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Fine multibubble analysis in the higher-dimensional
Brezis—Nirenberg problem

Tobias Konig and Paul Laurain

Abstract. For abounded set @ C RY anda perturbation V € C1(Q), we analyze the concentration
behavior of a blow-up sequence of positive solutions to —Aug + eVug, = N(N — 2)u£N+2)/(N_2)
for dimensions N > 4, which are non-critical in the sense of the Brezis—Nirenberg problem. For
the general case of multiple concentration points, we prove that concentration points are isolated
and characterize the vector of these points as a critical point of a suitable function derived from the
Green function of —A on 2. Moreover, we give the leading-order expression of the concentration
speed. This paper, with a recent one by the authors [arXiv:2208.12337, 2022] in dimension N = 3,
gives a complete picture of blow-up phenomena in the Brezis—Nirenberg framework.

1. Introduction and main results

For N > 4,let 2 C R¥ be a bounded open set, and let u, be a sequence of solutions to

N+2
—Aug +eVu, = N(N —2ul2 onQ,
U, >0 on £, (1.D
U, =0 on 0L2.

For the perturbation profile V, the canonical choice is V' = —1, but we will only assume

V € C1(Q) and V < 0 on Q throughout this paper. The understanding of the behavior
of solutions of this equation is pivotal in the Yamabe problem; see for instance [10] and
references therein.

Existence and non-existence of solutions to (1.1) is a delicate matter and has been
investigated in a famous paper by Brezis and Nirenberg [4]. This is largely due to the
Sobolev-critical value of the exponent % = 2* — 1, which allows concentration of a
sequence of solutions around one or even several points of €2. Starting with [1, 6] and
particularly an influential paper by Brezis and Peletier [5], in the latter, after studying the

behavior of radial solutions, the authors conjecture an asymptotic expression for ||u¢||oo in
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the case where (1) has precisely one blow-up point. The present paper, with [21], com-
pletely settles this long-standing open question by giving the precise behavior of arbitrary
sequences of solutions, notably ones with multiple concentration points.

For one-peak solutions and N > 4, the location and speed of concentration have been
characterized in [19, 28] for V = —1NJarl£1d in [23] for non-constant V. For the related
subcritical problem, with V' = 0 and u /" ““ontheri ght-hand side of (1.1), the properties
of multi-peak solutions have been analyzed in [3,29, 30]. In the latter, the authors always
assume that the number of concentration points is a priori finite, which is not the case in
the present paper and [21].

Conversely, besides the one-peak solutions arising as energy minimizers from [4], we
mention that multi-peak solutions with various properties have been constructed e.g. in
[9,24,25,27].

When N = 3, even in the presence of only one concentration point, the leading order
of the speed at which blow-up solutions to (1.1) concentrate is harder to obtain.! This
is due to a certain cancellation in the energy expansion which forces one to push the
asymptotic analysis to a higher degree of precision. Results analogous to [19,28] for one-
peak solutions have been obtained only recently, by the first author and collaborators in a
series of papers [14—16]. The full analysis for N = 3 comprising multi-peak solutions has
been carried out by the authors of the present paper in the recent preprint [21].

Finally, the blow-up of solutions to (1.1) in the case N > 4 has not been studied
in the literature yet, notably because the fine analysis of the concentration points was
not available, which is done in Appendix B. The goal of the present paper is to close
this gap, using and adapting the new methods of [21]. Remarkably, differently from one-
peak solutions in dimension N > 4, the multi-peak case can also feature a cancellation
phenomenon which makes it harder to derive the concentration speed. We will explain this
in more detail in the following subsection, where we state our main result.

1.1. Main result

Let us introduce the object that largely governs the asymptotic behavior of (u,), namely
the Green function G : 2 x £ — R. This is the unique function satisfying, for each fixed
y e,

—AxG(x,y) =6, ing,

G(,y)=0 on 0%2.

Note that G(x, y) > 0 for every x, y € Q. The regular part H of G is defined by

1
(N —2)on—1|x — y|N 2

H(x,y) = —G(x.y),

To be completely precise, for N = 3 the relevant equation fulfilled by a blowing-up sequence of
solutions is —Au, + (a + eV)u, = 3u3, with a non-zero a € C(Q) as a consequence of the Brezis—
Nirenberg dimensional effect observed in [4].
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where wy 1 is the volume of the sphere S¥~! € RV . It is well known that for each y € Q
the function H (-, y) is a smooth function in 2. Thus we may define the Robin function

é(y) = H(y,y).

It is known that single-blow-up sequences of solutions to (1.1) must concentrate at critical
points xo of ¢ when V is constant [5, 19, 28] and of a suitable function depending on ¢
and V when V is non-constant [23].

For any number n € N of concentration points, let

QL= {x = (x1.....x,) € Q":x; # x;foralli # j}.

For x € Q" we denote by M(x) € R*" = (mij); ;—, the matrix with entries

¢ (xi) fori = j.
(X)) = 1.2
iy (%) {—G(x,-,xj) fori # j. (-2

Its lowest eigenvalue p(x) is simple and the corresponding eigenvector can be chosen to
have strictly positive components. We denote by A (x) € R” the unique vector such that

M(x) - A(x) = p(x)A(x), (A(x)) =1

Next, let us define, for £ € (0,00)" and x € Q7,

F(k,x) = (lc M(x)k) +dN ZV(x,)K 2, (1.3)
where the dimensional constant dy > 0 is given by
INEAY A=
dy = D) (1.4)

T(N — Doy_1(N —2)?’
Moreover, we define the Aubin—Talenti-type bubble function
B(x) = (1+|x)~"7

and, for every > O and x¢ € R, its rescaled and translated versions

N=2

_N=2 X — Xo " 2
By xg(x) = = 2 B( ): > N2
K (w* + |x — xo[?) 2

t\.?

We notice that By, x, satisfies —A B, x, = N(N —2)B,} ; on R¥, for every u > 0 and
X0 € RN.
Finally, let W be the unique radial solution to

—AW — N(N +2)WB¥= = —B, W(0) = VW(0) = 0.
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Here is our main result.

Theorem 1.1. Let (u,) be a sequence of solutions to (1.1), with V.€ CY(Q) and V <
0 on Q, such that ||ug|ee — 00. Then there exists n € N and n sequences of points
X160 .-+ Xng € S Such that x; g — Xj0 € Q, is = us(x,-,a)_ﬁ — 0 as e —>0,
Vue(xie) = 0 for every ¢ > 0 and ug — 0 uniformly away from x1, ..., x,. The ratio
Aig = (“’ 9)1\,72 has a finite, non-zero limit A; ¢ € (0, 00).

Moreover the following hold:

(i) Refined local asymptotics: Foranyi = 1,...,n, denote B; ;= By, and

e:Xie

Wie = sul 2V W (x = xie).
Then, for § > 0 small enough, and every v € (2, 3),

2-*—41) N=2

[(ue — Big — W) (x)| < (8M6 + e’ )|x — Xie v
forall x € B(x;,,0).

(ii) Blow-up rate: The matrix M (xg) is semi-positive definite with simple lowest eigen-
value p(xg) > 0.

(a) Suppose p(xg) > 0. If N > 5, then

N—4
4 . 2N

lim e N4 = k.

e—0 /’Lzs i,0

exists and lies in (0, 00). Moreover, (kq, X9) is a critical point of F (k, x) defined
in (1.3). If N > 6, then k is the unique critical point of F (-, x¢).
If N = 4, then for every i,

hn(l) 81n(l’L1 e) = Ko,

where ko > 0 is the unique number such that M — kg diag(#W(xi,o)D has its
lowest eigenvalue equal to zero. Moreover, (Ag, X¢) is a critical point of

Fa.x)= (A Mx)R) + 2 2 = ZV(XZ)AZ (1.5)

(b) If p(x9) = 0O, then also Vp(xo) = 0. Moreover,

lim ep1; TNt = 09u2) ifN =5, (1.6)
hr%gln(us HY=0W?) ifN =4, (1.7)
&e—>

. : N—-2
and Ai,O = Ai,O = llms%o(%) 2
€
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Furthermore, we have the quantitative bounds

a(re) = o(ep N4+ ) ifN =5,
T oy + 42 ifN =4,

and, for every § > 0,
IVo(xe)l < 1"

Remarks 1.2. (a) In order to keep the statement of the theorem reasonable, in the refined
local asymptotics, we just give the expansion up to the first term after the bubble. But in
fact we can go further, as shown by Proposition 2.6. More precisely, our technique, which
consists in subtracting recursively a suitable solution of the inhomogeneous linearized
equation, will give, if pushed far enough, the estimate

Y4341 N-2
—2 2 v
e + e )|x — xig

(ug — Bi s — ZI/Vl )(X)| <

forall x € B(xj,,6)andv € (I + 1,1 + 2), where

N
k — —7+2+k
I/Vi,.»s T 8“1’,3

W (i} (x = xi.0)).
and W is the solution to
AWK “N(N +2)BV=WE = (e, W, WRTY), wk©0) = VWF(©0) = 0.

The inhomogeneities f, which may depend on V and W1, ..., W¥~1 and their deriva-
tives, are obtained recursively during the expansion.

(b) A remarkable fact about Theorem 1.1 is that in the degenerate case p(xo) = 0, the
bounds (1.6) and (1.7) are improved in comparison to the case where p(xo) > 0. Indeed,
in this case (and only then) the first term on the right-hand side of the expansions (3.1),
resp. (3.2) cancels, as shown in Section 4. Our analysis of the error terms is fine enough
to push the estimates further by a factor of 2 in the expansions (3.1) and (3.2).

This should, in particular, be compared with the analysis of the related equation

N+2_

€
—Au, = ud?

in [3], where in the case p(x¢) = 0 no improved asymptotics are derived.

(c) We also point out that in the case n = 1 of only one concentration point x¢ € €2,
one simply has p(xg) = ¢(xg) > 0 by the maximum principle. Thus the possibility that
p(x9) = 0is indeed particular to the multi-peak case.

In the case where €2 is convex, it is known [17, Theorem 2.7] that no multiple blow-
up can happen. Under the weaker assumption that €2 is star-shaped with respect to some
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Yo € 2, the same is not known. However, a simple argument shows that if multiple blow-
up does happen for 2 star-shaped, we must always be in the non-degenerate case p(xg) >
0. Indeed, by PohoZaev’s identity we have

2

ad
He (x — yo) -ndx.

—eu N2 | 2QV(x) + VV(x) - (x — yo))uZdx = uy ¥ +2
| @ ’ aq! on

By Proposition 2.1 (v) below, the right-hand side converges to

/ ’8Gx,,,
IQ on

On the other hand, by standard calculations as in the proof of Proposition 3.1, the left-hand
side is equal to

2
(x —yg) -ndx > 0.

—epr N TPen Y V(xjud, +o(ud) it N =5,
J

—s,ufiu Z V(xj,g),uig ln(,u;:, if N =4.
J

(1.8)

Since V' < 0 by assumption and all the u ;. are comparable by Proposition 2.1, the left-
hand side is equal to a positive constant times e V¥4 if N > 5, resp. eln(u; 1) if N = 4.
Since we have seen that the right-hand side is strictly positive, the quantities SM;N 4
resp. € In(u; 1), must have a strictly positive limit. In particular, p(x¢) > 0 by Theorem

1.1.

(d) One may ask whether our hypothesis that V' < 0 on € can be further relaxed. Con-
cerning this question, a few comments are in order. First, if 2 is star-shaped, then by
PohoZaev’s identity as in Remark 1.2 (c) it is clear that for V' = const. > 0 there cannot
be a solution u, to (1.1). For non-constant V, the situation is less clear. Still for star-shaped
€2, say, the quantity (1.8) seems to suggest that at some blow-up points x;, positive values
V(x;) > 0 might be allowed as long as they are compensated for by others. On the other
hand, we are not aware of examples in the literature for a blow-up pattern different from
that of Theorem 1.1 (e.g. by exhibiting unbounded energy, clusters of concentration points
and/or concentration on the boundary) in a situation where V' is not strictly negative. We
point out that both our a priori analysis in Appendix B and the proof of our main results
in Section 4 require that IV < 0 everywhere, independently from each other.

