
Ann. Inst. H. Poincaré
Anal. Non Linéaire 41 (2024), 1055–1081
DOI 10.4171/AIHPC/94

© 2023 Association Publications de l’Institut Henri Poincaré
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Blowup of two-dimensional attractive Bose–Einstein
condensates at the critical rotational speed

Van Duong Dinh, Dinh-Thi Nguyen, and Nicolas Rougerie

Abstract. We study the ground states of a two-dimensional focusing non-linear Schrödinger equa-
tion with rotation and harmonic trapping. When the strength of the interaction approaches a critical
value from below, the system collapses to a profile obtained from the optimizer of a Gagliardo–
Nirenberg interpolation inequality. This was established before in the case of fixed rotation fre-
quency. We extend the result to rotation frequencies approaching, or even equal to, the critical
frequency at which the centrifugal force compensates the trap. We prove that the blow-up scenario
is to leading order unaffected by such a strong deconfinement mechanism. In particular, the blow-up
profile remains independent of the rotation frequency.

1. Introduction

Bose–Einstein condensates (BECs) [9,24] form a remarkable phase of matter where quan-
tum effects can be spectacularly observed on a mesoscopic scale. Indeed, a single quantum
wave function being macroscopically occupied, its quantum coherence becomes accessi-
ble e.g. to imaging techniques. The flexibility of modern experiments with dilute atomic
gases are also remarkable [1, 4, 8, 10, 34, 35], allowing access to reduced dimensionalities
(two dimensions or even one), to tune the interactions (allowing for repulsion or attraction
between particles), and to mimic external magnetic fields either by rotation or by coupling
internal degrees of freedom to optical fields.

In this note we consider such a combination of effects. Namely, we are interested in
two-dimensional attractive BECs, where the contact interactions will destabilize the gas
towards collapse if they are too strong. The resulting collapse of ground states [20] turns
out to be unaffected by the addition of a moderate rotation of the gas [25] (see also [15] for
dipolar gases). A fast rotation may however destabilize the gas towards expansion, because
the centrifugal force fights the confining potential. These two effects might compete, but
we prove that the instability towards collapse always dominates, leading to a blow-up
scenario independent of the rotation frequency. This answers a question raised in [25,
Remark 2.2].
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We will consider the minimization problem

ENLS
�;a WD inf

®
ENLS
�;a .�/W� 2 X.R

2/W k�kL2 D 1
¯
; (1.1)

where ENLS
�;a is the non-linear Schrödinger (NLS) energy functional with attractive inter-

actions

ENLS
�;a .�/ D

Z
R2

jr�.x/j2 dx C
Z

R2

jxj2j�.x/j2 dx C 2�h�;L�i �
a

2

Z
R2

j�.x/j4 dx

D

Z
R2

j.�ir C�x?/�.x/j2 dx C .1 ��2/
Z

R2

jxj2j�.x/j2 dx

�
a

2

Z
R2

j�.x/j4 dx:

Here, a > 0 describes the strength of interactions, � � 0 is the rotation frequency, x? D
.�x2; x1/, and

L D �ix ^ r D i.x2@1 � x1@2/

the angular momentum operator. The space X.R2/ in (1.1) is a functional space in which
the energy functional ENLS

�;a is well defined; see below.
In the case of high rotational speed�> 1, it was proved in [3] that there are no ground

states for ENLS
�;a for all a > 0. Indeed, when the rotational speed is larger than the trapping

frequency, the centrifugal force caused by the rotation is stronger than the centripetal force
created by the harmonic trap and the gas flies apart. On the other hand, the condensate
remains stable when � < 1. In this case, one can prove the norm equivalence

kr�k2
L2
C kx�k2

L2
C 2�hL�; �i ' kr�k2

L2
C kx�k2

L2
: (1.2)

It is then clear that the energy functional is well defined on the weighted Sobolev space

†.R2/ WD H 1.R2/ \ L2.R2; jxj2 dx/;

and hence one can takeX.R2/�†.R2/. Using the compact embedding†.R2/�Lr .R2/
for all r 2 Œ2;1/, one can easily show the existence of a ground state for ENLS

�;a with
0 < a < a� (see e.g. [20] in the case� D 0). Here a� D kQk2L2 withQ the unique (up to
translations) positive solution of the elliptic equation

��QCQ �Q3
D 0 in R2: (1.3)

The constant a� also appears in the sharp Gagliardo–Nirenberg inequality

a�

2

Z
R2

j�.x/j4 dx �
�Z

R2

jr�.x/j2 dx
��Z

R2

j�.x/j2 dx
�
8� 2 H 1.R2/: (1.4)

The case of critical rotational speed � D 1 is special. The situation becomes more subtle
since the centrifugal force caused by the rotation is exactly compensated by the harmonic
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trap. In particular, the norm equivalence (1.2) is no longer available. Thus, working on
†.R2/ does not help to find ground states for ENLS

1;a . In this case, we study the minimiza-
tion (1.1) on a larger functional space of magnetic Sobolev functions, namely

H 1
x?
.R2/ WD

®
� 2 L2.R2/W .�ir C x?/� 2 L2.R2/

¯
;

hence we setX.R2/DH 1
x?
.R2/when�D 1. Note that by the Cauchy–Schwarz inequal-

ity, we have †.R2/ � H 1
x?
.R2/, but †.R2/   H 1

x?
.R2/ (for the latter see e.g. [13,

Remark 2.1]). By making use of a concentration–compactness argument adapted to mag-
netic Sobolev spaces (see e.g. [14]), it was proved in [13, 18] that ENLS

1;a has at least one
ground state provided that 0 < a < a�. By the standard Gagliardo–Nirenberg inequality
(1.4) and the diamagnetic inequality (see e.g. [27, Theorem 7.21])ˇ̌

rj�j.x/
ˇ̌
� j.�ir C x?/�.x/j; a.e x 2 R2; 8� 2 H 1

x?
.R2/; (1.5)

we also have the following magnetic Gagliardo–Nirenberg inequality:

a�

2

Z
R2

j�.x/j4 dx �
�Z

R2

j.�ir C x?/�.x/j2 dx
�

�

�Z
R2

j�.x/j2 dx
�
8� 2 H 1

x?
.R2/: (1.6)

The main difference between (1.4) and (1.6) is that there is no optimizer for (1.6), while
Q in (1.3) is the unique (up to translations and dilations) optimizer for (1.4). Thanks to
(1.6), the energy ENLS

�;a is non-negative for all 0 < a � a�.

1.1. Collapse in NLS theory

In the sequel we are interested in the blow-up behavior of ground states for ENLS
�;a when a

approaches a�. Our first result concerns the blow-up limit with the critical rotation speed
� D 1.

Theorem 1.1 (Collapse of NLS ground states at the critical rotational speed). We have,
as a% a�,

ENLS
1;a D .a� � a/

1=2
�
2
kxQ0kL2

a
1=2
�

C o.1/
�
; (1.7)

where Q0 D kQk�1L2Q. In addition, for any sequence ¹anºn satisfying an % a� and any
sequence of ground states �n for ENLS

1;an
, there exist a sequence ¹�nºn � Œ0; 2�/ and

a sequence ¹xnºn � R2 such that the following convergence holds strongly in H 1 \

L1.R2/:

lim
n!1

.a� � an/
1=4

a
1=4
� kxQ0k

1=2

L2

�n

� .a� � an/1=4
a
1=4
� kxQ0k

1=2

L2

x C xn

�
exp

�
i
.a� � an/

1=4

a
1=4
� kxQ0k

1=2

L2

x?n � x C i�n

�
D Q0.x/: (1.8)
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As an application of this result, we have the following blow-up behavior of ground
states when �% 1 and a% a� at the same time.

