.k;i/t � b'.k;i//
k;

where '.k; i/ WD k C
P
0<j<i mj .
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Remark 3.14 (Different equivalence conditions). If we changed the equivalence rela-
tion between superelliptic curves from Definition 3.2 to be the stricter condition
� W C ! P1 and � 0 W C 0! P1 are equivalent if there is an isomorphism ˛ W C ! C 0

such that � ı ˛ D � 0; then much of Section 3 would still apply except with different
equivalence conditions.

In this case, the resulting construction in Proposition 3.13 would have been car-
ried out using the configuration space Confm.P1/ in place of M0;m. Moreover, this
construction would result in a natural sub-moduli-space of the moduli space of maps
Mg.P1; p/. The resulting sub-moduli-space has links to .p � 1/-spin Hurwitz theory
and was studied by the second-named author in [20, 21].

Remark 3.15 (Codimension in Mg ). A direct observation from Proposition 3.13 is
that superelliptic curves are rare among genus g curves. The image of Suppg ! Mg

has codimension 3g � 3 � .m � 3/ D 3g � 1 � 2g
p�1

which we note has a maximum
value of 3g � 2 that occurs when 2g D p � 1.

4. Divisors on superelliptic curves

4.1 (Notation for Section 4). In Section 4, we will consider a fixed superelliptic curve
� W C ! P1 with g > 0 and a choice of an affine model with the same notation as
given in Section 3.6. Namely, � will be given by the equations

sp D f .t/ and up D v�h.v/

where f; h 2 CŒt � such that for n DW ddeg.f /=pe, � WD pn � deg.f / we have that
h is the unique polynomial with v�h.v/ D f .1

v
/. The change of coordinates between

the two charts is then defined by .t; s/ 7! .1
v
; u
vn
/.

Moreover, in Section 4, we will assume that these coordinates have been chosen
such that � has a branch point at1 2 P1. This condition is equivalent to requiring
that p − deg.f / or equivalently requiring that � 2 F�p .

Lastly, we will assume an ordering for the branch points in P1 n ¹1º. With this
ordering assumed we will write f .t/ D

Q
i .t � ai /

ki where we have also invoked the
equivalence described in Lemma 3.8 to make this a monic polynomial.

4.2 (Points at infinity and branch points). We will follow the standard convention and
refer to the preimage ��1.1/ as the point at infinity and denote it by Q1. In the
notation from Section 4.1 this corresponds to the point defined by v D u D 0 in the
second chart.
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4.3 (Natural principal divisors and the superelliptic divisor class). Recall from Sec-
tion 4.1 that f .t/ D

Q
i .t � ai /

ki and observe that pn D � C
P
i ki . Then we have

the natural principal divisors given by:

(i) Horizontal: .s/ D
�
u
vn

�
D
P
i ki .Qi �Q1/:

(ii) Vertical ramified: .t � ai / D
�
1�aiu
u

�
D pQi � pQ1:

(iii) Vertical unramified: .t � a/ D
�
1�au
u

�
D ��Pa � pQ1.

Here, a 2 C� n ¹a1; : : : ; am�1º and Pa 2 P1 is the corresponding divisor. The divisor
��Pa consists of p distinct points.

Remark 4.4. In Section 4.3 and in what follows, we will always mean the divisor on
the smooth curve C and not the (potentially) singular affine model.

4.5 (p-torsion in the Jacobian of a superelliptic curve). A key focus of this article
is to study p-torsion within the Jacobian of a superelliptic curve (for related, but
somewhat orthogonal, investigations of this topic, see Arul’s thesis [4]). An immediate
observation from Section 4.3 is that

p � .Qi �Q1/ � 0

for each i . This shows that ŒQi �Q1� is an element of Jac.C /Œp� (cf. the construction
in Section 2). We can now consider the Fp-vector subspace of Jac.C /Œp� spanned by
the classes Di WD ŒQi �Q1� and denote it by

� WD Fp-Span
®
D1; : : : ;Dm�1

¯
� Jac.C /Œp�:

We also have the relationshipX
i

kiDi D
X
i

ki ŒQi �Q1� D Œ.s/� D 0

which shows thatD1; : : : ;Dm�2 is an F3-spanning set for�. In fact, by the following
theorem, this turns out to be a basis for �.