(e) Surprisingly, the concentration speed is uniquely determined in terms of €2, V, n and
Xo in dimensions N =4 and N > 6, but not N = 5. Indeed, in that case we cannot exclude
that the function F' may fail to be convex.

The structure of the rest of this paper is as follows. In Section 2, starting from some
qualitative information about the blow-up of u., we derive very precise pointwise bounds
on u, near the concentration points, which form the technical core of our method. These
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are used in turn to derive the main energy expansions in Section 3. Once these are estab-
lished, the proof of Theorem 1.1 can be concluded in Section 4 by a rather soft argument.
We have added several appendices in an attempt to make the analysis self-contained.

2. Asymptotic analysis

We start with some by now classical estimates, which say that a blowing-up sequence
can only develop finitely many bubbles and the solutions are controlled by the bubble.
Here, the hypothesis V' < 0 plays a crucial role. This kind of analysis has been initiated
by Druet, Hebey and Robert [12] on a manifold. In the domain case, an extra difficulty
occurs since we have to avoid concentration near the boundary. This has already been
done in dimension N = 3 by Druet and the second author [13] in a similar context. In
higher dimension N > 4 the proof is largely analogous. We give it in Appendix B for the
sake of completeness and in the hope of providing a useful future reference for the case of
a domain €2.

Proposition 2.1. Let (u.) be a sequence of solutions to (1.1) such that |ug|co — +00.
Then, up to extracting a subsequence, there exists n € N and points X1, ..., Xn¢ Such
that the following hold:

(i) x5 = x; € Q for some x; € Q with x; # xj fori # j.

(i)  Hie = ua(x,-,g)fﬁ — 0ase — 0and Vug(x; ) = 0 for everyi.
N-2 N2
(i) Aj0 = limg—o Ai s = limg—so ui,az [,z exists and lies in (0, 00) for every i.

N-2

(iv) Mi,?ue(xi,s + Uiex) — Bin Cl(l)c(RN)~
_N=2
(v)  There are v; > 0 such lhatum2 ue = Y i1 ViG(Xie,+) =t Gy,p uniformly in

Cl away from {x1,...,Xxn).

(vi) Thereis C > 0 such that u, < C Z?:l B; ¢ on Q. Moreover, on every compact
subset of Q, there is C > 0 such that é Y1 Bie < ue.

Up to reordering the x; ., we assume that (1, = max; ;. and we set (Ly = L] .
We also define the small ball

b = B(xi,s’ 50)

around x; ¢, with some number §o > 0 independent of ¢ and chosen so small that §p <

1 .
5 Min; |Xie — Xje
The main result of this section consists of quantitative bounds on the remainder

Fig = Uje — Bjg, 2.1

as well as the improved remainders

N3 X — X,
Gie = rie =ity V(i)W (= 8) 2.2)

Mi,e
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and
X — X
)VV(x,-,s) LT e 2.3)

|Xx — Xj ¢

Y+

._ -5 X — Xije
Pie = qie — €My ¢

Hie

on b; .. Here, the functions W and W, are solutions to the inhomogeneous ODEs

o

W (r) — ?W’(r) — N(N +2)B(r)N2 W(r) = —B,

Wy 0) = Y + L) - NV 4 2B W) = B,

72
respectively. These bounds are stated in the subsections below as Propositions 2.4, 2.5
and 2.6.

An important ingredient in the proof of Theorem 1.1 will be a non-degeneracy property
of the bubble B. Namely, consider the linearized equation

—Au = N(N +2)B¥=2u onRYV. 2.4)

Then the behavior of non-trivial solutions to (2.4) is restricted by the following proposition
[21, Corollary A.2].

Proposition 2.2. Let u be a solution to (2.4) and suppose that |u(x)| < |x|* on RY for
some T € (1,00) \ N. Thenu = 0.

Before we go on, let us note a simple a priori estimate which will simplify the follow-
ing estimates on 7; ; and g; ¢.
Lemma 2.3. Suppose that V < 0. If N > 5, then ¢ < /Lév_“. If N =4, thene < ﬁ

Proof. By PohoZaev’s identity (see Appendix E), we have, for any i,

— 28/ Vu? — s/ uZVV(x) - (x — x;¢) dx
bi,e [

i,e

2 p+1
_ 2/3b (80(8vu8)2_80(|Vu8|2 n puil _gVug) (N —2)u83vu3).

Since V < 0, by using Proposition 2.1 (iv), the left-hand side is proportional to eu? if
N >5andto ep?In(u; ) if N = 4.

On the other hand, by Proposition 2.1 (v) the modulus of the right-hand side is bounded
by a constant times uév ~2. This concludes the proof. ]

2.1. The bound on r; ¢

Proposition 2.4. Leti = 1,...,n and let r; ¢ be defined by (2.1). As ¢ — 0, for every
0 €(0,1)U(1,2),

3—-0

-5+ a2 0
rie(X)| < (epte + e )|x = xigl onbj .
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Moreover, for 8 = 0, we have

—¥+3 N2
Ele + U ifN =5,

ri,a(x) = { ) )
epeIn(pg ") + pe if N =4.

Proof. We first assume that 8 € (0,1) U (1, 2). The case 8 = 0 will be treated below by a
separate argument.
Recall that r; , = u, — B; .. We denote

rie(x)
Rie(x) = — 0.
|x — xi,sl
Fix some z; ¢ € b; ¢ such that
Ris(zie) = 3l RiellLoo,)- (2.5)

Moreover, we denote d; o := |x; ¢ — z; ¢|. Let us define the rescaled and normalized version

Fie(Xie + digXx)

. x € B(0,d}8).
ri,a(Zi,a) e

fi,a(x) =
By the choice of B; ¢, and observing (2.5), we have
Fie(0) = VFie(0) = 0, Fie(x) S |x[°, x € B(0,d;}S0), 2.6)

in particular 7, is uniformly bounded on compacts of RY \ {0}.
On B(0, dl.;l 80), we have

Uj,e

—AFie — Fied? Qi Biyg) = —ed} Vie—"—,
rie(Zie)

2.7)

where
N+2 N+2

UN—2 —yYN—=2
Ou,v):=N(N —-2)
U—v
Moreover, we wrote U; ¢(x) = Ug(Xi ¢ "Ib,‘zii,sx) and likewise d; ¢(x) := az(xi s + dj ¢X)
and B; ¢(x) = B; o(Xi s + diox) = M,_ET B(Mzgldi,sxl
We treat three cases separately, depending on the ratio of u, and d; .. It will be useful
to observe the bounds

N-2

) N—2 W, % if hie 2 dig,

B . Hie 2 L€ o
e N

Hie ™ G il AN pie S die,

uniformly for x in compacts of RY \ {0}.
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Case 1: e > djcase — 0. Since ;o < Bi,s onb; . and |Q(u,v)| < Iulﬁ + |v|ﬁ,
the second summand on the left-hand side of (2.7) tends to zero uniformly on compacts
by (2.8), because d?, ;> — 0.

N-2

Using if; ¢ < Bie < /LI_ET and lels) < dl ! "R — by (2.5), the right-hand side of
(2.7) is bounded by
_N=2 N
o 20,5 Y434
Edl ) is Uj e i g < Ellg

Fie(Zig) | 7 | Rigllowi) ~ IRiellLoow,)

_ Y436 .
Now suppose for contradiction that || R; ¢ || Loo(v; ) > epte * as ¢ — 0. Then this
term goes to zero uniformly. Thus, by elliptic estimates, we have convergence on any
compact of R \ {0}, and the limit Tio = lim,_¢ 7 ¢ satisfies

—AFip =0 onRM\ {0}.

By Bocher’s and Liouville’s theorems, the growth bound (2.6) implies that r; o = 0. But
by the choice of d; ¢, there is &, = == "’d_ Yie ¢ SN=1 such that 7 (&) = 1. Up to a
subsequence, & o := lim,_,0 & . € SV ! exists and satisfies 7; o(£;,0) = 1. This contradicts
r,,o = 0.

Y39

—Ni3-9 . -
Thus we must have || R; ¢llLoo(b;,) < &fte * Je rig(x) Sepe ? |x — x;.6]%.

Case 2(a): e K dj s < 1 ase — 0. In this case, we have

4
= 2 = ) 2 pN—=2 2
ri,sdi,gF(ui,s» Bie) < di,gBi,g adz e —0
and N
_ ~N+4-0 "5~ —¥+3-6
— Uu; ed; & 2
cd? Vi,s i & He < Me

P rie(Zie) | T IRiellLow) T IRl Loy

_ N3
uniformly on compacts of RV \ {0}. If || R; ¢ [loo >> eite > 3 9, then, using that d; , — 0
still, 7; 0 := limg—¢ i ¢ satisfies

—AFio =0 onRM\ {0}.

Using the Bocher and Liouville theorems again, 7; o = 0. As in Case 1, we can now derive
a contradiction.

N
2

-0 . —5+3-0
Thus we must have || R;, i€ rie(X) < epte lx — xi,8|0

in this case as well.

Case 2(b): di ¢ ~ 1 as ¢ — 0. In this case there is no need for a blow-up argument. Instead,
we can simply bound, by the definition of z; .,

|ri,s(x)| < |ri,a(2i,s)|
|x _xi,s|9 ~ d?

ie

N—2
S rie(zie)| < H“za )
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where the last inequality simply comes fro}r\p_ 2the bound |u.| < Bj, on b; , and the obser-
vation that d; o ~ 1 implies B; ¢(z;¢) < we 2 . Thus

N—2 0
rie (O S pe® x = Xiel”,
which completes the discussion of this case.

Case 3: g ~ d; ¢ as e — 0. This is the most delicate case because the second summand on

the left-hand side of (2.7) now tends to a non-trivial limit. Indeed, B; o := lim,—¢ Bi ¢ :=

lim—o % exists and B; o € (0, 00). Then
i

N-2 _ . .
d.? Bi,= LI Y = B,
B+ T B+ P
N=2

By the convergence of u, from Proposition 2.1, we also have a’l.,sT Uie = Bo g, uni-
formly on compacts of RY. Thus diz,eQ(ﬁ,-,g, Bi) — N(N + 2)30,/31.0 uniformly on
compacts of RV

On the other hand,

a . Y439
i < Me

Eri,s(zi,e) ~ ”Ri,S“Lw(bi,s).

P
8di,8Vl,

_N.i3 ¢
If | R ellLoon; ) > epte 2 379 we therefore recover the limit equation
4 N
~Afip = N(N +2)fi0BJ5%  onRY,

which is precisely the linearized equation (2.4). By (2.6), we have |r; o(x)| < |x|? for all
x € RY. Thus by the classification, see [21, Proposition A.1], and the fact that 7; ¢(0) =
Vri0(0) = 0, we conclude 7; o = 0. This contradicts 7;,0(§;,0) = 1, as desired.

N3 9 . N3 9
Thus we have shown || R; ¢ || oo b, ) < &te * Jie rig(x) Sepe * |x — xi,g|9,

also in the third and final case. This finishes the proof for 6 € (0, 1) U (1, 2).
Let us finally prove the assertion in the case 8 = 0, i.e.

AP LT N =S
>
rie(x) < { e + He 1 =7 forx €bj,. (2.9)
eie In(ug ') + e if N =4,

To prove (2.9), we consider Green’s formula

D) a5y

G
o) = [[AnmGE )y = [ ram)
= [0 -8 00— evom ;)6 ay

G (x,
[ e e o),
Q2 v
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N-2
Since r; ¢ < Zj Bj. <> on oS, the second term is bounded by

‘ / e 0D 4 3)| £

A similar bound, which we do not detail, gives

2 oxe [P LT N s
< 8/Ls + Ms < He He . -7
epeIn(u; ) + pe it N =4

/ (—Ar)(1)G(x.y)dy
Q\U} bje

To evaluate the remaining integral over b; ;, we use

2z

+2 1]\\/]+2 N4
j— -2 -2 -2
| = Ariel = [ul? = BN7? —eVuie| S BN ric+eBie onbg.