Corollary 1.2 (Collapse at subcritical rotational speed). For any sequence ¹�nºn; ¹anºn
satisfying �n % 1 and an % a�, and any ground state �n for ENLS

�n;an
, there exists a

sequence ¹�nºn � Œ0; 2�/ such that the following convergence holds strongly in H 1 \

L1.R2/:

lim
n!1

.a� � an/
1=4

a
1=4
� kxQ0k

1=2

L2

�n

� .a� � an/1=4
a
1=4
� kxQ0k

1=2

L2

x
�
ei�n D Q0.x/: (1.9)

Remark 1.3. We have the following comments:

(1) The convergences of energy and of ground states were proved by Guo and
Seiringer [20] when � D 0. These convergences were extended to the case 0 <
� < 1 fixed by Lewin, Nam, and the third author [25] (see also further works
in [12, 17, 22]). In [19] it is even proved that a fixed rotation rate has no effect at
any order. Theorem 1.1 shows that the energy convergence found remains valid in
the case of critical rotational speed � D 1, at least to leading order. This is note-
worthy because the trapping potential, which sets the length-scale of the blow-up
behavior, is compensated by the centrifugal force.

(2) The convergence of ground states however has to be stated differently from [20,
25]. The model is translation-invariant for� D 1 and thus ground states converge
only modulo a magnetic translation (namely, a translation decorated by the suit-
able phase making it commute with the magnetic Laplacian; see e.g. [33] and
references therein).

(3) The only effect of the magnetic/rotation field is to set the blow-up length scale
(see the sketch of proof below). This is comparable to the positive particle mass
m > 0 in the Hartree-type and Thomas–Fermi-type models of stars [21, 29–32].

(4) Our blow-up result, when �% 1 at the same time as a% a�, answers a question
raised in [25, Remark 2.2]. In this situation, although the centrifugal force almost
compensates the trapping potential, the small residual trapping favors blowup at
the center of the trap. Hence there is no need for a magnetic translation and the
ground state convergence is completely similar to the case 0 � � < 1 fixed.

Let us briefly describe the strategy of the proof. To prove Theorem 1.1, we first show
that the sequence of ground states ¹�nºn for ENLS

1;an
blows up in the sense that

"n WD krj�njk
�1
L2
! 0 as n!1: (1.10)

The blow-up length is then set by "n (whose precise asymptotic behavior is not known at
this point) and we will show that

'n.x/ WD "n�n."nx C xn/e
i"nx

?
n �xCi�n ! Q0.x/
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strongly in H 1.R2/, i.e. there is convergence modulo a magnetic translation of vector
¹xnºn � R2 and the choice of a constant phase ¹�nºn � Œ0; 2�/. To prove this, we rely on
a property of the Lagrange multiplier associated to �n, together with the local bounded-
ness of subsolutions obtained by analyzing the corresponding Euler–Lagrange equation.
Thanks to the non-degeneracy of Q, we then prove that the imaginary part of 'n is small
in H 1-norm. This implies that the rotation acts on 'n only as a quadratic external poten-
tial. This effectively sets a length scale, and we next prove by matching energy lower and
upper bounds that the blow-up length behaves like

.a� � an/
1=4

a
1=4
� kxQ0k

1=2

L2

:

Hence we obtain the energy convergence (1.7). Finally, theL1-convergence of ground
states follows from H 1-convergence and H 2-boundedness deduced from the variational
equation.

To prove Corollary 1.2, we first use an energy argument to show that ENLS
�n;an

has the
same asymptotic behavior as for�D 0;1. By taking a sequence of ground states forENLS

1;an

and choosing a suitable trial state for ENLS
�n;an

, we prove that a ground state for ENLS
�n;an

is
an approximate ground state for ENLS

0;an
. At this point, the conclusion follows directly from

a result proved in [25, Section 3].

1.2. Collapse in the mean-field limit

The focusing NLS functional (1.1) is commonly used to predict the collapse of an attrac-
tive system, but it should be seen as an effective, mean-field model [36]. It is of interest
to see whether the mean-field and blow-up limits can be exchanged as in [25]. Based on
Theorem 1.1 and Corollary 1.2, we give a positive answer to this question, starting from
many-body quantum mechanics.

In this framework, a Bose gas with an attractive interaction is described by the N -
particle Hamiltonian

H�;a;N D

NX
jD1

.��xj C jxj j
2
� 2�Lxj / �

a

N � 1

X
1�i<j�N

wN .xi � xj /;

acting on HN WD L2sym..R
2/N /. As is customary [36], the two-body interaction wN is

chosen in the form
wN .x/ D N

2ˇw.N ˇx/

for a fixed parameter ˇ > 0 and a fixed function w satisfying

w.x/ D w.�x/ � 0; .1C jxj/w; Ow 2 L1.R2/;

Z
R2

w.x/ dx D 1:

We are interested in the large-N behavior of the ground state energy per particle of
H�;a;N , namely

E
QM
�;a.N / WD N

�1 inf
ˆN2HN ;kˆN kD1

hˆN ;H�;a;NˆN i; (1.11)
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and the associated eigenstates of H�;a;N . When � D 1, the Hamiltonian H1;a;N is mag-
netic translation invariant so it probably has no discrete spectrum (see e.g. [2, Proposition
5.4] or a discussion before (1.21) in [28] for a similar model of stars). In the following,
we therefore assume that 0 � � < 1 and 0 < a < a�. We will consider the limit where
a D aN % a� at the same time as � D �N % 1 when N !1. In that case, the NLS
ground states blow up at the origin to the functionQ0, as shown in Corollary 1.2. We will
prove that the many-body ground states condense fully on Q0. As usual, the convergence
of ground states is formulated using k-particles reduced density matrices, defined for any
ˆN 2 HN by a partial trace


.k/
ˆN
WD Tr

kC1!N
jˆN ihˆN j:

Equivalently,  .k/ˆN
is the trace class operator on Hk with kernel


.k/
ˆN
.x1; : : : ; xk Iy1; : : : ; yk/ D

Z
R2.N�k/

ˆN .x1; : : : ; xk ; Z/ˆN .y1; : : : ; yk ; Z/ dZ:

Bose–Einstein condensation is properly expressed by the convergence in trace norm

lim
N!1

Tr
ˇ̌

.k/
ˆN
� j�˝kih�˝kj

ˇ̌
D 0 8k 2 N:

We have the following result.

Theorem 1.4 (Collapse and condensation of the many-body ground states). Let 0 < ˇ <
1=2 be fixed and a D aN D a� �N�˛ with

0 < ˛ < min
°4
5
ˇ; 2.1 � 2ˇ/

±
:

Then for every 0 � � < 1 we have, as N !1,

E
QM
�;aN

.N / D ENLS
�;aN

C o.ENLS
�;aN

/ D .a� � aN /
1=2
�
2
kxQ0kL2

a
1=2
�

C o.1/
�
: (1.12)

Assume in addition that � D �N D 1 �N�� with

0 < � < min
°
1 � 2ˇ �

˛

2
; ˇ �

5˛

4

±
:

Let ˆN be a ground state for EQM
�N ;aN

.N /. Then we have

lim
N!1

Tr
ˇ̌

.k/
ˆN
� jQ˝kN ihQ

˝k
N j

ˇ̌
D 0

for all k 2 N, where

QN .x/ D
a
1=4
� kxQ0k

1=2

L2

.a� � aN /1=4
Q0

�a1=4� kxQ0k1=2L2
.a� � aN /1=4

x
�
:
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Remark 1.5. This shows that a result found in [25] remains valid when �% 1 slower
than a% a� ([25] only deals with 0��<1 fixed). The method is the same as in [25]. The
energy estimates do not depend on the rotation parameter. In fact, we also obtain (1.12) for
�D 1. Furthermore, the convergence of the many-body ground states follows from that of
the approximate NLS ground states. In the case�N % 1, under the additional assumption
on the convergence speed of �N in Theorem 1.4, we check that the approximate NLS
ground state for ENLS

�N ;aN
is still the one for ENLS

0;aN
.

