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Blowup of two-dimensional attractive Bose—Einstein
condensates at the critical rotational speed

Van Duong Dinh, Dinh-Thi Nguyen, and Nicolas Rougerie

Abstract. We study the ground states of a two-dimensional focusing non-linear Schrédinger equa-
tion with rotation and harmonic trapping. When the strength of the interaction approaches a critical
value from below, the system collapses to a profile obtained from the optimizer of a Gagliardo—
Nirenberg interpolation inequality. This was established before in the case of fixed rotation fre-
quency. We extend the result to rotation frequencies approaching, or even equal to, the critical
frequency at which the centrifugal force compensates the trap. We prove that the blow-up scenario
is to leading order unaffected by such a strong deconfinement mechanism. In particular, the blow-up
profile remains independent of the rotation frequency.

1. Introduction

Bose-Einstein condensates (BECs) [9,24] form a remarkable phase of matter where quan-
tum effects can be spectacularly observed on a mesoscopic scale. Indeed, a single quantum
wave function being macroscopically occupied, its quantum coherence becomes accessi-
ble e.g. to imaging techniques. The flexibility of modern experiments with dilute atomic
gases are also remarkable [1,4,8, 10,34, 35], allowing access to reduced dimensionalities
(two dimensions or even one), to tune the interactions (allowing for repulsion or attraction
between particles), and to mimic external magnetic fields either by rotation or by coupling
internal degrees of freedom to optical fields.

In this note we consider such a combination of effects. Namely, we are interested in
two-dimensional attractive BECs, where the contact interactions will destabilize the gas
towards collapse if they are too strong. The resulting collapse of ground states [20] turns
out to be unaffected by the addition of a moderate rotation of the gas [25] (see also [15] for
dipolar gases). A fast rotation may however destabilize the gas towards expansion, because
the centrifugal force fights the confining potential. These two effects might compete, but
we prove that the instability towards collapse always dominates, leading to a blow-up
scenario independent of the rotation frequency. This answers a question raised in [25,
Remark 2.2].

2020 Mathematics Subject Classification. Primary 35J60; Secondary 35Q40.
Keywords. Rotational Bose—Einstein condensate, ground state, Gagliardo-Nirenberg inequality, blow-up
limit.


https://creativecommons.org/licenses/by/4.0/

V. D. Dinh, D.-T. Nguyen, and N. Rougerie 1056

We will consider the minimization problem
Eg-y = inf{655(4):¢ € XR?): |¢ll2 = 1}, (1.1)

where EgL(f is the non-linear Schrodinger (NLS) energy functional with attractive inter-
actions

ei2@) = [ 1VpePax+ [ 1xPlgoP dx +220.19) -5 [ 1600 ax

=/ |<—iV+sle)¢<x)|2dx+(1—92>/ Pl ()] dx
R2 R2

a 4
-5 | sertar.

Here, a > 0 describes the strength of interactions, 2 > 0 is the rotation frequency, xt =
(—)Cz, Xl), and

L=—-ixAV= i(x281 —x182)
the angular momentum operator. The space X (R?) in (1.1) is a functional space in which
the energy functional €5 is well defined; see below.

In the case of high rotational speed €2 > 1, it was proved in [3] that there are no ground
states for £ gLaS for all @ > 0. Indeed, when the rotational speed is larger than the trapping
frequency, the centrifugal force caused by the rotation is stronger than the centripetal force
created by the harmonic trap and the gas flies apart. On the other hand, the condensate
remains stable when Q2 < 1. In this case, one can prove the norm equivalence

IVSIZ2 + lIxll7z +22(Le. ¢) = [VolIZ2 + llx¢ll7-- (1.2)
It is then clear that the energy functional is well defined on the weighted Sobolev space
2(R?) = HY(R?) N L*(R2, |x|? dx),

and hence one can take X (R?) = X (R?). Using the compact embedding ¥ (R?) C L" (R?)
for all 7 € [2, 00), one can easily show the existence of a ground state for Eg's with
0 <a < ax (see e.g. [20] in the case 2 = 0). Here ax = || Q||i2 with Q the unique (up to
translations) positive solution of the elliptic equation

—AQ+0Q—-0%*=0 inR2 (1.3)
The constant a also appears in the sharp Gagliardo—Nirenberg inequality

A x

a |¢<x>|4dxs([ |V¢<x)|2dx)([ |¢(x)|2dx) Vo e HIRD. (1.4
2 Jr2 R2 R2

The case of critical rotational speed €2 = 1 is special. The situation becomes more subtle
since the centrifugal force caused by the rotation is exactly compensated by the harmonic
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trap. In particular, the norm equivalence (1.2) is no longer available. Thus, working on
¥ (R?) does not help to find ground states for E; NLS . In this case, we study the minimiza-
tion (1.1) on a larger functional space of magnetlc SoboleV functions, namely

H! (R?) = {¢ € L2 (R?): (—iV + x1)p € L*(R?)},

hence we set X(R?) = H!, (R®) when Q = 1. Note that by the Cauchy—-Schwarz inequal-
ity, we have (R?) C H! (R?), but Z(R?) & H!, (R?) (for the latter see e.g. [13,
Remark 2.1]). By making use of a concentration—compactness argument adapted to mag-
netic Sobolev spaces (see e.g. [14]), it was proved in [13, 18] that ENLS has at least one
ground state provided that 0 < a < a«. By the standard Gagllardo—Nlrenberg inequality
(1.4) and the diamagnetic inequality (see e.g. [27, Theorem 7.21])

VIl)] < [V +xDp(x). aexeR® Vpe Hy R, (15
we also have the following magnetic Gagliardo—Nirenberg inequality:

Ay

4 . 1 2
S [Lweorar s ([ 16+ xhompar)

X (/ |¢(x)|2dx) Vo € H! (R?). (1.6)
RZ

The main difference between (1.4) and (1.6) is that there is no optimizer for (1.6), while
Q in (1.3) is the unique (up to translations and dilations) optimizer for (1.4). Thanks to
(1.6), the energy Eg NLS is non-negative for all 0 < a < a..