The term containing ¢ is bounded by

1 1 st N =5
8/ Bio——x=dy = 8/ Bio———xdy < ¢ -
b, lx =yl bi,e [ xie — ¥l epeIn(u;t) if N =4.

Here, the first inequality follows by the Hardy—Littlewood rearrangement inequality (see
e.g. [22, Theorem 3.4]), because both B and z +— |z|™¥*2 are symmetric-decreasing
functions.

To control the last remaining term, we choose some 8 € (0, 1) U (1, 2) and reinsert the
bound already proved for this 6. This yields

4 1
N— . - -
/t:,-,g Bi’g Z(y)lrz,s(J’)| I — yIN_Z dy

—N43-6 N2 1
< (epe 2 + pe? )/ BN 2()xie — Y|0md)’
bi,e -

443 N-219 a4 0 1
— (e ) [ B¥2 (2)z)f —— s dz
B(0,801; ) |z — Wl

M43 N2 248 !
< (epe 2+ e )/H;N(1+|Z|2) 2+2mdz
Mie

-J+3 N219 249 1
< (epe 2+ e ? )/RN(1+ |z]?)72> e dz

N N-—2
-54+3 N216
Sepe 2T e’

The second-to-last inequality follows again from the Hardy-Littlewood rearrangement
. . ) _ . .

inequality, because z — (1 + |z|>)72%2 and z — |z| 7N *2 are symmetric-decreasing
functions. Combining all the above estimates, the proof in the case 6 = 0 is complete. m
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2.2. The bound on ¢;

Proposition 2.5. Let i = 1,...,n and let q; . be defined by (2.2). As ¢ — 0, for all
v € (2,3),

2

N
5 +4—v
2 + He

9.6 )| < (epte )Ix = xiel”  forall x € bje.

Proof. Let Q; ¢(x) := ey a point z; o with Q; ((z;¢) > %”Qi’gnl‘oo(bi’e) and let

‘x Xi ‘V7
dis = |Xie — Zig|. When d, ¢ = 1, we have

_M Z' _x4
Qie(x) < E E(ul =) < |Bie(zie)| + )SIM . +3W(—l"3 1’8)
d | Mie
N2 Y43 N—2
She® Hepe T S e (2.10)

where we used Lemma 2.3 and the fact that W is bounded by Lemma A.1. So it remains
to treat the case d; = o(1) in the following.

In the following, let us assume N > 6. Then %“ < 2 and the equation satisfied by
qi, can be written as

t\.)

—Agis— N(N + 2)Bi1’\; *gie = eBi s (V(xie) = V(X)) —eVrie + (9( T) onb; .

(When N = 4,5, and hence %Jrg > 2, the last term needs to be replaced by (9(rl aBlNg 2) )

Then g;,¢(x) = % satisfies

_4
- Aqi,s - N(N + 2)Biivg_2 Gi,e
diza_“ N2
= ,—(831 s(V(xz e) — V) - SV"z e+ (9( ,A; ))
[ QiellLoo(bi )

and
3ie(0) = Vi e(0) =0, |gie(x)| <|x|” on B(d;'5.,0).

By Proposition 2.4 with § = v — 1,
- T t+a—v
|Fie(x)] < (8““6 2 +Ms )dv 1|x|

Then, by Lemma 2.3, and using N > 6 and d; < 1, we see that |7| < 1 for ¢ small,
which gives

4
- AC?i,s - N(N + 2)Bi1’\];2 _i,s

1 — _ -
= O(eBod?;” + 7V Fiel)
[1QiellLoo,)
1 _ N=2
= O(SBi,sdi?s v+ Elle z A + e 2 ) (2.11)

C QielliLeor)
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For completeness, we show how to bound the term (9(rl aBl"; i- ) that occurs for N =

4, 5. We have, by Proposition 2.4 with 26 € [v —2,v —2 + 6 — N],

‘2

—N+6-20 +M )d2 v+26

71\’ .
e ifdie < Mige,

d2szN22< (e*c N
)d2 v+20+N— 6M ifdie 2 Wi,

Tie i,e (EMN+629+M

N s N—2
—75v 2

< &% e + fie

20’:

—2

Let us now estimate the remaining first term on the right-hand side of (2.11). By (2.8) and
the fact that 2 < v < 3, we have

N2 L Y4 .
Sg' d3,U < Ele dg 5 Ele if di,s S Mies
Leie  ~ N2 N+5—v o —hHey <
epe® d;, < Ele if ie S die < 1.

In both the cases de < e and o(1) = d; = [, the blow-up argument detalled in the
2 + _|_
. Taking (2.10) into account, we get the conclusion. ]

proof of Proposition 2.4 now yields that Q; . is bounded by a constant times eut¢
mz

2.3. The bound on p; .

Proposition 2.6. Let i = 1,...,n and let p;, be defined by (2.3). As ¢ — 0, for all
v e (3,4),

5— N2
FHsy 4 e ? )|x —xiel” forall x € big.

|pl 6’('x)| ~ (SI'LS
Proof. The proof works exactly the same as those of Propositions 2.4 and 2.5. There is
only one subtlety that we point out the rest is exactly the same. Let P; .(x) := I Pi.e (x)

X—Xj s‘u i
fix a point z; ¢ With P ¢(zi.e) > 5 || PiellLo;,) and let di e = |xi e — zie|. Whend; ¢ 2
we have

3l
N2
Pi,s(x) < M >
So it remains to treat the case d; . = o(1) in the following. We also assume N > 6. Then
the equation satisfied by p; . can be written as

_4
—Apie — N(N +2)B 7 pie = eBie(V(xie) + VV(Xie) - x = V(x))

N2
—eV(Wie + qie) + (9(7',-?2_2) onb; ..

(When N =4,5, and hence N +2 > 2, the last term needs to be replaced by © (12, B, 32

).
L, 1,8
This term can be estimated 1dent1cally to the proof of Proposition 2.5. Notice that the range

20ev—2,v—-2+ 6 N]is still compatlble with 6 € (0,2) and v € (3,4), and that the
5> Nis—y

resulting bound &% 1, + ;Lg is strong enough for the present case as well.)
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Die (xi,a +di,sx)

isfi
Pi,e(Zi,e) satisfies

Then p; ((x) ==

4
— Apie— N(N + 2)3[_1’\2—2 Dis
2—v _ _ _ _ - — —
= ot (EBie(V(O) + VV(0) - x = V) — eV Wie — Vi
||Pi,5||L°°(bi,s) _ _ _N+2
+ OWie + Gie) ¥-2)
and
Pie(0) = Vpie(0) =0, |pie(x)| < |x|" on B(d;'5.0).
By Proposition 2.5 applied with exponent v — 1 € (2, 3),

N—-2
2

R IR AR Vi 2.12)
Since N 2_6, this implies by Lemma 2.3 that |g; .| < 1. Using Lemmas 2.3 and A.1, we
also have W, o < 1. Then
1
| PiellLoo(brs)
Moreover, we easily check, since W(0) = VW (0) = 0, that

_4 — _
—Apie— N(N + 2)Bi1’\‘7;2 Die = O(ijfg_vBi,E + diz,g_v(VVi,s + Qi,a))~

diz,g_vl‘i/iﬁ' — (D(SM_%_FS_V)
which gives with (2.12),
1
| Piell Lo br0)

Y5y N=2

_4 — —
_Ap_i,s - NN + Z)Bil,veﬂ Die = (g(gdi‘fg_vBi,s + elde + We 2 )

Let us now estimate the remaining first term on the right-hand side of this equation.
By (2.8) and the fact that 3 < v < 4, we have

N-2

T2 g4y < _%4_5_‘) : <
eB .di < Ellg ds ~ EMe lfdi,s S Mies
heTie N2 N+6—v o . —HH5SY <
Elle di’a < EMe ifuie, Sdie < 1.

In both the cases d; < e and 0(1) = d; = e, the blow-up argument detai}ved in the
prg(_);f of Proposition 2.4 now yields that P; . is bounded by a constant times sus_7+5_v +

2

He ™ - u

3. The main expansions
We will also need the matrix M/ (x) € R = (1715 (X))} ;= with entries

019 (xi) fori = j,

~1 .
;. (x) =
i () {—ZBfG(x,-,xj) fori # j.

Recall that the matrix M (x) was defined in (1.2).
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The main results of this section are collected in the following two propositions.

Proposition 3.1. I[f N > 5, ase — 0,

2 o ST
D mi(xop, 2 = —dy(Vxie) + o()ep; e+ O(ue® ). 3.1)
where dy is given by (1.4).
If N =4,ase — 0,
Zmij (xe)ptje = (V(xl e) +o(1)epkie ln(ﬂl gl) + (9(#2) (3.2)

Proposition 3.2. If N > 5, as ¢ — 0, foreveryl = 1,..., N and every § > 0,

~ N—2 N — 2 _N N+2_ ¢
Doyl = —dy = —epe (B Vixie) + o))+ Oue? ). (33)

where dy is given by (1.4).
IfN =4,ase — 0, foreveryl =1,...,N and every § > 0,

- N=2 1 _ -
Dyl = =g 0y Vixie) +o()epe In(ug ) + O ).

Proof of Proposition 3.1. We multiply equation (1.1) by G(x, x; ;) and integrate over Xx.
Then the left-hand side becomes

/ (—Aug + eVug)G(x, xi0) dx
Q

_N3 !
= u.(xi .2 eV (xg B dz
e(Xie) + M. (Xie) BO.5on) on—1(N —2)|z|N—2

N

+ 0(8u8_7+3). (3.4)

The right-hand side is
N+2
N(N — 2)/ V2 G(x, xi) dx

= N(N — 2)2/ BNZG(x,x,»,s)dx

$)G( Xie)dx

ie

_N _4
+ Eﬂi,gz V(x,-,e)N(N + 2)/ Bifrs—z W(
bi,s
_4 N+2
+ (9( [ (B2 qie + Iriel ¥2) G(x, xi6) dx
bie

+Z/ B IrslGoxi) dr + [

ji Q\U] bje

N+2

N+2
ud 2 G(- xie) dX) (3.5)
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N+2
When N = 4,5, similarly to the remark in the proof of Proposmon 2.5, the term r; M=% in
-2,
the above error term needs to be replaced by B .- The ensuing estimates are very

similar to the case N > 6 presented below and we leave the details to the reader.
Let us first evaluate the two main terms in (3.5). We have

N2 1
BNZG xig)dx= | BN — H(x.x; )d
Z/ (6. %7.0) dx /b,-,g b (wN—l(N—2)|x—xi,e|N_2 (x. xi) ) dx

Ni2
+ Z B G(x, Xie) dx.
J#i 7P

We compute the terms on the right-hand side separately. First, by direct computation,

J.."

Next, by the radial symmetry of B and the mean value property of the harmonic function
x +— H(x,x;,),itis easy to see that

=

+§ N ; © N
. dx .
ON—1]X — x; |N72 =t +Oke )

2|

™

—N(N—Z)/b BN 2H(x Xig)dx = —=N(N —2)¢(xi.¢) . BN dx

=—wy_1(N — 2)M18 ¢(xl 8)+(9( )

Finally, by a similar argument, using that G(x, x; ) is harmonic for x € b; ., for every
J # i we have

N+2
N(N - 2) Bj]:/;z G(X, xi,s) dx = N(N - 2)G()Cj,6, x,-,g) BN2dx

bje bj.e
=wy-1(N — 2)M12 G(X]&"xlé‘)—"_@( )

This completes the computation of the first main term of (3.5).
Using that N(N + 2)Bﬁ W = —AW + B by the equation satisfied by W, the sec-
ond main term of (3.5) can be rewritten as

— Xie

_N 4
e +3V(x,~,s)N(N +2) / B W( )G(x Xie) dx

ie

4 1
=i, V(x )N(N +2) Bv=2W
e e BO.Sonyh) on-1(N —2)|z|N-2

N
+ 0(8[1,8 2 +3)
Ni3 1
=ep; . Vixie) (—AW) -
e . B(0.50u7) on—1(N —2)|z|N=2
1

BOSouH) ©ON-1(N =2)|z|N72

N3 _N
+ep; * V(xie) dz + o(eps 2 +3).
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The second term cancels precisely with the corresponding term in (3.4). The term con-
taining AW can be evaluated as follows. By Green’s formula and W(0) = 0, for every
R >0,

9 —N+2 oW
AW N2z = [ wlEH T v
Bg 3BR v ov

= —wn-1(W (R)R + W(R)(N —2)).