2. Collapse of the NLS ground states

In this section we study the limiting behavior of ground states for (1.1) when a approaches
a� from below. We first deal with the critical speed� D 1. The case�% 1 will be given
at the end of this section.

2.1. Collapse at the critical speed

Let us consider the case�D 1. For simplicity, we denote rx? WD �ir C x?. Let us start
by recalling some useful facts.

Lemma 2.1 (L2-bound). We have

2k�k2
L2
� krx?�k

2
L2
8� 2 H 1

x?
.R2/

with equality achieved e.g. by �.x/ D
q

1
�
e�
jxj2

2 .

This is a consequence of Landau’s well-known diagonalization of .rx?/2 (see e.g.
[37]).

Lemma 2.2 (Compactness modulo translations). Let ¹�nºn be a sequence of functions
satisfying

inf
n�1
k�nkL4 � C ;

for some positive constant C > 0. We have the following weak convergences:

• If supn�1 k�nkH1 <1, then there exist � 2H 1.R2/n¹0º and a sequence ¹xnºn �R2

such that, up to a subsequence,

�n.x C xn/ * �.x/ weakly in H 1.R2/ and almost everywhere in R2:

• If supn�1 k�nkH1

x?
<1, then there exist Q� 2 H 1

x?
.R2/n¹0º and a sequence ¹ynºn �

R2 such that, up to a subsequence,

eiy
?
n �x�n.x C yn/ * Q�.x/ weakly in H 1

x?
.R2/ and almost everywhere in R2:

Here �n ! � weakly in H 1
x?
.R2/ means thatZ

.rx?�n � rx?�/ � rx?' dx C
Z
.�n � �/ N' dx ! 0 8' 2 H 1

x?
.R2/:
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Proof. The proof of this lemma can be found in [26, Lemma 6] for the H 1-weak conver-
gence and [13, Lemma 2.6] for the H 1

x?
-weak convergence.

Lemma 2.3 (Energy upper bound). Let ¹anºn be a positive sequence satisfying an % a�
as n!1. Then, for every 0 � � � 1, we have

lim
n!1

ENLS
�;an
D ENLS

�;a�
D 0:

More precisely,

lim sup
n!1

ENLS
�;an

.a� � an/1=2
� 2
kxQ0kL2

a
1=2
�

: (2.1)

Proof. It is obvious that ENLS
�;an

� 0, by the magnetic Gagliardo–Nirenberg inequality
(1.6). On the other hand, let Q be the unique positive radial solution of (1.3). By
Pohozaev’s identity, we have

krQk2
L2
D
1

2
kQk4

L4
D kQk2

L2
D a�:

Denote Q0 D kQk�1L2Q. Then

krQ0k
2
L2
D
a�

2
kQ0k

4
L4
D kQ0k

2
L2
D 1

By the variational principle, we have

ENLS
�;an
� ENLS

�;an
.�Q0.��// D �

2
�
1 �

an

a�

�
C ��2kxQ0k

2
L2

for all � > 0. Here we have used the fact that hL.�Q0.��//; �Q0.��/i D 0 sinceQ0 is real
valued, where we recall that L D i.x2@1 � x1@2/. Optimizing over �, we get

ENLS
�;an
� 2
kxQ0kL2

a
1=2
�

.a� � an/
1=2 (2.2)

which implies (2.1) and also lim supn!1E
NLS
�;an
� 0.

Lemma 2.4 (Blowup). Let ¹anºn be a positive sequence such that an % a� as n!1
and �n be a ground state forENLS

1;an
. Then ¹�nºn blows up both inH 1

x?
.R2/ and inH 1.R2/

in the sense that

lim
n!1

krx?�nkL2 D lim
n!1

kr�nkL2 D lim
n!1

krj�njkL2 D C1:

Proof. We first show that ¹�nºn blows up in H 1
x?
.R2/. Assume for contradiction that

sup
n�1

krx?�nk
2
L2
<1: (2.3)
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In particular, ¹�nºn is then a bounded sequence in H 1
x?
.R2/. Observe that there exists

C > 0 such that
lim inf
n!1

k�nkL4 � C

since otherwise, we have

lim
n!1

ENLS
1;an
D lim
n!1

krx?�nk
2
L2
� 2;

where the last inequality is due to Lemma 2.1. This, however, is not possible (see Lemma
2.3). Thus, by Lemma 2.2, there exist � 2H 1

x?
.R2/n¹0º and a sequence ¹xnºn �R2 such

that up to a subsequence,

Q�n.x/ WD e
ix?n �x�n.x C xn/! � weakly in H 1

x?
.R2/ and almost everywhere in R2:

We claim that k�k2
L2
D 1. Indeed, we have

0 < k�k2
L2
� lim inf

n!1
k Q�nk

2
L2
D lim inf

n!1
k�nk

2
L2
D 1:

If k�k2
L2
< 1, then by the magnetic translation invariance, we have

ENLS
1;an
D ENLS

1;an
.�n/D ENLS

1;an
. Q�n/� ENLS

1;a�
. Q�n/D ENLS

1;a�
.�/C ENLS

1;a�
. Q�n � �/C o.1/: (2.4)

Here we have used the weak convergence in H 1
x?
.R2/, the almost everywhere conver-

gence in R2, and the Brézis–Lieb lemma (see [5]) along with the fact that k Q�nkL4 is
bounded uniformly, by the magnetic Gagliardo–Nirenberg inequality (1.6) and (2.3).
Again, (1.6) implies that

lim inf
n!1

ENLS
1;a�

. Q�n � �/ � 0:

Furthermore,

ENLS
1;a�

.�/ D k�k2
L2

ENLS
1;a�

� �

k�kL2

�
C
a�

2

� 1

k�k2
L2

� 1
�
k�k4

L4
> 0

since 0 < k�kL2 < 1. This contradicts the fact that ENLS
1;an
! 0 as n!1, by Lemma 2.3.

Therefore, we must have k�kL2 D 1, hence Q�n ! � strongly in L2.R2/. In fact, Q�n ! �

strongly inLr .R2/ for r 2 Œ2;1/, because of theH 1
x?
.R2/-boundedness. Since an% a�,

we have from (2.4) that

ENLS
1;a�
� ENLS

1;a�
.�/ � lim inf

n!1
ENLS
1;an

.�n/ D lim inf
n!1

ENLS
1;an
D ENLS

1;a�
:

In particular, � is a ground state for ENLS
1;a�

. However, there are no such ground states, as
proven in e.g. [13, 18], and we deduce that (2.3) cannot hold.

We now conclude the proof by showing that ¹�nºn blows up in H 1.R2/. We have

0 D ENLS
1;a�
D lim
n!1

ENLS
1;an
D lim
n!1

ENLS
1;an

.�n/ D lim
n!1

krx?�nk
2
L2
�
an

2
k�nk

4
L4
:

Since krx?�nkL2 !1 as n!1, we must have k�nk4L4 !1. But then the standard
Gagliardo–Nirenberg inequality (1.4) implies that kr�nkL2 !1 and krj�njkL2 !1
as well.
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We are now in the position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof is divided into several steps.