1.1. Collapse in NLS theory

In the sequel we are interested in the blow-up behavior of ground states for Eq, NLS when a

approaches a,. Our first result concerns the blow-up limit with the critical rotatlon speed
Q=1

Theorem 1.1 (Collapse of NLS ground states at the critical rotational speed). We have,
asa /" a,

1/2

ETI\T’I[;S — (Cl* _a)1/2<2w + 0(1))7 (17)
Ay

where Qg = ||OQ ||L2 Q. In addition, for any sequence {ay}, satisfying a, /' ax and any

sequence of ground states ¢, for E{‘”&i, there exist a sequence {6,}, C [0,2m) and

a sequence {x,}n C R? such that the following convergence holds strongly in H' N
LOO(RZ)..

(as —an)'* ((Cl*—an)l/4 ) p( (ax —an)'/* L

X+ x ———— % —|—19)
al*xQo) 2 " al*|x Qo2

1/4 1/2
=20 g4 |1x Qo)

= Qo(x). (1.8)
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As an application of this result, we have the following blow-up behavior of ground
states when Q " 1 anda " a* at the same time.

Corollary 1.2 (Collapse at subcritical rotational speed). For any sequence {Q2p}n, {an}n
satisfying Q, /' 1 and a, /" ax, and any ground state ¢, for Egl,:?a,,’ there exists a
sequence {0y}, C [0,2m) such that the following convergence holds strongly in H' N
LOO(R2)_.

(ax _an)1/4 (CZ* _an)l/4

im n(
1/4 1/2 1/4 1/2
=00 g X Qo) Nax*Ix 0ol

x)e""n = 0o(x). (1.9)

Remark 1.3. We have the following comments:

(1) The convergences of energy and of ground states were proved by Guo and
Seiringer [20] when © = 0. These convergences were extended to the case 0 <
Q < 1 fixed by Lewin, Nam, and the third author [25] (see also further works
in [12,17,22]). In [19] it is even proved that a fixed rotation rate has no effect at
any order. Theorem 1.1 shows that the energy convergence found remains valid in
the case of critical rotational speed €2 = 1, at least to leading order. This is note-
worthy because the trapping potential, which sets the length-scale of the blow-up
behavior, is compensated by the centrifugal force.

(2) The convergence of ground states however has to be stated differently from [20,
25]. The model is translation-invariant for 2 = 1 and thus ground states converge
only modulo a magnetic translation (namely, a translation decorated by the suit-
able phase making it commute with the magnetic Laplacian; see e.g. [33] and
references therein).

(3) The only effect of the magnetic/rotation field is to set the blow-up length scale
(see the sketch of proof below). This is comparable to the positive particle mass
m > 0 in the Hartree-type and Thomas—Fermi-type models of stars [21,29-32].

(4) Our blow-up result, when 2 ' 1 at the same time as a /" a, answers a question
raised in [25, Remark 2.2]. In this situation, although the centrifugal force almost
compensates the trapping potential, the small residual trapping favors blowup at
the center of the trap. Hence there is no need for a magnetic translation and the
ground state convergence is completely similar to the case 0 < Q2 < 1 fixed.

Let us briefly describe the strategy of the proof. To prove Theorem 1.1, we first show
that the sequence of ground states {¢y, }, for £ {‘”&i blows up in the sense that

en = |Vigull2 >0 asn — oco. (1.10)

The blow-up length is then set by &, (whose precise asymptotic behavior is not known at
this point) and we will show that

On(x) = enpp(enx + xn)eia,,x,,l~x+i9,, — Qo(x)
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strongly in H1(R?), i.e. there is convergence modulo a magnetic translation of vector
{Xn}n C R? and the choice of a constant phase {6, }, C [0,27). To prove this, we rely on
a property of the Lagrange multiplier associated to ¢, together with the local bounded-
ness of subsolutions obtained by analyzing the corresponding Euler—Lagrange equation.
Thanks to the non-degeneracy of Q, we then prove that the imaginary part of ¢, is small
in H '-norm. This implies that the rotation acts on ¢, only as a quadratic external poten-
tial. This effectively sets a length scale, and we next prove by matching energy lower and
upper bounds that the blow-up length behaves like

(ax — an)l/4

ay*|lx Qo5

Hence we obtain the energy convergence (1.7). Finally, the L°°-convergence of ground
states follows from H '-convergence and H?2-boundedness deduced from the variational
equation.

To prove Corollary 1.2, we first use an energy argument to show that £ NLSa has the
same asymptotic behavior as for 2 = 0, 1. By taking a sequence of ground states for £ NL:
and choosing a suitable trial state for Eg"S, . we prove that a ground state for Eg"S " is
an approximate ground state for £’ NLS ~. At this point, the conclusion follows dlrectly from

a result proved in [25, Section 3].

1.2. Collapse in the mean-field limit

The focusing NLS functional (1.1) is commonly used to predict the collapse of an attrac-
tive system, but it should be seen as an effective, mean-field model [36]. It is of interest
to see whether the mean-field and blow-up limits can be exchanged as in [25]. Based on
Theorem 1.1 and Corollary 1.2, we give a positive answer to this question, starting from
many-body quantum mechanics.

In this framework, a Bose gas with an attractive interaction is described by the N -
particle Hamiltonian

N

a
Hoan =) (- + 157 =2QLyg) - —— D7 wn(n —x)),
j=1 1<i<j<N

acting on $V = Lszym((]Rz)N ). As is customary [36], the two-body interaction wy is
chosen in the form
wy(x) = Nz‘gw(Nﬂx)

for a fixed parameter 8 > 0 and a fixed function w satisfying
wx) =w(=x) >0, 1+ |x)w, ® e LY(R?), / w(x)dx = 1.
R2
We are interested in the large-N behavior of the ground state energy per particle of
Hgq 4, n, namely

EQV(N):=N"" inf (N, HoaNnPN). (1.11)
’ DyedN | PNl=1
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and the associated eigenstates of Hg 4 n. When © = 1, the Hamiltonian H; , x is mag-
netic translation invariant so it probably has no discrete spectrum (see e.g. [2, Proposition
5.4] or a discussion before (1.21) in [28] for a similar model of stars). In the following,
we therefore assume that 0 < Q < 1 and 0 < a < a4. We will consider the limit where
a = ay /" ax at the same time as 2 = Qp ' 1 when N — oo. In that case, the NLS
ground states blow up at the origin to the function Q, as shown in Corollary 1.2. We will
prove that the many-body ground states condense fully on Q¢. As usual, the convergence
of ground states is formulated using k-particles reduced density matrices, defined for any
®y € $ by a partial trace

*) .
Tr [Py ) (Dn|.
Yoy = k+1—>N| N Pn]

Equivalently, yékjg is the trace class operator on $* with kernel

k
P = [ ey 2B Ok 2)d2.
R2(N—k)
Bose—Einstein condensation is properly expressed by the convergence in trace norm
Jim Tr}y“‘) 1685 (¢®F|| =0 Vk e N.