By Lemma A.1 we have

W'(R) = o(R™Y), W(R) — —= sasR—o00 ifN =5,

W/(R) =0o(R™'InR), W(R) = 1In(R) +o(InR) if N =4,

with ¢y = TA/2TUN=4)/2) ZF)(F 16(71\/1)_4)/ 2 Thus
—¥43
8/’(“1',5‘2 V(xi,s) —AW) 1 dZ
oN-1(N =2) JB©soui}) |z|N =2

N % Ny3
= N 2t
—Es,u,-,g lnui,s (V(xie) + 0o(1)), N = 4.

(V(xz 8) + 0(1)) N =5,

N-2

Putting everything together and observing that the divergent terms u(x; z) = ,ul R =2 can-

cel precisely, we obtain the assertion, provided that we can prove that the error terms from
above are negligible, i.e.

4
/ (Bl 2 Gie + rl A )G(x xie)dx + Z/ B ?reG(x, xi ) dx
bie j#i
N+2
+/ ud 2 G(x, xj¢)dx
Q\U/ bj,s

_ﬂ+3 N+2
=o(epe 2 7))+ O (e ? ). (3.6)

To bound the first error term, we apply Proposition 2.5 with 2 < v < 3. Then

/ B Qt ¢G(x,x;¢)dx

N2
< (epg 2 Sy + e );L:/ BV x| N+ g
B(0,80uz 1)

= o(epe * +3) +O(ne? )

because v < 3. For the next term, we observe that

=
pm
N}

+

2
N

_ L
|rze|N : <(5M152 )N 2W(ﬂ l(x Xig)) N2 +|Qte|

+

N+2 _4_
Spe? Bii\g‘_z |Gi s



Fine multibubble analysis in the higher-dimensional Brezis—Nirenberg problem 1257

where we used Lemma 2.3, |g; .| < B; . and the fact that W is bounded by Lemma A.1.
Thus

N+2 N+2 1 a4
[ Fie - G(X, Xi ) dX < e * / IE— v +/ B/ qi,eG(x, xi,g) dx
bi ¢ ’ bi,e |X - xi,6‘| bie ’
N3 N+2
=0(/'L82 )+(9(/'L82 )’
by the bound we have already proved.
Next, for any j # i, by Proposition 2.4, for fixed 6 € (0, 2) we estimate

4
N7
/ B, 2rjeG(x,xi¢)dx
b

J-e

_Ny3 N—2

5(8M€2+3 0+/¢L82 )M;2+N+9/ Bﬁ|X|0d)€
B(0,8014z")

_N 59 N+2

Sepe 2 4 e
_N.3 N+2

:0(8/1,82 )+(9(/L82 )
because 6 < 2. Finlgl_l%y, to estimate the last remaining term in (3.6), we simply recall
ue S ; Bje e aswellas G(x,x;¢) < 1lonQ\ \U; bjie so that

N+2

N+2 N2
/ ud 7Gx, xie)dx S pe? .
Q\U] bj,s

This completes the proof of (3.6), and hence of the proposition. ]

Proof of Proposition 3.2. The overall strategy and the nature of the multiple estimates
needed is very similar to the preceding proof of Proposition 3.1, which is why in the
following we will be briefer in places.

We multiply equation (1.1) against dy, G(x, x; ) and integrate over dx. Since by def-
inition of G and x; ,

/ usVy,G(x, x;¢) dx = Vug(x;s) =0,
Q
the resulting identity is (for any fixed/ = 1,..., N)
Nt2
5[ Vugdy, G(x,x;¢)dx = N(N — 2)/ ug 2 09y,G(x, xi.)dx. 3.7
Q Q

In the following, we will repeatedly decompose

1 X —Xig

V,G(x,Xie) = — Vy H(x, xi¢)

oN-1 X = XielV

and use that VH (-, x; ) is bounded on 2.
We first evaluate the left-hand side. Since u, < ) j Bj ., clearly

-¥43 .
N2 2
/ sVusaylG(x,xi,g) dx = (9((9“3 2 ) _ {O(SIJ/E zl lfN > 5,
Q\Ubje o(epeIn(u; ")) if N =4,
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On b; ¢, we have

¥ +3 .
N2 2

s/ VueVy H(x, Xig)dx = O(eps > ) = o(epe ) ifN =5,

bi.s o(epeIn(u;l)) if N = 4.

To evaluate the integrals involving the singular term of VG, we also decompose u, =
Bie+rigand V(x) = V(xie) + VV(xie) - (x — Xie) + 0o(]x — Xi¢])-
Then, by antisymmetry the main term vanishes, namely

eV(xis) Bmm

dx = 0.
bie | 1X = XiglN

The gradient term, forevery [ = 1,..., N, yields, if N > 5,

& (x — )Ci,zs)2
O0x V(xie) | Bigr—— i dx
WN -1 bie |x — Xi e
1 Y43 z}
= el e Ox Vi(xie) B——dz.
WN-1 B(0,80447}) |z]

If N = 4, this gives

€ (x— xi,S)z
0 Vi) [ B dx
ON-1 bie X — Xiel

:iq%mugnwmvwm)+oa»

If N > 5, this term will exactly cancel with another contribution coming from the error
term in ¢; . on the right-hand side.
Finally, by the bound for 6 = 0 from Proposition 2.4 and Lemma 2.3,

X — Xj¢e
5/ Viriel—— 5 dx
bi e |x _xi,8|

_N N—2 _N
- {szug 23 epe > = o(sps +3) if N > 5,
T PpeIn(usY) + epte < e = o(epe In(uy ) if N = 4.

Let us now turn to evaluating the right-hand side of (3.7). Since
N+2 N+2
/ V3V, G i) dx = O(ue ).
Q\U bj,s

we only need to consider integrals over the balls b; .. On b; ., we split

1 X — Xjg

V,G(x,x;¢) =
yGeTie) = N o k= xielV

-V, H(x,x;¢).
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To treat the singular term write u‘E = B¢ +ris = Bi ¢ + Wi¢ + qi . By antisymmetry,
the terms involving B;’ N = and B N2 W, ¢ vanish. Thus

N+2 — X
[ V5 X — Xig dx
€ N
ie |x _xi,8|

<

7 N+2 _
(BN 1qil + Iriel ¥2) |x — x|V
&

Bﬁq X — Xie
i | a——
b |x _xi,s|N

T 5

dx

ie

2

N 3 Nt2 N+2 _ N+ .
(9((8,11,,‘2 )N 2 ):o(s,ug )+(9(pL€ ) ifN >S5,
O(+e3ud(In(u;M)? + ul) = o(epe In(u; ) + O(ud) it N =4,
by Proposition 2.4 with 6 = 0.

Let us extract the contribution from the term in ¢; .. When N = 4, Proposition 2.5
yields

+

|x
So for N = 4 the term is negligible. Let us now look at N > 5. By Proposition 2.6 with
any v € (3,4), we have

4 1 _
/ B2 gy ol dx < pte = o(epte In(uZ1)).
bi e - xi,8|

N 2 1 *% 7
/ B/ 2 | pieli———x = dx < eite + e
bi,e | xi,8|

N+2

T +3 42
—ofens Y+ o ().
Finally, using N(N + 2)BﬁW2 = —AW, + B|x|, we get

N(N +2) -x A — Xj i
ggﬂi’; +4 [ Bil’\;_z Wz(x i )VV(X, s) $
bj ¢

WN-1 Mie |x_xle|N
1 —¥i3 2
- 3V (xie) N(N +2)B¥2 W, ——d:
on-1 B(O.Sonih) ||
1 X +3 22
= e > 01V (xie) (=AW2 + B|x|) =7 N+1 dz.
WON-1 BO.Son;h) ||

The term in B|x| cancels precisely with the term from the left-hand side pointed out above.
The term in —AW,, arguing as in the proof of Proposition 3.1, gives
2

“E 0 Vi AW, + Blx))—L 4
Ele I (xt,s) )( 2+ |x|)|Z|N+1 z

_ _W -3 +3((N — D)Wa(R)R™" + WJ(R))
L

ay - —¥+3
= —0; V(xi,s)wgﬂa +o(epme 277),

WN-1

with R = 50#[,31 and ay as in Lemma A.2.



T. Konig and P. Laurain 1260

This finishes the discussion of the term in g; ¢.
Now we evaluate the integral over b; . against Vy, H(x, x;,), for which we again
decompose u, = B; ¢ + ri . Taylor expanding,

dy, H(x, Xi6) = 0y, H(Xi 6, Xie) + Viy, H(Xi e, Xie) - (X — Xi ) + O(|x — Xi6]?),

and using that the gradient term cancels by antisymmetry, we find

N+2

WN — N=2 N+2 3
il Oy H (e Xie) + O(me > In(ug "))

N

Ntz
—/. B2 0y, H(x, x;¢) dx

wNy—1 2

a2
= N Hi e dx, P (Xie) + O(Me ),

which is (the diagonal part of) the main term we desired to extract. On the other hand,
since Vy, H(x, x; ) is bounded, the principal remainder term in r; ¢, by Proposition 2.4
with 8 € [0, 1), is bounded by

+3)

-y N+t2_¢
¥ N4 N+2 2 2 . -
/ Bij,v{z|ri,g|dx < eus > +4-0 T’ = o(s,ue + (9(#5 ) if N > 5,

bi.e o(epe In(u; ) + O if N =4,

Finally, on b;, with j 7 i, analogous computations permit us to extract the remaining
(off-diagonal) part of the main term as

N3 ON-1 a2
A gy Gx, xie) dx = TayzG(xj,vai,s)/’“_i,e
j.e
¥ +3 o Ni2 FN >
o(epe )+ O(e? ) if N >5,

+
o(epe In(u;") + O(uZ?) if N = 4.

Combining everything, and observing that WM F=dy %, with dy given by

(1.4), the proof is complete. ]

4. Proof of Theorem 1.1

We now show how the expansions (3.1) and (3.3) can be used to conclude the proof of
Theorem 1.1.
We introduce the vector A, € (0, 00)” with components

(hodi = A o= (1 )%

and note that A; . is bounded away from 0 and oo by Proposition 2.1.
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Let us rewrite (3.1) and (3.2) as

—dyep; NV (xie) + 0())Aie  ifN > 5,
—87*)elnu ) (V(xie) +o(1) if N = 4.

&€

(M(xg)-Ag)i + 0(#?) = { 4.1

By Perron—Frobenius theory (see [3]), the lowest eigenvalue p(x.) of M(x;) is sim-
ple and the associated eigenvector A (x.), normalized so that (A(x)); = 1, has strictly
positive entries.

Taking the scalar product of (4.1) with A (x;) shows

p(xe){A(xe), Ae) = (A(xe), M(xe) - Ag)
—dne Y NV (xie) + o)) Aie(A(xe))i +o(1) i N =5,

= 4.2
—87) ' Y Inpi} (Vixie) + 0(1)Aie(A(xe))i +o0(1) if N =4, “

Since A (x,) and A, both have strictly positive entries, and since V' < 0 by assumption,
this shows that 0 < p(x,) for all ¢ > 0. For the limit p(x¢), two cases are possible.