Step 1. Convergence of the modulus. We first show that there exists a sequence ¹xnºn �
R2 such that

"nj�nj."n � Cxn/! Q0 strongly in H 1.R2/ as n!1; (2.5)

where "n is given by (1.10). Denote

vn.x/ WD "nj�nj."nx/:

We then have

kvnkL2 D k�nkL2 D 1 and krvnkL2 D "nkrj�njkL2 D 1:

Hence ¹vnºn is a bounded sequence inH 1.R2/. On the other hand, using the diamagnetic
inequality (1.5) we have

ENLS
1;a .�/ � krj�jk

2
L2
�
a

2
k�k4

L4
DW E0a .j�j/:

But the Gagliardo–Nirenberg inequality (1.4) implies

E0a .j�j/ �
�
1 �

a

a�

�
krj�jk2

L2
:

From this and Lemma 2.3, we obtain

0 D lim
n!1

ENLS
1;an
D lim
n!1

ENLS
1;an

.�n/ � lim inf
n!1

E0an.j�nj/ � 0:

In particular, we have E0an.vn/ D "
2
nE0an.j�nj/! 0 as n!1. Since by definition

krvnkL2 D 1

for all n � 1, we infer that, up to a subsequence,

inf
n�1
kvnkL4 � C

for some constant C > 0. By Lemma 2.2, there exists � 2 H 1.R2/n¹0º and ¹ynºn � R2

such that up to a subsequence,

Qvn.x/ WD vn.� C yn/! � weakly in H 1.R2/ and almost everywhere in R2:

We next show that k�kL2 D 1. In fact, we first have

0 < k�k2
L2
� lim inf

n!1
k Qvnk

2
L2
D lim inf

n!1
kvnk

2
L2
D 1;
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where the first inequality comes from the strong convergence in L2loc.R
2/ (see again [26]).

Assume for contradiction that k�kL2 < 1. As in (2.4), we have

0 D lim
n!1

E0an.vn/ D lim
n!1

E0an. Qvn/ � E0a�.�/C lim inf
n!1

E0a�. Qvn � �/: (2.6)

Again, by the Gagliardo–Nirenberg inequality (1.4), we have

lim inf
n!1

E0a�. Qvn � �/ � 0

and
E0a�.�/ D k�k

2
L2

E0a�

� �

k�kL2

�
C
a�

2

� 1

k�k2
L2

� 1
�
k�k4

L4
> 0

since 0 < k�kL2 < 1. This is a contradiction with (2.6) and we thus must have k�kL2 D 1.
Then Qvn! � strongly inL2.R2/, up to a subsequence. In fact, Qvn! � strongly inLr .R2/
for r 2 Œ2;1/, because of the H 1.R2/-boundedness. Therefore,

0 � E0a�.�/ � lim inf
n!1

E0a�. Qvn/ � lim inf
n!1

E0an.vn/ D 0:

This shows that

lim
n!1

kr Qvnk
2
L2
D lim
n!1

an

2
k Qvnk

4
L4
D lim
n!1

a�

2
k�k4

L4
D kr�k2

L2
:

Hence Qvn ! � strongly in H 1.R2/, up to a subsequence. Moreover, � is an optimizer of
the standard Gagliardo–Nirenberg inequality (1.4). By the uniqueness (up to translations
and dilations) of optimizers for (1.4) and the fact that Qvn is non-negative, there exist � > 0
and x0 2R2 such that �.x/D �Q0.�.xC x0//. Since kr�kL2 D 1, we must have �D 1.
Again, by uniqueness of Q0, we conclude that passing to a subsequence is unnecessary.
This leads to (2.5) after setting xn D "n.yn � x0/.

Step 2. A property of Lagrange multipliers. The minimizer �n ofENLS
1;an

satisfies the Euler–
Lagrange equation

.rx?/
2�n � anj�nj

2�n D �n�n in R2 (2.7)

in the distributional sense, namelyZ
R2

rx?�n � rx?� � anj�nj
2�n� � �n�n� dx D 0 8� 2 C10 .R

2/;

where�n 2R is the Lagrange multiplier. In this step, we show that "2n�n!�1 as n!1.
Indeed, as �n is a ground state for ENLS

1;an
, using (2.7), we have

�n D krx?�nk
2
L2
� ank�nk

4
L4
D ENLS

1;an
.�n/ �

an

2
k�nk

4
L4
D ENLS

1;an
�
an

2
k�nk

4
L4
:

Denote
'n.x/ D e

i�n n.x/ (2.8)
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with
 n.x/ WD "n�n."nx C xn/e

i"nx
?
n �x

and �n 2 Œ0; 2�/ satisfying

k'n �Q0kL2 D min
�2Œ0;2�/

kei� n �Q0kL2 : (2.9)

By (2.5), we have j'nj WD "nj�nj."n � Cxn/! Q0 strongly in H 1.R2/. Therefore,

lim
n!1

"2nk�nk
4
L4
D lim
n!1

k'nk
4
L4
D kQ0k

4
L4
D

2

a�
:

Since 0 � ENLS
1;an
! 0 (see Lemma 2.3) and an % a�, we get

lim
n!1

"2n�n D lim
n!1

"2nE
NLS
1;an
� lim
n!1

an

2
"2nk�nk

4
L4
D �1:

Step 3. A subequation for j'nj2. We next use (2.7) to derive an equation and a subequation
satisfied by 'n and j'nj2. To do so, we write

 n.x/ D "n Q�n."nx/

with Q�n.x/ WD �n.x C xn/eix
?
n �x . A direct computation gives

.rx?/
2 Q�n.x/ D ..rx?/

2�n/.x C xn/e
ix?n �x ;

which, by (2.7), implies

.rx?/
2 Q�n � anj Q�nj

2 Q�n D �n Q�n:

Using the identity
.rx?/

2� D ��� C 2L� C jxj2�

with L D i.x2@1 � x1@2/ D �ix? � r, we see that Q�n solves the elliptic equation

�� Q�n C jxj
2 Q�n C 2L Q�n � anj Q�nj

2 Q�n � �n Q�n D 0:

By the definition of 'n in (2.8), we get

��'n C "
4
njxj

2'n C 2"
2
nL'n � anj'nj

2'n � "
2
n�n'n D 0: (2.10)

Observe that (2.10) can be written as

.�ir C "2nx
?/2'n � anj'nj

2'n � "
2
n�n'n D 0

which, by [7, Proposition 2.2], implies that 'n 2 L1.R2/ and limjxj!1 j'n.x/j D 0.
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Denote Wn WD j'nj2. Since j'nj 2 H 1.R2/ (using the diamagnetic inequality (1.5))
and 'n 2 L1.R2/, we have Wn 2 H 1.R2/. Multiplying both sides of (2.10) with N'n,
taking the real part, and using the following identities (in the distributional sense),

�Re.�'n N'n/ D �
1

2
�Wn C jr'nj

2;

2Re.L'n N'n/ D L'n N'n C L'n'n D x? � J.'n/;

with J.'/ D i.'r N' � N'r'/ the superfluid current, we obtain

�
1

2
�Wn C jr'nj

2
C "4njxj

2Wn C "
2
nx
?
� J.'n/ � anW

2
n � "

2
n�nWn D 0:

Using the identity

j.�ir C "2nx
?/'nj

2
D jr'nj

2
C "2nx

?
� J.'n/C "

4
njxj

2Wn;

we deduce that
�
1

2
�Wn � "

2
n�nWn � anW

2
n � 0 (2.11)

in the weak sense, namelyZ
R2

1

2
rWn � r� � "

2
n�nWn� � anW

2
n � dx � 0 80 � � 2 C10 .R

2/:

Step 4. Uniform boundedness of Wn. To prove the uniform boundedness of the subsolu-
tion Wn D j'nj2 to (2.11), we need its local boundedness. The following formulation is
taken from [23, Theorem 4.14] (see [23, Theorem 4.1] and [16, Theorem 8.17] for the
proof).