We have the following result.

Theorem 1.4 (Collapse and condensation of the many-body ground states). Let 0 < § <
1/2 be fixed and a = ay = ax — N ™% with

4
0<a< min{gﬁ,Z(l - 2/3)}.
Then for every 0 < Q < 1 we have, as N — oo,

X 2
EM (N) = ESLSN i O(EgLS ) = (ax _aN)1/2(2% + 0(1)). (1.12)
Ay

Q,an
Assume in addition that @ = Qy =1 — N7 with
o S5a
O<v< '{1—2 - =, ——}.
v < min B > B 2

Let ®x be a ground state for ES (N). Then we have

QN an

k
11m Tr‘y() |Qf\3}k)( %kH:O

forall k € N, where

1/4 1/2 1/4 1/2
/IIxQ 12 ax*IxQoll)s )

QN(X)_ ( )1/4 Q (a*—aN)1/4x
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Remark 1.5. This shows that a result found in [25] remains valid when Q ' 1 slower
thana /" ax ([25] only deals with 0 < Q < 1 fixed). The method is the same as in [25]. The
energy estimates do not depend on the rotation parameter. In fact, we also obtain (1.12) for
Q = 1. Furthermore, the convergence of the many-body ground states follows from that of
the approximate NLS ground states. In the case Q5 ' 1, under the additional assumption
on the convergence speed of Qu in Theorem 1.4, we check that the approximate NLS

ground state for E gk}s N is still the one for ENLS

a 0,an -

2. Collapse of the NLS ground states

In this section we study the limiting behavior of ground states for (1.1) when a approaches
ax from below. We first deal with the critical speed 2 = 1. The case 2 ' 1 will be given
at the end of this section.

2.1. Collapse at the critical speed

Let us consider the case = 1. For simplicity, we denote V1 := —i V 4 x. Let us start
by recalling some useful facts.

Lemma 2.1 (L?-bound). We have
20617> < IVarglz. ¥ € H L (R?)

|x[2

with equality achieved e.g. by ¢(x) = \/;e_T.
This is a consequence of Landau’s well-known diagonalization of (V,1)? (see e.g.
[37D.

Lemma 2.2 (Compactness modulo translations). Let {¢,}, be a sequence of functions
satisfying

inf || ¢+ = C,

n>1

for some positive constant C > 0. We have the following weak convergences:

o Ifsup,sq | Pullg1 < 0o, then there exist ¢ € H'(R?)\{0} and a sequence {x,}, C R?
such that, up to a subsequence,

dn(x 4+ x,) = ¢(x)  weakly in H'(R?) and almost everywhere in R?.

s Ifsup,s ||¢>,,||H1L < o0, then there exist ¢ € H;l (R2\{0} and a sequence {y,}n C

R2 such that, up to a subsequence,
eiy'll'x¢n (x 4 yn) = @(x)  weakly in H;l (R?) and almost everywhere in R?.

Here ¢, — ¢ weakly in H): | (R?) means that

/ (Veidn — Vi) Viipdx + / (o —$)gdx >0 Vg e H', (R?).
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Proof. The proof of this lemma can be found in [26, Lemma 6] for the H '-weak conver-
gence and [13, Lemma 2.6] for the H): 1 -weak convergence. ]

Lemma 2.3 (Energy upper bound). Let {a,}, be a positive sequence satisfying a, /" ax
asn — 00. Then, for every 0 < Q < 1, we have

: NLS _ pNLS _
nlglgo EQ’“” - EQ’“* =0
More precisely,
NLS
li Eqa, xQollz2
im sup 73 <2 72 2.1
n—co (ax —an) ax

Proof. It is obvious that Eg" > 0, by the magnetic Gagliardo—Nirenberg inequality
(1.6). On the other hand, let Q be the unique positive radial solution of (1.3). By
Pohozaev’s identity, we have

1
IVOIlZ. = §||Q||i4 = 10ll7> = ax.

Denote Qg = ||Q||221Q Then

Ay
IVQolz. = 7||Qo||24 = [Qoll7. =1

By the variational principle, we have
ENS, < €85, (1000 = 22(1=22) + 272 x Qo
*

for all A > 0. Here we have used the fact that (L (AQ¢(A+)), AQ¢(A-)) = Osince Qg is real
valued, where we recall that L = i(x,07 — x1d>). Optimizing over A, we get

xQollL2

(s —an)'? 2.2)
Ax

NLS
<
Eqga =2

which implies (2.1) and also lim sup,,_, o, EgL:n <0. ]

Lemma 2.4 (Blowup). Let {a,}, be a positive sequence such that a, /" ax as n — oo
and ¢y, be a ground state for ENLi. Then {¢y, } blows up both in H;l (R?) and in H'(R?)

l.a
in the sense that

lim [[Vyi@ullp2 = lim [[Vép|L2 = lim [[V|ga]|L2 = +oc.
n—oo n—o00 n—o0o
Proof. We first show that {¢, }, blows up in H!, (R?). Assume for contradiction that

sup | Vi1 gnll7> < oo. 2.3)

n>1
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In particular, {¢,}, is then a bounded sequence in H; L (R?). Observe that there exists
C > 0 such that

liminf |||+ > C

n—0o0

since otherwise, we have
: NLS _ 1 2
nll{go El,a,, = nli)ngo ”in‘pn”]} =2,
where the last inequality is due to Lemma 2.1. This, however, is not possible (see Lemma

2.3). Thus, by Lemma 2.2, there exist ¢ € H!, (R*)\{0} and a sequence {x,}, C R? such
that up to a subsequence,

On(x) = eix"l'xq'),, (x +x,) —> ¢ weakly in H;l (R?) and almost everywhere in R?.
We claim that [|$]|7, = 1. Indeed, we have
0 < [[lI7> < liminf ||g |7, = liminf [|g,]|7> = 1.
If ||¢ ||i2 < 1, then by the magnetic translation invariance, we have
Ely = €1y @n) = €1 (Pn) = 616 (dn) = €16 () + €163 (dn — ) + 0(1). (24)
Here we have used the weak convergence in H; . (R?), the almost everywhere conver-
gence in R2, and the Brézis—Lieb lemma (see [5]) along with the fact that ||@y || 4 is
bounded uniformly, by the magnetic Gagliardo—Nirenberg inequality (1.6) and (2.3).
Again, (1.6) implies that
liminf 8155 (¢y — ¢) > 0.
n—oo o

Furthermore,

¢ Qs 1
gNLs _ 2 gNLS + & 1 450
Y@ = I (57 + 5 (s — 1)l >

since 0 < [|¢[|z2 < 1. This contradicts the fact that E}', — 0 as n — oo, by Lemma 2.3.

