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Asymptotic analysis and optimization of an elastic body
surrounded by thin layers

Mustapha El Jarroudi, Jamal El Amrani, Mhamed El Merzguioui,
Mustapha Er-Riani, and Adel Settati

Abstract. We consider an elastic body surrounded by thin elastic layers along a part of its
boundary. We study the asymptotic behavior of the structure as the maximum thickness of the
layers tends to zero. We derive an effective boundary integral energy involving a matrix of Borel
measures not charging polar sets and having the same support contained in the boundary. We
characterize this matrix for three special cases: periodic layers, layers which are determined by
a given nonnegative function h, and layers with abrupt changes along self similar fractals. We
then consider an optimal control problem, which consists in determining the shape of the best
material distribution around the elastic body, under the maximal work of external loads, and
characterize the optimal zones on its boundary where possible elastic layers could take place.

1. Introduction

Let � be a bounded open subset of R3 with Lipschitz continuous boundary @� D
�1 [ �2, such that �1 \ �2 D ; and j�1j, j�2j > 0, where j�i j; i D 1; 2, denotes the
Lebesgue measure of �i . Let †" be an arbitrary layer of maximum thickness " > 0
extending � near �1 (see Figure 1). Without loss of generality, we may suppose that,
for small parameter " 2 .0; 1/,

†" D
®
s C tn.s/I s 2 �1; 0 < t < "h".s/

¯
;

where n.s/ is the outward unit normal on s 2 �1 and h" is a positive locally Lipschitz
continuous function satisfying

sup
"
kh"kL1.�1/ � 1:
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Figure 1. A layer †" extending the set � along the part �1 of its boundary.

We set
�" D � [ �1 [†";

�1;" D @†"n@�:

We suppose that � is the reference configuration of a linear elastic material. This
means that the deformation tensor e.u/ D .eij .u//i;jD1;2;3, with

eij .u/ D
1

2

�
@ui

@xj
C
@uj

@xi

�
for some displacement u, is linked to the stress tensor �.u/ D .�ij .u//i;jD1;2;3 by
Hooke’s law,

�ij .u/ D aijklekl.u/I i; j D 1; 2; 3; (1.1)

where aijkl ; i; j; k; l D 1; 2; 3, are material coefficients and where the summation
convention with respect to repeated indices has been used and will be used in the
sequel. We suppose that

aijkl.x/ D aj ikl.x/ D aljki .x/; 8i; j; k; l D 1; 2; 3; 8x 2 �; (1.2a)

c1�ij �ij � aijkl.x/�ij �ij � c2�ij �ij ; 8x 2 �; 8� 2 R3�3; (1.2b)

where c1 and c2 are positive constants. We suppose that †" is the reference configu-
ration of a linear elastic material with material coefficients "aijkl ; i; j; k; l D 1; 2; 3.
We suppose that a perfect adhesion occurs between � and †" along their common
interface �1. We suppose that the material in �" is submitted to volumic forces with
density f 2 L2.R3;R3/. We define the sequence of functionals .F"/" on L2.R3;R3/
by

F".u/D

´R
�
�ij .u/eij .u/dx C "

R
†"
�ij .u/eij .u/dx if u 2 H 1

0 .�";R
3/;

C1 otherwise.
(1.3)
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The equilibrium state of the elastic material in�" is described by the minimization
problem

min
u2L2.�";R3/

²
F".u/ � 2

Z
�

f:udx

³
: (1.4)

Using �-convergence methods (see, for instance, [16] and [18]), we prove that the
effective potential energy of the material turns out to be of the form

F0.u/ D

´R
�
�ij .u/eij .u/dx C

R
�1
uiujd�ij if u 2 H�;�2.�;R

3/;

C1 otherwise,
(1.5)

where � D .�ij /i;jD1;2;3 is a symmetric matrix of Borel measures �ij not charg-
ing polar sets (sets of capacity zero), having the same support contained in �1, and
satisfying �ij .B/�i�j � 0, for every Borel set B � R3 and every � 2 R3, and where

H�;�2.�;R
3/ D H 1

�2
.�;R3/ \ L2�.�1;R

3/; (1.6)

with
H 1
�2
.�";R

3/ D
®
v 2 H 1.�";R

3/I v D 0 on �2
¯
;

and

L2�.�1;R
3/ D

²
v W �1 ! R3I

Z
�1

vivjd�ij < C1

³
:

The solution u0 of the limit problem, stated in Corollary 15, satisfies the following
Robin type boundary condition:

�ij .u
0/nj C �iju

0
i D 0 on �1;

where n is the outward unit normal on s 2 �1. We then consider some special cases.
We first consider the case where the thickness of †" varies periodically along �1.
The problem becomes invariant by translation and the measure �ij ; i; j D 1; 2; 3, is
the Haar measure on �1 with �ij D Kijds, where ds is the surface measure on �1
given by the Riemannian metric and Kij ; i; j D 1; 2; 3, are constants in R satisfying
Kij �i�j � 0, 8� 2 R3. We identify the constants Kij ; i; j D 1; 2; 3, by constructing
appropriate local problems. We secondly suppose that †" has thickness of the form
"h.s/. We prove in this case that �ij D �i .s/ dsh.s/ıij , where ıij denotes Kronecker’s
symbol and �i .s/; i D 1; 2; 3, are material coefficients. We then suppose that �1 is
contained in the plane ¹x3 D 0º and consider a thin layer †" with abrupt changes
along a self similar fractal ƒ with similarity dimension d . We prove that

�ij D

�
�i .x1; x2/dx1dx2j�1 C

2�.c � 1=2/�i .s/

Hd .ƒ/
dHd .s/jƒ

�
ıij ;



M. El Jarroudi, J. El Amrani, M. El Merzguioui, M. Er-Riani, and A. Settati 392

where c is a positive constant given in Theorem 19, dHd is the d -dimensional
Hausdorff measure, and �i .s/; i D 1; 2; 3, are material coefficients.

The asymptotic behavior of the scalar version of� surrounded by arbitrary layers
†" of maximum thickness " was studied in [11]. A general integral on the boundary
@� written as

R
@�
u2d� where � is a nonnegative Borel measure on R3 not charging

polar sets (but possibly C1 on large subsets of R3) was obtained at the limit. The
characterization of the measure �was given in terms of suitable asymptotic capacities
associated with �"n�. The asymptotic behavior for an incompressible viscous flow
in � surrounded by arbitrary thin layers †" has been addressed in [19]. A general
Navier wall law was obtained, with the proportionality coefficient being a symmetric
matrix of Borel measures, having their supports contained in the solid boundary of�.
Several papers, among which [1,2,5–7,12,14], and [26], have studied the asymptotic
behavior of elliptic operators in domains surrounded by thin layers of periodically
varying thickness "h.s/ or with general smooth thickness h" � ".

An important field to which this work is closely related is the asymptotic behavior
of a biological body surrounded by thin layers of soft growing tissues resulting from
the proliferation of tumor cells. Constitutive models combining the stress-strain rela-
tion of linear elasticity with a growth term of avascular tumors have been developed
in several papers (see, for instance, [3,4,24,29]). This analysis provides an asymptotic
description of stresses in soft tissues growing around a biological body.

This problem has also some implications for modeling the behavior of elastic
bodies reinforced with flexible or soft thin elastic layers such as rubber and textile.
Some of these materials are indeed known for their nonlinearity in the stress-strain
relationship. However, as the reinforced body is modeled as linear elastic with small
strains, linear elasticity is assumed here for the material within the layers. Note that
materials reinforced with flexible materials as textile are used for the construction of
durable and more sustainable elastic structures (see, for instance, [27] and [28]). For
two-dimensional plastic layers under longitudinal shear obeying a hardening stress-
strain law with a functional energy given by

"p�1
Z
†"

jrw.x; y/jpdxdy;

where p is the power hardening parameter andw is the only non-vanishing component
of displacement (assumed to be the z-component), we can prove, using the present
work and the integral representation theorem of [15], that the effective energy is given
by
R
�1
jw.x; y/jpd� where � is a nonnegative Borel measure on R3 not charging

polar sets.
In Section 6, we consider an optimal control problem which consists in determin-

ing the shape of the best material distribution around � under the maximal work of
external loads. We prove that, for a given quantity � > 0 of material, there exists an
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optimal diagonal matrix h D Diag.hi /iD1;2;3 of �1-measurable functions hi W �1 !
Œ0;C1/, such that

hi .u
�/ D �

ju
�
i jR

�1
ju
�
i jds

;

where u� D .u�1; u
�
2; u

�
3/ is the solution of problem (6.4). We then study the best

way to reinforce an elastic body by a flexible elastic layer as � tends to zero. For a
biological body, this last study allows to characterize the zones on its boundary where
possible soft tissues will grow.

We recall that the scalar version of this problem was investigated as part of the
shape optimization of optimal thermal insulators by several authors (see, for instance,
[9, 10, 20], and recently [8] and [22]). The problem of optimizing the distribution of
material, surrounding a homogeneous elastic plate, which minimizes the energy has
been studied in [13].

2. Functional framework

We define the capacity Cap of every compact subset K � R3 as

Cap.K/ WD inf
²Z

RN
jr'j2dx C

Z
RN
j'j2dxI ' 2 C1c .R

3/; ' � 1 on K
³
:

For every open subset U � R3, we set

Cap.U / WD sup
®
Cap.K/I K � U;K compact

¯
:

For every Lebesgue measurable subset B � R3, we define

Cap.B/ WD inf
®
Cap.U /I B � U;U open

¯
:

Let B.R3/ be the � -field of Lebesgue measurable subsets of R3. A property is
said to be true quasi-everywhere (q.e.) on B 2B.R3/ if it is true except on a subset of
B of capacity Cap equal to 0. A function u W B!R; B 2B.R3/, is quasi-continuous
on B if, for every " > 0, there exists an open subset U" � B with Cap.U"/ < ", such
that the restriction of u to B n U" is continuous. Every function u 2 H 1.R3;R3/ has
a quasi-continuous representant zu, which is unique quasi-everywhere in �, (see, for
instance, [30, Theorem 3.1.4]); zu is given by

zu.x/ D lim
r!0C

1

jB.x; r/j

Z
B.x;r/

u.y/dy for q.e. x 2 R3;

where B.x; r/ is the ball centered at x and of radius r > 0. We now define some
notions concerning families of subsets of R3 (see, for instance, [16, Chapter 14]) and
a class of functionals of R3 (see, for instance, [17]).
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Definition 1. (1) A subset D � B.R3/ is a dense family in B.R3/ if, for every
A;B 2 B.R3/ with A � VB , there existsD 2D such that: A � VD �D � VB ,
where VA (resp. A) denotes the interior (resp. the closure) of A.

(2) A subset R � B.R3/ is a rich family if, for every family .At /t2�0;1Œ�B.R3/

such that As � VAt , for every s < t , the set ¹t 2 �0; 1ŒI At … Rº is at most
countable.

(3) Let O.R3/ be the set of all open subsets of �. We consider the class F of
functionals F from H 1.R3;R3/ �O.R3/ to Œ0;C1� satisfying:

(a) (lower semi-continuity): for every open subset ! 2O.R3/, the functional
u 7! F.u; !/ is lower semi-continuous with respect to the strong topol-
ogy of the space H 1.R3IR3/,

(b) (measure property): for every u 2 H 1.R3;R3/, ! 7! F.u; !/ is the re-
striction to O.R3/ of a nonnegative Borel measure still denoted F.u;!/,

(c) (localization): for every ! 2O.R3/ and every u;v 2H 1.R3;R3/: uj! D
vj! ) F.u; !/ D F.v; !/,

(d) (C 1-convexity): for every ! 2 O.R3/, the functional u 7! F.u; !/ is
convex on H 1.R3;R3/ and for every ' 2 C 1.R3/ with 0 � ' � 1,

F.'uC .1 � '/v; !/ � F.u; !/C F.v; !/:

Example 2. We consider the functional F" defined on H 1.R3;R3/ �O.R3/ by

F".u; !/ D

´
0 if zu D 0; q.e. on �1;" \ !;

C1 otherwise,
(2.1)

then F" 2 F .