Case 1: p(xg) > 0. Assume N > 5 first. In this case, (4.2) shows that lim,_,¢ S,MZ;V‘H > 0.
(Note that this limit always exists up to a subsequence and is finite as a consequence of
Lemma 2.3.)

Introducing the variable

N-2

1
Kie = (ENF 1) 7
we can write (3.1) as
(M(xg) - ke)i = —dn V(xi,s)Ki_,g,
with
_N-6
T=N_2
Moreover, (3.3) can be written in terms of k. as

N =2
ad
2

(M'(xs) - ke)i = —dy w0 V(X 2
Since 0y, (k, M(x)k) = (M(x) - k) and d(x, ), {k, M(x)k) = %Kk (Ml(x) - k), the point
(Ko, Xx0) is a critical point of F defined in (1.3).

Since p(xg) > 0 in this case, M(xy) is strictly positive definite. If additionally g > 0
(i.e. N > 6), then D,%F (k, x¢) is strictly positive definite for every x. We obtain that

F(k, xg) is convex in the variable x on (0, c0), hence it has a unique criti}gg} point. This

—N+4 25>

is the desired characterization of kg, and hence of limg—¢ g1, , =Ko
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If N =4, we find in a similar way that lim,_,¢ € ln(,ugl) > 0. To characterize the limit,
we argue slightly differently. Since ¢ In /,Ll_gl =¢ln ,ul_é + o(1) =t ko + o(1), passing to
the limit in (4.1) gives

1
(M(x0) - Ao)i = 32 |V (xi,0)lk0Ai0-

Similarly, the identity from Proposition 3.2 reads
~ 1
(M (x0) - Ao)i = 5V (xi.0)lKodio.

This shows that (A¢, x¢) is a critical for ﬁ(l, x) as given in (1.5).
Finally. let us discuss the property of kq. If we define

My (k) = M(xo) — 8"7 diag(|V (xi.0)]).

this can be written as M7 (ko) - Ag = 0, i.e. A¢ is a zero eigenvalue of M;(xg). Since
M, (x) differs from M(xo) only on the diagonal, the Perron-Frobenius arguments used
above can still be applied to M; (k). Thus Ay must be the lowest eigenvector of M (kg),
because it has strictly positive entries. Since V' < 0, the lowest eigenvalue of M (k) is
clearly a strictly monotonic function of «, so k¢ is indeed unique with the property that
the lowest eigenvalue of M (ko) equals zero.

This completes the proof of Theorem 1.1 in the case p(x¢) > O.

Case 2: p(xg) = 0. In this case, (4.2) shows that limg_,¢ s,us_N“"‘ = 0 and that A is an
eigenvector with eigenvalue 0. Since (49); = 1 = (A(x¢))1 and p(xy) is simple, we have
in fact A9 = A(xy), i.e. A is precisely the lowest eigenvector of M(xg), with eigenvalue
p(xo) = 0.

For the following analysis, we decompose A, = o A(x;) + 8(x.), where o, € R,
A(x;) is the lowest eigenvalue of M(x,) and §(x.)LA(x.). Notice that oz — 1 as a
consequence of A, — A (xg).

Here is the central piece of information which we need to conclude in this case.

Proposition 4.1. As ¢ — 0,

80 = {msug““ +E G +lpd) AN =S
& - . .
Oeln(u") + 12 (s ) + [p(xo))) if N = 4.
Suppose moreover that p(xo) = 0. Then, as ¢ — 0,
o(ep N4+ u2)  if N =5,
plxs) = { TR, (44)
o(eln(ug ") + pg) ifN =4

Before we prove Proposition 4.1, let us use it to conclude the proof of Theorem 1.1 in
the present case p(xg) = 0.
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Taking the scalar product of identity (4.1) with A; , and using the properties of A (x)
and §., we obtain

pxe)lA(xe) e + (8(xe). M(xe) - 8(xe)) + O(17)
—dye Yy 1 N (V(xie) +o(1)A7, N =5,

—@Br) e Y Inp }(V(xie) +o(1) if N =4.

4

The crucial information given by Proposition 4.1 is now that the terms in p(x.) and in
8 (x¢) on the left-hand side are negligible. Since V' < 0 and A;  ~ 1, the above identity
then implies ep; VT = O (u2) if N > 5, resp. eln(u;}) = O(u2) if N = 4, as claimed.

i
This completes the proof of Theorem 1.1.

Proof of Proposition 4.1. Arguing as in [20, Lemma 5.5], we get

3?0(%) = a;ci (Aay M, (x) - As)|x=xs + (9(|p(x5)| + |8(x5)|)
= Aie(ML(xe) - Ae)i + O(lp(xe)| + |8(xe))).

Inserting the bound from Proposition 3.2, we thus get, for every § > 0,

Oep N4+ 1278 4 |p(xe)| + [8(xe)])  if N > 5,

4.5
Oz + 1270 + Ip(eo)l + 5o iEN =4

IVo(xe)| = {

On the other hand, writing M (x;) - A, = a.p(xc)A(xs) + M(x.) - 8(x¢), (4.1) implies

Oeps ¥+ + p2In(ugh) + |p(xo)))  if N =5,

M“aﬂwgz{ogmwyywémwﬁrﬂmmm if N = 4.

Since p(x,) is simple, M (x,) is uniformly coercive on the subspace orthogonal to A (x;),
which contains 8 (x.). Hence (4.3) follows.
Moreover, with (4.3) we can simplify (4.5) to

Oeuy N+ u27% + p(xg)))  if N =5,
Vp(xe)| = T T el (4.6)
O In(uy") + 127 + |pxo)) N = 4.
Now we claim that there is o > 1 such that
p(xe) S 1Vp(xe)l©. 4.7

If we choose § > 0 so small that (2 — )0 > 2, together with (4.6) this yields

o(epu; N+ ) + O(p(xe)°)  ifN =5,

o= {0(8 (i) + 1)+ O(plx)?) TN =4
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Here we used that the assumption p(xo) = 0 implies S/L;N+4 = o(1), resp. eIn(u; ') =
o(1), as observed above. Hence we have (eu; N +4)7 = o(ep;¥NT4) and (e In(u; 1)) =
o(e ().

In the same way, since p(x.) = o(1), we can absorb @ (p(x.:)?) = o(p(x,)) into the
left-hand side and (4.4) follows, as desired. With this information, we can return to (4.6)
to deduce the bound on |V p(x,)| claimed in Theorem 1.1.

So it remains only to justify (4.7). This follows by arguing as in [20, proof of The-
orem 2.1] once we note that p(x) is an analytic function of x. Indeed, p(x) is a simple
eigenvalue of the matrix M (x). Hence it depends analytically on x if the entries of M(x)
do so. But this is clearly the case: Go(-, y) is harmonic, hence analytic on € \ {y}, and
Hy (-, y) is harmonic, hence analytic on all of €2, hence so is ¢(x) = H(x, x). The proof
is therefore complete. ]

A. Some computations

Lemma A.1. Let W be the unique radial solution to
—AW — N(N +2)B¥=W = —B, W(0) = VW(0) = 0.

Then, as R — oo,

(¥ (N=4
W(R) = | (N (_22))r((1v2—)1) Fo) ¥N =5,
3InR+o(nR) ifN =4,
and
W(R) = {0<R—1) N =5,
o(R™'InR) ifN =4.
Proof. By the variation of constants ansatz, we write W = v with
1—|x|?
) =

which solves —Av = vB¥=2. Then Y = ¢’ solves

Again by the variation of constants, we may write ¥ = 1o, with

Yo(r) = exp(—/lr(Ns_l + ZTU/) ds) = ﬁ
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Since ¥ (r) + (# + 27”/)1/f0 = 0, it remains to solve

B

n = — = BorV 7!,
vo
which gives
r r .N—1 2
_ No1 o [Tt =57
7](7')—/(; Bs l)dS—/O st

If N > 5, this integral remains finite as r — oo and we find, using the integral represen-
tation of the beta function,

TSz

Jim n(r) = — T(N—1)

On the other hand, if N = 4, the integral diverges and we have
nr)=(14+o())Inr asr — oo.

N+2

Using v(r) ~ —r~ , we moreover find

Yo(r) ~ N3

and hence
Ny (N=4
I )rN_3 if N > 5,
Y (r) =n(r)Yo(r) ~ (N -1)
—rinr if N =4,
respectively

: T
mm=/°wnm~ N-2 T -1
0 —%rzlnr if N = 4.

if N >5,

By recalling W = vg the claimed asymptotic behavior of W follows.
Similarly, using v'(r) ~ (N — 2)?r~¥*1 and the above asymptotics for ¢ and v, we
get
W' (r) = v'(Ne(r) + o)y (r) = o™,

because the terms of size r ! cancel precisely, and similarly for N = 4. This completes
the proof. ]

A very similar argument, whose details we omit, yields the asymptotics of W, arising
as the main term of g; .
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Lemma A.2. Let W, solve

—w )= o)+ T wa) - vav + 2)80) 2w (r)

r2
= —B(r)r on(0,00)
with W»(0) = W,(0) = 0. Then

. _ . an
lim Wo(R)R™! = lim WJ(R) = —,

R]—I>noo 2( ) R]—r>noo 2( ) N
with v N4
dn — NT(HI(EE)

N TN

B. Classical asymptotic analysis

In this section we generalize the result of [13] to N > 3 under appropriate assumptions.
The proof is globally the same except at the level of Claim B.4 where some refined analysis
is needed when N > 4. As already mentioned in [13], the proof follows [11].

Proposition B.1. Consider a sequence (u;) of C? solutions to

N+2
—Aug + heus = N(N —2ul? inQ,
Uy =0 on 9%2, (B.1)
U >0 in 2,

where Q is some smooth domain of RN and
he = hy inC%"(Q)ase — 0
if N =3, or
he =¢V
where V. e CHQ)UC(Q) withV <00on Qif N > 4.

Then either ||u;|| o is bounded or, up to extracting a subsequence, there exists n € N
and points X1, . . ., Xn e such that the following hold:

(i) xie = x; € Q for some x; € Q with x; # x;j fori # j.

(i)  ie = ug(xi,g)_ﬁ — 0ase — 0and Vug(x; ) = 0 foreveryi.
N—2 N-2
(i) Aio = limg—soAie = limeo ;7 /1, ; exists and lies in (0, 00) for everyi.

N—2

(V) ;2 ue(xie + piex) — Bin Cl.(R™).
_N=2 ~
(v)  There are v; > 0 such that ,ul,sz ug =y ; ViG(Xje,-) = § uniformly in c!
away from {xy, ..., Xp}, where G is the Green function of —A + hy.

(vi) Thereis C > 0 such thatus < C )_; Bi s on Q.
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The proof is divided into many steps. The first one consists in transforming a weak
estimate such as (B.3) into a strong one such as (B.4) around a concentration point, that
is to say, at a certain scale u, behaves like a bubble. So we consider a sequence u, which
satisfies the hypotheses of Proposition B.1 and we also assume that we have a sequence
(x¢) of points in £ and a sequence (p,) of positive real numbers with 0 < 3p, < d(x,,9d2)
such that

Vue(xe) =0
and

2
ps[ sup us(x)] "5 4o ase— 0. (B.2)
B(xe,0¢)

First, we prove that, under this extra assumption, the following holds:

Proposition B.2. If there exists Cy > 0 such that
e —x|"True < o in Bxe.3pe), (B.3)
then there exists C1 > 0 such that
e (xe)us(x) < Cilxe — x>V in B(xe, 20¢) \ {xe),
U (xe) [Vite ()| < Cilxe — x '™ in B(xe. 2p6) \ {xe}. D

Moreover, if p. — 0, then

N-—2
Pe

o (et (e + pex) = —~ b in CL(B(0.2)\ {0}) ase — 0,

|x|N_2 loc

where b is some harmonic function in B(0,2) with b(0) < 0 and Vb(0) = 0.

