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Quantitative convergence of the vectorial Allen—-Cahn
equation towards multiphase mean curvature flow

Julian Fischer and Alice Marveggio

Abstract. Phase-field models such as the Allen—-Cahn equation may give rise to the formation and
evolution of geometric shapes, a phenomenon that may be analyzed rigorously in suitable scaling
regimes. In its sharp-interface limit, the vectorial Allen—Cahn equation with a potential with N > 3
distinct minima has been conjectured to describe the evolution of branched interfaces by multiphase
mean curvature flow. In the present work, we give a rigorous proof for this statement in two and three
ambient dimensions and for a suitable class of potentials: as long as a strong solution to multiphase
mean curvature flow exists, solutions to the vectorial Allen—-Cahn equation with well-prepared initial
data converge towards multiphase mean curvature flow in the limit of vanishing interface width
parameter £ N\ 0. We even establish the rate of convergence 0(81/ 2). Our approach is based on the
gradient-flow structure of the Allen—Cahn equation and its limiting motion: building on the recent
concept of “gradient-flow calibrations” for multiphase mean curvature flow, we introduce a notion
of relative entropy for the vectorial Allen—-Cahn equation with multi-well potential. This enables us
to overcome the limitations of other approaches, e.g. avoiding the need for a stability analysis of the
Allen—Cahn operator or additional convergence hypotheses for the energy at positive times.

1. Introduction

In the present work, we study the behavior of solutions to the vector-valued Allen—Cahn
equation

1
0Uy = Aug — —28u W(ug) (1.1)
£

(with W being an N-well potential, see e.g. Figure la, and u,: R? x [0, T] — R¥ 1) in
the limit of vanishing interface width ¢ — 0. We prove that for a suitable class of N-well
potentials W, in the limit &¢ — O the solutions u, describe a branched interface evolving
by multiphase mean curvature flow (see Figure 1b), provided that a classical solution to
the latter exists and provided that one starts with a sequence of well-prepared initial data
u¢(-, 0). For quantitatively well-prepared initial data u.(-, 0), we even establish a rate of
convergence O(g'/?) towards the multiphase mean curvature flow limit.
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Figure 1. (a) A triple-well potential that attains its minimum at the three points o1, a2, 3. (b) A
partition of R? evolving by multiphase mean curvature flow, corresponding to the sharp-interface
limit & — O of the vectorial Allen—Cahn equation (1.1) with N -well potential W.

The Allen—Cahn equation (1.1) with N-well potential is an important example of a
phase-field model, an evolution equation for an order parameter u, that may vary in space
and time. Phase-field models may give rise to the formation and evolution of geometric
shapes, a phenomenon that becomes amenable to a rigorous mathematical analysis in
suitable scaling regimes. For several important structural classes of potentials W, such
a rigorous analysis has long been available for the Allen—Cahn equation: For instance,
for the scalar Allen—Cahn equation with two-well potential W — that is, for (1.1) with
N = 2 - the convergence towards (two-phase) mean curvature flow in the limit ¢ — 0
has been established by De Mottoni and Schatzman [9], Bronsard and Kohn [5], Chen
[7], lmanen [18], and Evans, Soner, and Souganidis [10] in the context of three different
notions of solutions to mean curvature flow (namely, strong solutions, Brakke solutions,
resp. viscosity solutions). In such two-phase situations, sharp-interface limits have also
been established for more complex phase-field models [1-3, 8, 11], typically based on
an approach that relies on matched asymptotic expansions and a stability analysis of the
PDE linearized around a transition profile. Beyond the case of two-well potentials, results
have been much more scarce. One of the few well-understood settings is the case of the
Ginzburg-Landau equation, which corresponds to the Allen—Cahn equation (1.1) with a
Sombrero-type potential W(u) = (1 — |[u|?)?> and N = 3, i.e. with a potential that features
a continuum of minima at {u € R? : |u| = 1}. In this case, the convergence of solutions
to (codimension two) vortex filaments evolving by mean curvature has been shown in
dimensions d > 3 by Jerrard and Soner [20], Lin [23], and Bethuel, Orlandi, and Smets
[4].