Let us set the following definitions.

Definition 3. (1) A Borel measure � is absolutely continuous with respect to the
capacity Cap if

8B 2 B.R3/ W Cap.B/ D 0) �.B/ D 0;

(2) M0.R3/ is the set of nonnegative Borel measures which are absolutely con-
tinuous with respect to the capacity Cap.

Example 4. For every E � � such that Cap.E/ > 0, we define the measure1E by

1E .B/ D

´
0 if Cap.B \E/ D 0;

C1 otherwise,

for every B 2 B.R3/. Then1E belongs to M0.�/.
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Note that, for every u 2 H 1.R3;R3/ and every ! 2 O.R3/, the functional F"
defined in (2.1) can be written as

F".u; !/ D

Z
!

jzuj2d1�1;" D

Z
!

juj2d1�1;" : (2.2)

We have the following integral representation of functionals of F .

Theorem 5 (See [17, Theorem 7.5]). For every F 2 F , there exist a finite measure
� 2M0.R3/, a nonnegative Borel measure �, and a Borel function g W R3 � R3 !

Œ0;C1� with � 7! g.x; �/ convex and lower semi-continuous on R3, such that, for
every u 2 H 1.R3;R3/ and every ! 2 O.R3/,

F.u; !/ D

Z
!

g.x; zu.x//d�C �.!/:

Moreover, if F is quadratic then the following corollary (see [17, Corollary 8.4])
holds.

Corollary 6. Let F 2 F . Assume that F.:;!/ is quadratic for every ! 2O.R3/. Then,
there exist

(1) a finite measure � 2M0.R3/,

(2) a symmetric matrix .aij /i;jD1;2;3, of Borel functions from R3 to R satisfying
aij .x/�i�j � 0 for every � 2 R3 and for q.e. x 2 R3,

(3) for every x 2 R3, a linear subspace V.x/ of R3, such that, for every u 2
H 1.R3;R3/ and every ! 2 O.R3/,

(a) if F.u; !/ < C1 then u.x/ 2 V.x/ for q.e. x 2 R3,

(b) if u.x/ 2 V.x/, for q.e. x 2 R3, then

F.u; !/ D

Z
!

aij .x/ui .x/uj .x/d�.x/:

Remark 7. Let F 2 F such that F.:; !/ is quadratic for every ! 2 O.R3/, � 2
M0.R3/ be the associated measure by the above corollary,

‚ D
[

!2�.F /

!; (2.3)

where
�.F / D

®
! 2 O.RN /IF.:; !/ < C1 q.e. in !

¯
;

and V.x/ be the linear subspace of R3 defined by

V.x/ D

´
R3 if x 2 ‚;®
0
¯

if x 2 R3n‚:



M. El Jarroudi, J. El Amrani, M. El Merzguioui, M. Er-Riani, and A. Settati 396

We define the 3 � 3 matrix of measures

� D .�ij /i;jD1;2;3

D .aij�/i;jD1;2;3 C1R3n‚Id3:

Then, for every u 2 H 1.R3;R3/ and every ! 2 O.R3/,Z
!

uiujd�ij D

´R
!
aijuiujd� if u.x/ 2 V.x/ for q.e. x 2 !;

C1 otherwise,

and the functional F can be written as

F.u; !/ D

Z
!

uiujd�ij D h�u; ui:

3. A priori estimates

We define the sequence of functionals .ˆ"/" on L2.R3;R3/ by

ˆ".u/ D

´R
�
�ij .u/eij .u/dx C "

R
†"
�ij .u/eij .u/dx if u 2 H 1

�2
.�";R3/;

C1 otherwise.
(3.1)

We have the following results.

Proposition 8. Let u" 2 H 1
�2
.�";R3/ such that sup"ˆ".u

"/ < C1. Then

(1) sup".
R
�
jru"j2dx C "

R
†"
jru"j2dx/ < C1,

(2) sup"
R
�
ju"j2dx < C1 and sup"

1
"

R
†"
ju"j2dx < C1.

Proof. (1) Let s C tn.s/ 2 †". We have

.u"i .s C tn.s// � u
"
i .s//

2
D

ˇ̌̌̌Z t

0

ru"i .s C �n.s//:n.s/d�

ˇ̌̌̌2
� "

Z "h".s/

0

jru"i .s C �n.s//j
2d�;

which implies thatZ
�1

Z "h".s/

0

ju"i .s C �n.s//j
2d�ds

� C

�
"

Z
�1

.u"i .s//
2ds

C "2
Z
�1

Z "h".s/

0

jru"i .s C �n.s//j
2.1C �~.s; t//d�ds

�
; (3.2)
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where ~ is the curvature of �1 and C is a positive constant independent of ". As
u" D 0 on �2, we have, using the Korn inequality in � and �", respectively, thatZ

�

jru"j2dx � C

Z
�

�ij .u
"/eij .u

"/dx

� Cˆ".u
"/;

"

Z
†"

jru"j2dx � C"

Z
�"

�ij .u
"/eij .u

"/dx

� Cˆ".u
"/;

(3.3)

from which we deduce that

sup
"

�Z
�

jru"j2dx C "

Z
†"

jru"j2dx

�
< C1: (3.4)

(2) Using the Poincaré inequality and the trace theorem, we deduce from (3.3) thatZ
�

ju"j2dx � C

Z
�

jru"j2dx

� Cˆ".u
"/;Z

�1

ju".s/j2ds � C

Z
�

jru"j2dx

� Cˆ".u
"/;

(3.5)

and, using (3.2)–(3.5), we deduce thatZ
†"

ju"j2dx � C"ˆ".u
"/: (3.6)

We obtain from (3.5) and (3.6) that

sup
"

Z
�

ju"j2dx < C1 and sup
"

1

"

Z
†"

ju"j2dx < C1:

Remark 9. According to [25, pages 354–355], as @�" is locally Lipschitz, it is
also uniformly Lipschitz. Then, using [25, Theorem 12.15], we infer that every v 2
H 1
�2
.�";R3/ has an extension Ev 2 H 1

�2
.R3;R3/ verifying, in particular, Ev.x/ D

v.x/ for almost every (a.e.) x 2 �", and

kEvkL2.R3;R3/ � .1CM/kvkL2.�";R3/; (3.7)

where M is a positive integer. We deduce from Proposition 8 and inequality (3.7)
that, for every sequence .u"/", such that u" 2 H 1

�2
.�";R3/ and sup"ˆ".u

"/ < C1,
there exists a subsequence, still denoted .u"/", such that .u"/" weakly converges in
H 1.�;R3/, as " tends to 0, to some u 2 H 1

�2
.�;R3/, and its extension .Eu"/"

strongly converges in L2.R3;R3/ to Eu.
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4. Convergence

Let v" 2 H 1
�2
.�";R3/ and v 2 H 1

�2
.�;R3/. We denote in the same way their exten-

sions to H 1
�2
.R3;R3/. According to Proposition 8 and Remark 9, we introduce the

following topology � .

Definition 10. A sequence .u"/"; u" 2 H 1
�2
.�";R3/, � -converges to u, as " tends

to 0, if

(1) u" ���*
"!0

u H 1
�2
.�;R3/-weak,

(2) u" ���!
"!0

u L2.R3;R3/-strong.

We have the following result.

Lemma 11. Let .ˆ"/" be the sequence of functionals defined in (3.1). Then .ˆ"/" �-
converges, with respect to the topology � , to the functional ˆ defined on L2.R3;R3/
by

ˆ.u/ D

´R
�
�ij .u/eij .u/dx if u 2 W�2 ;

C1 otherwise,
(4.1)

where
W�2 D H

1
�2
.�;R3/ \ L2.R3;R3/:

Proof. Let u 2 W�2 . We consider the set �0;" D � [†0;", where †0;" is a layer of
thickness " surrounding � defined by

†0;" D
®
x 2 R3I 0 < d.x; @�/ < "

¯
;

where d.x; @�/ is the Euclidean distance from x to @�. Let v0;" 2 L2.R3;R3/ such
that

ku � v0;"kL2.R3n�0;";R3/ < ":

We define the function ev0;" by

ev0;" D
´
v0;" in R3n�0;";

0 in �0;":

We consider a mollifier �" 2 C1c .R
3/ with support in the ball B.0; "/ of radius

" centered at the origin such that
R

RN �".x/dx D 1. We then define the sequence
.w0;"/" by w0;" D �" �ev0;" and the sequence .u0;"/" of test-functions by

u0;" D

8̂̂<̂
:̂
w0;" in R3n�0;";

u ."�d.x;@�//
"

in †0;";

u in �:
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We can easily check that u0;" 2 H 1
�2
.R3;R3/, .u0;"/" � -converges to u as " tends

to 0, and

lim sup
"!0

ˆ".u
0;"/ �

Z
�

�ij .u/eij .u/dx D ˆ.u/: (4.2)

Let .u"/" � H 1
�2
.R3;R3/ such that .u"/" � -converges to some u as " tends to 0.

Then, since ˆ.u"/ � ˆ".u"/, we infer that

ˆ.u/ � lim inf
"!0

ˆ.u"/ � lim inf
"!0

ˆ".u
"/: (4.3)

We deduce from (4.2) and (4.3) that .ˆ"/" �-converges to ˆ with respect to the
topology � .

We introduce the functional G" defined on L2.R3;R3/ �B.R3/ by

G".u; B/ D

´
ˆ".u/C F".u; B/ if u 2 H 1

�2
.R3;R3/;

C1 otherwise,
(4.4)

where F" is defined in (2.1).
Our main result in this section reads as follows.

Theorem 12. There exist a rich family R � B.R3/ and a symmetric matrix � D
.�ij /i;jD1;2;3 of Borel measures �ij , having the same support contained in �1, which
are absolutely continuous with respect to the capacity Cap, and satisfying

�ij .B/�i�j � 0; 8� 2 R3; 8B 2 B.R3/;

such that, for every u 2 W�2 and every ! 2 R \O.R3/

.�- lim
"!0

G"/.u; !/ D ˆ.u/C

Z
�1\!

uiujd�ij ;

where the �-limit is taken with respect to the topology � and ˆ is the functional
defined in (4.1).

Proof. The upper and lower �-limits, with respect to the topology � , exist and are
respectively defined on W�2 �B.R3/ by

Gs.u; B/ D inf
®
lim sup
"!0

G".u
"; B/I u"

�
���!
"!0

u
¯
;

Gi .u; B/ D inf
®
lim inf
"!0

G".u
"; B/I u"

�
���!
"!0

u
¯
:
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We see that, for every B 2 B.R3/, we have Gs.:; B/ � ˆ.:/ and Gi .:; B/ �
ˆ.:/. Let us introduce the nonnegative functionals F s and F i defined, for every B 2
B.R3/, by

F a.u; B/ D

´
Ga.u; B/ �ˆ.u/ if u 2 H 1

�2
.R3;R3/;

C1 otherwise,
(4.5)

where a D s; i . Let u 2 W�2 and u" 2 H 1
�2
.R3;R3/ be such that .u"/" � -converges

to u. Denoting in the same way the extension of u to the space H 1
�2
.R3;R3/, we set

z" D u" � u. We can easily check that .z"/" � H 1
�2
.R3;R3/, .z"/" � -converges to 0,

and, using (4.5),

F s.u; B/ D inf
®
lim sup
"!0

.ˆ0;".z
"/C F".z

"
C u;B//I z"

�
���!
"!0

0
¯
; (4.6a)

F i .u; B/ D inf
®
lim inf
"!0

.ˆ0;".z
"/C F".z

"
C u;B//I z"

�
���!
"!0

0
¯
; (4.6b)

where, for any v 2 H 1
�2
.R3;R3/,

ˆ0;".v/ D "

Z
†"

�ij .v/eij .v/dx: (4.7)

The functionals F s and F i satisfy the following properties.