B.1. Proof of Proposition B.2

We divide the proof of the proposition into several claims. The first one gives the asymp-
totic behavior of u, around x; at an appropriate small scale.

Claim B.1. After passing to a subsequence, we have

N-—2

Me? ue(Xe + pex) = B inCL.(R¥) ase — 0,
where jLe = ug(xa)ﬁ.

Proof. Let X, € B(xg, pe) and i, > 0 be such that

_ 22N
Ug(Xe) = sup ue = fig* .
B(x¢,pe)
Thanks to (B.2), we have
[La—>0and&—>+oo ase — 0. (B.5)

fie
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Thanks to (B.3), we also have
|xe — Xe| = O(jie). (B.6)

We set, for x € Q, = {x € RN s.t. ¥, + ji.x € Q},
N-—2

g(x) = lleT Ug(Xe + fLex),

which verifies
N+

o

—Aiig + i2heii, = N(N —2)ii} 7 in Q,,
i(0)= sup iip=1, (B.7)
B )

where h, = h(Xe + jilex). Thanks to (B.5) and (B.6), we get

B(xejxa,p—) - RY ase—0. (B.8)
He He

Now, thanks to (B.7), (B.8), and by standard elliptic theory, we get that, after passing to a

subsequence, iy — B in Chl)C (RN) as ¢ — 0, where B satisfies

“AB=N(N—2)B¥3 inRY and 0<B <1 = U(0).
Thanks to the work of Caffarelli, Gidas and Spruck [7], we know that
B(x) = (1+|x})~"7".

Moreover, thanks to (B.6), we know that, after passing to a new subsequence, x‘gﬂ;if — Xo
&
as ¢ — 0 for some xo € RY. Hence, since x; is a critical point of u, xo must be a critical
point of U, namely xo = 0. We deduce that g—g — 1, where pu; is as in the statement of
&

the claim. Claim B.1 follows. [

For 0 <r < 3p,, we set

N-—2

ro2
Ye(r) = —— / ug do,
) N1 JaBeery

WN-—-1T

where do denotes the Lebesgue measure on the sphere dB(x., r) and wy—_1 is the volume
of the unit (N — 1)-sphere. We easily check, thanks to Claim B.1, that

N-2

_ r 2
Ve(pter) = Evljzrz) r + Z(l); (B.9)
Ve(per) = T<1 n r2> 2 (72 - 1) ot

We define r, by

re = max{r € [2/ie, pe] s.t. Y (s) < O fors € [2pq,r]}.
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Thanks to (B.9), the set on which the maximum is taken is not empty for ¢ small enough
and, moreover,

Te — 400 ase — 0. (B.10)
He

We now prove the following:

Claim B.2. There exists C > O, independent of ¢, such that
N2 N
Ue(x) < Cpg® |xe — x>~ in B(xg,2re) \ {x¢},
N=2
[Vue(x)] < Cue? |xe_x|l_N in B(xe,2re) \ {x¢}.

Proof. We first prove that for any given 0 < v < %, there exists C,, > 0 such that

N=21_» _ _ T (N-2)v
up(x) < Cv(ﬂsz ( V)|x —xs|(2 N)(1—v) +a5(|x sx |> ) (B.11)
— Ae

for all x € B(x,,2r,) and & small enough, where

Og = SUp Ug. (B.12)
0B(x¢,re)

First of all, we can use (B.3) and apply the Harnack inequality (see Lemma D.1) to get the
existence of some C > 0 such that

U, do < C min u, (B.13)

1
— max (ug +r|Vug|) < ﬁ/
) WN-1F B (x¢,r) 0B(xe,r)

C 0B(x¢,r

forall0 < r < %pg and all € > 0. Hence, thanks to (B.9) and (B.10), we have

N-—2

N=2 R
= xel () < CYr) = CelRipe) = C () o)
forall R > 2, all r € [Rue, F¢], all € small enough and all x € dB(x,, r). Thus we get

sup = xe] T ua(x) = e(R) + (1), (B.14)
B(x&rs)\B(xs,RlLs)

where e(R) — 0as R — +o00. Let §(x,y) = (N—zin_l |x—y1|N—2 , in particular
~A%(,y) =8, onRY,
Wefix0 <v < %andweset

N=2 (1-2v)

ey = Ug g(xg’x)l—v + ae(r,sN_zg(xs,x))v-

Then (B.11) reduces to proving that

sup —= = O(1).

B(xg,2re) >V
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We let y, € B(x.,2r¢) \ {x¢} be such that

Ug ug(ye)
sup = —

B(xg,2r¢) q)s v q>€,v(y8) .

We are going to consider the various possible behaviors of the sequence (ye).
First of all, assume that there is R < oo such that
|xXe — Vel
Me

— R ase— 0.

Thanks to Claim B.1, we have in this case that

e ug(ye) — (1 + Rz)_¥ ase — 0.

On the other hand, we can write

N—2 M?’—z

v 1—v N2 re  \@W-2v
7 = ( ) +o ( )
Me ew(Ve) (N —2)on—1|xe — ye| N2 (Ols,Uvs |xe — Vel )

N —2
= (N =R 20y )" + 0((re ” )Ms (=20, }ev-1)
= (N =2)R" 2wy 1) +o(D).

N
if R>0,and e > @, (ye) > +ooase — 0if R = 0. In any case, ( "f(f;))) is bounded.

Assume now that there exists § > 0 such that y, € B(xe, r:) \ B(x¢, 8r¢). Thanks to
Harnack’s inequality (B.13), we get that u.(y.) = O(«), which easily gives that ”E(f S))
o). ve

Hence, we are left with the following situation:

Xe — Xg —

|xXe — Vel -0 and [xg — el
Ie Me

Thanks to the definition of y,, we can then write

—Aug(ye) - —ADg (ye)
ug(ye) = Do (ye)

— 400 ase — 0. (B.15)

Thanks to the definition of @, ,, and multiplying by |x, — y,|?, this gives

e = Yel2 (—he(ye) + NN = e (ye) V)

e =yel? ¢ (v-2p [VE (xe ye)I?
vl—v—a’" e o e )’
( ) en( e) ( G (Xe. ye)? (e, e
L e [V P
g(xt“’ y8)2

Thanks to (B.14), the left-hand side goes to 0 as ¢ — 0. Then, thanks to (B.15), we get

9(xe 30)' ™).

o(1) > (N —2)%v(1 —v) + o(1),



Fine multibubble analysis in the higher-dimensional Brezis—Nirenberg problem 1271

which is a contradiction, and shows that this last case cannot occur. This ends the proof of
(B.11).
We now claim that there exists C > 0, independent of ¢, such that

N2
ug(x) < C(Me 2 x _xs|2_N + Ols) in B(xe, re). (B.16)

Thanks to Claim B.1 and (B.13), this holds for all sequences y. € B(xe, re) \ {x¢} such
that |y, — x¢| = O () or % - 0. Thus we may assume from now that

—X —X
| Ve el 5 400 and | Ve el
He Te

—0 ase—0.
Let us consider &, the Green function of the operator —A + k.. This function exists

since, by Appendix C, the operator is coercive; moreover, one has the classical estimate
(see [2] or the nice notes [31])

sup |x — y[" 2 [Ge(x. )| + [x — y|" T VE(x, y)| = O(1). (B.17)
xX#y
Thanks to the Green representation formula, we have

Ug(ye) = /B( )%(ye, )(=Aug + hgug) dx

~|—(9( ~(N- 2)/ |0yug| do +r, V- 1)/ Ug da).
0B(xe,re) 0B(xe,re)

This gives with (B.12), (B.13) and (B.17) that

_ L —(v-2), N3
ug(ye) = 0 [x — yel ug 2 dx ) + O(ae). (B.18)
B(xe,re)
Using (B.11) withv = N— and 1 < p < =5 we can write
Ne2
/ |X _y6|2 N eN dx
B(xe,re)
N+2 N+2

°’z
N
2

u ug 2
B(xg,te) |X - y8| B(x¢,re)\B(xg,1te) |X - y5|

N-2
= (9(“8 2 |ye — x8|2_N)

N2 1 1
+ OlsN_z I's / N3 dx
B(xere)\B(xe,ite) 1X — Vel | — Xel

® 9z

+u

1 1
dx
/B(xs,rs)\B(xs,us) |x = yelN=2 |x — x|V F1
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N—-2

= Q(MSTD’E_XEF_N)

N+2

N2 1 1
+alN 2y (/ _ dx)
’ ’ B(xe,re)\B(xe,te) |X — y6|p(N—2)

1

1 p
/ T dx
B(x,, rs)\B(xg ) X — xg|?

X

1
|ye — xe|N U Brero\Bre )N B, o522l [x — ye V72
1
+ (9( - dx)
|N -2 (B(xs,m\B(xs O\ B(e, es2ely |x — x| N H1
L N+2
0T e —x P N) + 0@ 2).

Thanks to (B.10) and to (B.14), this leads to
N-2
[ |x—yg|2_N|—Aug|d)c=(9(,u82 |y8—x3|2_N+as).
B(xe,re)

which, thanks to (B.18), proves (B.16).
In order to end the proof of the first part of Claim B.2, we just have to prove that

N 2 N
as = sup u;=0(u.2 rZ7N). (B.19)
0B(x¢,re)

For that purpose, we use the definition of r, to write that

Ye(Bre) = Ve(re)
for all 0 < B < 1. Using (B.13), this leads to

r,;%( sup us)§C(/3’r8)¥( sup us>.

0B (xs,re) 0B (xs,Bre)

Thanks to (B.16), we obtain

— N-—2
sup  up < Cﬁ¥(usz (Bre)* ™™ + sup ua)-
0B(xg,re) 0B(xe,re)

Choosing B small enough clearly gives (B.19) and thus the pointwise estimate on u, of
Claim B.2. The estimate on Vu, then follows from standard elliptic theory. ]

We now prove the following:

Claim B.3. Ifr, — 0 as ¢ — 0, then, up to passing to a subsequence,

1
N2, (xe)ue (Xe + rex) — e +b inCL.(B(0,2)\{0}) ase — 0,

where b is some harmonic function in B(0,2). Moreover, if ro < pg, then b(0) = 1.
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Proof. We set, for x € B(0,2),

N-2
&

2-N
Ue(x) = pg? Ug(Xg + rex),

which verifies

N+

~ 27 ~ l’LE 2~72
—Aiig + r2heiis = N(N — 2)(—) X2 in B(0,2), (B.20)
Te
where ﬁs = h(x; + rex). Thanks to Claim B.2, there exists C > 0 such that
- C .
Ug(x) = —x— inB(0,2)\ {0} (B.21)
Ix[V-2

Then, thanks to standard elliptic theory, we get that, after passing to a subsequence, i, —
U in C! (B(0,2) \ {0}) as ¢ — 0, where U is a non-negative solution of

—AU =0 in B(0,2)\ {0}.

Then, thanks to the Bocher theorem on singularities of harmonic functions, we get

A
Ulx) = V2 + b(x),

where b is some harmonic function in B(0,2) and A > 0. Now, integrating (B.20) on
B(0, 1), we get

N+2

~ 2 N+2
/ 3yiie do = / (rghsas — N(N — 2)(&) iy 2) dx.
9B(0,1) B(0,1) Te

Thanks to (B.21), and since r, — 0 by hypothesis,
/ rszﬁgﬁg dx >0 ase— 0,
B(0,1)

and, thanks to (B.21) and Claim B.1,

He\2 . N+2
— ) ud? dx

N(N —2) (
B(0,1) \ e

—>N(N—2)[ BN dx = (N —2)wn_1 ase— 0.
RN
On the other hand, we have
/ dytie do - (2— N)wy—1A ase — 0.
3B(0,1)

We deduce that A = 1, which proves the first part of Claim B.3.
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Now, if r; < pg, we have thanks to the definition of r, that
1/’; (re) = 0.