Theorem 4.6 ([28, Prop. 6.1] & [39, Thm. 1], An Fp-basis for �). Let � be the
subgroup of Jac.C /Œp� generated by classes of the formDi D ŒQi �Q1�. Then� is
isomorphic to Fm�2p and D1; : : : ;Dm�2 is an Fp-basis for �.

Remark 4.7. An immediate observation from the construction in Section 4.5 is that
for p > 2 we will not get all of Jac.C /Œp� Š F2gp . Indeed, when 2g D p � 1, the
codimension of � in Jac.C /Œp� is 2g � 1.

4.8 (Weil pairing on superelliptic curves). Let ŒE� and ŒE 0� be two elements of
Jac.C /Œp� and let E 2 ŒE� and E 0 2 ŒE 0� be divisors with disjoint support. Let f
and g be functions on C such that

pE D .f / and pE 0 D .g/:
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The Weil pairing of ŒE� and ŒE 0� is then defined as the quotient

w.ŒE�; ŒE 0�/ WD
f .E 0/

g.E/
2 �p

where f .E 0/ is defined by f .E 0/ D
Q
P2E 0 f .P /

multP .E 0/ and g.E/ is analogously
defined. The Weil pairing is a symplectic pairing on Jac.C /Œp�. For more details and
relations to moduli, see, e.g., [2, App. B] and [26, Sec. 7.2].

Proposition 4.9. In the case where p is odd, the vector space � is an isotropic sub-
space of Jac.C /Œp�with respect to the Weil pairing. In other words, for any two divisor
classes D;D0 in � we have that w.D;D0/ D 1.

If p is even andDi is the divisor class defined in Section 4.5 thenw.Di ;Dj /D�1
for i ¤ j .

Proof. We will use the notation from Section 4.1. Namely that � W C ! P1 is given
by the polynomials sp D f .t/ and u D v�g.v/. Furthermore, using Lemma 3.8, we
may assume that � D 1 and that f .t/ D

Q
i .t � ai /

ki such that ai 2 C� are non-zero
and distinct.

From the definition in Section 4.5, we have that � is generated by classes with
representatives of the form

Ei D Qi �Q1; i D 1; : : : ; m � 1:

Moreover, since the Weil pairing is alternating we have that w.ŒEi �; ŒEi �/ D 1, it will
suffice to show that w.ŒEi �; ŒEj �/ D 1 for i ¤ j . Hence, we assume that i ¤ j .

Since Ei and Ej do not have disjoint support we need to find a divisor Fj in the
class Ej such that Fj has support disjoint from Ei . The construction of the divisor Fj
is a key aspect of this proof.

To construct Fj we consider the rational function .tn�1 � s/=tn 2 k.C /� and note
that it corresponds to u � v in the other chart (where C is defined by the equation
up � v g.v/ D 0). To determine the divisor .u � v/, we consider the isomorphism

CŒu; v�=.vg.v/ � up; u � v/ Š CŒv�=.v.g.v/ � vp�1//

and recall that g.v/ D
Q
i .1 � aiv/

ki . Then we consider the two unique factorisations

g.v/ � vp�1 D
Y
˛

.1 � b˛v/
�˛ and f .t/ � tp.n�1/ D

Y
˛

.t � b˛/
�˛ ; (4.1)

which are equivalent under the change of variables u 7! 1
t
. We then denote by G˛ the

divisors on C given by the points .t; s/D .b˛; b˛/. Then the principal divisor .u� v/
is given by

.u � v/ D Q1 C
X
˛

�˛G˛ � n �
X
ˇ

Sˇ

where
P
Sˇ is the divisor of the p disjoint points ��1.0/.
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Now we can define Fj by

Fj WD Ej C .u � v/ D Qj C
X
˛

�˛G˛ � n �
X
ˇ

Sˇ

and define the rational function  2 C.C /� by  D .t � aj /.tn�1 � s/p=tpn, while
defining the rational function ' 2 C.C /� by ' D .t � ai /. We note that by construc-
tion we have the properties required to evaluate the Weil pairing. Namely, we have
that

(i) Ei \ Fj D ;,

(ii) .'/ D p �Ei , and

(iii) . / D p � Fj .