Theorem 2.5 (Local boundedness). LetD be a connected open set with smooth boundary
in Rd . Assume that ajk 2 L1.D/ satisfies

�j�j2 �
X
j;k

ajk.x/�j �k � ƒj�j
2
8x 2 D; 8� 2 Rd ;

for some positive constants � and ƒ. Let u 2 H 1.D/ be a non-negative subsolution in D
in the following sense:Z

D

ajk@ju@k� dx �
Z
D

f� dx 8� 2 H 1
0 .D/; � � 0 in D:

Suppose that f 2 Lq.D/ for some q > d
2

. Then there holds for any BR.x0/ �D and any
p > 0,

sup
BR=2.x0/

u.x/ � C
�
R
� dp kukLp.BR.x0// CR

2� dq kf kLq.BR.x0//
�
;

where C D C.d; �;ƒ; p; q/ is a positive constant.
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LetM >0 and denoteDM D¹x 2R2W jxj>M º. Applying Theorem 2.5 to (2.11) with
D D DM , ajk D 1

2
ıjk , f D "2n�nWn C anW

2
n , p D q D 2, R D 2, and B2.x0/ � DM ,

we get
sup
B1.x0/

Wn.x/ � C.kWnkL2.B2.x0// C kW
2
n kL2.B2.x0/// (2.12)

for some universal constant C > 0. Since B2.x0/ � DM , we deduce

kWnkL2.B2.x0// C kW
2
n kL2.B2.x0// � kWnkL2.jxj>M/ C kW

2
n kL2.jxj>M/

! kQ2
0kL2.jxj>M/ C kQ

4
0kL2.jxj>M/:

Here we have used "2n�n ! �1 and the fact that Wn ! Q2
0 in L2.R2/ and W 2

n ! Q4
0 in

L2.R2/ because

kWn �Q
2
0kL2 �

j'nj �Q0L4j'nj CQ0L4 ;
kW 2

n �Q
4
0kL2 �

j'nj �Q0L8j'nj CQ0L8j'nj2 CQ2
0


L4
;

and j'nj ! Q0 strongly in Lr .R2/ for all r 2 Œ2;1/. The latter follows from the strong
convergence j'nj !Q0 inH 1.R2/ and Sobolev embedding. In particular, for � > 0, there
exist n� 2 N and M� sufficiently large such that for all n � n� and all M �M� ,

kWnkL2.B2.x0// C kW
2
n kL2.B2.x0// �

�

C
;

which together with (2.12) yields

sup
B1.x0/

Wn.x/ � �

for all B1.x0/ � DM� . As B1.x0/ is arbitrarily in DM� , we get (by possibly increasing
M�)

Wn.x/ � � for all jxj > M� and all n sufficiently large. (2.13)

Applying Theorem 2.5 again to (2.11) withD DR2, ajk D 1
2
ıjk , f D �n"2nWnC anW

2
n ,

p D q D 2, and R D 2M� , we get

sup
BM� .0/

Wn.x/ � C.M
�1
� kWnkL2.B2M� .0// CM�kW

2
n kL2.B2M� .0//

/

for some universal constant C > 0. This implies

sup
BM� .0/

Wn.x/ � C.M�/ for all n sufficiently large. (2.14)

Collecting (2.13) and (2.14), we prove

0 � sup
x2R2

Wn.x/ � C for all n sufficiently large; (2.15)

where C > 0 is a constant independent of n.
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Step 5. Uniform exponential decay ofWn. We now prove the uniform exponential decay of
Wn. Since C10 .R

2/ is dense inH 1.R2/, we can test (2.11) against non-negative functions
in H 1.R2/. The following calculation is done formally by testing (2.11) with e˛jxjWn
for some constant ˛ > 0 to be chosen shortly. Strictly speaking, this requires a standard
truncation argument. First we replace e˛jxj by

�ı.x/ WD e
˛
jxj

1Cıjxj ; ı > 0

and perform the usual computation. Then we let ı! 0 to obtain the desired estimate. For
more details, see e.g. [6, Theorem 8.1.1]. Note that �ı is bounded, Lipschitz continuous,
and jr�ı j � ˛�ı ; hence �ıWn 2 H 1.R2/.

We have

�
1

2

Z
R2

�Wne
˛jxjWn dx

� �n"
2
n

Z
R2

Wne
˛jxjWn dx � an

Z
R2

W 2
n e

˛jxjWn dx � 0: (2.16)

Observe thatZ
R2

�Wne
˛jxjWn dx D

Z
R2

e˛jxj
�1
2
�.W 2

n / � jrWnj
2
�

dx

D
1

2

Z
R2

W 2
n�.e

˛jxj/ dx �
Z

R2

jrWnj
2e˛jxj dx

D
1

2

Z
R2

W 2
n

�
˛2 C

˛

jxj

�
e˛jxj dx �

Z
R2

jrWnj
2e˛jxj dx

and Z
R2

jr.Wne
˛jxj=2/j2 dx D

˛2

4

Z
R2

W 2
n e

˛jxj dx C
Z

R2

jrWnj
2e˛jxj dx

�
1

2

Z
R2

W 2
n

�
˛2 C

˛

jxj

�
e˛jxj dx:

In particular, we haveZ
R2

�Wne
˛jxjWn dx D

˛2

4

Z
R2

W 2
n e

˛jxj dx �
Z

R2

jr.Wne
˛jxj=2/j2 dx;

hence (see (2.16))

1

2

Z
R2

jr.Wne
˛jxj=2/j2 dx �

˛2

8

Z
R2

W 2
n e

˛jxj dx � �n"2n

Z
R2

W 2
n e

˛jxj dx

� an

Z
R2

W 3
n e

˛jxj dx � 0

so Z
R2

�
��n"

2
n �

˛2

8
� anWn

�
W 2
n e

˛jxj dx � 0:
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We pick ˛ D 1 and choose M > 0 so large that Wn.x/ � 1
4a�

for all jxj � M and all n
sufficiently large (see (2.13)). As �n"2n ! �1 (by Step 1), we get

��n"
2
n �

1

8
� anWn.x/ �

1

2

for all jxj �M and all n sufficiently large. Thus we obtain

1

2

Z
R2nBM .0/

W 2
n e
jxj dx �

Z
BM .0/

ˇ̌̌
��n"

2
n �

1

8
� anWn

ˇ̌̌
W 2
n e
jxj dx

� CeMkWnk
2
L2
� CeM

for all n sufficiently large, where we have used (2.15) to get the second estimate. This
proves that Z

R2

W 2
n e
jxj dx � C (2.17)

for all n sufficiently large, where C > 0 is independent of n. From this, we getZ
R2

j'nj
2ejxj=4 dx D

Z
R2

Wne
jxj=2e�jxj=4 dx

�

�Z
R2

W 2
n e
jxj dx

�1=2�Z
R2

e�jxj=2 dx
�1=2

� C (2.18)

for all n sufficiently large. A consequence of this uniform exponential decay and j'nj !
Q0 in H 1.R2/ is that jxj j'nj ! jxjQ0 strongly in L2.R2/.