Therefore, we must have ||¢||,2 = 1, hence ¢, — ¢ strongly in L2(R2). In fact, ¢, — ¢
strongly in L (R?) for r € [2, 00), because of the H!, (R?)-boundedness. Since a, /" ax,
we have from (2.4) that

NLS NLS ..o oNLS — i NLS _ pNLS
Ela <614.(9) < I}lrggéfSI,an(zpn) = lkrglongl,an =Ei,.-

In particular, ¢ is a ground state for £ {‘”;E . However, there are no such ground states, as
proven in e.g. [13, 18], and we deduce that (2.3) cannot hold.

We now conclude the proof by showing that {¢, }, blows up in H!(R?). We have
. . . a
0= EYg = lim Exg = lim €75 ¢n) = lim [[Vergnlzs = 5 Ionls
Since |VyL¢n| L2 — o0 as n — oo, we must have ||¢>,,||4L4 — 00. But then the standard
Gagliardo—Nirenberg inequality (1.4) implies that ||V, |12 — oo and ||V|¢n|l|z2 — o0
as well. ]
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We are now in the position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof is divided into several steps.

Step 1. Convergence of the modulus. We first show that there exists a sequence {x,}, C
R? such that

enldn|(en - +xn) = Qo strongly in H'(R?) as n — oo, (2.5)
where &, is given by (1.10). Denote
Un(X) = €nlpn|(enx).
We then have
lvnllz = llgnllez =1 and  [[Vonlp2 = en|VIgalll2 = 1.

Hence {v,}, is a bounded sequence in H ! (R?). On the other hand, using the diamagnetic
inequality (1.5) we have

a
E1e @) = IVIgllz2 — S1912s = E2(1D-
But the Gagliardo—Nirenberg inequality (1.4) implies
a
&2(0D = (1- =) IVIglIZ..
A x
From this and Lemma 2.3, we obtain
0= lim ENG = lim Y (¢) = liminf €9 (|¢l) = 0.

In particular, we have & gn (vn) = &2

82,1 (I¢pn]) — 0 as n — oo. Since by definition
Vol =1

for all n > 1, we infer that, up to a subsequence,

inf [lv,flps = C
n>1

for some constant C > 0. By Lemma 2.2, there exists ¢ € H!(R?)\{0} and {y,}, C R?
such that up to a subsequence,

T (x) = v, (- + yn) = ¢ weakly in H'(R?) and almost everywhere in R?.
We next show that ||¢||;2 = 1. In fact, we first have

2 .. ~ N2 qa s 2
0 <llgllz> =liminf(|v,[|7. = liminf [[va 7. = 1,
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where the first inequality comes from the strong convergence in Lﬁ)c (R?) (see again [26]).
Assume for contradiction that ||¢||;2 < 1. As in (2.4), we have

0= lim &2 (v,) = lim &° (3,) > &2 (¢) + liminf &2 (¥, —p).  (2.6)
n—oo " n—oo " * n—o00 *
Again, by the Gagliardo—Nirenberg inequality (1.4), we have
lim inf €2 (Un—¢) =0

and

¢ ax 1
&2.@) = o360, (—o—=) + 5(
“ L2raNigl 2 2 Migll7»
since 0 < ||¢||z2 < 1. This is a contradiction with (2.6) and we thus must have ||¢||;2 = 1.
Then ©,, — ¢ strongly in L2(R?), up to a subsequence. In fact, 7, — ¢ strongly in L" (R?)
for r € [2, 00), because of the H 1(R?)-boundedness. Therefore,

—1)ll¢l}e >0

0 <& (¢) <liminf&) (3,) < liminf &Y (v,) = 0.
n—00 n—00 n
This shows that
lim V5,2, = lim 25,04, = lim 22 [g)2, = [Vol?
n—00 niiL2 n—oo 2 " L# n—oo 2 L# L2

Hence 0, — ¢ strongly in H!(R?), up to a subsequence. Moreover, ¢ is an optimizer of
the standard Gagliardo—Nirenberg inequality (1.4). By the uniqueness (up to translations
and dilations) of optimizers for (1.4) and the fact that 0, is non-negative, there exist A > 0
and xo € R? such that ¢(x) = AQ¢(A(x + x0)). Since || V| ;2 = 1, we must have A = 1.
Again, by uniqueness of J¢, we conclude that passing to a subsequence is unnecessary.
This leads to (2.5) after setting x, = &,(y, — Xo)-

Step 2. A property of Lagrange multipliers. The minimizer ¢, of E ll\uai satisfies the Euler—
Lagrange equation
(Vei)*bn — anlndn = pngpn  in R? @7

in the distributional sense, namely
/2 Vii¢n - Vyiry _an|¢n|2¢n)( — Unpydx =0 Vye Céx’(Rz),
R

where 1, € R is the Lagrange multiplier. In this step, we show that &2 i, — —1 as n — oo.

Indeed, as ¢, is a ground state for £ i‘”;i , using (2.7), we have

2 4 NLS an 4 NLS  9n 4
Mn = ||in¢n||Lz —dn ||¢n||L4 = 8l,a,, (¢n) — ?”‘pn ”L“ = El,a,, - 7||¢n“1,4~

Denote .
on(x) = €Oy, (x) (2.8)
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with

Yn(x) == enn(enx + xn)eienx"llx

and 6, € [0, 2m) satisfying

lgn — Qollzz = min [le?®y, — Qoll2. (2.9)
9e[0,27)

By (2.5), we have |@,| == &, |¢n|(en - +x,) — Qo strongly in H'!(R?). Therefore,

. 2 4 . 4 4
Jim &2 allfe = Jim loallfs = 1 Qollfs =

Since 0 < Ellﬂl;i — 0 (see Lemma 2.3) and a,, /" a«, we get

. . . an o 4
lim &2 = lim &2ENS — lim Ze¢ = —1.
n—o00 nHn n—oo M Lan  pioo 2 n||¢n||L4