In contrast, for the (vectorial) Allen—Cahn equation (1.1) with a potential W with
N > 3 distinct minima, the only previous results on the sharp-interface limit have been
a formal expansion analysis by Bronsard and Reitich [6] and a convergence result that is
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conditional on the convergence of the Allen—Cahn energy

£ W(u
Efug] = /Rd §|Vu8|2 + %dx

at positive times (more precisely, in L!([0, T'])) by Laux and Simon [22]. In particular, to
the best of our knowledge not even an unconditional proof of qualitative convergence for
well-prepared initial data has been available so far. One of the main challenges that has
prevented a full analysis is the emergence of “branching” interfaces in the (conjectured)
limit of multiphase mean curvature flow (see Figure 1b), corresponding to a geometric
singularity in the limiting motion.

In the present work, we introduce a relative energy approach for the problem of the
sharp-interface limit of the vectorial Allen—Cahn equation in a multiphase setting: Build-
ing on the concept of “gradient-flow calibrations” that was introduced by Hensel, Laux,
Simon, and the first author [13] precisely for the purpose of handling these branching sin-
gularities in multiphase mean curvature flow and combining it with ideas from [14], we
introduce a notion of relative energy for the Allen—Cahn equation

N
W(ue) + > & Vi) dx.

& :
i=1

&
Eug|£] :=/ ~|Vuge|* +
R4 2

Here, the &; denote a “gradient-flow calibration” for the strong solution to multiphase
mean curvature flow; in particular, §; ;(x,7) := § — &; is an extension of the unit normal
vector field of the interface between phases i and j in the strong solution to mean curva-
ture flow at time 7. The y;: RY~! — [0, 1] are suitable C ! functions that serve as phase
indicator functions; in particular, denoting the N minima of the N -well potential W by «;
(1 < j < N), the functions V; satisfy ; (a;) = §;;. Note that the functions v; — v; will
play a role that is somewhat similar to the role of the functions ¥ (1) = fou V2W(s)ds in
the Modica—Mortola trick for a two-well potential W: R — IRE,F like W(u) = %(1 —u?)2.

The properties of the gradient-flow calibration &; and the assumptions on the func-
tions ¥;: RV~ — [0, 1] will ensure that the estimate | vazl - Vi(ue)| < £|Vuel® +
%W(u ¢) holds, thereby guaranteeing coercivity of the relative energy E[u.|£]. In our main
result, we prove that for suitable initial data u.(-,0) we have || V; (ue (-, 1)) — 1i (- 1) || L1 (ra)
<C &V/2 for all ¢ < T, where the y; denote the phase indicator functions from the strong
solution to multiphase mean curvature flow.

Rigorous results on sharp-interface limits for phase-field models — such as our result
— are also of particular interest from a numerical perspective: in evolution equations for
interfaces like e.g. mean curvature flow, the occurrence of topological changes typically
poses a challenge for numerical simulations. One approach to the simulation of evolv-
ing interfaces is to construct a mesh that discretizes the initial interface and to numerically
evolve the resulting mesh over time; however, it is then a highly nontrivial (and still widely
open) question how to continue the numerical mesh beyond a topology change in a numer-
ically consistent way. An alternative approach to the simulation of evolving interfaces that
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avoids this issue is phase-field models, in which the geometric evolution equation for the
interface is replaced by an evolution equation for an order parameter posed on the entire
space, allowing also for “mixtures” of the phases at the transition regions. The natural
diffuse-interface approximation for multiphase mean curvature flow is given by the vector-
valued Allen—Cahn equation with N-well potential (1.1). The advantage of phase-field
approximations for geometric motions such as (1.1) is that one may solve them numer-
ically using standard discretization schemes for parabolic PDEs; however, to establish
convergence of the overall scheme towards the original interface evolution problem, it is
necessary to rigorously justify the sharp-interface limit for the diffuse-interface model.