We will evaluate the numerator and denominator of w.ŒEi �; ŒFj �/ individually
beginning with  .Ei /. First note that in the second chart we have that the rational
function  is given by .�1/p.1 � aj v/.u � v/p=v and recall that C is defined in
this chart by the equation up � vg.v/ D 0. Now the binomial theorem shows that the
rational function is given by

 D .1 � aj v/

�
.�1/pg.v/C

pX

D1

�
p




�
.�u/p�
v
�1

�
:

In this chart we have thatQi is given by .v; u/ D . 1
ai
; 0/ andQ1 is given by .v;u/D

.0; 0/, hence we can evaluate  .Ei / as

 .Ei / D
 .Qi /

 .Q1/
D
.1 � aj =ai /a

1�p
i

.�1/p
D
ai � aj

.�ai /p
: (4.2)

Now we will evaluate ' at Fj after recalling that Qj corresponds to .t; s/ D
.aj ; 0/, G˛ corresponds to .t; s/ D .b˛; b˛/ and Sˇ corresponds to pairs with t D 0.
Hence we have

'.Fj / D '.Qj / �
Y
ˇ

'.G˛/
�˛ �

Y
˛

'.Sˇ /
�n
D
.aj � ai /

Q
˛.b˛ � ai /

�˛

.�ai /pn
:

Now considering equation (4.1) in the t coordinate and noting that f .ai / D 0 and
deg.f / D pn � 1 we have the equations

.ai /
�p
D

Q
˛.b˛ � aj /

�˛

.�ai /pn
and '.Fj / D

�.ai � aj /

.ai /p
: (4.3)

Finally, combining equations (4.2) and (4.3), we have

w.ŒEi �; ŒFj �/ D
 .Ei /

'.Fj /
D .�1/p�1

which is �1 when p is even and 1 when p is odd.
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Corollary 4.10. The vector space � is a maximal isotropic subspace of Jac.C /Œ3�
with respect to the Weil pairing.

Proof. Any maximal isotropic subspace of Jac.C /Œ3� has dimension g and, conversely,
any isotropic subspace of Jac.C /Œ3� of dimension g is a maximal isotropic subspace.
Since � has dimension g, the result follows immediately from Proposition 4.9.

5. Trigonal superelliptic curves

5.1 (Overview of section). The case p D 3 is the natural next step from the hyper-
elliptic case. In this case, superelliptic curves exist for each g > 0 and we will see that
the key decomposition result of the moduli space of hyperelliptic curves with level 2
structure from Theorem 2.18 has an analogue in the p D 3 case.

5.2 (Properties of the case p D 3). As discussed in Section 3.5, trigonal superelliptic
curves exist for every genus g > 0 and the number of ramification points is

m D g C 2:

In this case, we have F�3 Š S2 and the indexing set M from Section 3.11 contains
ordered pairs .m1; m2/. Explicitly, the indexing set can be expressed as

M D
®
.m � 3i � r; 3i C r/ j r 2 ¹0; 1; 2º with m D 3n � r for some n 2 Z and

i 2 Z with 0 � i � .m � 2r/=6.
¯
:

Some examples of the indexing set are given in below in Table 1. We can also examine
the group Am describing equivalent affine models from Section 3.12. There are two
cases:

(i) m D .a; a/: This case occurs whenever m is even and in this case we have
Stabp.m/ D S2 and Am Š S2 � .Sa ˚ Sa/ Š S2 ˚ Sa ˚ Sa. In terms of the
explicit description of M given above, this occurs when i D .m � 2r/=6.