Step 3. A subequation for |, |?>. We next use (2.7) to derive an equation and a subequation

satisfied by ¢, and |¢, |2. To do so, we write
Yn(X) = Enn(enx)
with ¢, (x) == ¢ (x + x,,)eian *. A direct computation gives
(V)6 (x) = (V) ?$n) (x + xa)e™ %,
which, by (2.7), implies
(VxL)’Gn — anldn*Gn = tindn-

Using the identity
(Ve1)’¢ = —A¢ + 2L + |x|*¢

with L = i(x20; — x102) = —ix+ - V, we see that (]3,, solves the elliptic equation
—Adn + |XI*Pn + 2L — an|Pu*Gn — 1tndn = 0.
By the definition of ¢, in (2.8), we get
—A@n + 31X + 267 Lon — anlon*0n — €5 1tnpn = 0. (2.10)
Observe that (2.10) can be written as
(=iV + &332 0n — anlgn P 0n — &5 ttnpn = 0

which, by [7, Proposition 2.2], implies that ¢, € L°(R?) and limy|—co |¢n(x)| = 0.
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Denote W, := |@,|?. Since |¢,| € H'(R?) (using the diamagnetic inequality (1.5))
and ¢, € L*®(R?), we have W, € H!(R?). Multiplying both sides of (2.10) with @,,
taking the real part, and using the following identities (in the distributional sense),
_ 1
—Re(A@n@n) = _EAWn + |v§0n|2s
2Re(L@n@n) = Lyngn + Longn = x* - J(gn),

with J(¢) = i(¢Vp — ¢V) the superfluid current, we obtain
—%AW,, + |Voul* + 62|x|2Wn + sﬁxJ‘ - J(en) —an an — si,u,, W, = 0.
Using the identity
(=i V + 2x)gn? = [Vou 2 + 25 - T(pn) + 64 x W,
we deduce that ]
—5 AW, — 2 Wy —anW? <0 2.11)

in the weak sense, namely
1
/ EVW,, V= EunWoy —anaW2ydx <0 V0 < y € C°(R?).
RZ

Step 4. Uniform boundedness of W,. To prove the uniform boundedness of the subsolu-
tion W, = |@,|? to (2.11), we need its local boundedness. The following formulation is
taken from [23, Theorem 4.14] (see [23, Theorem 4.1] and [16, Theorem 8.17] for the

proof).

Theorem 2.5 (Local boundedness). Let D be a connected open set with smooth boundary
in R%. Assume that ajx € L*°(D) satisfies

MEP <) ap(x)éE < AlE* Yx € D, V& e RY,
Jk

for some positive constants A and A. Let u € H'(D) be a non-negative subsolution in D
in the following sense:

/ajkajuak)(dxf/ frxdx VyeHy(D), x>0inD.
D D

Suppose that f € L1(D) for some q > % Then there holds for any Bgr(x¢) C D and any
p >0,

4 4
sup  u(x) < C(R™7 |ullLrBrixo) + RZ 4 La(Br(xo))>
Bpr/2(x0)

where C = C(d, A, A, p,q) is a positive constant.



V. D. Dinh, D.-T. Nguyen, and N. Rougerie 1068

Let M > 0 and denote Dy; = {x € R?:|x| > M }. Applying Theorem 2.5 to (2.11) with
D =Dy, ajk = 38k, f = 2 pnWn + anW2, p=q =2, R =2, and B>(xo) C Dy,
we get

BS?P) Wa(x) < CUIWallL2Bo o)) + I1W,2L2(Ba(xo)) (2.12)
1(Xo

for some universal constant C > 0. Since B,(x¢) C Djs, we deduce
IWallL2Bs o)) + W L2Baxo)) < IWallL2quisnry + IWikllL2 x> )
= 103 IlL2qxi=m) + 19811 L2(x1> 1)

Here we have used €2, — —1 and the fact that W, — Q3 in L?(R?) and W2 — Q§ in
L?(R?) because

W — O3l < [|l@n] = Qo o] lnl + Qo 4
W2 = Qgllzz < |[lgnl = Qol s [[l¢nl + Qo .5

[lonl? + O3] Lo

and |@,| — Qg strongly in L™ (R?) for all r € [2, 00). The latter follows from the strong
convergence |¢,| — Qo in H!(R?) and Sobolev embedding. In particular, for € > 0, there
exist ne € N and M, sufficiently large such that for alln > ne and all M > M.,

€
IWallL2aceon + W 2000 = &
which together with (2.12) yields

sup W,(x) <e
Bi(x0)

for all By(xo) C Dm,. As Bi(xp) is arbitrarily in Dy, we get (by possibly increasing
M)
W,(x) <e forall |x| > M, and all n sufficiently large. (2.13)

Applying Theorem 2.5 again to (2.11) with D = R2, ajx = % ks f = Mngﬁ W, + a, an,
p=¢q =2,and R = 2M,, we get

Sul? ) Wa(x) < C(MZH [ WallL2Byu, @) + MW, llL2(Bars, 1)
B, (0

for some universal constant C > 0. This implies

sup Wy, (x) < C(M¢) for all n sufficiently large. (2.14)
B (0)

Collecting (2.13) and (2.14), we prove

0 < sup W,(x) <C for all n sufficiently large, (2.15)

x€R?2

where C > 0 is a constant independent of 7.
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Step 5. Uniform exponential decay of W,,. We now prove the uniform exponential decay of
W,. Since C§° (R?) is dense in H ' (R?), we can test (2.11) against non-negative functions
in H'(R?). The following calculation is done formally by testing (2.11) with e*/*IW,
for some constant o« > 0 to be chosen shortly. Strictly speaking, this requires a standard
truncation argument. First we replace ¢**| by

x|

xs(x) =T, §>0

and perform the usual computation. Then we let § — 0 to obtain the desired estimate. For
more details, see e.g. [6, Theorem 8.1.1]. Note that ys is bounded, Lipschitz continuous,
and |Vys| < ays: hence ysW, € H'(R?).