Notation. Throughout the paper, we use standard notation for parabolic PDEs. By
H'(R?) we denote the space of functions that have a weak derivative Vu € L2(R?) and
(in the case d > 3) decay at infinity. In particular, for a function u € L2([0, T]; H'(R%))
we denote by Vu its (weak) spatial gradient and by d,u its (weak) time derivative. For
functions defined on phase space, like our potential W: RN =1 — [0, co) or the approx-
imate phase indicator functions ¥;: R¥~! — [0, c0), we denote their gradients by 3, W
resp. 0, ;. For a smooth interface /;, j, we denote its mean curvature vector by Ijli, e

2. Main result

Our main result identifies the sharp-interface limit ¢ — 0 for the vectorial Allen—Cahn
equation (1.1) for a sufficiently broad class of N-well potentials W characterized by the
following conditions:
(A1) Let W:RN~1 — [0, 00) be an N -well potential of class Ckl);l (RN=1) that attains
its minimum W(u) = 0 precisely in N distinct points a;, ..., oy € RV7L,
Assume that there exists an integer ¢ > 2 and constants C, ¢ > 0 such that in a
neighborhood of each «; we have

clu—a;|? < W) < Clu —a;|?.

(A2) Let U € RY~! be a bounded convex open set with piecewise C ! boundary and
{ay....,an) C U. Suppose that , W(u) points towards U for any u € dU.

(A3) Suppose that for any two distinct i, j € {1,..., N}, there exists a unique min-

imizing path y; ; connecting «; to o in the sense f V2W(yi,j) dyi,; =
inf, f v2W(y)dy = 1, where the infimum is taken over all continuously dif-
ferentlable paths y connecting «; to o;.

(A4) Suppose that there exist continuously differentiable functions y;: U — [0, 1],
1 <i < N, and a disjoint partition of U into sets 7; ;, i < j € {1,..., N},
subject to the following properties:

* Foranyi < je{l,...,N},wehave o, 0j € "J‘Z_] and y; ; € ’J‘;_]
e Foranyi €{l,..., N}, we have ¥;(;) = 1 and ¥; (1) < 1 for u # «;.
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* Suppose that on 7; ;, all Y with k ¢ {i, j} vanish.

e Setyp:=1— ZIN=1 Y¥; to achieve ZzN=0 Y¥; = 1and define ¥; j .= v, — ;.
Suppose that there exists § > 0 such that forany i < j € {1,..., N} and any
u € J;,; we have

s + (5 +8) 5o + 810w 00 duvot)
<2W(u).

Additionally, suppose there exists a constant C > 0 such that for any distinct
i,j€{l,...,N}and any u € 7; ; it holds that |3, (u)| < C \/2W(u).

The assumption that our potential W has a finite set of minima as stated in (A1) is fun-
damental for the scaling limit we consider, as a different structure of the potential would
give rise to a different limiting motion — recall that for instance a Sombrero-type potential
would lead to (codimension two) vortex filament structures [4, 20]. Assumption (A2) is
rather mild, ensuring the existence of bounded weak solutions to the vectorial Allen—Cahn
equation by a maximum principle (see Remark 4). Condition (A3) ensures that for each
pair of minima, there is a unique optimal profile connecting the two phases; furthermore,
it fixes the normalization for W as well as the surface energy density for an interface
between any pair of phases i and j to be 1. We expect that it would be possible to gener-
alize our results to more general classes of surface tensions as considered in [13]; to avoid
even more complex notation, we refrain from doing so in the present manuscript.

Assumption (A4) is the only truly restrictive condition in our assumptions; in fact, it
does not include potentials which at the same time feature quadratic growth at the minima
a; (i.e. with ¢ = 2in (A1)) and regularity of class C 2. The idea behind (A4) is to penalize
the mixing of more than two phases in each 7; j. As a drawback, it restricts our result
to potentials whose second radial derivatives at each «; — when viewed as a function of
the outgoing angle — have strict local minima in the direction of the minimizing paths
vi,j- Roughly speaking, this corresponds to the presence of a “bump” of the potential
along any curve connecting two points belonging to two distinct minimizing paths y; ;.
Nevertheless, as we shall see in Proposition 8 below, there exists a broad class of N-well
potentials — including in particular potentials of class C!'! with quadratic growth at the
minima «; — that satisfy all of our assumptions.