Lemma 13. (1) Let u 2 W�2 and A;B 2 O.R3/. Then

F s.u; A [ B/ � F s.u; A/C F s.u; B/:

(2) Let u 2 W�2 and A;B 2 O.R3/ such that A \ B D ; . Let A0; B 0 2 O.R3/

such that A0 � A and B 0 � B . Then

F i .u; A [ B/ � F i .u; A0/C F i .u; B 0/:

(3) For every open subset ! 2 O.R3/, F s.:; !/ is lower semi-continuous for the
strong topology of H 1

�2
.R3;R3/.

(4) Let ! 2 O.R3/ and u; v 2 W�2 such that uj! D vj! . Then F s.u; !/ D

F s.v; !/.

(5) For every ! 2 O.R3/, the functional u 7! F s.u;!/ is convex and C 1-convex
on W�2 .

Proof. (1) Let u 2 W�2 . Let ! 2 O.R3/ such that ! � B nA. Then, owing to (4.6a),
there exist two sequences .z1;"/" and .z2;"/" in H 1

�2
.R3;R3/ �-converging to 0 such

that
F s.u; A/ D lim sup

"!0

.ˆ0;".z
1;"/C F".z

1;"
C u;A//;

F s.u; !/ D lim sup
"!0

.ˆ0;".z
2;"/C F".z

2;"
C u; !//:

(4.8)
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Let ' 2 C1c .R
3/ such that 0 � ' � 1 in R3, ' D 0 in A and ' D 1 in !. We

define the sequence .z"/" by

z" D .1 � '/z1;" C 'z2;":

Then z"
�
���!
"!0

0 and, according to (4.6a),

F s.u; A [ !/ � lim sup
"!0

.ˆ0;".z
"/C F".z

"
C u;A [ !//: (4.9)

Let us denote R9sym the set of 3 � 3-real symmetric matrices. We define the qua-
dratic form Q by

Q.�/ D aijkl�kl�ij ; 8� 2 R9sym: (4.10)

Using (4.10), we have, according to (1.1), that, for every � 2 .0; 1/,

ˆ0;".z
"/ D "

Z
†"

Q.e.z"//dx

D "

Z
†"

Q..1 � '/e.z1;"/C 'e.z2;"/C .z2;" � z1;"/˝r'/dx

D "

Z
†"

Q

�
.1 � �/

.1 � '/e.z1;"/C 'e.z2;"/

1 � �
C �

.z2;" � z1;"/˝r'

�

�
:

(4.11)

Using the convexity of Q, we have, for every � 2 .0; 1/,

ˆ0;".z
"/ �

"

1 � �

Z
†"

Q..1 � '/e.z1;"/C 'e.z2;"/C .z2;" � z1;"/˝r'/dx

C
"

�

Z
†"

Q..z2;" � z1;"/˝r'"/dx;

and, since 0� ' � 1, we have, using once again the convexity ofQ and the coercivity
property (1.2b), that

ˆ0;".z
"/ �

"

1 � �

Z
†"

.1 � '/Q.e.z1;"//dx

C
"

1 � �

Z
†"

'Q.e.z2;"//dx

C
"c2

�

Z
†"

jz2;" � z1;"j2jr'j2dx;

where c2 is the constant appearing in (1.2b). Then, taking into account the properties
of ', we deduce that

ˆ0;".w
"/ �

1

1 � �
.ˆ0;".z

1;"/Cˆ0;".z
2;"//

C
"C

�

Z
†"

jz2;" � z1;"j2dx; (4.12)
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where C is a positive constant independent of " and �. On the other hand, as F" is
C 1-convex and F".zm;"C u; :/;mD 1; 2, is the restriction to O.R3/ of a nonnegative
Borel measure, we have

F".z
"
C u;A [ !/

D F"..1 � '/.z
1;"
C u/C '.z2;" C u/; A [ !/

� F".z
1;"
C u;A/C F".z

2;"
C u; !/: (4.13)

We deduce from (4.9), using (4.12) and (4.13), that

F s.u; A [ !/ � lim sup
"!0

.ˆ0;".z
"/C F".z

"
C u;A [ !//

�
1

1 � �
lim sup
"!0

.ˆ0;".z
1;"/C F".z

1;"
C u;A//

C
1

1 � �
lim sup
"!0

.ˆ0;".z
2;"/C F".z

2;"
C u; !//

C
C

�
lim sup
"!0

"

Z
†"

jz2;" � z1;"j2dx: (4.14)

As lim sup"!0 "
R
†"
jz2;" � z1;"j2dx D 0, we deduce from (4.14) that

F s.u; A [ !/ � lim sup
"!0

.ˆ0;".z
"/C F".z

"
C u;A [ !//

�
1

1 � �
lim sup
"!0

.ˆ0;".z
1;"/C F".z

1;"
C u;A//

C
1

1 � �
lim sup
"!0

.ˆ0;".z
2;"/C F".z

2;"
C u; !//;

thus, letting � tend to 0, we have, according to (4.8), that

F s.u; A [ !/ � F s.u; A/C F s.u; !/;

and, letting ! increase to B , we conclude that

F s.u; A [ B/ � F s.u; A/C F s.u; B/:

(2) We deduce from (4.6b) that there exists a sequence .z"/" �H 1
�2
.R3;R3/ such

that z"
�
���!
"!0

0 and

F i .u; A [ B/ D lim inf
"!0

.ˆ0;".z
"/C F".z

"
C u;A [ B//:

Let A0; B 0 2 O.R3/ such that A0 � A and B 0 � B . Let '1" 2 C
1
c .R

3/ such that
0 � '1" � 1, '1" D 0 in R3 nA\†" and '1" D 1 in A0 \†". Let '2" 2 C

1
c .R

3/ such
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that 0 � '2" � 1, '2" D 0 in R3 n B \†" and '2" D 1 in B 0 \†". Let zm;" D 'm" z
";

m D 1; 2. Let us set

†1" D A \†" and †2" D B \†":

Then, using a convexity argument, we deduce that, for every � 2 .0; 1/,

"

Z
†m"

�ij .z
m;"/eij .z

m;"/dx D "

Z
†m"

Q.e.'m" z
"//dx

D "

Z
†m"

Q.'m" e.z
"/C z" ˝r'm" /dx

�
"

1 � �

Z
†m"

Q.e.z"//dx C
"c2

�

Z
†m"

jz"j2jr'm" j
2dx;

(4.15)

where c2 is the constant appearing in (1.2b). Observing that the diameters of A \
†"ŸA0 \†" and B \ †"ŸB 0 \†" are independent of ", we infer that jr'1" j and
jr'2" j on A \ †"ŸA0 \†" and on B \ †"ŸB 0 \†" respectively are uniformly
bounded by a positive constant independent of ". Then, using the fact that z" ���!

"!0
0

L2.R3;R3/-strong, we deduce that

lim
"!0

"c2

�

Z
†m"

jz"j2jr'm" j
2dx D 0;

hence, passing to the lower limit in (4.15), we get

lim inf
"!0

"

Z
†m"

�ij .z
m;"/eij .z

m;"/dx � lim inf
"!0

"

1 � �

Z
†m"

�ij .z
"/eij .z

"/dx;

and, letting � tend to 0,

lim inf
"!0

"

Z
†m"

�ij .z
m;"/eij .z

m;"/dx � lim inf
"!0

"

Z
†m"

�ij .z
"/eij .z

"/dx: (4.16)

Observing that
R
†m"

�ij .z
m;"/eij .z

m;"/dx D ˆ0;".z
m;"/; m D 1; 2, we deduce,

using the fact that A \ B D ;, the inequality (4.16), and the measure property of
F".z

" C u; :/, that

F i .u; A [ B/ D lim inf
"!0

.ˆ0;".z
"/C F".z

"
C u;A [ B//

� lim inf
"!0

�
"
X
mD1;2

Z
†m"

�ij .z
"/eij .z

"/dx C F".z
"
C u;A0 [ B 0/

�
� lim inf

"!0

�
"

Z
†1"

�ij .z
1;"/eij .z

1;"/dx C F".z
1;"
C u;A0/

�
C lim inf

"!0

�
"

Z
†1"

�ij .z
2;"/eij .z

2;"/dx C F".z
2;"
C u;B 0/

�
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D lim inf
"!0

.ˆ0;".z
1;"/C F".z

1;"
C u;A0//

C lim inf
"!0

.ˆ0;".z
2;"/C F".z

2;"
C u;A0//

� F i .u; A0/C F i .u; B 0/:

(3) Let .uk/k � H 1
�2
.R3;R3/ converging to some u in the strong topology of

H 1
�2
.R3;R3/. Then .uk/k � -converges to u and, since F s is lower semi-continuous

as an upper �-limit of a sequence of lower semi-continuous functionals, we have

lim inf
k!1

F s.uk; !/ � F
s.u; !/;

for every ! 2 O.R3/.
(4) Let ! 2 O.R3/ and u; v 2 W�2 such that uj! D vj! . Then

F".z
"
C u; !/ D F".z

"
C v; !/;

for every sequence .z"/" � H
1
�2
.R3;R3/ � -converging to 0. This implies that

F s.u; !/ D F s.v; !/.
(5) Let ' 2 C 1.R3/ such that 0 � ' � 1. Let u; v 2 W�2 , and ! 2 O.R3/. Then,

as F" is C 1-convex, we have, for every sequence .z"/" � H 1
�2
.R3;R3/ �-converging

to 0,

F".z
"
C 'uC .1 � '/v; !/ D F".'.z

"
C u/C .1 � '/.z" C v/; !/

� F".z
"
C u; !/C F".z

"
C v; !/: (4.17)

As ˆ0;" is nonnegative, we deduce from (4.17) that, for every " > 0,

lim sup
"!0

.ˆ0;".z
"/C F".z

"
C 'uC .1 � '/v; !//

� lim sup
"!0

.ˆ0;".z
"/C F".z

"
C u; !/Cˆ0;".z

"/C F".z
"
C v; !//

� lim sup
"!0

.ˆ0;".z
"/C F".z

"
C u; !//C lim sup

"!0

.ˆ0;".z
"/C F".z

"
C v; !//:

Taking the infimum over all sequences .z"/" � H 1
�2
.R3;R3/ � -converging to 0,

we infer that
F s.'uC .1 � '/v; !/ � F s.u; !/C F s.v; !/:

We can prove in a similar way that F s is convex. Thus F s is C 1-convex.