Setting Ve (r) = (ﬁ)¥ws(r€r) for 0 < r < 2, we see that

N-—2

~ 2 — —
Ye(r) — e N / Udo=r"7 + rN22b(0).
WN—-1T 9B(0,r)

We deduce that b(0) = 1, which ends the proof of Claim B.3. |

Finally, we prove the following:
Claim B.4. Using the notation of Claim B.3, we have that b(0) < 0 and Vb(0) = 0.

Proof. We use the notation of the proof of Claim B.3. Let us apply the PohoZaev identity
(E.1) to 1ig in B(0, 1). We obtain

1 A r ~ ~
> / r2((N = 2)heii2 + he(x, Vi2)) dx = B + B,
B(0,1)

where
N -2 |Viig|?

Ugdylls —

do,

Bls = / (avﬁs)z +
dB(0,1)

., (N—-272 2 .
By =2 / (52)i ao.
2 9B(0,1) \ e

Thanks to Claim B.3, we can pass to the limit to obtain that the right-hand side is equal to

|VU|?
do.

N =2
/ 0,U)* + —=Ud,U —
3B(0,1) 2

—7)2
w . Moreover, when

Since b is harmonic, it is easily checked that it is just —
N = 3, thanks to (B.21) and the dominated convergence theorem, the left-hand side goes
to zero, which proves that »(0) = 0. If N > 4, we have to make a more precise expansion

of the left-hand side. First, integrating by parts we get

1 ~ ~
5 / re (N = 2hetiy + he(x, Vi) dx
B(0,1)

_ _/ r2(heii? + L2 (x, Vi) dx + o(1)
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Then, thanks to Claims B.1 and B.2, we have easily for N > 5 that

/B L e (%)N“‘( /R Bar+ 0(1)),
N—4—1
/B(O’U Ix[ii2 dx = 0((%) )

In particular,

N —2)2wy_1b(0
lim —er2V (x.) i dx = - N Z2D7on150)

(B.22)
e—0 B(0,1) 2

Hence, using the fact that V' < 0, we obtain that »(0) < 0 for N > 5. Similarly, for N = 4,

/ 2 dx = (1+ o(1))1og(ri)
B(0,1) Me
and

/ |x|it2 dx = O(1),
B(0,1)

which also proves that 5(0) < 0. In order to prove the second part of Claim B.4, we apply
the Pohozaev identity (E.2) to i, in B(0, 1). We obtain

V~ 2
/ (' | u—avaavas) do
3B(0,1) 2

~ Vi N —2)2 2 .
- —f 2 2o gy +/ u(&) 2"y do. (B.23)
& &
B(0,1) 2 9B(0,1) 2 Te

It is clear that

Vii.|2 VU|?
[ (M v o [ (BT auve)ar we—o
3B(0,1) 2 8B(0,1) 2

Moreover, thanks to the fact that b is harmonic, we easily get

VU2
/ (' =, VUBVU) do = (N = 2)wn—1Vh(0).
dB(0,1)

It remains to deal with the right-hand side of (B.23). It is clear that

2 *
/ (&> iZ2vdo —0 ase— 0.
dB(0,1) \ e

Then we rewrite the first term of the right-hand side of (B.23) as

- Vi Vh
/ r2he ZS dx = —/ r2 zeﬁﬁ dx +o(1) = (9(8r83/ i dx).
B(0,1) B(0,1) B(0,1)
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Then, thanks to (B.22), we have

- Vii?
lim r2h, e gx = 0.
e=>0JB(0,1)

Finally, collecting the above information, and passing to the limit ¢ — 0 in (B.23), we get
that Vb (0) = 0, which achieves the proof of Claim B.4. [

We are now in a position to end the proof of Proposition B.2.

Proof of Proposition B.2. If p. — 0 as e — 0, then we deduce the proposition from Claims
B.3 and B.4. If p; /4 0 as ¢ — 0, then Claims B.3 and B.4 give that r, 4 0 as ¢ — 0.
Then, using the Harnack inequality (B.13), one can extend the result of Claim B.2 to
B(x¢,2p¢) \ {x¢}, which proves the first part of Proposition B.2 when p, /4 0. |

B.2. Proof of Proposition B.1

Let us now turn to the proof of Proposition B.1. This is done in two steps. In Claim B.5,
mimicking [11], we exhaust a family of critical points of ug, (X1, ..., Xn,,¢), such that
each sequence (x;, ;) satisfies the assumptions of Proposition B.2 with
= min Xie— Xi.gl, d(xi. ¢, 02)}.
Pe lsisNg,iyéis“ ie ieels d(Xi e )}
In Claim B.6, we prove that these concentration points are in fact isolated. In particular,
this shows that (u,) develops only finitely many concentration points.
First of all, we extract sequences (whose number is a priori not bounded) of critical
points of u, which are candidates to be the blow-up points.

Claim B.5. There exists D > 0 such that for all ¢ > 0, there exists n, € N* and N, critical
points of ug, denoted by (X1, ..., Xn, ) sSuch that

d(xie. 0Que(xie) V2 > 1 foralli € [1,ng],

\%

[Xie — Xjclue(xie) ™2 > 1 foralli # j € [1,n),

and

2
( min _|x; . —x|)ug()c)m <D
i€[l,n.]

forall x € Q and all ¢ > 0.
Proof. First of all, we claim that
{x € Qs.t. Vg (x) = Oand d(x, Q) (x) V2 > 1} #0 (B.24)

for & small enough. Let us prove (B.24). Let y, € Q2 be a point where u, achieves its
maximum. We set y, = ug(yg)fﬁ — 0 as ¢ — 0. Also, we set for all x € Q, =
{x e RN s.t. y, + pex € Q),

N—-2

Ue(X) = e > Ug(Ve + HeX),
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which verifies v
—Atlg + /,Leh ue = N(N — 2)MTIH Qe

where /1, = e =h(ye + pex). Note that 0 < @, <1,(0) = 1. Thanks to standard elliptic theory,
we get that i, — U in C;}_(29), where U satisfies

AU =UN3 inQy and 0<U <1,

and where Q¢ = lim,—¢ Q.. Moreover, U # 0 by Harnack’s inequality; see [18, Theo-
rem 4.17]. Then, thanks to [8, Theorem 2], we have Qo = R¥, which proves that
d(ye, BQ)ug(ya)ﬁ — +o00 as ¢ — 0. This ends the proof of (B.24).
Now, applying Lemma F.1, for ¢ small enough, there exist n, € N* and n, critical
points of u,, denoted by (X, ..., Xn, ), such that
d(xie 0ue(xi0)¥2 > 1 foralli € [1,ng],
|Xie —xj,g|ug(xi,g)$ >1 foralli # j €[l,ng],
and
2
( min |x, e x|>u5(x)m <1 (B.25)
i€[l,n,
for every critical point x of u, such that d(x, 0Q2)u E(x)ﬁ > 1. It remains to show that

there exists D > 0 such that

2
( min [x;e — x|)u£(x)m <D
i€[1,n.]

for all x € Q2. We proceed by contradiction, assuming that

sup(( min _|x;, — |) 2(x)) — 400 (B.26)

xeQ \\i€[l,n,

as ¢ — 0. Let z, € Q be such that

( min |xl€ Zs|)ua(zs)ﬁ = sup(( min |xls_x|)ua(x)1v 2)
1,n

i€[l,n xeQ \Nig[
We set i, = ug(zs)’ﬁ and S¢ = {X1,6, ..., Xn,,¢}. Thanks to (B.26), we check that
fle >0 ase—0
and that
d(Se, z¢)
e
Then we set, forall x € Q, = {x € R3s.t. z, + [lex € Q},

— 400 ase — 0. B.27)

Ue(x) = //La Ms(Zs + [fex),
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which verifies N
—Ati, + /Lsh e = N(N — 2)u6Ni in Qg,

where /1, = h(ze + ftex). Note that 71, (0) = 1 and also that

lim sup d,=1
£0 (0,

for all R > 0, thanks to (B.26) and (B.27). Standard elliptic theory then gives that 7, — U
inC! (Qo), where U satisfies

loc

A~

AU = NN -2)0%3 inQy and 0<0 <1,
with Qo = limg—¢ Q As above, we deduce that Qo R, which gives
2
lim d(z¢, 0Q2)ul 2 (z¢) — +o0. (B.23)
e—>0

Moreover, thanks to [7], we know that

1

U() = ——
(1+[x[>)72

Since U has a strict local maximum at 0, there exists X, a critical point of u,, such
that |z, — %¢| = o(fl¢) and fleus(%¢)> — 1 as ¢ — 0. Thanks to (B.27) and (B.28), this
contradicts (B.25) and proves Claim B.5. [ ]

We define
de = min{d (x;6, Xj6). d(xie, 0Q) s.t. 1 i < j < ng}

and prove the following claim:

Claim B.6. There exists d > 0 such that d; > d.

Proof. Assume that d, — 0 as ¢ — 0. There are two cases to consider: either the distance
between two critical points goes to 0, or one of them goes to the boundary.
Up to reordering the concentration points, we can assume that

de = d(x1,6,X2,6) Or d(x1,6,0R).

For x € Q, = {x € R¥s.t. x1 + dex € Q}, we set

N2

ug(x) = d; 2 Ug(x1,6 + dex),

which verifies N

—Ailg + d2heii, = N(N —2)ii )7 in Q,,
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where ﬁs = h(x1,¢ + de¢x). We have, up to a harmless rotation,
lim Q. = Qo = RY or |—oco;d[x R¥™!, whered > 1.
£—>

We also set
Xie — X1,¢

ds

We claim that, for any sequence i, € [1, n,] such that

Xie =

ug(Xi,.e) = O(1), (B.29)
we have
sup e = O(1). (B.30)
B(xig,sa%)

Indeed, let y, € B(X;, ., %) be such that SUPB(z,, ..1) Us = Ug(ye) and assume by contra-
diction that
2
g(ye)¥2 — 400 ase — 0. (B.31)

Thanks to the definitions of d, and y, and to the last assertion of Claim B.5, we can write
that
|de(ye — Xig,e)|ue(xX1,6 + dey.»s)ﬁ <D
so that
[ye — Xig el = o(1).
For x € B(0, 3%2) and ¢ small enough, we set

Ue(x) = Ms us()’s + [igx),

where 1, = ug(yg)fﬁ. It satisfies

Ni2
—Afl + (fledy)? hetie = 222 in B(0, ﬁ) and 1.(0) = sup u,=1,

B(o, 3/Ls)

where he =h (e + flex). Thanks to (B.31), B(0, —) — RY as ¢ - 400. Then
(it¢) is uniformly locally bounded and, by standard elhptlc theory, 1, converges to U
in Cl_(R"), where U satisfies

loc
AU =0U%3 nRY and 0<0 <1=20(0).

Thanks to the classification of Caffarelli-Gidas—Spruck [7] and to the fact that @ is
bounded, we can write that
lim inf Y2 %)

e=0  1g(Ve)
which is a contradiction with (B.29) and (B.31), and achieves the proof of (B.30).



T. Konig and P. Laurain 1280

For R > 0, we set Sg,, = {Xi | Xie € B(0, R)}. Thanks to the definition of d,, up
to a subsequence, Sg,s — Sg as ¢ — 0, where Sg is a non-empty finite set; then up to
performing a diagonal extraction, we can define the countable set

S=USR.

R>0

Thanks to the previous definition, we are ready to prove the following assertion:
Vig € [1,ng] s.t. d(Xi, 6, X1,6) = O(de), Ue(Xi,e) = +00 ase — 0. (B.32)

Assume that there exists i, such that d(x;, ¢, x1,¢) = O(d,) with1i.(X;, ;) bounded. Then,
for all sequences j, such that d(xj, ¢, x1,¢) = O(d,), we have that 1i(X}, ¢) is bounded.
Indeed, if there exists a sequence j, such that d(xj, ¢, X1,) = O(d,) and ti. (X}, ) — 400
as ¢ — 0, thanks to Claim B.5, we can apply Proposition B.2 with x; = X;, . and p; = %.
We obtain that up to a subsequence 1, — 0 in Cl(l)C(B(fc, %)) \ {¥}, where X =lim,—¢ X;, .
But () is uniformly bounded in B(y, %), where y = lim,_,¢ X;, .. We thus obtain, thanks
to Harnack’s inequality, that . (X;, ) — 0 as ¢ — 0, which is a contradiction with the first
or the second assertion of Claim B.5.