Our main result on the quantitative convergence of the vectorial Allen—Cahn equation
towards multiphase mean curvature flow reads as follows.

Theorem 1. Let d € {2, 3}. In the case d = 2, let (}1,...,Jn) be a classical solu-
tion to multiphase mean curvature flow on R? on a time interval [0, T] in the sense of
Definition 5 below; in the case d = 3, let (}1,..., {N) be a classical solution to mul-
tiphase mean curvature flow of double-bubble type in the sense of [15, Definition 10].
Let £ be a corresponding gradient-flow calibration in the sense of Definition 6 below.
Suppose that W is a potential satisfying assumptions (A1)—(A4). For every ¢ > 0, let
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us € L®([0, T]; H' (R4; U)) be a bounded weak solution to the vectorial Allen—Cahn
equation (1.1).
Assume furthermore that the initial data u (-, 0) are well prepared in the sense that

Efuc[£](0) =< Ce,

max / | i (ue(-,0)) — xi (-, 0)| min{dist(x, d supp j; (-, 0)), 1} dx < Ce,
ie{l,...N} Jrd

where Eu¢|&] denotes the relative entropy given as

1 N
Elbulél = [ 19wl + LW + Y& VO ougdx. @)

i=1

Then the solutions u. to the vectorial Allen—Cahn equation converge towards multiphase
mean curvature flow with the rate O(¢/2) in the sense that

sup Elucl€] < Ce,
t€l0,T]

. — 7. (- 1/2
tes[l(l)?T] efhax Vi (ue(- 1)) — %i (Dl ey < Ce/=.

First, let us remark that in the planar case, strong solutions to multiphase mean curva-
ture flow are known to exist prior to the first topology change for quite general initial data
[6,24]. Beyond topology changes, in general the evolution by multiphase mean curvature
flow may become unstable and uniqueness of solutions may fail; see e.g. the discussion in
[24] or [13]. Thus, quantitative approximation results for multiphase mean curvature flow
of the form of our Theorem | should not be expected to hold beyond the first topology
change. In this sense, our result is optimal.

Second, let us emphasize that by [13] and [15] the existence of a gradient-flow cali-
bration is ensured in the following situations:

* In the planar case d = 2, gradient-flow calibrations exist as long as a strong solution
exists.

* Inthe three-dimensional case d = 3, gradient-flow calibrations exist as long as a strong
solution of double-bubble type (i.e. in particular with at most three phases meeting at
each point) exists.

Note that more generally we expect gradient-flow calibrations to exist as long as a clas-
sical solution to multiphase mean curvature flow exists. Since the construction becomes
increasingly technical when the geometrical features become more complex, the construc-
tion has not yet been carried out in these more general situations. Nevertheless, as soon
as gradient-flow calibration becomes available, our results below apply and yield the con-
vergence of the vectorial Allen—Cahn equation to multiphase mean curvature flow in the
corresponding setting.
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Next, let us remark that we may weaken the assumptions on the sequence of initial
data if we are content with lower rates of convergence or merely qualitative convergence
statements.

Remark 2. As an inspection of the proof of Theorem 1 readily reveals, the assumption of
quantitative well-preparedness of the initial data in our theorem can be relaxed, even to a
qualitative one. For instance, by merely assuming the qualitative convergences

lim E[u[£](0) =0 and lim max  [¢i(ue(0) = 1i (5 0)llL1ay = 0
£—>0 N}

e—>0ie{l

.....

at initial time, from Theorem 12 and Proposition 13 we are able to obtain the qualitative
convergence statement

lim tes[lé?r] Euc|§] =0 = lim tes[lé%] jenax Vi e 1) — xi (. Ol L1 ray-
Furthermore, by the definition of the relative entropy, the convergence lim,_,¢ E [u.|£](0)
= 0 is in fact implied by the convergence of the initial energies E[u.](0) — E[x](0) =
% S IV, 0)|(R%) and the convergence of the initial data u,(-, 0) — ZzN=1 a; i (-, 0)
in L'(R9).