Now, according to the compactness theorem of [18], there exist a subsequence
."k/k and a countable dense family D � B.R3/ such that, for every u 2 W�2 and
every B 2 D , we have the following �-limit taken with respect to the topology � :

.�- lim
k!C1

G"k /.u; B/ D G.u;B/; (4.18)
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where G" is the functional defined in (4.4). Defining for any B 2 D the functional F
by

F.u;B/ D

´
G.u;B/ �ˆ.u/ if u 2 W�2 ;

C1 otherwise,

we deduce from (4.18) that F D F s D F i on W�2 �D . We extend F on W�2 �
B.R3/ by setting

F.u;B/ D sup
D2D;D� VB

F s.u;D/ D sup
D2D;D� VB

F i .u;D/: (4.19)

We define the family R.F / by

R.F / D
®
B 2 B.R3/I 8u 2 W�2 ; F

s
C.u; B/ D sup

D2D;D� VB

F s.u;D/

D inf
D2D;B� VD

F s.u;D/ D F s�.u; B/
¯
:

Then (see, for instance, [16, Proposition 14.14]) R.F / is a rich family in B.R3/

and F D F s D F sC D F
s
� D F

i
C D F

i
� D F

i on R.F /. We deduce that, for every
u 2 W�2 and every B 2 R.F /,

F.u;B/ D inf
°

lim sup
k!C1

.ˆ0;"k .z
"k /C F".z

"k C u;B//I z"k
�
����!
k!1

0
±

D inf
°

lim inf
k!C1

.ˆ0;"k .z
"k /C F".z

"k C u;B//I z"k
�
����!
k!1

0
±
: (4.20)

Let "0 denote any subsequence of ". Repeating the above arguments, we deduce
that there exist a subsequence ."0

k
/k , a functional F �, and a rich family R.F �/, such

that, for every u 2 W�2 and every B 2 R.F �/

F �.u; B/ D inf
°

lim sup
k!C1

.ˆ0;"0
k
.z"
0
k /C F"0

k
.z"
0
k C u;B//I z"

0
k

�
�����!
k!C1

0
±

D inf
°

lim inf
k!C1

.ˆ0;"0
k
.z"
0
k /C F"0

k
.z"
0
k C u;B//I z"

0
k

�
�����!
k!C1

0
±
: (4.21)

As R.F / \R.F �/ is still a rich family, we deduce that, for every u 2 W�2 ,

F.u; :/ D F �.u; :/ on R.F / \R.F �/: (4.22)

Since a countable intersection of rich families is also a rich family, we can repeat
the above process and deduce that there exists a rich family R in B.R3/ on which the
above limits coincide. We thus obtain that, with respect to the topology � , for every
u 2 W�2 and every B 2 R,

.�- lim
"!0

G"/.u; B/ D G.u;B/ D ˆ.u/C F.u;B/:
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We now prove the following.

Lemma 14. The functional F belongs to the class F .

Proof. Let! be any element of R.F /\O.R3/. AsF s.:;!/ is lower semi-continuous
with respect to the strong topology of H 1

�2
.R3;R3/ by virtue of Lemma 13 (3), we

have, according to (4.19), that the functional u 7! F.u; !/ is lower semi-continuous
with respect to the strong topology of H 1

�2
.R3;R3/. Owing to Lemma 13 (4), to the

fact that H 1
�2
.R3;R3/ � W�2 , and to (4.19), we have that F.u; !/ D F.v; !/, for

every ! 2 O.R3/ and every u; v 2 H 1
�2
.R3;R3/ such that uj! D vj! . According to

Lemma 13 (5), the functional u 7! F.u; !/ is convex and C 1-convex on W�2 and
therefore on H 1

�2
.R3;R3/. Let us now prove that, for every u 2 W�2 , ! 7! F.u; !/

is the restriction to O.R3/ of a nonnegative Borel measure still denoted F.u; !/.
Let u 2 W�2 . Let !1; !2 2 O.R3/ such that !1 \ !2 D ;. Let B 2 B.R3/ such

that B � !1 [ !2. We have

B D .B \ !1/ [ .B \ !2/ and B \ !i D B \ !i I i D 1; 2:

Then, using Lemma 13 (1), we get

F s.u; B/ D F s.u; .B \ !1/ [ .B \ !2//

� F s.u; B \ !1/C F
s.u; B \ !2/

� F.u; !1/C F.u; !2/;

thus
sup

B�!1[!2

F s.u; B/ � F.u; !1/C F.u; !2/;

from which we deduce that

F.u; !1 [ !2/ � F.u; !1/C F.u; !2/: (4.23)

Let u 2 W�2 . Let !1; !2 2 O.R3/ such that !1 \ !2 D ;. Let B1 2 B.R3/,
B2 2 B.R3/ and B 2 O.R3/ such that B1 [ B2 � B � B � !1 [ !2. We have that

B D .B \ !1/ [ .B \ !2/;

.B \ !1/ \ .B \ !2/ D ;;

Bi � B \ !i � B \ !i D B \ !i � !i I i D 1; 2:

Then, using Lemma 13 (2), we get

F.u; !1 [ !2/ � F
i .u; B \ !1/C F

i .u; B \ !2/

� F i .u; B1/C F
i .u; B2/;
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thus
F.u; !1 [ !2/ � sup

B1�!1

F i .u; B1/C sup
B2�!2

F i .u; B2/;

from which we deduce that

F.u; !1 [ !2/ � F.u; !1/C F.u; !2/: (4.24)

We deduce from (4.23) and (4.24) that F is additive on O.R3/. Let .!k/k be any
non-decreasing sequence of open sets in R.F / \ O.R3/ and set ! D

S
k !k . We

have, for every k, F.u; !k/ � F.u; !/, from which we deduce that

lim sup
k!1

F.u; !k/ � F.u; !/: (4.25)

On the other hand, using the Borel–Lebesgue theorem, we deduce that, for every
B � !, there exists k0 such that B � !k0 . Thus

F s.u; B/ � F.u; !k0/ � lim sup
k!1

F.u; !k/;

from which we deduce that

sup
B�!

F s.u; B/ � lim sup
k!1

F.u; !k/;

which yields
F.u; !/ � lim sup

k!1

F.u; !k/: (4.26)

Therefore, according to (4.25) and (4.26), F.u; !/ D lim supk!1 F.u; !k/.
Hence, F is � -additive on O.R3/. Consequently, for every u 2 W�2 (and particu-
larly for every u 2 H 1

�2
.R3;R3/), F.u; :/ is a positive Borel measure, which is outer

regular by definition.

Sinceˆ" and F" are quadratic, we deduce from (4.20) that F.:;!/ is quadratic for
every ! 2 O.R3/\R. Then, owing to Lemma 14, we deduce, applying Corollary 6,
that there exist a finite measure � 2 M0.R3/, a symmetric matrix .aij /i;jD1;2;3 of
Borel functions from R3 to R satisfying aij .x/�i�j � 0 for every � 2 R3 and for q.e.
x 2 R3, such that, for every u 2 H 1

�2
.R3;R3/ and every ! 2 O.R3/ \R,

F.u; !/ D

Z
!

aij .x/ui .x/uj .x/d�.x/

D h�u; ui

D

Z
!

uiujd�ij ;
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where, according to Remark 7, � D .�ij /i;jD1;2;3 with �ij D aij� C1RN n‚ıij ;
i; j D 1; 2; 3, ‚ being the set defined in (2.3). Let us now define

d" D sup
®
d.x;�/I x 2 spt1�1;"

¯
;

where d.x;�/ is the Euclidean distance from x to � and spt1�1;" denotes the sup-
port of the measure 1�1;" . Let u; v 2 W�2 with u D v a.e. in �. We denote in the
same way the extensions of u and v to H 1

�2
.R3;R3/. Let .u"/" 2 H 1

�2
.R3;R3/ such

that .u"/" � -converges to u. We suppose that

G.u;R3/ D ˆ.u/C F.u;R3/

D lim
"!0

G".u
";R3/

D lim
"!0

.ˆ".u
"/C F".u

";R3//: (4.27)

Let .v"/" � H 1
�2
.R3;R3/ such that .v"/" � -converges to v. We suppose that

lim
"!0

ˆ0;".v
"/ D 0: (4.28)

Let us define the sequence .w"/" by w" D '"u" C .1 � '"/v", where .'"/" is
some sequence in C 10 .R

3/ such that 0 � '" � 1 in R3, '" D 1 in � \ spt1�1;" ,
"jr'"j

2 � 2
p
", and '" D 0 whenever d.x;�/ > d" C "1=4. Then .w"/" � -converges

to v and, using �-convergence properties, we deduce that

ˆ.v/C F.v;R3/ � lim inf
"!0

.ˆ".w
"/C F".w

";R3//: (4.29)

Since w" D u" q.e. on spt1�1;" , we have, according to (2.2),

F".u
";R3/ D F".w

";R3/: (4.30)

Using the form (4.11) and the convexity of Q, we have, for every � 2 .0; 1/,

ˆ".w
"/ �

1

1 � �

Z
�

Q.'"e.u
"/C .1 � '"/e.v

"//dx

C
"

1 � �

Z
†"

Q.'"e.u
"/C .1 � '"/e.v

"//dx

C
1

�

Z
�

Q..u" � v"/˝r'"/dx

C
"

�

Z
†"

Q..u" � v"/˝r'"/dx;
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and, since 0 � '" � 1, we have, using the convexity of Q and the coercivity property
(1.2b), that

ˆ".w
"/ �

1

1 � �

Z
�

'"Q.e.u
"//dx

C
"

1 � �

Z
†"

'"Q.e.u
"//dx

C
1

1 � �

Z
�

.1 � '"/Q.e.v
"//dx

C
"

1 � �

Z
†"

.1 � '"/Q.e.v
"//dx

C
c2

�

Z
�

ju" � v"j2jr'"j
2dx

C
"c2

�

Z
†"

ju" � v"j2jr'"j
2dx;

where c2 is the constant appearing in (1.2b). Then, taking into account the properties
of '", we deduce that

ˆ".w
"/ �

1

1 � �
ˆ".u

"/

C
"

1 � �

Z
†"

�ij .v
"/eij .v

"/dx

C
"1=2C

�

Z
†"

ju" � v"j2dx; (4.31)

where C is a positive constant independent of " and �. From (4.27)–(4.31) it follows
that

ˆ.v/C F.v;R3/ �
1

1 � �
.ˆ.u/C F.u;R3//:

As ˆ.u/ D ˆ.v/, we obtain, as �! 0, that F.v;R3/ � F.u;R3/ and, changing
the role of u and v, that F.u;R3/ � F.v;R3/. Thus

F.u;R3/ D F.v;R3/ D

Z
R3
vivjd�ij ;

which implies that spt�ij � �, 8i; j D 1; 2; 3.
Let u 2 H 1

�2
.�;R3/. We have the following inequality:

0 � ˆ.u/C

Z
RN

uiujd�ij � lim inf
"!0

.ˆ".u/C F".u;R
3//: (4.32)

Then, taking u 2 H 1
0 .�;R

3/, we have F".u;R3/ D 0, for any " > 0, and

lim inf
"!0

ˆ".u/ D ˆ.u/:
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We deduce, using (4.32), thatZ
�[�2

uiujd�ij D 0; 8i; j D 1; 2; 3:

Therefore, spt�ij � �1,‚� �1 and �ij D aij�C1�1n‚ıij , 8i; j D 1;2; 3.

Let us write the associated limit problem obtained as "! 0.

Corollary 15. Problem (1.4) admits a unique solution u" which � -converges to u0 2
H�;�2.�;R

3/ which is the unique solution of the minimization problem

min
u2L2.R3;R3/

²
F0.u/ � 2

Z
�

f:udx

³
;

whereH�;�2.�;R
3/ is the space of admissible displacements defined in (1.6) and F0

is the functional defined in (1.5). This solution coincides with the unique solution of
the elasticity system8̂<̂

:
��ij;j .u/ D fi in �I i D 1; 2; 3;

�ij .u/nj C �ijuj D 0 on �1;

u D 0 on �2:

(4.33)

Moreover, we have lim"!0 F".u
"/ D F0.u

0/.

Proof. Observe that the functional F" can be written as F".u/DG".u;R3/, for every
u 2L2.R3;R3/. As the Dirichlet condition uD 0 on �1;" is prescribed in the capacity
sense, we can prove (see, for instance, [30]) that, using the classical Poincaré and Korn
inequalities, problem (1.4) has a unique solution u" 2 H 1

0 .�";R
3/. Using Proposi-

tion 8 and Theorem 12, we deduce, according to [16, Theorem 7.8], that the whole
sequence .u"/" � -converges to the unique solution u0 2H�;�2.�;R

3/ of the problem

min
u2L2.R3;R3/

²
F0.u/ � 2

Z
�

f:udx

³
D lim
"!0

min
u2L2.�";R3/

²
F".u/ � 2

Z
�

f:udx

³
;

lim"!0 F".u
"/ D F0.u

0/, and u0 coincides with the unique solution of problem
(4.33).