Thus we have proved that for every sequence j; such that d(xj, ¢, X1,¢) = O(ds),
Ug(X},,¢) is bounded. This proves that (i) is uniformly bounded in a neighborhood of
any finite subset of S. But thanks to Claim B.5, #, is bounded in any compact subset of
Qo \ S. This clearly proves that i, is uniformly bounded on any compact of €. Then, by
standard elliptic theory, ti; — U in C,} (Q0) as & — 0, where U is a non-negative solution
of

AU =UN3  inQq.

But, thanks to the first or second assertion of Claim B.5, we know that U(0) > 1, hence we
have necessarily that Qo = R, and thus U possesses at least two critical points, namely
0 and X, = lim,—,¢ X2 .. Thanks to the classification of Caffarelli-Gidas—Spruck [7], this
is impossible. This ends the proof of (B.32).

We are now going to consider two cases, depending on 2.

Case 1: Q¢ = R¥. In this case, up to a subsequence, d, = d(x1,6,x2,) and S = {0,
Xp = limg 0 X2, ... } contains at least two points. Applying Proposition B.2 with x, =

Xic and py = %, we obtain

1 Az

6(0)ie (¥) > H = T +

+b inCL RN\ S)ase—0,

where b is a harmonic function in £ \ {S\ {0, X>}}, and A, > 0. Moreover, 15(0) < —As.
We prove in the following that bis non-negative, which will give a contradiction and end
the study of this case. To check that b is non-negative, for any positive number r, we
rewrite H as 5
; A
H - ) Z W + br7
XieSNB(0,r)



Fine multibubble analysis in the higher-dimensional Brezis—Nirenberg problem 1281

where A; > 0. Then, taking R > r large enough, we get that by > ;12 on dB(0, R).
Moreover, for any X; € B(0, R) \ B(0, r), there exists a nelghborhood V;r of Xj such
that b > 0 on V; . Thanks to the maximum pr1n01p1e b > N > on B(0, R), hence it is
decreasing and lower bounded, then b — b on every compact set as r — +00, we get
that

A N
H = ——=w—> *+ b,
Z |x — % |[N-2
with b > 0, which proves that b > 0. This is the contradiction we were looking for, and
this ends the proof of Claim B.6 in this first case.
Case 2: Qo = |—o00,d[ x RN~ We still denote S = {0 = ¥, X5, ...} and we apply
Proposition B.2 with x, = x;  and p; = % to get
Ai
ue(0)iig(x) > H = Z &2 +b in (R0 \ 5),
Xi€S

where A; > 0, and b is some harmonic function in Q. We extend H to RY by setting

A = H(x) if x; <d,
B —H(s(x)) otherwise,

where s is the reflection with respect to the hyperplane {d} x R¥~1. We also extend b by
setting

. Ai A .
A=Y - ) b

2 |x =X N=2 0 s(x) — XN 2

X €S
It is clear that b is harmonic on RV and satisfies 5 > 0in Q¢ and b <0in RV \ Q.
This can be proved as in Case 1. For g the Green function of the Laplacian on the ball
B(0, R) centered at 0 with radius R, we get, thanks to the Green representation formula,
that

h(x) = / 3, Gr(x, v)b(y) do.
dB(0,R)

Since 22
0, 8GR (x, - = on d0B(0, R),
vER(X,Y) wN_1R|x—y|N ( )
this gives
N N N
016(0) = —— b do.
1b(0) on 1RV /;B(O’R) y1b(y) do

Now we decompose dB(0, R) into three sets, namely
A= {y € 0B(0, R) s.t. y1 > d},
B={y€dB(0,R)st.0=<y <d},
C ={y € 0B(0, R) s.t. y; < 0}.
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In A and B, we have that ylé(y) < dB(y), and in C, we have that ylls(y) < 0. Since
b > 0in C, we arrive at
Nd . Nd . Ndb(0
N[ b= M [ bpyar= Y00
oN-1RY Jaup @2 RY JyB(0,R) R

Passing to the limit R — 400 gives 315(0) < 0. In order to obtain a contradiction, we
rewrite H in a neighborhood of 0 as

9,15(0) <

1 .
H(x) = X2 + b(x).
where
. N 1 1 1
b(x) =b) ~ =g+ > Ail—ewz - o)
ls(x)] % e5v0) (|)C — X s (x) — Xil )

As is easily checked, 8115(0) < 0, which is a contradiction with Proposition B.2. This ends
the proof of Claim B.6 in this second case. ]

Proof of Proposition B.1. It only remains to prove (v) and (vi) of Proposition B.1. Asser-
tion (vi) is true locally around each concentration point by applying the first part of
Proposition B.2, and extending it to the whole domain using Harnack’s inequality. Finally,
(v) follows directly from (vi). Indeed, Ie\}l_lzthe Ii,e are comparable by Harnack’s inequality.

Then multiplying the equation by :“~1_, .~ and passing to the limit thanks to (vi) gives the

desired result. [

C. Necessity of coercivity

In this section we briefly recall why the operator —A + & is necessarily coercive as soon
as there exists a blowing-up sequence satisfying (B.1).

Lemma C.1. Ifthere exists u € COZ’"(Q) such thatu > 0 and —Au + hu > 0 on , then
—A + h is coercive.

Proof. See [12, Appendix B] for the case where €2 is a compact manifold. The proof
applies verbatim for a domain with Dirichlet boundary condition. ]

In particular, the operator —A + h, must be coercive for every £ > 0. But in fact, — A +
h must also be coercive under our assumption. Indeed, this is proved in [12, Appendix B],
when €2 is a compact manifold and under the assumption that there exists a finite number
of sequences (x})i<j<x € Q and u$ — 0 such that

k k

1

E § Bi,sf”sfc § Bi,a
i=1 i=1
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for some C > 0, where B; .(x) = B (x;,-xé ). This hypothesis is clearly verified thanks to
Proposition B.1. Now the proof in the domain case with Dirichlet boundary data follows

verbatim from the one presented in [12, Appendix B].

D. Harnack’s inequality

Lemma D.1. Let u, satisfy the hypotheses of Proposition B.1. Then there exists C > 0
depending only on Cy and ||h| oo such that

Ugs do < C min ug

1
— max (ug + r|Vug|) < ﬁ/
) WN-1T OB (x¢,r) 0B (xs.1)

C 0B (x¢,r
forallr € 0,3 pg] and all & > 0.
The proof follows [11, Lemma 1.3].

Proof of Lemma D.1. Let0 < r, < %pg. We set

N-—2
Ue(X) =71 > ug(Xg + rex)

which verifies N

~ Nt2
—Aiig + rZheiie = N(N —2)ad  in B(0, &),
where h~s = h(X; + rex). Thanks to (B.3), we have

G
S

in particular %, is uniformly bounded on B(0, 2) \ B(0, %). Hence, applying the Moser—
Harnack inequality [18, Theorem 4.17], we have for all x € B(0,3/2) \ B(0, 2) and 0 <
r< é that

~ 4
max g < C( min_iig + 7 |iie| ool — r2he + N(N —2)i 2 ||N>,
B(x,r) B(x,r/2)
with C > 0 depending only on N. Then, taking r small enough depending only on Cy and
|20 || 00, We have
max g < C min .

B(x,r) B(x,r/2)

Then, using a covering argument, we get

<C

max U < min Ug.
B(0,5/4)\ B(0,4/5) B(0,5/4)\B(0,4/5)

Finally, using standard elliptic theory,

max |Viig| < C max Ug
B(0,7/6)\B(0,6/7) B(0,7/6)\B(0,6/7)

which achieves the proof. ]
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E. General Pohozaev’s identities

For the sake of completeness, we derive here several forms of the classical Pohozaev
identity [26] that we used in this paper. Assume that u is a C? solution of

—Au = N(N —Z)M% —hu in Q.
Multiplying this equation by (x, Vu) and integrating by parts, one easily gets that
1
E/ ((N =2)hu® + h{x,Vu?)) dx = B; + Bo, (E.1)
Q

where

N -2 Vu|?
B, = / ((x Vu)d,u + udyu — (x, v)| ul ) do,
Elo! 2

2
N_22 2%
Bzzgf (. v) 2 do.
2 Jig 2

Hence, if u = 0 on 0$2, we get

/ h(N =2u? + (x,Vu?)) dx = / (x,v)(@,u)? do.
Q aQ

Integrating by parts again, we get the PohoZaev identity in its usual form:

/Q(h + (x»zvh>)u2 dx = —% [)Q<X’v)(8“u)2 do.

In a similar way, multiplying the equation by Vu and integrating by parts, one can derive
the following PohoZaev identity:

Vul? N —2)2 .. Vu?
/ (' u] \)—(?vuVu—uu2 v) do = —/ h—u dx. (E.2)
ao\ 2 2 o 2

F. A general simple lemma on functions

Lemma F.1. Ler Q be a smooth bounded domain of RN and u € C, () positive on .
Assume that

Ky = {x € Qs.t Vu(x) = 0 and d(x, IQu¥2 (x) > 1}

is non-empty.
Then there exist n € N* and n points of K,,, denoted by (x1, ..., xy), such that

|x; —xj|u(xi)ﬁ >1 foralli # j €[l,n]
and

<.min |x; —x|>u(x)ﬁ <1 forallx € K,.
i€[l,n
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Proof. Let Ky := K,,. By assumption, K is non-empty. Moreover, it is clear that K is
compact. We let x; € Ky and K7 C K be such that

u(xy) = rrll(a(l)xu
and
2
K, = {x € Ko s.t. |x; — x|u(x)¥2 > 1}.

Then we proceed by induction. Assume that we have constructed Ko D --- D K, and
X1,...,Xp such that x; € K;_; foralli € [1, p]. If K, # 0, we let x,4; € K, be such
that
u(x = maxu
(Xp+1) pr

and we define K, 11 C K, by

Kpp1 = {x € Kp s.t. minje[y, pr17 1 —xﬂu(x)ﬁ > 1}. (E.1)
We claim that for any x1, ..., x, constructed in this way, we have
I — x;|u(xi) ™2 > 1 foralli # j €[, pl. (F.2)

We prove (F.2) by induction. For p = 1, there is nothing to prove. Suppose now that (F.2)
is true for some p > 1 and that K, # @. Since x,4+1 € K),, by definition of K, we have

xpi1 — Xi[u(xpg1) ™2 > 1 foralli €1, p]. (F.3)

Moreover, for any i € [1, p], we have K;_1 D K, and hence u(x;) > u(x,41), since x;
and x, 41 are defined to be the maxima of u over these sets. In particular, u (i) > u(xp+1).
Thus (F.3) implies

|Xp+1 —xi|u(xi)ﬁ >1 foralli €1, p].

By the induction assumption, (F.2) is already true when both i and j are in [1, p]. Thus
we have proved (F.2) foralli # j € [1, p + 1].

Next we observe that (F.2) implies the lower bound |x; — x;| > m > 0. Hence,
the construction of the x, must stop after finitely many steps because €2 is bounded.

Thus, there is n € N* such that K;, = @. Fix any x € K,,. We claim that

( min_|x; —x|)uﬁ(x) <1 (F4)
i€[1,n]

Together with (F.2), this will end the proof of the lemma. Since K, = @, there exists
p € [1,n] such that x € K,_; and x ¢ K. By the definition (F.1) of the set K, we must
have

. 2
min |x — x;|u(x)¥2 < 1.
i€[1,p]

Since trivially min;e[; ] |x — x;| < min;¢[q, ] |x — X; |, inequality (F.4) follows. As already
explained, this proves the lemma. ]
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