We have

1
——/ AW, e®*IW, dx
2 Jr2

- Mneﬁ/ Wy e W, dx —an/ W2e* W, dx < 0. (2.16)
R2 R2
Observe that

1
/ AWne“‘lendx:/ e“'x'(—A(an)—IVWnlz)dx
R2 R2 2

1

= —f anA(eo‘lx‘)dx—/ |VW,,|2e“|x|dx
2 Jr2 R2
1

— —/ an(ozz + i)e‘""‘ldx —/ |VWn|ze°“x|dx
2 R2 |X| R2
and

2
/ |V(Wnet¥|x|/2)|2dx = Ol_/ anealx\dx +/ |VWn|28a|x|dx
R? 4 Jr2 R2

1 o
_ W2( 2 _) Otlxld .
) /Rz n\& + |x| e X

In particular, we have
2
/ AW, e®* W, dx = “—/ ane“'X‘dx—f IV (Wpe®X1/2)2 dy,
R2 4 Jr2 R2

hence (see (2.16))

1 2
2 Jr2 8 Jr2 R2

—a, W,fealx‘ dx <0
RZ

SO

2l ) 2 x|
Hn€; anWy |W,fe*?dx < 0.
R2 8
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We pick ¢ = 1 and choose M > 0 so large that W, (x) < ﬁ for all |x| > M and all n
sufficiently large (see (2.13)). As /,Lné‘% — —1 (by Step 1), we get

1
—Un&l — g~ @ Walx) =

N =

for all |x| > M and all n sufficiently large. Thus we obtain
1 1
_/ Wn2g|x\ dx < f ’—unsi — = —axWy WnZeIxI dx
2 JR2\ By (0) B (0) 8

= CeM”Wn”iz = CeM

for all n sufficiently large, where we have used (2.15) to get the second estimate. This
proves that

/ w2elldx < € (2.17)
R2

for all n sufficiently large, where C > 0 is independent of n. From this, we get

/ |‘Pn|29|x‘/4 dx = Wne|x|/2€—|x|/4 dx
R2 R2

1/2 1/2
< ( W2elx! dx) ( / e~ xI/2 dx) <C (2.18)
R2 R2

for all n sufficiently large. A consequence of this uniform exponential decay and |¢,| —
Qo in H'(R?) is that | x| |¢,| — |x| Qg strongly in L?(R?).

Step 6. H 1-sz‘rong convergence. By the definition of ¢, (see (2.8)), we have

_ _ —ixlox—i
Pn(x) = &, (e (x — xp))e a0,

ENLS

La,» We see that

Since ¢, is a ground state for
a
EYar = 80 @n) = [V9nlZ2 + 15¢nll 72 +2(Ln. dn) = - ldnllfe. 219)
This implies the following identity (see again (2.8)):
a

enEra = IVoullz + 265 (Lon. on) + enllxonl]z — 7"||<ﬂn||}f4. (2.20)

By the Cauchy—Schwarz inequality, we have
1

263 (Lon. ¢n)| < 26311V eull2llx@nllL2 < Ellvwnlliz +2¢, | x@n 72

which implies

a
IVenlz> < 2(en Eg,”> + enllxenl7z + Tn”(pn 174)-
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Since E}> — 0,8, = 0, |x| |@n| = |x| Qo strongly in L*(R?), and |g,| — Qo strongly
in L*(IR?), we infer that {¢, }, is bounded uniformly in H ' (R?).
From (2.20), we also have

2 A 4 2 S 2 4 2 s —dn 4
IVnllz> — 7||s0n||L4 = ep EYa — 260 (Lgn. on) — enllX0nll7> — TllfpnllL»

Using the uniform boundedness of {¢,}, in H!(R?), the strong convergence |x||¢g,| —
|x| Qo in L2(R?), and a, /" ax, we deduce that

. 2 2% 4
Jim 9012~ lonlt =0.

Since ||@nllz2 = 1 and |@,| — Qg strongly in L”(R?) for all r € [2, 00), there exists
{z,}n C R? such that
¢n(x + 2n) = €'’ Qo(x)

strongly in H ! (R?), for some 6 € [0,27). Using the fact that || Qo (- + z,) — Qollg1 — 0
if and only if |z,| — 0, we get |z,| — 0. This in turn implies that ¢, — ¢’ Q¢ strongly
in H'(R?) since

lgn — € Qollgt = ll@n(- 4 2n) — € Qo (- + zu) | a1
< Nln(- + zn) — " Qollgr + Q0 — Qo + za) 11 — O.

Now we write
On(x) = gn(x) +iry(x)

with g, and r, the real and imaginary parts of ¢, respectively. By (2.9), we have the
following orthogonality condition

/ Qorpdx = 0. (2.21)
R2

Since [l¢n — € Qo)|2, — 0, we have

|| Rl =" Qu))? + (m(g, — ¢ Qo) dx 0,
R
In particular, we get
(rn — Qo sinf)?dx — 0.
R2

Using (2.21), we have
/ r2 4+ Qpsin® 6 dx — 0.
]RZ

This shows that
/ r2dx -0 and sin?0 =0
R2



V. D. Dinh, D.-T. Nguyen, and N. Rougerie 1072
or § = 0or 8 = n. In the following, we consider only the case # = 0. The case § = &
can be treated similarly by changing ¢, to —¢,. For 6 = 0, we have ¢,, — Q¢ strongly in
H'(R?). In particular,

/ (gn — Q0)*dx - 0 and / r,fdx — 0.
R2 R2
This, together with the exponential decay of W,,, yields
/ |x1%(¢n — Q0)?>dx — 0 and [ |x|?r2 dx — 0. (2.22)
R2 R2
In fact, by the exponential decay of W}, (see (2.18)), we have

1/2 1/2
/]RZ |x|2r3 dx < (/];{2 |x|4r3dx) (A;z r,%dx) — 0,

and similarly for g, — Q.

Step 7. Smallness of the imaginary part. Observe that
(Lon.gn) = RelLgan) = [+ m(@, Vo)
R
= / Xt (guVirn — 1 Vqn) dx
R2
= 2/ xlanrn dx (2.23)
R2

which implies
[(L@n. @n)| = 21x4qnllL2IVrallL2 < CVral|L2.