5. Special cases

5.1. Periodic case

Let V � R2 and p W V ! R3 be a parameterization of �1 such that p is a one-to-one
mapping of class C 2 and the rank of rp.#/ is 2 for each point # D .#1; #2/ 2 V . For
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the sake of simplification, we suppose that p.V / D �1. Let Y D .0; 1/2 and k 2 Z2.
We set

Y k" D k"C "Y;

I" D
®
k 2 Z2I Y k" � V

¯
:

(5.1)

According to (5.1), we see that the measure jV n V"j of the set V n V", where
V" D

S
k2I"

Y k" , tends to 0 as "! 0 so that j�1 n
S
k2I"

p.Y k" /j tends to 0 as "! 0

and �1 �
S
k2I"

p.Y k" /. Let us consider a positive 1-periodic function h 2 C 2.Y /.
We consider here layers †" of the form

†" D

²
x D s C tn.s/I s D p.#/; 0 < t < "h

�#
"

�
; # 2 V"

³
:

Then, according to Theorem 12, there exist a rich family R � B.R3/ and a
symmetric matrix � D .�ij /i;jD1;2;3 of Borel measures �ij , which are absolutely
continuous with respect to the capacity Cap, having the same support contained in �1,
and satisfying �ij .B/�i�j � 0, 8� 2 R3, 8B 2 B.R3/, such that, for every u 2 W�2
and every ! 2 R \O.R3/, we have the following equality:

inf
²

lim inf
"!0

ˆ0;".z
"/ W z" C u D 0 on ! \

°
t D "h

�#
"

�±
I # 2 V"; z

" �
���!
"!0

0

³
D

Z
�1\!

uiujd�ij ; (5.2)

where ˆ0;" is defined in (4.7). Since †" has a periodic structure, the problem

inf
²

lim inf
"!0

ˆ0;".z
"/ W z" C u D 0 on ! \

°
t D "h

�#
"

�±
I # 2 V"; z

" �
���!
"!0

0

³
;

is invariant by translation on V" and the measure�ij ; i;j D 1;2;3, is the Haar measure
on �1. Then

�ij D Kijd�; (5.3)

on �1, where d� is the surface measure on �1 which is given by the Riemannian
metric and Kij ; i; j D 1; 2; 3, are constants in R satisfying Kij �i�j � 0, 8� 2 R3.
Our purpose is to identify the constants Kij . Let us denote Zh the set defined by

Zh D
®
y D .y1; y2; y3/ 2 R3I y0 D .y1; y2/ 2 Y; y3 2 .0; h.y

0//
¯
:

We consider, for m D 1; 2; 3, the following problem:8̂̂̂̂
<̂
ˆ̂̂:

div.wm/ D 0 in Zh;

wm D em on ¹y3 D h.y0/º;

wm D 0 on ¹y3 D 0º;

wm is Y -periodic,
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where em D .ı1m; ı2m; ı3m/; m D 1; 2; 3. Let th D maxy2Y h.y/ and H > th be a
fixed number. Let us now denote ZH the set defined by

ZH D
®
y 2 R3I y0 2 Y; y3 2 .h.y

0/;H/
¯
:

We consider, for m D 1; 2; 3, the following problem:8̂̂̂̂
<̂
ˆ̂̂:

div. zwm/ D 0 in ZH ;

zwm D em on ¹y3 D h.y0/º;

zwm D 0 on ¹y3 D H º;

zwm is Y -periodic.

(5.4)

Let us define the layer †H;" by

†H;" D

²
x D s C tn.s/I s D p.#/; "h

�#
"

�
< t < "H I # 2 V"

³
;

and the sequence .zm;"0 /"; m D 1; 2; 3, of test-functions, by

z
m;"
0 .x/ D

´
wm.p

�1.s/
"

; t
"
/ if x D s C tn.s/ 2 †";

zwm.p
�1.s/
"

; t
"
/ if x D s C tn.s/ 2 †H;":

(5.5)

The properties of the sequence .zm;"0 /"; m D 1; 2; 3, are stated in the following.

Lemma 16. We have

(1) .zm;"0 /" � H
1
�2
.R3;R3/ and .zm;"0 /" � -converges to 0.

(2) lim"!0ˆ0;".z
m;"
0 / D Cmj�1j, where

Cm D

Z
Zh

�ij .w
m/eij .w

m/dydt:

Proof. (1) Observing that zm;"0 D em on ¹t D "h.p
�1.s/
"

/º, and zm;"0 D 0 on ¹t D 0º
[ ¹t D "H º, we deduce that .zm;"0 /" � H

1
�2
.R3;R3/, and, since zm;"0 D 0 in �,

z
m;"
0 ���*

"!0
0 H 1.�;R3/-weak. On the other hand,Z

R3
jz
m;"
0 j

2dx D

Z
†"[†H;"

jz
m;"
0 j

2dx

D

X
k2I"

Z
p.Y k" /

Z "H

0

jz
m;"
0 j

2.1C t~.s; t//dtds

D

X
k2I"

Z
p.Y k" /

Z "h.p
�1.s/
" /

0

ˇ̌̌̌
wm

�
p�1.s/

"
;
t

"

�ˇ̌̌̌2
.1C t~.s; t//dtds

C

X
k2I"

Z
p.Y k" /

Z "H

"h.p
�1.s/
" /

ˇ̌̌̌
zwm
�
p�1.s/

"
;
t

"

�ˇ̌̌̌2
.1C t~.s; t//dtds
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D

X
k2I"

Z
Y k"

Z "h.#" /

0

ˇ̌̌̌
wm

�
#

"
;
t

"

�ˇ̌̌̌2
.1C t~.p.#/; t//Jdtd#

C

X
k2I"

Z
Y k"

Z "H

"h.#" /

ˇ̌̌̌
zwm
�
#

"
;
t

"

�ˇ̌̌̌2
.1C t~.p.#/; t//Jdtd#; (5.6)

where ~ is the curvature of �1 and J D jdet.r1r2r3/j with .r1r2/ D rp and r3 D
n.p�1.s//. Observing that J and ~ are uniformly bounded by some positive constant
independent of ", we deduce from (5.6) thatZ

R3
jz
m;"
0 j

2dx � C
X
k2I"

Z
Y k"

Z "h.#" /

0

ˇ̌̌̌
wm

�
#

"
;
t

"

�ˇ̌̌̌2
.1C t~.p.#/; t//dtd#

C C
X
k2I"

Z
Y k"

Z "H

"h.#" /

ˇ̌̌̌
zwm
�
#

"
;
t

"

�ˇ̌̌̌2
.1C t~.p.#/; t//dtd#

� C
X
k2I"

"3
Z
Zh

jwm.y; t/j2.1C "t/dydt

C C
X
k2I"

"3
Z
ZH

j zwm.y; t/j2.1C "t/dydt;

from which we deduce that

lim
"!0

Z
R3
jz
m;"
0 j

2dx D 0:

(2) We have

lim
"!0

ˆ0;".z
m;"
0 / D lim

"!0
"

Z
†"

�ij .z
m;"
0 /eij .z

m;"
0 /dx

D lim
"!0

"
X
k2I"

Z
p.Y k" /

Z "h.p
�1.s/
" /

0

A
m;"
ij B

m;"
ij .1C t~.s; t//dtds

(5.7)

where

A
m;"
ij D {�ij

�
wm

�
p�1.s/

"
;
t

"

��
;

B
m;"
ij D {eij

�
wm

�
p�1.s/

"
;
t

"

��
;
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where {�ij and {eij ; i; j D 1; 2; 3, are, respectively, the components of stress and defor-
mation tensors in the local basis r1; r2; r3, with

{�ij .u/ D aijkl{ekl.u/;

{eij .u/ D
1

2
.rjui Criuj /;

(5.8)

where rjui D
@ui
@sj
� ul�

l
ij ; � lij D �

l
j i D

@sl

@xk

@2xk
@si@sj

being the Christoffel symbol of
the second kind with

x.s/ D s C tn D s1r1 C s
2r2 C t r3:

Let us set p�1.s/D # D "y0 C "k; k 2 Z2, and y3 D t
"
. Then, for every # 2 Y k" ;

k 2 Z2, we have that J.#/ D detrp."k/CO."/ and

X
k2I"

Z
p.Y k" /

Z "h.p
�1.s/
" /

0

A
m;"
ij B

m;"
ij .1C t~.s; t//dtds

D

X
k2I"

Z
Y k"

Z "h.#" /

0

C
m;"
ij D

m;"
ij .1C t~/J.#/dtd#

D

X
k2I"

"3
Z
Zh

�ij .w
m/eij .w

m/.1C "y3~/J."y
0
C "k/dy

D "jdetrp."k/jCm CO."/"; (5.9)

where

C
m;"
ij D �ij

�
wm

�
#

"
;
t

"

��
;

D
m;"
ij D eij

�
wm

�
#

"
;
t

"

��
:

Thus, combining (5.7) and (5.9), we deduce that

lim
"!0

ˆ0;".z
m;"
0 / D lim

"!0

X
k2I"

"2jdetrp."k/jCm D Cmj�1j:

The constants Kij ; i; j D 1; 2; 3, in equality (5.3) are identified in the following.

Theorem 17. We have

Klm D

�Z
Zh

�ij .w
l/eij .w

m/dydt

�
ılm:
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Proof. According to (5.2) and (5.3), we have

inf
°

lim inf
"!0

ˆ0;".z
"/I z" C u D 0 on

°
t D "h

�#
"

�±
; 8# 2 V"; z

" �
���!
"!0

0
±

D Kij

Z
�1

uiujd�: (5.10)

Let u D �em on †". We deduce from (5.10) that

Kmmj�1j D inf
°

lim inf
"!0

ˆ0;".z
"/I z" D em on

°
t D "h

�#
"

�±
; 8# 2 V"; z

" �
���!
"!0

0
±
;

from which we deduce, using Lemma 16, that

Kmmj�1j � Cmj�1j;

hence
Kmm � Cm: (5.11)

Let .z"/"�H 1
�2
.R3;R3/ such that z"D em on ¹t D "h.#

"
/º and .z"/" � -converges

to 0. We have from the definition of the subdifferentiability of convex functionals that

ˆ0;".z
"/ � ˆ0;".z

"
0/C 2"

Z
†"

�ij .z
m;"
0 /eij .z

"
� z

m;"
0 /dx: (5.12)

Using Green’s formula, we deduce that

"

Z
†"

�ij .z
m;"
0 /eij .z

"
� z

m;"
0 /dx D �"

Z
†"

�ij;j .z
m;"
0 /.z"i � z

m;"
0;i /dx

C "

Z
�1[�1;"

�ij .z
m;"
0 /nj .z

"
i � z

m;"
0;i /ds: (5.13)

As z" � zm;"0 D 0 on �1;" and zm;"0 D 0 on �1, we have that

"

Z
�1[�1;"

�ij .z
m;"
0 /nj .z

"
i � z

m;"
0;i /ds D "

Z
�1

�ij .z
m;"
0 /nj z

"
i ds: (5.14)

Then, using the expression (5.5) of zm;"0 and the trace theorem, we infer thatˇ̌̌̌
"

Z
�1

�ij .z
m;"
0 /nj z

"
i dx

ˇ̌̌̌
�

�
"

Z
�1

.�ij .z
m;"
0 /nj /

2ds

�1=2�
"

Z
�1

.z
m;"
i /2ds

�1=2
� C

�Z
Y

.�ij .w
m/nj /

2dy

�1=2�
"

Z
�

jrz
m;"
i j

2dx

�1=2
;

from which we deduce that

lim
"!0

"

Z
�1[�1;"

�ij .z
m;"
0 /nj .z

"
i � z

m;"
0;i /ds D 0: (5.15)
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Besides, an easy computation implies that

"�ij;j .z
m;"
0 / ���*

"!0
1�1

Z
Zh

�ij;j .w
m/dydt

D 0; (5.16)

in L2.R3/-weak, where 1�1 is the characteristic function of �1. Thus, combining
(5.13), (5.15), and (5.16), we infer that

lim
"!0

"