(ii) m D .a; b/ where a > b: In this case we have that Stabp.m/ is trivial and
hence Am Š Sa ˚ Sb .

5.3 (Level 3 structures and moduli description of Sup3g Œ3�). Here we recall that the
definition of a superelliptic curve with a level 3 structure is a pair�

� W C ! P1; � W F2g3
Š
�! Jac.C /Œ3�

�
where � is a superelliptic curve and � is an isometry from F2g3 with the standard
symplectic form to Jac.C /Œ3� with the Weil pairing. In other words, a level 3 structure
is a choice of an ordered symplectic basis for Jac.C /Œ3� compatible with the Weil
pairing.
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g m M g m M

1 3 ¹.3; 0/º 7 9 ¹.9; 0/; .6; 3/º

2 4 ¹.2; 2/º 8 10 ¹.8; 2/; .5; 5/º
3 5 ¹.4; 1/º 9 11 ¹.10; 1/; .7; 4/º

4 6 ¹.6; 0/; .3; 3/º 10 12 ¹.12; 0/; .9; 3/; .6; 6/º
5 7 ¹.5; 2/º 11 13 ¹.11; 2/; .8; 5/º

6 8 ¹.7; 1/; .4; 4/º 12 14 ¹.13; 1/; .10; 4/; .7; 7/º

Table 1. Examples of the indexing set M for p D 3. The values of m which have Am ¤ Sm1 ˚

Sm2 are shown in bold.

The moduli space of p D 3 superelliptic curves with level 3 structure is denoted
by Sup3g Œ3� and comes with a natural morphism

F W Sup3g Œ3�! Sup3g

which forgets the level 3 structure. The group Sp.2g;F3/ acts naturally on Sup3g Œ3� by
changing basis and has no fixed points. The morphism F is then equivalent to taking
the quotient by Sp.2g;F3/ which shows that F is étale of degree jSp.2g;F3/j.

For each m 2 M, we can extend this concept to the sub-moduli space Sup3g;m
(defined via the decomposition in Proposition 3.13) by the following diagram where
all squares are Cartesian:

Sup3g;mŒ3� Sup3g Œ3�

Sup3g;m Sup3g :

Fm F

5.4 (A natural basis for Jac.C /Œ3�). Consider a moduli point ŒP1; : : : ; Pm� 2 M0;m

and let Œ� W C ! P1� be the associated point in Sup3g;m. Recall from Section 4 that
the divisor classes

Dj WD ŒQj �Qm�

for j 2 ¹1; : : : ; gº form a basis for a natural subspace � � Jac.C /Œ3�. It was further
shown in Corollary 4.10 that � is a Lagrangian (a maximal isotropic subspace) and
hence that � is a natural choice of polarisation for the pair .Jac.C /Œ3�;w/ where w is
the Weil pairing.

Moreover, using standard techniques, we can use the basis .D1; : : : ;Dg/ to define
a basis for the complementary isotropic subspace �c � Jac.C /Œ3�. In particular, for
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each j 2 ¹1; : : : ; gº the conditions

w.Dk; E/ D 1; k ¤ j; E 2 �c

define 1-dimensional subspaces ƒj � �c . On top of this, the condition

w.Dj ; Ej / D e
2�
3 i

uniquely defines an element Ej 2 ƒj . So, by construction, we have a natural sym-
plectic basis for Jac.C /Œ3� given by .D1; : : : ;Dg ; E1; : : : ; Eg/.

5.5 (Natural morphisms to Sup3g;mŒ3�). Continuing from the situation in Section 5.4,
we take a moduli point ŒP1; : : : ; Pm� 2M0;m and let Œ� W C ! P1� be the associated
point in Sup3g;m. Using the basis from Section 5.4, we can construct an isometry

� W F2g3
Š
�! Jac.C /Œ3�

by sending the standard basis .e1; : : : ; eg ; f1; : : : ; fg/ for F2g3 to the natural basis
.D1; : : : ;Dg ; E1; : : : ; Eg/ for Jac.C /Œ3�. This then gives rise to a natural morphism

 id WM0;m ! Sup3g;mŒ3�

defined by mapping the equivalence class ŒP1; : : : ; Pm� 2 M0;m to the equivalence
class Œ�; ��. Here the subscript id refers to the identity in Sp.2g;F3/.