Here we have used the fact that |x|g, is bounded uniformly in L2(R?) since |x||¢g,| —
|x| Qo strongly in L2(R?). We deduce from the above and (2.20) that

8’21E11\II[£ > /ﬂ; IVagn|> + |Vra)? — c%*(q: + r,;‘ + Zq,%r,f) dx — CSi”Vrnan.
We have
S [t 2aidar san [ e
= [ 0*raxtar [l = O3y ax
= [, 02 ax ol
Here we have used that

< Jleal? = Q|| o llrnllze < Cllleal® = Q2| L2 ll7nll

[ o~ G ax
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and
|||(/)n|2 - Q(%HLz = |||‘Pn| - Q0||L4|||‘Pn| + QO”L4 -0

as |@n| — Qo strongly in H'(R?), hence in L*(R?) by Sobolev embeddings. On the other
hand, by the standard Gagliardo—Nirenberg inequality (1.4), we have

a
L1900 = St = 19 51 = ) = 1+ o)l

where we have used that g, — Qq strongly in H!(R?), ||q,,||i2 + ||r,,||i2 =1 as
||<;0n||i2 =1, and ||VQ0||]%2 = 1. Thus we get

Lan =

SENS = [ VR - 02 + ri x4 oDl — CeXl Tl
= (Lra.ra) + o(Dlraly — C2 IVl

where £ := —A — Q2 + 1.

We now use the non-degeneracy property of Q. It is well known (see [27, Theorem
11.8 and Corollary 11.9]) that Q is the first eigenfunction of &£ and the corresponding
eigenvalue 0 is non-degenerate. In particular, we have

(Lu,u) = AalulZ,

for all u orthogonal to Q, where A, > 0 is the second eigenvalue of £. This, together with
the fact that

(Lu,u) = Nl — 1 QI o llullZ2.
yields
(Lu,u) > Cllullz
for some constant C > 0 and all u orthogonal to Q. Thanks to this estimate and the
orthogonality condition (2.21), we get

2 NLS 2 2
enEr g, = Cillrallg — Cagy | Vrallz2
for some positive constants Cy and C,. This implies that

Irall3 < C(E2EYSS + &b). (2.24)

1l,a,
On the other hand, from (2.2), the magnetic Gagliardo—Nirenberg inequality (1.6) and the
diamagnetic inequality (1.5), we have
ax — ay

Clax —an)'? = EYGS = €5 (gn) = IVyrdnl}2
ax —dp 2 4x—dp _,
> ay ”V|¢n|“L2 - Tgn ’
which implies
EYSS < Clax —an)'/? < Cé2 (2.25)

for some constant C > 0. This together with (2.24) yields
Irallzrt < Ceg. (2.26)
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Step 8. Identifying the blow-up limit. Coming back to (2.23), we have

(Lgn, ¢n) = Z/RZ xt - Vg dx

22[ xJ"VrnQde+2/ XJ_'Vrn(Qn_QO)dx
R2 R?
=z/ xb - Vr(gn — Qo) dx

RZ

where we have used the fact that x* - VQq = 0 since Qy is radial and (2.22). This shows
that

{L@n, @n)| < 1VrallL2%(gn — Qo)lL2 < o) VrallL2 < o(ep). (2.27)

Here we have used (2.22) in the second inequality and (2.26) in the last one.
From (2.19) and the Gagliardo—Nirenberg inequality (1.4), we have

ENSS > 2(Lpn, pn) + 1xn |22 = 2(Lepn, @n) + €21 x 0012

Denote

Py 8"
Bn = @ an
From (2.25), we have
,8,% >C > 0.
Moreover, using (2.2), we also have
II\ILS 5
sdn
C > > (Lon.n) + Ballxgnl .-

T (ax — an)l/2 (as — an)l/z
Thanks to (2.27) and the fact that | x| |@,| — |x|Qg strongly in L?(R?), we deduce
C = B2 (IxQoll7> + o(1)).

In particular, we deduce that {8, },, is bounded above and below away from zero. Passing
to a subsequence, we have 8, — 8 > 0 as n — oo.
By (2.20), we have

ax —da
EYan 2 = 1#nllfs + 2Lt 6n) + lxenll72
(ax —a )1/2
= =g lenllts +2(Lon.gn) + (@ —an)'PBllxen 7.
n

Since ¢, — Qp strongly in H'(R?), |x| |¢.| — |x| Q¢ strongly in L?(R?), and (2.27),

we infer that
NLS 1

Lan
i = g Qollle + B1x ol + 0(1).
* — Un
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Optimizing over § > 0 and noticing that || Q¢ ||}4J4 = % we get

EYLS ||XQ0||L !
I}lrggf (ax —an)l/z = al/? and f = W

From this and the energy upper bound (2.1), we obtain (1.7) and (1.8).

Step 9. L*°-convergence. We finally prove the L°°-convergence. To this end, we first
show the uniform exponential decay for Vg, , namely

/ IVon|?e*/*dx < C (2.28)
]RZ

for all n sufficiently large. We provide below a formal calculation and a regularizing argu-
ment is needed to justify it rigorously (see Step 5). We multiply both sides of (2.10) by
e?* g, integrate over R, and take the real part to get

Ref ~Agne™™MGy + e1x 7™ gu | + 265 Lone™1,
R2

— anlgnl*e®™! — &2 11y |@n]?e® ™ dx = 0.

Arguing as in [25, Lemma 3.2], we have

o2
Re/ —A@ne®Xlg, dx —/ IV (e*X¥1/20,) 2 dx — —/ g, |2 dx.
R2 R2 2 Jr2

In particular, we get

O=/ |V(€a‘x|/2<pn)|2dx+82/‘ |x|2€a|x||(ﬂn|2dx
R2 R2
O12
+/ ea|x|<_an|¢n|2 _8§I'Ln - _)|§0n|2 dx
R2 4
+25§/R Lgne®~ @, dx.

Since L(e®*1/2) = 0, we have

285[ Lone®™lg, dx
R2

285/2 e“lx‘/z(/_)nL(eale(pn) dx
R
< 267 ||x e 20, | L2 |V (X2 0p) 2

1
< E/ |V(ea\x|/2(pn)|2dx+282/ |x|2ea\x||(pn|2dx_
R2 R2

It follows that
1

! / IV (e12,)2 dx < & / e Pe ¥ g, 2 dx
2 Jr2 R2

e anlgn + sl + %)



V. D. Dinh, D.-T. Nguyen, and N. Rougerie 1076

By choosing « = 7, using (2.17), (2.18), and the fact that aﬁun — —1, we obtain

1

4>
/ V(™8 [*dx < C (2.29)
R2

for all n sufficiently large. Note that, by the triangle inequality,

By g, 4 L ol¥I/8 g,
8]x|
Then claim (2.28) follows directly from (2.29) and (2.18).
We next show that {¢,}, is bounded uniformly in H?(R?). To see this, we rewrite
(2.10) as

1
19 )2 = | 12 2 15Vl = e g, | 2.