Z
†"

�ij .z
m;"
0 /eij .z

"
� z

m;"
0 /dx D 0;

and, passing to the lower limit in (5.12), we deduce that

lim inf
"!0

ˆ0;".z
"/ � lim inf

"!0
ˆ0;".z

"
0/ D Cmj�1j: (5.17)

Now, taking in (5.17) the infimum over all sequences .z"/" � H 1
�2
.R3;R3/ such

that z" D em on
®
t D "h.#

"
/
¯

and z"
�
���*
"!0

0, we deduce that

Kmmj�1j � Cmj�1j;

hence
Kmm � Cm: (5.18)

We conclude from (5.11) and (5.18) that Kmm D Cm. Taking u D �.e1 C e2/ on
†", we deduce from (5.10) that

.K11 C 2K12 CK22/j�1j D inf
°

lim inf
"!0

ˆ0;".z
"/I z" D e1 C e2 on

°
t D "h

�#
"

�±
;

8# 2 V"; and z"
�
���!
"!0

0
±

� lim inf
"!0

ˆ0;".z
1;"
0 C z

2;"
0 /: (5.19)

As Z
Zh

�ij .w
m/eij .w

l/dydt D 0 for m ¤ l;

we have
lim inf
"!0

ˆ0;".z
1;"
0 C z

2;"
0 / D j�1j.C1 C C2/;

hence, according to (5.19),
K12 � 0: (5.20)
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Let .z"/" � H 1
�2
.R3;R3/ such that z" D e1 C e2 on

®
t D "h.#

"
/
¯

and z"
�
���*
"!0

0.
We have from the definition of the subdifferentiability of convex functionals that

lim inf
"!0

ˆ0;".z
"/ � lim inf

"!0

�
ˆ0;".z

1;"
0 C z

2;"
0 /

C 2"

Z
†"

�ij .z
1;"
0 C z

2;"
0 /eij .z

"
� .z

1;"
0 C z

2;"
0 //dx

�
� j�1j.C1 C C2/;

from which we deduce that
K12 � 0: (5.21)

Thus, combining (5.20) and (5.21), we deduce that K12 D 0. Doing the same for
K23, we deduce that Klm D 0 for l ¤ m.

5.2. Case of thickness "h.s/

We suppose here that

†" D
®
s C tn.s/I s 2 �1; 0 < t < "h.s/

¯
;

where h is a positive continuous function on �1. Then, according to Theorem 12,
there exist a rich family R � B.R3/ and a symmetric matrix � D .�ij /i;jD1;2;3 of
Borel measures�ij , which are absolutely continuous with respect to the capacity Cap,
having the same support contained in �1, and satisfying �ij .B/�i�j � 0, 8� 2 R3,
8B 2 B.R3/, such that, for every u 2 W�2 and every ! 2 R \O.�1/, we have

inf
°

lim inf
"!0

ˆ0;".z
"/I z" C u D 0 on ! � ¹t D "h.s/º; z"

�
���!
"!0

0
±
D

Z
!

uiujd�ij :

(5.22)
The main result in this subsection reads as follows.

Theorem 18. The matrix of measures .�ij /i;jD1;2;3 is given by

�ij D �i .s/
ds

h.s/
ıij I i; j D 1; 2; 3:

For homogeneous and isotropic materials

�i D

´
E

.1C�/
for i D 1; 2;

E.1��/
.1C�/.1�2�/

for i D 3:

Proof. We consider the sequence .wm;"/"; m D 1; 2; 3, defined, for x D s C tn.s/ 2
†", by wm;".x/ D em t

"h.s/
, and the sequence . zwm;"/"; m D 1; 2; 3, defined, for x D
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s C tn.s/ 2 †";H , by zwm;".x/ D em t�"H
".h.s/�H/

, where H is a positive number such
that H > sups2�1 h.s/ and

†";H D
®
s C tn.s/I s 2 �1; "h.s/ < t < "H

¯
:

Let ! 2 R \ O.�1/. Let ı > 0 be a small parameter. We define the open set
!ı � �1 by

!ı D
®
s 2 �1I d.s; !/ < ı

¯
;

where d.s; !/ is the distance between s and ! in curvilinear coordinates on �1. We
define the auxiliary layers

†";! D
®
s C tn.s/I s 2 !; 0 < t < "h.s/

¯
;

†";!;H D
®
s C tn.s/I s 2 !; "h.s/ < t < "H

¯
;

†";!ı D
®
s C tn.s/I s 2 !ı ; 0 < t < "h.s/

¯
;

†";!ı ;H D
®
s C tn.s/I s 2 !ı ; "h.s/ < t < "H

¯
:

Let 'ı;" be a smooth function such that 0 � 'ı;" � 1 in R3 and

'ı;" D

´
1 in †";! [ �1;";! [†";!;H ;

0 in †" n†";!ı [†";!ı ;H ;

where �1;";! D @†";! \ @†";!;H . Let us define the sequence .zm;"0;!ı
/"; m D 1; 2; 3,

by

z
m;"
0;!ı
D

´
'ı;"w

m;" in †";!ı ;

'ı;" zw
m;" in †";!ı ;H ;

so that zm;"0;!ı
2 H 1

�2
.R3;R3/ and zm;"0;!

�
���!
"!0

0. We then compute

lim
"!0

ˆ0;".z
m;"
0;!ı

/ D lim
"!0

"

Z
†";!ı

�ij .z
m;"
0;!ı

/eij .z
m;"
0;!ı

/dx (5.23a)

D lim
"!0

"

Z
†";!

�ij .w
m;"/eij .w

m;"/dx (5.23b)

C lim
"!0

"

Z
†";!ı n†";!

�ij .'ı;"w
m;"/eij .'ı;"w

m;"/dx: (5.23c)

We have that

lim
"!0

"

Z
†";!

�ij .w
m;"/eij .w

m;"/dx

D lim
"!0

"

Z
!

Z "h.s/

0

{�ij .w
m;"/{eij .w

m;"/.1C t~/dtds

D lim
"!0

"

Z
!

�m.s/

Z "h.s/

0

ˇ̌̌̌
@w

m;"
m

@t

ˇ̌̌̌2
.1C t~/dtds
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D lim
"!0

"2
Z
!

�m.s/

Z h.s/

0

1

"2h2.s/
.1C "t~/dtds

D

Z
!

�m.s/

h.s/
ds; (5.24)

where {�ij and {eij are defined in (5.8), ~ is the curvature of �1, and �m.s/; m D
1; 2; 3, are material coefficients. On the other hand, using a convexity argument and
the coercivity property (1.2b), we infer that, for every � 2 .0; 1/,

"

Z
†";!ı n†";!

�ij .'ı;"w
m;"/eij .'ı;"w

m;"/dx

�
"

1 � �

Z
†";!ı n†";!

�ij .w
m;"/eij .w

m;"/dx

C
"C

�

Z
†";!ı n†";!

jwm;"j2jr'ı;"j
2dx

�
"

1 � �

Z
†";!ı n†";!

�ij .w
m;"/eij .w

m;"/dx

C
"C

�ı2

Z
†";!ı n†";!

jwm;"j2dx;

where C is a positive constant independent of ". Then, taking ı D
p
", we deduce,

using (5.24) and the fact that j!ı n !j ! 0 as ı ! 0, that

lim
"!0

"

1 � �

Z
†";!ı n†";!

�ij .w
m;"/eij .w

m;"/dx

D lim
"!0

"

1 � �

Z
!ın!

Z "h.s/

0

{�ij .w
m;"/{eij .w

m;"/.1C t~/dtds

D lim
"!0

"

1 � �

Z
!ın!

�m.s/

Z "h.s/

0

ˇ̌̌̌
@w

m;"
m

@t

ˇ̌̌̌2
.1C t~/dtds

D lim
"!0

"2

1 � �

Z
!ın!

�m.s/

Z h.s/

0

1

"2h2.s/
.1C "t~/dtds

D 0;

and, since wm;" ���!
"!0

0 L2.R3;R3/-strong,

lim
"!0

"C

�ı2

Z
†";!ı n†";!

jwm;"j2dx D lim
"!0

C

�

Z
†";!ı n†";!

jwm;"j2dx D 0;

hence
lim
"!0

"

Z
†";!ı n†";!

�ij .'ı;"w
m;"/eij .'ı;"w

m;"/dx D 0: (5.25)
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Thus, replacing in (5.23b) and (5.23c) by the limits obtained in (5.24) and (5.25)
respectively, we get

lim
"!0

ˆ0;".z
m;"
0;!ı

/ D

Z
!

�m.s/

h.s/
ds:

According to (5.22), we have, using to the above equality, that, for every ! 2
R \O.�1/,

�mm.!/ � lim
"!0

ˆ0;".z
m;"
0;!ı

/ D

Z
!

�m.s/

h.s/
ds: (5.26)

Let ! 2 R \ O.�1/. Let .zm;"/"; m D 1; 2; 3, be any sequence in H 1
�2
.R3;R3/

such that zm;" D em on ! � ¹t D "h.s/º and z"
�
���!
"!0

0. Let us consider the subdiffer-
ential inequality

ˆ0;".z
m;"/ � ˆ0;".z

m;"
0;!ı

/C 2"

Z
†"

�ij .z
m;"
0;!ı

/eij .z
m;"
� z

m;"
0;!ı

/dx: (5.27)

By calculations similar to those carried out in (5.13)–(5.16) (in the previous sub-
section) we deduce that

lim
"!0

"

Z
†"

�ij .z
m;"
0;!ı

/eij .z
m;"
� z

m;"
0;!ı

/dx D 0;

which implies, passing to the lower limit in (5.27), that

lim inf
"!0

ˆ0;".z
m;"/ � lim inf

"!0
ˆ0;".z

m;"
0;!ı

/;

thus, taking the infimum over all sequences .zm;"/" satisfying the above properties,
we get

�mm.!/ �

Z
!

�m.s/

h.s/
ds: (5.28)

Therefore, according to (5.26) and (5.28), we have that

�mm.!/ D

Z
!