Step 6. H 1-strong convergence. By the definition of 'n (see (2.8)), we have

�n.x/ D "
�1
n 'n."

�1
n .x � xn//e

�ix?n �x�i�n :

Since �n is a ground state for ENLS
1;an

, we see that

ENLS
1;an
D ENLS

1;an
.�n/ D kr�nk

2
L2
C kx�nk

2
L2
C 2hL�n; �ni �

an

2
k�nk

4
L4
: (2.19)

This implies the following identity (see again (2.8)):

"2nE
NLS
1;an
D kr'nk

2
L2
C 2"2nhL'n; 'ni C "

4
nkx'nk

2
L2
�
an

2
k'nk

4
L4
: (2.20)

By the Cauchy–Schwarz inequality, we have

j2"2nhL'n; 'nij � 2"
2
nkr'nkL2kx'nkL2 �

1

2
kr'nk

2
L2
C 2"4nkx'nk

2
L2
;

which implies

kr'nk
2
L2
� 2

�
"2nE

NLS
an
C "4nkx'nk

2
L2
C
an

2
k'nk

4
L4

�
:
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Since ENLS
1;an
! 0, "n! 0, jxj j'nj ! jxjQ0 strongly in L2.R2/, and j'nj !Q0 strongly

in L4.R2/, we infer that ¹'nºn is bounded uniformly in H 1.R2/.
From (2.20), we also have

kr'nk
2
L2
�
a�

2
k'nk

4
L4
D "2nE

NLS
1;an
� 2"2nhL'n; 'ni � "

4
nkx'nk

2
L2
�
a� � an

2
k'nk

4
L4
:

Using the uniform boundedness of ¹'nºn in H 1.R2/, the strong convergence jxj j'nj !
jxjQ0 in L2.R2/, and an % a�, we deduce that

lim
n!1

kr'nk
2
L2
�
a�

2
k'nk

4
L4
D 0:

Since k'nkL2 D 1 and j'nj ! Q0 strongly in Lr .R2/ for all r 2 Œ2;1/, there exists
¹znºn � R2 such that

'n.x C zn/! ei�Q0.x/

strongly inH 1.R2/, for some � 2 Œ0; 2�/. Using the fact that kQ0.� C zn/�Q0kH1 ! 0

if and only if jznj ! 0, we get jznj ! 0. This in turn implies that 'n ! ei�Q0 strongly
in H 1.R2/ since

k'n � e
i�Q0kH1 D k'n.� C zn/ � e

i�Q0.� C zn/kH1

� k'n.� C zn/ � e
i�Q0kH1 C kQ0 �Q0.� C zn/kH1 ! 0:

Now we write
'n.x/ D qn.x/C irn.x/

with qn and rn the real and imaginary parts of 'n respectively. By (2.9), we have the
following orthogonality condition Z

R2

Q0rn dx D 0: (2.21)

Since k'n � ei�Q0k2L2 ! 0, we haveZ
R2

.Re.' � ei�Q0//2 C .Im.'n � ei�Q0//2 dx ! 0:

In particular, we get Z
R2

.rn �Q0 sin �/2 dx ! 0:

Using (2.21), we have Z
R2

r2n CQ
2
0 sin2 � dx ! 0:

This shows that Z
R2

r2n dx ! 0 and sin2 � D 0
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or � D 0 or � D � . In the following, we consider only the case � D 0. The case � D �
can be treated similarly by changing 'n to �'n. For � D 0, we have 'n!Q0 strongly in
H 1.R2/. In particular,Z

R2

.qn �Q0/
2 dx ! 0 and

Z
R2

r2n dx ! 0:

This, together with the exponential decay of Wn, yieldsZ
R2

jxj2.qn �Q0/
2 dx ! 0 and

Z
R2

jxj2r2n dx ! 0: (2.22)

In fact, by the exponential decay of Wn (see (2.18)), we haveZ
R2

jxj2r2n dx �
�Z

R2

jxj4r2n dx
�1=2�Z

R2

r2n dx
�1=2

! 0;

and similarly for qn �Q0.

Step 7. Smallness of the imaginary part. Observe that

hL'n; 'ni D RehL'n; 'ni D
Z

R2

x? � Im. N'nr'n/ dx

D

Z
R2

x? � .qnrrn � rnrqn/ dx

D 2

Z
R2

x?qnrrn dx (2.23)

which implies
jhL'n; 'nij � 2kxqnkL2krrnkL2 � CkrrnkL2 :

Here we have used the fact that jxjqn is bounded uniformly in L2.R2/ since jxj j'nj !
jxjQ0 strongly in L2.R2/. We deduce from the above and (2.20) that

"2nE
NLS
1;an
�

Z
R2

jrqnj
2
C jrrnj

2
�
a�

2
.q4n C r

4
n C 2q

2
nr
2
n/ dx � C"2nkrrnkL2 :

We have

a�

2

Z
R2

.r4n C 2q
2
nr
2
n/ dx � a�

Z
R2

j'nj
2r2n dx

D

Z
R2

Q2r2n dx C a�

Z
.j'nj

2
�Q2

0/r
2
n dx

D

Z
R2

Q2r2n dx C o.1/krnk2H1 :

Here we have used thatˇ̌̌̌Z
R2

.j'nj
2
�Q2

0/r
2
n dx

ˇ̌̌̌
�
j'nj2 �Q2

0


L2
krnk

2
L4
� C

j'nj2 �Q2
0


L2
krnk

2
H1
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and j'nj2 �Q2
0


L2
�
j'nj �Q0L4j'nj CQ0L4 ! 0

as j'nj!Q0 strongly inH 1.R2/, hence inL4.R2/ by Sobolev embeddings. On the other
hand, by the standard Gagliardo–Nirenberg inequality (1.4), we haveZ

R2

jrqnj
2
�
a�

2
q4n dx � krqnk2L2.1 � kqnk

2
L2
/ D .1C o.1//krnk

2
L2
;

where we have used that qn ! Q0 strongly in H 1.R2/, kqnk2L2 C krnk
2
L2
D 1 as

k'nk
2
L2
D 1, and krQ0k2L2 D 1. Thus we get

"2nE
NLS
1;an
�

Z
R2

jrrnj
2
�Q2r2n C r

2
n dx C o.1/krnk2H1 � C"

2
nkrrnkL2

D hLrn; rni C o.1/krnk
2
H1 � C"

2
nkrrnkL2 ;

where L WD �� �Q2 C 1.
We now use the non-degeneracy property of Q. It is well known (see [27, Theorem

11.8 and Corollary 11.9]) that Q is the first eigenfunction of L and the corresponding
eigenvalue 0 is non-degenerate. In particular, we have

hLu; ui � �2kuk
2
L2

for all u orthogonal toQ, where �2 > 0 is the second eigenvalue of L. This, together with
the fact that

hLu; ui � kuk2
H1 � kQk

2
L1kuk

2
L2
;

yields
hLu; ui � Ckuk2

H1

for some constant C > 0 and all u orthogonal to Q. Thanks to this estimate and the
orthogonality condition (2.21), we get

"2nE
NLS
1;an
� C1krnk

2
H1 � C2"

2
nkrrnkL2

for some positive constants C1 and C2. This implies that

krnk
2
H1 � C."