—A@y +on = (1 + gi/in)(pn - 83|X|2¢n - 28%]40” + an|¢n|2§0n~

Since {g,}, is bounded uniformly in H!(IR?), the uniform exponential decay in (2.18)
and (2.28) imply that the right-hand side is bounded uniformly in L?(IR?). This shows
that {¢,}, is bounded uniformly in H2(R2). By the Sobolev embedding H3/2(R2?) C
L>®(R?), the strong convergence ¢, — Qg in H!(R?), and the uniformly boundedness
of (¢n)n in H?(R?), we have that ¢, converges strongly to Qg in L% (R?) and hence
(1.8). [

2.2. Collapse with an almost critical speed

‘We now study the blow-up behavior of minimizers for Eq , whenboth 2 /' 1anda /" ax
at the same time. To this end, we recall the following energy asymptotic formula when
Q = 0 (see [20]):

EYS = \/a*—_a(znxan# + 0(1)) asa /" dx. (2.30)
*

Proof of Corollary 1.2. Let Q, /1, a, /" ax as n — oo, and ¢, be a minimizer for
EQ, a,- We rewrite the energy functional as

Eg];,sa,, = 851;,5% () = Qngﬂi (¢n) + (1 — Qn)g(l;?&i (¢n)
> QuEYS + (1 — Qu)E)s (2.31)

0,a,°

where we have used that EY55 (¢,) > ETL5 and 6055 (¢,) > EQLS. Since both EYLS and
E(l;nai have the same asymptotic formula (see (1.7) and (2.30)), we obtain

lxQollL2

NLS _ 1/2
E = (ax —ay) (2 72
Ay

Qp,an

+o(1)),

where the upper bound follows from (2.2). Let ¥, be a ground state for £ {\”;li . By Theorem

1.1, there exist sequences {x,}, C R? and (9,), C [0, 27) such that

On(x) = e Yn(enx + xn)eianx,fx-‘ril?n — Qo(x)
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strongly in H! N L®(R2) as n — 00. We choose ¥, (X) = Y (x + xp)ei¥n ¥ Hidn a5 g
trial state for EG™S and obtain

ENS < €85 () = QuEYS () + (1 — Q) ENSS (¥n)

Qn.an — nsQn Lan 0,an

= QuEYSS + (1 — Qa) &0 (V). (2.32)

0.a,

Here we have used the magnetic translation invariance of the energy functional & {‘”;i
Putting together (2.31) and (2.32), we obtain

808 (pn) < E0LS (Yrn).

By (2.2) and the arguments in the proof of Theorem 1.1 (especially of (2.27) and ¢, ~
(ax —an)'’*), we have

ENS (Fn) = ENLS () — 2(Vim, L) = ENES —2(¢n, Lion)

X 2
< (ax— an)1/2(2% + 0(1)).
A«

This together with (2.30) shows that ¢, is an approximate ground state for E(I)\H&i We
then conclude (see e.g. [25, Step 5 in Section 3]) that there exists a sequence of phases
{6,}n C [0, 27) such that

(Cl* _an)1/4 ( (a* _an)l/4

1/4 1/277\ 1/4 2%
n=00 g L/41x 00| 127" Nal | x 0o

)i = Qo(x) (2.33)

strongly in H !(R?). In fact, we obtain the strong convergence in L>°(R?), by the same
arguments as in the proof of (1.8). ]

3. Collapse of many-body ground states

In this section, we prove the large- N behavior of ground states for (1.11) given in Theorem
1.4,

Proof of Theorem 1.4. Following arguments from [25], we have

CNIVONIL QN e + ENS, = Egu, (N) = ENS — N1,

Qay =

where Oy is given in Theorem 1.4. Note that the above energy estimates as well as the
asymptotic formula of Eg'? ~are independent of §2. Therefore, we obtain (1.12) for every
0<Q =<1

To prove convergence of ground states as 2 = Qy ' 1 we consider the perturbed

Hamiltonian
N

Hoy.ay Noy = Hay.ay N + 1N ZAj
Jj=1
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with ground-state energy per particle denoted EQN an .y (N). Here ny > 0 is a small
parameter to be chosen later and A is a bounded self-adjoint operator on L?(R?). The
associated NLS energy functional is

gglfvs,aw,nw (u) = Sgl;vs,aN (u) + ny (Au, u).

NLS
Denote by EQN anN

Let ®y be a ground state for Hoy ay,N = Hay,ay,n,0 and yé) its one-body reduced
density matrix. As in [25, Step 2 in Section 4] we obtain

the corresponding ground-state energy and uy, its ground state.

I THAYGI] = 0 (gy | Alitgy ) + OV 4 O(N*/4=F) 3.1
Again the above estimate is independent of 2. Under the assumption that a, —ay =
N~% with
4

0<a <min{—
5

200-2p)}.

one can choose ny = N~%/279 with

O<U<m1n{l— ,B——,B S:l}

in such a way that

v = o(EgsS ) = o((ax —an)"/?) = o(N~%/?)

0,an
and also
ﬂﬁlNzﬂ_l + n—1N3a/4 B > 0.

N—o00

Then dividing (3.1) by nx and repeating the argument with A changed to —A yields
(ny [ Altny ) +0(1) < TH{AYSI] < (Upy | Alu_yy) + o(1). (3.2)
On the other hand, with the above choice of iy, we have

EFS o (ny) = 6355 (uny) + O(n Al < €55, (uo) + O(rw (| Al
= ExS, + 0G| AlD.

Qn.an

/\

By the argument in the proof of (1.9), the above implies that

1+ Qollz2
€0t ) = (ax —a)) 2 (2555 + oy (1) + 05
Ax

NN
A .
ENLS

It then follows that (uy,) and (u—y, ) are sequences of quasi-ground states for Eg -
under the assumption on €2 v in Theorem 1.4. Thus both sequences satisfy (2.33). Combin-
ing with (3.2), we get, after a dilation of space variables, trace-class weak-+ convergence
of yfpl; to |Qn){Qn]|. Since no mass is lost in the limit, this convergence must hold in
trace-class norm (see e.g. [11] or [38, Appendix H]). The limit being rank 1, this implies
the convergence of higher-order density matrices to tensor powers of the limiting operator
by well-known arguments (recalled e.g. in [36, Section 2.2]). ]
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