�m.s/

h.s/
ds:

Moreover, replacing zm;"0;!ı
by zm;"0;!ı

C z
l;"
0;!ı

; l ¤ m, we prove as in the previous
subsection, that �ml.!/ D �lm.!/ D 0. Thus

�ij D �i .s/
ds

h.s/
ıij ; 8i; j D 1; 2; 3:

If the material is homogeneous and isotropic with

aijkl D
E

2.1C �/

²
ıikıjl C ıilık C

2�

.1 � 2�/
ıij ıkl

³
;

where E > 0 is the Young modulus and � 2 .0; 1=2/ is the Poisson ratio, then we
obtain, after some computations, that �m D E

.1C�/
formD 1; 2, and �m D

E.1��/
.1C�/.1�2�/

for m D 3.
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5.3. Fractal layers

Let R3� be the halfspace defined by

R3� D
®
x D .x1; x3; x3/ 2 R3I x3 < 0

¯
:

Let � � R3� be a bounded open subset with Lipschitz continuous boundary @�.
We set

�1 D @� \
®
x3 D 0

¯
;

�2 D @�n�1:

We suppose that �1 ¤ ;. Let N be a positive integer and  1; : : : ;  N be a finite
family of contractive similitudes on R2 with ratio 0 < � < 1. There exists a unique
compact subset ƒ � R2, such that

ƒ D

N[
iD1

 i .ƒ/:

We suppose that the family . i /iD1;:::;N satisfies the following open set condition:
there exists a bounded open subset U � R2 such that

 i .U / � U 8i D 1; : : : ; N;

 i .U / \  j .U / D ; if i ¤ j:

This condition prevents distinct copies  i .ƒ/ from having overlapping interi-
ors. The real number d D � lnN= ln � is the similarity dimension of ƒ. Moreover,
there exists a unique Borel regular measure $ with unit mass which is invariant for
¹ 1; : : : ;  N º, that is Z

ƒ

'd$ D

NX
iD1

��d
Z
ƒ

' ı  id$; (5.29)

for every integrable ' W ƒ! R, and $ is supported on ƒ. Indeed, the measure $ is
given by

$ D
Hdbƒ

Hd .ƒ/
;

where Hd is the d -dimensional Hausdorff measure. For the definitions of the self-
similar fractals, their dimensions and their Hausdorff measures, we refer to [23]. We
suppose here that d > 1 and ƒ � �1.
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Let us denote x0 D .x1; x2/ and D.x0; R/ the disk of radius R > 0 centered at x0.
Let x00 2 ƒ be a fixed point, we define, for every positive integer k and every indices
i1; : : : ; ik 2 ¹1; 2; : : : ; N º,

 i1;:::;ik D  i1 ı � � � ı  ik ;

x0i1;:::;ik D  i1;:::;ik .x
0
0/;

Di1;:::;ik D D.x
0
i1;:::;ik

; �dh/;

(5.30)

and set
Dk D

[
i1;:::;ik2¹1;2;:::;N º

Di1;:::;ik :

Let � 2 C 1.Œ0; 1�/ such that

� > 0; �.1/ D 1; and
Z 1

0

t

�.t/
dt � 1=2:

For every k 2 N, we define the function hk on �1 by

hk.x
0/ D

8<:
P
i1;:::;ik2¹1;:::;N º

�
�
jx0�x0

i1;:::;ik
j

p
�dk

�
1Di1;:::;ik if x0 2 Dk;

1 if x0 2 �1nDk :

We define the layer

†k D
®
x 2 R3I x0 2 �1; 0 < x3 < "khk.x

0/
¯
;

where "k D �k . Then, according to Theorem 12, there exist a rich family R �B.R3/

and a symmetric matrix � D .�ij /i;jD1;2;3 of Borel measures �ij , which are abso-
lutely continuous with respect to the capacity Cap, having the same support contained
in �1, and satisfying �ij .B/�i�j � 0, 8� 2 R3, 8B 2 B.R3/, such that, for every
u 2 W�2 and every ! 2 R \O.�1/, we have

inf
°

lim inf
k!1

ˆ0;"k .z
k/I zk C u D 0 on ! � ¹x3 D "khk.x0/º; zk

�
����!
k!1

0
±

D

Z
!

uiujd�ij ; (5.31)

where
ˆ0;"k .z

k/ D "k

Z
†k

�ij .z
k/eij .z

k/dx:

The main result in this subsection is stated in the following.
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Theorem 19. The matrix of measures .�ij /i;jD1;2;3 is given by

�ij D

�
�i .x

0/dx0j�1 C
2�.c � 1=2/

Hd .ƒ/
�i .s/dHd .s/jƒ

�
ıij I i; j D 1; 2; 3;

where c D
R 1
0

r
�.r/

dr and �i .s/; i D 1; 2; 3, are material coefficients. For homoge-
neous and isotropic materials,

�i D

´
E

.1C�/
for i D 1; 2;

E.1��/
.1C�/.1�2�/

for i D 3:

Proof. We consider the sequence .wm;k/k; m D 1; 2; 3, defined, for every x 2 †k ,
by wm;k.x/ D em x3

"khk.x
0/

, and the sequence . zwm;k/k;m D 1; 2; 3, defined, for every

x 2 †k;H , by zwm;k.x/ D em x3�"kH
"k.hk.x

0/�H/
, where H is a positive number such that

H > sups2Œ0;1� �.s/ and

†k;H D
®
x 2 R3I x0 2 �1; "khk.x

0/ < x3 < "kH
¯
:

Let ! 2R \O.�1/. Let .ık/k be a sequence of small positive numbers such that
limk!1 ık D 0. We define, for every k 2 N, the open set !ık � �1 by

!ık D
®
x0 2 �1I d.x

0; !/ < ık
¯
;

We define the layers

†k;! D
®
xI x0 2 !; 0 < x3 < "kh.s/

¯
;

†k;!;H D
®
xI x0 2 !; "khk.x

0/ < x3 < "kH
¯
;

†k;!ık
D
®
xI x0 2 !ık ; 0 < x3 < "kh.s/

¯
;

†k;!ık ;H
D
®
xI x0 2 !ık ; "khk.x

0/ < x3 < "kH
¯
:

Let 'k be a smooth function such that 0 � 'k � 1 in R3 and

'k D

´
1 in †k;! [ �1;"k ;! [†k;!;H ;

0 in †" n†k;!ık [†k;!ık ;H ;

where �1;"k ;! D @†k;! \ @†k;!;H . Let us define, for m D 1; 2; 3, the sequence
.z
m;k
0 /k by

z
m;k
0 D

´
'kw

m;k in †k;!ık ;

'k zw
m;k in †k;!ık ;H ;
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so that zm;k0 2 H 1
�2
.R3;R3/ and zm;k0

�
����!
k!1

0. We then compute

lim
k!1

"k

Z
†k

�ij .z
m;k
0 /eij .z

m;k
0 /dx

D lim
k!1

"k

Z
!\Dk

Z "khk.x
0/

0

�ij .w
m;k/eij .w

m;k/dx

C lim
k!1

"k

Z
!nDk

Z "k

0

�ij .w
m;k/eij .w

m;k/dx

C lim
k!1

"k

Z
!ık n!

Z "k

0

�ij .'kw
m;k/eij .'kw

m;k/dx:

As in the previous subsection, we can easily prove that, for ık D
p
"k ,

lim
k!1

"k

Z
!ık n!

Z "k

0

�ij .'kw
m;k/eij .'kw

m;k/dx D 0:

On the other hand, passing in polar coordinates

r D
jx0 � x0i1;:::;ik j

�dk
and � 2 Œ0; 2��;

we obtain, using the fact that �dk D 1

Nk
, that

lim
k!1

"k

Z
!\Dk

Z "khk.x
0/

0

�ij .z
m;k
0 /eij .z

m;k
0 /dx

D lim
k!1

X
i1;:::;ik2¹1;2;:::;N º

Z
!\Di1;:::;ik

�m.x
0/

�
� jx0�x0

i1;:::;ik
j

p
�dk

�dx0
D lim
k!1

X
i1;:::;ik2¹1;2;:::;N º;
Di1;:::;ik�ƒ\!

2��dk�m.x
0
i1;:::;ik

/

Z 1

0

r

�.r/
dr

D 2�

Z 1

0

r

�.r/
dr lim

k!1

X
i1;:::;ik2¹1;2;:::;N º;
Di1;:::;ik�ƒ\!

�m.x
0
i1;:::;ik

/

N k
:

Then, thanks to property (5.29) which states that the measure Hd bƒ

Hd .ƒ/
is invariant

for ¹ 1; : : : ;  N º, we deduce from the ergodic theorem of [21, Theorem 6.1], using
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notations (5.30), that

2�

Z 1

0

r

�.r/
dr lim

k!1

X
i1;:::;ik2¹1;2;:::;N º;
Di1;:::;ik�ƒ\!

�m.x
0
i1;:::;ik

/

N k

D 2�

Z 1

0

r

�.r/
dr lim

k!1

X
i1;:::;ik2¹1;2;:::;N º;
Di1;:::;ik�ƒ\!

�m. i1;:::;ik .x
0
0//

N k

D
2�

Hd .ƒ/

Z 1

0

r

�.r/
dr

Z
ƒ\!

�m.s/dHd .s/: (5.32)

We obtain in similar way that

lim
k!1

"k

Z
!nDk

Z "k

0

�ij .w
m;k/eij .w

m;k/dx

D lim
k!1

"k

Z
!

Z "k

0

�ij .w
m;k/eij .w

m;k/dx

� lim
k!1

"k

Z
!\Dk

Z "k

0

�ij .w
m;k/eij .w

m;k/dx

D

Z
!

�m.x
0/dx0 �

2�

Hd .ƒ/

Z
ƒ\!

�m.s/dHd .s/: (5.33)

Now, according to (5.31), (5.32), and (5.33), we have, for every ! 2 R \O.�1/,

�mm.!/ � lim
k!1

ˆ0;"k .z
m;k
0 /

D

Z
!

�m.x
0/dx0 C

2�.c � 1=2/

Hd .ƒ/
�i .s/

Z
!\ƒ

�m.s/dHd .s/: (5.34)

Let ! 2 R \ O.�1/. Let .zm;k/k; m D 1; 2; 3, be any sequence in H 1
�2
.R3;R3/

such that zm;k D em on ! � ¹x3 D "khk.x0/º and zm;k
�
����!
k!1

0. Let us consider the
subdifferential inequality

ˆ0;"k .z
m;k/ � ˆ0;"k .z

m;k
0 /C 2"k

Z
†k

�ij .z
m;k
0 /eij .z

m;k
� z

m;k
0 /dx: (5.35)

Using (5.13)–(5.16) in the penultimate subsection, we deduce, passing to the
lower limit in (5.35), that

lim inf
k!1

ˆ0;"k .z
m;k/ � lim inf

k!1
ˆ0;"k .z

m;k
0 /;

hence, taking the infimum over all sequences .zm;k/k satisfying the above properties,
we obtain

�mm.!/ �

Z
!

�m.x
0/dx0 C

2�.c � 1=2/

Hd .ƒ/
�i .s/

Z
!\ƒ

�m.s/dHd .s/: (5.36)
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Thus, according to (5.34) and (5.36), we conclude that

�mm.!/ D

Z
!

�m.x
0/dx0 C

2�.c � 1=2/

Hd .ƒ/
�i .s/

Z
!\ƒ

�m.s/dHd .s/:

Moreover, replacing zm;k0 by zm;k0 C z
l;k
0 ; l ¤ m, we prove as in the last two

subsections, that �ml.!/ D �lm.!/ D 0. Therefore

�ml D

�Z
!

�m.x
0/dx0

C
2�.c � 1=2/

Hd .ƒ/
�i .s/

Z
!\ƒ

�m.s/dHd .s/

�
ıml ; 8m; l D 1; 2; 3:

6. Optimization problems

Let � > 0. We suppose that � D hd s, where h is a diagonal matrix Diag.hi /iD1;2;3
of �1-measurable functions hi W �1 ! .0;C1/ such thatZ

�1

hi .s/ds D �; 8i D 1; 2; 3:

Let D� denote the set of all these matrices. Let us consider the following problem:8̂̂<̂
:̂
� div �.uh/ D f in �;

h�.uh/nC uh D 0 on �1;

uh D 0 on �2;

(6.1)

which has a unique solution uh 2 H 1
�2
.�;R3/. We define the functional F.h; :/ by

F.h; u/ D

8̂̂<̂
:̂
1
2

R
�
�ij .u/eij .u/dx C

1
2

P3
iD1

R
�1

u2
i

hi
ds

�
R
�
f:udx if u 2 H 1

�2
.�;R3/;

C1 otherwise.