We can also extend this concept to any A 2 Sp.2g; F3/ by first considering the
automorphism �A W Sup3g;mŒ3� ! Sup3g;mŒ3� defined by Œ�; �� 7! Œ�; TA ı ��, where
TA W F3 ! F3 is the linear change of basis associated to A. The morphism �A ı  id is
denoted by

 A WM0;m ! Sup3g;mŒ3�:

Combining this concept with the forgetful morphism and the isomorphism from
Proposition 3.13 gives the following commutative diagram:

M0;m Sup3g;mŒ3�

M0;m=Am Sup3g;m:

 A

Fm

Š

(5.1)

5.6 (Natural group homomorphism defined by  A). For each m D .m1; m2/ 2 M,
P 2 M0;m and A 2 Sp.2g; F3/, the morphism  A W M0;m ! Sup3g Œ3� from Section
5.4 defines a group homomorphism which we will denote by

‰P;A W Am ! Sp.2g;F3/:
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This homomorphism can be describe explicitly by initially considering the case A D
id. To begin, let ŒP1; : : : ; Pm� 2M0;m and .� W C ! P1; �/ be the superelliptic curve
and the level 3 structure which are given by  id.

The homomorphism‰P;id is constructed by considering the action ofAm onM0;m

and showing that this defines a change of basis for Jac.C /Œ3�. A straightforward way
of accomplishing this is to consider how the generators of Am define change of basis
matrices for Jac.C /Œ3�.

First consider the generators of Sm D Sm1 ˚ Sm2 while considering Sm as a sub-
group of Sm. Recall that Sm is generated by them� 1 transpositions .i; i C 1/ for i 2
¹1; : : : ;m� 1º. In the case at hand, Sm is generated by the collection .Sm1 ˚ Sm2/\
¹.i; i C 1/º. We can now consider how these permutations define changes of basis.

(i) For i … ¹m � 1; m � 2º: The change of basis ‰P;id.�/ is defined on each
Dj by considering the action of Sm on ¹Q1; : : : ;Qmº. The result is

‰P;id.�/ �Dj D

8̂̂<̂
:̂
Dj for j … ¹i; i C 1º,

DiC1 for j D i ,

Di for j D i C 1,

which is the usual “row-swap” elementary row-operation.

(ii) For � WD .g;gC 1/D .m� 2;m� 1/: The generator � WD .g;gC 1/ exists
in the cases m2 D 0, m2 D 1 and m2 > 3. In these cases we have

‰P;id.�/ �Dj D

´
Dj for j ¤ g,

Dm�1 for j D g.

To see the associated change of basis, we recall from Section 4.3 that the
natural horizontal principal divisor gives:

(a) For m2 D 0: Dm�1 � 2
Pm�2
iD1 Di .

(b) For m2 D 1: Dm�1 �
Pm�2
iD1 Di .

(c) For m2 � 2: Dm�1 �
Pm1
iD1Di C 2

Pm�2
iDm1C1

Di .

(iii) For � WD .gC 1;gC 2/D .m� 1;m/: The generator � WD .g;gC 1/ exists
in the cases m2 D 0 and m2 > 2. In these cases we have the same change
of basis and relations as those in part (ii) except

‰P;id.�/ �Dj D Dj C 2Dm�1:

We now consider the extra generators in the case when Stabp.m/ ¤ 0. This case
occurs when m

2
2 Z>0 and m D .m

2
; m
2
/ so that Stabp.m/ Š S2. Let � be the gener-
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ator of Stabp.m/ then we have

‰P;id.�/ �Dj D

8̂̂̂̂
<̂
ˆ̂̂:
DjCm2 C 2D

m
2

for 1 � j < m
2
� 1,

Dm�1 C 2Dm
2

for j D m
2
� 1,

2Dm
2

for j D m
2

,

Dj�m2 C 2D
m
2

for m
2
< j � m � 2,

where Dm�1 has been calculated above in (ii).
Hence, we have defined a homomorphism‰P;id W Am! Sp.2g;F3/. Now, consider

the automorphism‚A W Sp.2g;F3/! Sp.2g;F3/ which is defined by B 7! AB . The
group homomorphism ‰P;A is now defined by ‰P;A WD ‚A ı‰P;id.