2
nE

NLS
1;an
C "4n/: (2.24)

On the other hand, from (2.2), the magnetic Gagliardo–Nirenberg inequality (1.6) and the
diamagnetic inequality (1.5), we have

C.a� � an/
1=2
� ENLS

1;an
D ENLS

1;an
.�n/ �

a� � an

a�
krx?�nk

2
L2

�
a� � an

a�

rj�nj2L2 D a� � an

a�
"�2n ;

which implies
ENLS
1;an
� C.a� � an/

1=2
� C"2n (2.25)

for some constant C > 0. This together with (2.24) yields

krnkH1 � C"2n: (2.26)
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Step 8. Identifying the blow-up limit. Coming back to (2.23), we have

hL'n; 'ni D 2

Z
R2

x? � rrnqn dx

D 2

Z
R2

x? � rrnQ0 dx C 2
Z

R2

x? � rrn.qn �Q0/ dx

D 2

Z
R2

x? � rrn.qn �Q0/ dx

where we have used the fact that x? � rQ0 D 0 since Q0 is radial and (2.22). This shows
that

jhL'n; 'nij � krrnkL2kx.qn �Q0/kL2 � o.1/krrnkL2 � o."
2
n/: (2.27)

Here we have used (2.22) in the second inequality and (2.26) in the last one.
From (2.19) and the Gagliardo–Nirenberg inequality (1.4), we have

ENLS
1;an
� 2hL�n; �ni C kx�nk

2
L2
D 2hL'n; 'ni C "

2
nkx'nk

2
L2
:

Denote
ˇn WD

"n

.a� � an/1=4
:

From (2.25), we have
ˇ2n � C > 0:

Moreover, using (2.2), we also have

C �
ENLS
1;an

.a� � an/1=2
�

2

.a� � an/1=2
hL'n; 'ni C ˇ

2
nkx'nk

2
L2
:

Thanks to (2.27) and the fact that jxj j'nj ! jxjQ0 strongly in L2.R2/, we deduce

C � ˇ2n.kxQ0k
2
L2
C o.1//:

In particular, we deduce that ¹ˇnºn is bounded above and below away from zero. Passing
to a subsequence, we have ˇn ! ˇ > 0 as n!1.

By (2.20), we have

ENLS
1;an
�
a� � an

2
k�nk

4
L4
C 2hL�n; �ni C kx'nk

2
L2

D
.a� � an/

1=2

2ˇ2n
k'nk

4
L4
C 2hL'n; 'ni C .a� � an/

1=2ˇ2nkx'nk
2
L2
:

Since 'n ! Q0 strongly in H 1.R2/, jxj j'nj ! jxjQ0 strongly in L2.R2/, and (2.27),
we infer that

ENLS
1;an

.a� � an/1=2
�

1

2ˇ2
kQ0k

4
L4
C ˇ2kxQ0k

2
L2
C o.1/:
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Optimizing over ˇ > 0 and noticing that kQ0k4L4 D
2
a�

we get

lim inf
n!1

ENLS
1;an

.a� � an/1=2
� 2
kxQ0kL2

a
1=2
�

and ˇ D
1

a
1=4
� kxQ0k

1=2

L2

:

From this and the energy upper bound (2.1), we obtain (1.7) and (1.8).

Step 9. L1-convergence. We finally prove the L1-convergence. To this end, we first
show the uniform exponential decay for r'n, namelyZ

R2

jr'nj
2ejxj=4 dx � C (2.28)

for all n sufficiently large. We provide below a formal calculation and a regularizing argu-
ment is needed to justify it rigorously (see Step 5). We multiply both sides of (2.10) by
e˛jxj N'n, integrate over R2, and take the real part to get

Re
Z

R2

��'ne
˛jxj
N'n C "

4
njxj

2e˛jxjj'nj
2
C 2"2nL'ne

˛jxj
N'n

� anj'nj
4e˛jxj � "2n�nj'nj

2e˛jxj dx D 0:

Arguing as in [25, Lemma 3.2], we have

Re
Z

R2

��'ne
˛jxj
N'n dx D

Z
R2

jr.e˛jxj=2'n/j
2 dx �

˛2

2

Z
R2

e˛jxjj'nj
2 dx:

In particular, we get

0 D

Z
R2

jr.e˛jxj=2'n/j
2 dx C "4n

Z
R2

jxj2e˛jxjj'nj
2 dx

C

Z
R2

e˛jxj
�
�anj'nj

2
� "2n�n �

˛2

4

�
j'nj

2 dx

C 2"2n

Z
R2

L'ne
˛jxj
N'n dx:

Since L.e˛jxj=2/ D 0, we haveˇ̌̌̌
2"2n

Z
R2

L'ne
˛jxj
N'n dx

ˇ̌̌̌
D

ˇ̌̌̌
2"2n

Z
R2

e˛jxj=2 N'nL.e
˛jxj=2'n/ dx

ˇ̌̌̌
� 2"2nkx

?e˛jxj=2'nkL2kr.e
˛jxj=2'n/kL2

�
1

2

Z
R2

jr.e˛jxj=2'n/j
2 dx C 2"4n

Z
R2

jxj2e˛jxjj'nj
2 dx:

It follows that
1

2

Z
R2

jr.e˛jxj=2'n/j
2 dx � "4n

Z
R2

jxj2e˛jxjj'nj
2 dx

C

Z
R2

e˛jxj
�
anj'nj

2
C j"2n�nj C

˛2

4

�
j'nj

2 dx:
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By choosing ˛ D 1
4

, using (2.17), (2.18), and the fact that "2n�n ! �1, we obtainZ
R2

jr.ejxj=8'n/j
2 dx � C (2.29)

for all n sufficiently large. Note that, by the triangle inequality,

kr.ejxj=8'n/kL2 D
ejxj=8r'n C x

8jxj
ejxj=8'n


L2
� kejxj=8r'nkL2 �

1

8
kejxj=8'nkL2 :

Then claim (2.28) follows directly from (2.29) and (2.18).
We next show that ¹'nºn is bounded uniformly in H 2.R2/. To see this, we rewrite

(2.10) as

��'n C 'n D .1C "
2
n�n/'n � "

4
njxj

2'n � 2"
2
nL'n C anj'nj

2'n:

Since ¹'nºn is bounded uniformly in H 1.R2/, the uniform exponential decay in (2.18)
and (2.28) imply that the right-hand side is bounded uniformly in L2.R2/. This shows
that ¹'nºn is bounded uniformly in H 2.R2/. By the Sobolev embedding H 3=2.R2/ �
L1.R2/, the strong convergence 'n ! Q0 in H 1.R2/, and the uniformly boundedness
of .'n/n in H 2.R2/, we have that 'n converges strongly to Q0 in L1.R2/ and hence
(1.8).

2.2. Collapse with an almost critical speed

We now study the blow-up behavior of minimizers forE�;a when both�% 1 and a% a�
at the same time. To this end, we recall the following energy asymptotic formula when
� D 0 (see [20]):

ENLS
0;a D

p
a� � a

�
2
kxQ0kL2

a
1=2
�

C o.1/
�

as a% a�: (2.30)

Proof of Corollary 1.2. Let �n % 1, an % a� as n ! 1, and �n be a minimizer for
E�n;an . We rewrite the energy functional as