We can easily check that

F.h; uh/ D �
1

2

Z
�

f:uhdx: (6.2)

We consider the following optimal control problem:

min
h2D�

min
u2H1

�2
.�;R3/

F.h; u/: (6.3)

According to (6.2), the minimization of F , with respect to u, is equivalent to the
maximization of the work of the external loads on �. We have the following result.
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Theorem 20. Problem (6.3) admits a unique solution u� 2 H 1
�2
.�;R3/ which satis-

fies 8̂<̂
:

� div �.u/ D f in �;

�ij .u/nj C

�Z
�1

jui jds

�
sign.ui /

�
D 0 on �1;

(6.4)

where sign is defined by

sign.t/ D

8̂̂<̂
:̂
1 if t > 0;

0 if t D 0;

�1 if t < 0:

Proof. Let us consider the following equivalent problem to (6.3),

min
u2H1

�2
.�;R3/

min
h2D�

F.h; u/: (6.5)

Let u 2 H 1
�2
.�;R3/ and h�.u/ 2 D� be the unique solution of the following

problem:
min
h2D�

F.h; u/: (6.6)

Using Hölder’s inequality, we get�Z
�1

jui jds

�2
�

�Z
�1

hids

��Z
�1

u2i
hi
ds

�
;

for every i D 1; 2; 3. The minimum of problem (6.6), with respect to hi , is reached
when �Z

�1

jui jds

�2
D

�Z
�1

hids

��Z
�1

u2i
hi
ds

�
;

which occurs if and only if hi has the form

h
�
i .u/ D �

ju
�
i jR

�1
ju
�
i jds

;

for every i D 1; 2; 3. Let us define

G�.u/ D F.h
�.u/; u/

D
1

2

Z
�

�ij .u/eij .u/dx C
1

2�

3X
iD1

�Z
�1

jui jds

�2
�

Z
�

f:udx:

Then it is possible to see that problem (6.5) becomes

min
u2H1

�2
.�;R3/

G�.u/: (6.7)
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Then, observing that G� is strictly convex, coercive and lower semi-continuous
with respect to the weak topology of H 1

�2
.�;R3/, we deduce that problem (6.7) has

a unique solution u� 2 H 1
�2
.�;R3/ which is the solution of problem (6.4).

Example 21. Let us consider a homogeneous isotropic material in the unit ball � D
D.0;1/ centered at the origin. We suppose that a uniform pressure of intensity P0 acts
on the sphere �1 D @D.0; 1/. Then, for f � 0, the radial displacement u� given by8<:u�r .r/ D

P0�

4�
� P0

.1C �/.1 � 2�/

E
.r �R/;

u
�

�
.r/ D 0;

satisfies equations (6.4) with h�.u�/ D Diag. �
4�
; 0; 0/.

Let � be a smoothly bounded open subset of R3 (we suppose that at least � is
of a class C 1;˛ with 0 < ˛ < 1) and f 2 C.�;R3/. There exists a unique solution
u� 2 H 2.�;R3/ \H 1

0 .�;R
3/ to the following problem:´
� div �.u/ D f in �;

u D 0 on @�;

which corresponds to problem (6.7) for � D 0. Let I� be the functional defined on
H 1
�2
.�;R3/ by

I�.v/ D
�

2

Z
�

�ij .v/eij .v/dx C
1

2

3X
iD1

�Z
�1

jvi jds

�2
C

Z
�1

�ij .u
�/nj vids:

Then, v� D uh�u�

�
, where uh is the solution of problem (6.1), is the unique mini-

mizer of I� . Let  2 H 1=2.�1;R3/. There exists a unique function v such thatZ
�

�ij .v /eij .v /dx D inf
¹w2H1

�2
.�;R3/Iwj�1D º

Z
�

�ij .w/eij .w/dx: (6.8)

Let us denote by M.�1;R3/ the space of vectorial Radon measures on �1. We
consider the functional J� defined on M.�1;R3/ by

J�. /D

8̂̂<̂
:̂
�
2

R
�
�ij .v /eij .v /dx C

1
2

P3
iD1

�R
�1
j i jds

�2
C
R
�1
�ij .u

�/nj ids if  2 H 1=2.�1;R3/;

C1 otherwise.

Then, according to (6.8), v�j�1 D
uh�u�

�
j�1 D

uh

�
j�1 is the unique minimizer of J� .

This implies that the problem minv2H1
�2
.�;R3/ I�.v/ is equivalent to the minimization

problem min 2H1=2.�1;R3/ J�. /.
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We have the following compactness and �-convergence results for J� .

Theorem 22. (1) sup�
P3
iD1

R
�1
jv
�
i jds < C1.

(2) The sequence .J�/� �-converges , as � tends to zero, with respect to the weak*
topology of M.�1;R3/, to the functional J defined on M.�1;R3/ by

J.�/ D
1

2

3X
iD1

j�i j
2.�1/C

Z
�1

�ij .u
�/njd�i ;

where j�i j is the total variation of the measure �i ; i D 1; 2; 3.

Proof. (1) Using the smoothness of�, f , and u�, we infer that there exists a positive
constant C such that, for every i D 1; 2; 3,

sup
�1

j�ij .u
�/nj j � C;

from which we deduce that

J�.v
�
j�1/ �

1

2

3X
iD1

�Z
�1

jv
�
i jds

�2
� C

3X
iD1

Z
�1

jv
�
i jds: (6.9)

Now, observing that J�.v�j�1/ � J�.0/, we deduce that

sup
�
J�.v

�
j�1/ � 0;

and, using (6.9), we get

sup
�

3X
iD1

Z
�1

jv
�
i jds � C:

We deduce from the above uniform boundedness that, up to some subsequence,

v�j�1 ���*
�!0

� M.�1;R
3/-weak*. (6.10)

(2) The scalar version of this assertion was proved in [20, Theorem 3.5].
(a) Lower limit inequality. Let .��/� � H 1=2.�1; R3/ such that �� ���*

�!0
�

M.�1;R3/-weak*. As the functional � 7! j�j, where j�j is the total variation of the
measure � , is lower semi-continuous on M.�1/, we have that, for every i D 1; 2; 3,

lim inf
�!0

Z
�1

j�
�
i jds � j�i j.�1/;

from which we deduce that

lim inf
�!0

J�.�
�/ � J.�/: (6.11)
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(b) Upper limit inequality. Without loss of generality, we suppose that� � ¹x3 >
0º and that @� \ ¹x3 D 0º D �1. Let us set x0 D .x1; x2/ and define, for " > 0, the
mollifier &" by

&".x
0/ D

´
C0
"2

exp
�
�

"2

"2�jx0j2

�
if jx0j < ";

0 if jx0j � ";
(6.12)

where C0 D .
R
B.0;1/

exp.� 1
1�jyj2

/dy/�1; B.0; 1/ being the unit ball of R2 centered
at the origin. Let .!Œ1="�/", where Œ1="� is the integer part of 1=", be a sequence of
open sets such that 8̂̂̂<̂

ˆ̂:
!1 � !2 � � � � � !Œ1="� � � � � � �1;[
">0

!Œ1="� D �1;

d.!Œ1="�; @�1/ D ":

(6.13)

Observing that, for " 2 .0; 1/, Œ1="� � 1 D Œ1=" � 1�, we define the partition of
unity .'"/" by 8̂<̂

:
'" 2 C

1
c .!Œ1="�/;

'".x
0/ D 1 in !Œ1="��1;

0 � '".x
0/ � 1 in �1:

(6.14)

Let � D .�1; �2; �3/ 2M.�1;R3/. Using (6.12)–(6.14), we define the sequence
.�"/" by �" D .� � &"/'". Then �" 2 C1c .�1;R

3/, jr�".x0/j � C="3, for every x0 2
�1, and

�" ���*
"!0

� M.�1;R
3/-weak*. (6.15)

Let us define the sequence of function .w"/" from � to R3 by

w"i .x/ D
" � x3

"
�"i .x

0/; 8i D 1; 2; 3:

Then w" 2 H 1
�2
.�;R3/. Let us now set

" D �1=16;

w� D w�
1=16

;

�� D ��
1=16

:

(6.16)

Using (6.15) and (6.16), we deduce that

�

Z
�

�ij .w
�/eij .w

�/dx � C
p
�;
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and

lim sup
�!0

I�.w
�/ � lim sup

�!0

1

2

3X
iD1

�Z
�1

jw
�
i jds

�2
C lim sup

�!0

Z
�1

�ij .u
�/njw

�
i ds

�
1

2

3X
iD1

j�i j
2.�1/C

Z
�1

�ij .u
�/njd�i ;

from which we deduce, since w�j�1 D �
� , that

lim sup
�!0

J�.�
�/ � J.�/: (6.17)

The two inequalities (6.11) and (6.17) imply the second assertion of the theorem.

Let us set
Mi D sup

�1

j�ij .u
�/nj j;

K˙i D
®
s 2 �1I �ij .u

�/nj .s/ D ˙Mi

¯
:

(6.18)

We can now state our result concerning the optimal location where possible elastic
layers could take place.

Theorem 23. We have

(1) The sequence .u
�

�
j�1/� , where u� 2 H 1

�2
.�;R3/ is the solution of problem

(6.7), converges in M.�1;R3/-weak*, as � tends to 0, to a measure � D
.�i /iD1;2;3 such that spt�i �KCi [K

�
i , with �i positive inK�i and negative

in KCi , for every i D 1; 2; 3.

(2) For every i D 1; 2; 3,
R
�1
�ij .u

�/njd�i D �Mi .

(3) For every i D 1; 2; 3,

lim
�!0

Z
�1

ˇ̌̌u�i
�

ˇ̌̌
ds D j�i j.�1/ DMi

and the sequence .h
�

�
j�1/� converges in M.�1;R3/-weak*, as � tends to 0,

to the measure � D .�i /iD1;2;3 given by �iMi D �i .

Proof. (1) Firstly, we deduce from (6.10) that the sequence .u
�

�
j�1/� converges in

M.�1;R3/-weak*, as � tends to 0, to a measure � D .�i /iD1;2;3 such that

J.�/ D min
�2M.�1;R3/

J.�/:

(2) Let us set

M1.�1;R
3/ D

®
� 2M.�1;R

3/I j�i j.�1/ D 1; i D 1; 2; 3
¯
;
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and introduce the functional zJ defined from Œ0;C1/3 �M1.�1;R3/ to R by

zJ .t1; t2; t3; �1; �2; �3/ D J.t1�1; t2�2; t3�3/

D
1

2

3X
iD1

t2i C

3X
iD1

ti

Z
�1

�ij .u
�/njd�i :

We have

min
�2M.�1;R3/

J.�/ D min
�2M1.�1;R3/

min
ti>0;
iD1;2;3

zJ .t1; t2; t3; �1; �2; �3/: (6.19)

Let us denote .t; �/; t D .ti /iD1;2;3 and � D .�i /iD1;2;3, the minimizer of the
right-hand side of (6.19). One can easily check that if

R
�1
�ij .u

�/njd�i � 0, for
every i D 1; 2; 3, then ti D 0 and

min
ti>0;
iD1;2;3

zJ .t1; t2; t3; �1; �2; �3/ D 0;

and if
R
�1
�ij .u

�/njd�i < 0 for every i D 1; 2; 3, then ti D �
R
�1
�ij .u

�/njd�i ,

min
ti>0;
iD1;2;3

zJ .t1; t2; t3; �1; �2; �3/ D �
1

2

3X
iD1

�Z
�1

�ij .u
�/njd�i

�2
;

and � D .�i /iD1;2;3 minimizes .
R
�1
�ij .u

�/njd�i /iD1;2;3.
For every i D 1; 2; 3, we have that

R
�1
�ij .u

�/njd�i � �Mi and the equality
holds if and only if spt�i � KCi [K

�
i , �i is positive inK�i and negative inKCi . We

deduce, according to (6.18), that �i DMi�i .
(3) As .u

�

�
j�1/� converges in M.�1;RN /-weak* to � D .Mi�i /iD1;2;3, we have

that

lim
�!0

Z
�1

ˇ̌̌u�i
�

ˇ̌̌
ds D j�i j.�1/ DMi�i .�1/ DMi ;

from which we deduce that, for every i D 1; 2; 3, the sequence . ju
�

i
jR

�1
ju
�

i
jds
/h converges

in M.�1/-weak* to �i , which means that the sequence .h
�

i

�
j�1/� converges in M.�1/-

weak* to �i .

For a biological body, this last theorem provides a tool allowing a characteriza-
tion of the zones where soft tissues are likely to grow. For a reinforced material this
theorem shows that we can have an optimal reinforcement, as � is infinitesimal, if we
introduce a material in the points where the tractions j�ij .u�/nj j are maximal.
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