Lemma 5.7. Let A 2 Sp.2g;F3/ and P 2M0;m. The morphism  A from Section 5.5
and the group homomorphism ‰P;A from Section 5.6 are injective.

Proof. Since for A ¤ id, the morphisms  A and ‰A are defined by post-composing
with automorphisms, we are only required to consider the case when A D id.

To consider whether  id is injective take two points in P;P 0 2M0;m which have
 id.P / D  id.P

0/. We also let D1; : : : ; Dg and D01; : : : ; D
0
g be the associated nat-

ural bases constructed from divisors in Section 4.5 and corresponding to the images
 id.P / and  id.P

0/.
The combination of the condition  id.P / D  id.P

0/ and the fact that the diagram
(5.1) commutes shows that P and P 0 must be in the same Am-class. Taking � 2 Am
to be such that P 0 D � � P , we observe that this implies D0i D ‰P;id.�/ �Di for all
i 2 ¹1; : : : ;gº. The condition id.P /D id.P

0/ is now only true ifDi D‰P;id.�/ �Di
for all i 2 ¹1; : : : ; gº. Hence we have shown that  id is injective only if ‰P;id is
injective for all P 2M0;m.

Let � 2 Am be such that ‰P;id.�/ �Di D Di for all i 2 ¹1; : : : ; gº. The relations
given in Section 4.5 show that‰P;id.�/ �DgC1DDgC1 as well as‰P;id.�/ �DgC2D
DgC2 D 0. Now, let n 2 ¹1; : : : ; mº be n WD ��1.m/. Then the condition ‰P;id.�/ �
Dn D Dn implies

Qn �Qm � Qm �Q�.n/

and hence Dn D �D�.n/. This is not one of the relations from Section 4.5, which
are shown to be all the relations in Theorem 4.6, so we must have Dn D 0 and hence
n D m. So now, for any i 2 ¹1; : : : ; gº, the condition ‰P;id.�/ �Di D Di implies

Qi �Qm � Q�.i/ �Qm

and Di D D�.i/. Again, the relations from Section 4.5 and Theorem 4.6 show that
this implies �.i/ D i for any i 2 ¹1; : : : ; gº. Hence we have that � D id. Thus, we
have shown that ‰P;id has trivial kernel and so is injective.
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Lemma 5.8. For A 2 Sp.2g; F3/ the morphism  A is an isomorphism onto an irre-
ducible component of Sup3g;mŒ3�.

Proof. Denote the quotient map by qm WM0;m!M0;m=Am. We have that both qm and
the morphism Fm forgetting the level 3 structure are finite. Hence we have that  A is
finite as well (see, for example, [36, Tag 01WJ & Tag 035D]). Thus, since Lemma 5.7
shows that  A is injective, we have that it is a closed immersion (see, for example,
[36, Tag 03BB]).

Since the quotient map qm and Fm are both finite and surjective, we have that
M0;m and Sup3g;mŒ3� are both the same dimension (see, for example, [36, Tag 01WJ
& Tag 0ECG]). Now, let A � Sup3g;m be the irreducible component that contains the
image of  A, and let " WM0;m ! A be the associated morphism. Since M0;m is irre-
ducible, we must have that " is surjective.

On top of this, both qm and Fm are étale, so by the vanishing of cotangent com-
plexes we have that " is étale as well. In conclusion, " is a surjective flat closed
immersion and hence " is an isomorphism (see [36, Tag 04PW]).