ENLS
�n;an

D ENLS
�n;an

.�n/ D �nENLS
1;an

.�n/C .1 ��n/E
NLS
0;an

.�n/

� �nE
NLS
1;an
C .1 ��n/E

NLS
0;an

; (2.31)

where we have used that ENLS
1;an

.�n/ � E
NLS
1;an

and ENLS
0;an

.�n/ � E
NLS
0;an

. Since both ENLS
1;an

and
ENLS
0;an

have the same asymptotic formula (see (1.7) and (2.30)), we obtain

ENLS
�n;an

D .a� � an/
1=2
�
2
kxQ0kL2

a
1=2
�

C o.1/
�
;

where the upper bound follows from (2.2). Let n be a ground state forENLS
1;an

. By Theorem
1.1, there exist sequences ¹xnºn � R2 and .#n/n � Œ0; 2�/ such that

'n.x/ WD "n n."nx C xn/e
i"nx

?
n �xCi#n ! Q0.x/
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strongly in H 1 \ L1.R2/ as n!1. We choose Q n.x/ WD  n.x C xn/eix
?
n �xCi#n as a

trial state for ENLS
�n;an

and obtain

ENLS
�n;an

� ENLS
�n;an

. Q n/ D �nENLS
1;an

. Q n/C .1 ��n/E
NLS
0;an

. Q n/

D �nE
NLS
1;an
C .1 ��n/E

NLS
0;an

. Q n/: (2.32)

Here we have used the magnetic translation invariance of the energy functional ENLS
1;an

.
Putting together (2.31) and (2.32), we obtain

ENLS
0;an

.�n/ � ENLS
0;an

. Q n/:

By (2.2) and the arguments in the proof of Theorem 1.1 (especially of (2.27) and "n '
.a� � an/

1=4), we have

ENLS
0;an

. Q n/ D ENLS
1;an

. Q n/ � 2h Q n; L Q ni D E
NLS
1;an
� 2h'n; L'ni

� .a� � an/
1=2
�
2
kxQ0kL2

a
1=2
�

C o.1/
�
:

This together with (2.30) shows that �n is an approximate ground state for ENLS
0;an

. We
then conclude (see e.g. [25, Step 5 in Section 3]) that there exists a sequence of phases
¹�nºn � Œ0; 2�/ such that

lim
n!1

.a� � an/
1=4

a
1=4
� kxQ0k

1=2

L2

�n

� .a� � an/1=4
a
1=4
� kxQ0k

1=2

L2

x
�
ei�n D Q0.x/ (2.33)

strongly in H 1.R2/. In fact, we obtain the strong convergence in L1.R2/, by the same
arguments as in the proof of (1.8).

3. Collapse of many-body ground states

In this section, we prove the large-N behavior of ground states for (1.11) given in Theorem
1.4.

Proof of Theorem 1.4. Following arguments from [25], we have

CN�ˇkrQN kL2kQN k
3
L6
CENLS

�;aN
� E

QM
�;aN

.N / � ENLS
�;aN

� CN 2ˇ�1;

where QN is given in Theorem 1.4. Note that the above energy estimates as well as the
asymptotic formula of ENLS

�;aN
are independent of�. Therefore, we obtain (1.12) for every

0 � � � 1.
To prove convergence of ground states as � D �N % 1 we consider the perturbed

Hamiltonian

H�N ;aN ;N;�N D H�N ;aN ;N C �N

NX
jD1

Aj
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with ground-state energy per particle denoted EQM
�N ;aN ;�N

.N /. Here �N > 0 is a small
parameter to be chosen later and A is a bounded self-adjoint operator on L2.R2/. The
associated NLS energy functional is

ENLS
�N ;aN ;�N

.u/ D ENLS
�N ;aN

.u/C �N hAu; ui:

Denote by ENLS
�N ;aN ;�N

the corresponding ground-state energy and u�N its ground state.
Let ˆN be a ground state for H�N ;aN ;N D H�N ;aN ;N;0 and  .1/ˆN its one-body reduced
density matrix. As in [25, Step 2 in Section 4] we obtain

�N TrŒA .1/ˆN � � �N hu�N jAju�N i CO.N
2ˇ�1/CO.N 3˛=4�ˇ /: (3.1)

Again the above estimate is independent of �N . Under the assumption that a� � aN D
N�˛ with

0 < ˛ < min
°4ˇ
5
; 2.1 � 2ˇ/

±
;

one can choose �N D N�˛=2�� with

0 < � < min
°
1 � 2ˇ �

˛

2
; ˇ �

5˛

4

±
in such a way that

�N D o.E
NLS
0;aN

/ D o..a� � aN /
1=2/ D o.N�˛=2/

and also
��1N N

2ˇ�1
C ��1N N

3˛=4�ˇ
����!
N!1

0:

Then dividing (3.1) by �N and repeating the argument with A changed to �A yields

hu�N jAju�N i C o.1/ � TrŒA .1/ˆN � � hu��N jAju��N i C o.1/: (3.2)

On the other hand, with the above choice of �N , we have

ENLS
�N ;aN

.u�N / D ENLS
�N ;aN ;�N

.u�N /CO.�N kAk/ � ENLS
�N ;aN

.u0/CO.�N kAk/

D ENLS
�N ;aN

CO.�N kAk/:

By the argument in the proof of (1.9), the above implies that

ENLS
0;aN

.u�N / � .a� � an/
1=2
�
2
kxQ0kL2

a
1=2
�

C oN .1/
�
CO

� �N

1 ��N
kAk

�
:

It then follows that .u�N / and .u��N / are sequences of quasi-ground states for ENLS
0;aN

,
under the assumption on�N in Theorem 1.4. Thus both sequences satisfy (2.33). Combin-
ing with (3.2), we get, after a dilation of space variables, trace-class weak-? convergence
of  .1/ˆN to jQN ihQN j. Since no mass is lost in the limit, this convergence must hold in
trace-class norm (see e.g. [11] or [38, Appendix H]). The limit being rank 1, this implies
the convergence of higher-order density matrices to tensor powers of the limiting operator
by well-known arguments (recalled e.g. in [36, Section 2.2]).



Blow-up two-dimensional rotating BEC 1079

Acknowledgments. V.D.D. would like to express his deep gratitude to his wife, Uyen
Cong, for her encouragement and support. The authors would like to thank the reviewers
for their helpful comments and suggestions.

Funding. This work was supported by the European Union’s Horizon 2020 Research and
Innovation Programme (Grant agreement CORFRONMAT No. 758620).

References

[1] A. Aftalion, Vortex patterns in Bose Einstein condensates. In Perspectives in nonlinear par-
tial differential equations, pp. 1–18, Contemp. Math. 446, American Mathematical Society,
Providence, RI, 2007 Zbl 1200.82036 MR 2373722

[2] J. E. Avron, I. W. Herbst, and B. Simon, Separation of center of mass in homogeneous mag-
netic fields. Ann. Physics 114 (1978), no. 1-2, 431–451 Zbl 0409.35027 MR 507741

[3] W. Bao, H. Wang, and P. A. Markowich, Ground, symmetric and central vortex states in rotat-
ing Bose-Einstein condensates. Commun. Math. Sci. 3 (2005), no. 1, 57–88 Zbl 1073.82004
MR 2132826

[4] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases. Rev. Mod.
Phys. 80 (2008), no. 3, 885–964

[5] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence
of functionals. Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490 Zbl 0526.46037
MR 699419

[6] T. Cazenave, Semilinear Schrödinger equations. Courant Lect. Notes Math. 10, New York
University, Courant Institute of Mathematical Sciences, New York; American Mathematical
Society, Providence, RI, 2003 Zbl 1055.35003 MR 2002047

[7] J. Chabrowski and A. Szulkin, On the Schrödinger equation involving a critical Sobolev expo-
nent and magnetic field. Topol. Methods Nonlinear Anal. 25 (2005), no. 1, 3–21
Zbl 1176.35022 MR 2133390

[8] N. R. Cooper, Rapidly rotating atomic gases. Advances in Physics 57 (2008), no. 6, 539–616
[9] E. A. Cornell and C. E. Wieman, Bose-Einstein condensation in a dilute gas, the first 70 years

and some recent experiments. Rev. Mod. Phys. 74 (2002), 875–893
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