Corollary 5.9. Let x D Œ�� 2 Sup3g be a geometric point and let A 2 Sp.2g;F3/. If
Œ�; �� and Œ�; �0� are both in the image Im A then there is a unique B 2 Am such that
�0 D TB ı � (where TB is defined as in Section 5.5). Moreover, we have that

jIm A \ F�1m .x/j D jAmj:

Proof. This follows from Lemma 5.8 since  A is an isomorphism on an irreducible
component of Sup3g;mŒ3� and the morphism M0;m ! Sup3g;m described by diagram
(5.1) is the fixed-point-free quotient of M0;m by Am.

Lemma 5.10. LetA;A0 2 Sp.2g;F3/. If the images Im A and Im A0 are not disjoint,
then Im A D Im A0 .

Proof. Suppose that the images Im A and Im A0 are not disjoint and take a point
Œ�; �� 2 Sup3g Œ3� in the intersection. Then, by the construction of A and A0 , we must
have that � D TA ı � and � D TA0 ı � 0 for points Œ�; ��; Œ�; � 0� 2 Im id.

Hence by Corollary 5.9 we have that there is a B 2 Am such that � 0 D TB ı � .
Combining that with the equality � D TA ı � D TA0 ı � 0 we see that TA D TA0 ı TB
and hence A D A0B .

Now, by the definition of  A we have that  A D ‚A0 ı  B and  A0 D ‚A0 ı  id.
The result now follows from the observation that Im id D Im B .

Lemma 5.11. The scheme Sup3g;mŒ3� has jSp.2g;F3/j=jAmj connected components.
Each connected component is irreducible and is isomorphic to M0;m.
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Proof. We begin by claiming that the morphismG
A2Sp.2g;F3/

 A W
G

A2Sp.2g;F3/

M0;m ! Sup3g Œ3�

is surjective. So see this, take any geometric point Œ� W C ! P1; �0� 2 Sup3g Œ3� and
consider the point Œ�� 2 Sup3g . We know from diagram (5.1) that the morphism
M0;m ! Sup3g is surjective, so let P 2 M0;m be any point in the preimage of Œ��
under this morphism. We now have that  id.P /D Œ�; �� for some isometry � W F2g3 !
Jac.C /Œ3�. Considering the composition �0 ı ��1 ı � D �0, we observe that �0 ı ��1

corresponds to a symplectic change of basis F2g3 ! F2g3 and hence �0 ı ��1 D TA
for some A 2 Sp.2g;F3/. This proves the claimed surjectivity.

Let B � Sp.2g;F3/ have the following properties:

(i)
F
A2B  A is surjective.

(ii) If B 0 � Sp.2g;F3/ has the property that
F
A2B0  A is surjective then we have

jBj � jB 0j.

Such a B will always exist but may not be unique. Moreover, combining property (ii)
with Lemma 5.10 we must have that for each pair A; A0 2 B with A ¤ A0 that the
images Im A and Im A0 are disjoint.

Now, letting x 2 Sup3g be a geometric point, we have that

F�1m .x/ D
G
A2B

.Im A \ F�1m .x//:

Hence using Corollary 5.9 and the fact that jF�1m .x/j D jSp.2g;F3/j we have

jSp.2g;F3/j D
X
A2B

jIm A \ F�1m .x/j D jBj � jAmj:

Since jBj is the number of connected components, the desired result now follows.

Theorem 1.1 now follows immediately from Lemma 5.11 and the description of
the indexing set M from Section 5.2. We also summarize what we have obtained in an
alternative way to highlight the analogy with Theorem 2.18.

Theorem 5.12 (Connected components of Sup3g Œ3�). For m 2 M, denote the quotient
set Sp.2g;Fp/=Am by Cm. Then, if Xc denotes a copy of M0;m for each c 2 Cm, there
is an isomorphism of schemes

Sup3g Œ3�
Š
�!

G
m2M

G
c2Cm

Xc :

In particular, Sup3g Œ3� is smooth.
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