To summarize, under the assumptions of Theorem | but given now a sequence of
solutions (), to the Allen—Cahn equation (1.1) satisfying only the qualitative converge
properties at initial time

N
w0 5 ahit-0) in LB,
i=

Efus)(0) —> EI7(0),

the solutions u, converge to multiphase mean curvature flow in the sense that

N
e 1) —> Y e fi (1) in L'(R?) forallz € [0, T].
e—>0

i=1

As the next proposition (and its rather straightforward proof, proceeding by gluing
together one-dimensional Modica—Mortola profiles) shows, well-prepared initial data sat-
isfying the upper bound O(¢) for the relative energy actually exist.

Proposition 3. Let assumptions (Al)—(A4) be in place. Let d = 2 and (y1(-,0), ...,
in (-, 0)) be any initial data whose interfaces consist of finitely many C curves that
meet at finitely many triple junctions at angles of 120°. Alternatively, let d = 3 and
(71 0), ..., in(, 0)) be any initial data whose interfaces consist of finitely many C!
interfaces that meet at finitely many triple lines of class C' at angles of 120°.
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Then for any € > 0 there exist initial data u (-, 0) that are well prepared in the sense
that

Eclucl£1(0) = Ce,
o[G0 = R0 it dsupp 74, 0) i = Ce

where the constant C depends on the initial data (j1(-,0), ..., jn (-,0)) and on the poten-
tial W.

Nevertheless, note that in the presence of triple junctions this rate of convergence
O(e) for the relative entropy cannot be improved without modifying either the defini-
tion of the relative entropy (3.1) or our assumptions (A1)—(A4), as it may be impossible
to construct initial data u(-, 0) with E.[u,|§] < e. Let us illustrate the reason for this
limitation in the case d = 2: Suppose that the initial data (-, 0) for the strong solution
contain at least one triple junction. By virtue of the term | £[Vu ¢|? dx in the energy and
the pointwise nonnegativity of the integrand in the relative entropy, if we were to have
Elu¢|£](0) < &, the approximating initial data u.(-, 0) would have to contain a true mix-
ture of three phases in an e-ball B,(y) somewhere. At the same time, our assumptions
(A1)-(A4) allow the potential W to be arbitrarily large for a true mixture of three phases
(i.e. away from the boundary of the triangle in Figure la for a three-well potential as in
Definition 17), independently of the functions ;. If W is large enough, on B.(y) the
energy density %|Vu@|2 + %W(ua) then cannot be compensated by the term involving
Vi (ug) in the relative entropy, resulting in a lower bound for the relative entropy of the
order of |, B.(y) %W(ue) dx > ce7! x €2 = ce. This limits the overall convergence rate
for our method to O(¢!/2) when measured e.g. in the L' norm. We expect this to be a
limitation of our method, caused by an insufficient control of the precise dynamics of
the diffuse-interface model at triple junctions by the relative entropy E[u|€]; for suit-
ably prepared initial data, we would anticipate a convergence rate O(g). Whether such an
improved convergence rate can be deduced by a more refined relative entropy approach is
an open question.

Observe that assumptions (A1) and (A2) are indeed sufficient to deduce global exis-
tence of bounded solutions to the Allen—Cahn equation (1.1), starting from any measurable
initial data taking values in U .

Remark 4. Let W be any potential of class Cl(l)él satisfying our assumption (A2). Given
any measurable initial data 1, (-, 0) taking values in U, for any T > 0 there exists a unique
bounded weak solution u, to the Allen—-Cahn equation (1.1) on the time interval [0, T].
To see this, one may first show existence of a weak solution for a slightly modified PDE
obtained by replacing 9, W outside U by a Lipschitz extension. For this modified PDE,
existence of a weak solution can be shown in a standard way. A comparison argument
(using (A2) and in particular the convexity of U) then ensures that the weak solution to
this modified equation may only take values in U, proving both that it is bounded and that
it actually solves the original equation. Uniqueness is shown via the standard argument
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of a Gronwall-type estimate for the squared L?(R¢) norm of the difference between two
solutions.

We next recall the definition of strong solutions to multiphase mean curvature flow in
the case of two dimensions. For intuitive but technical-to-state geometric notions, we shall
refer to the precise definitions in [13] for the planar case. In the three-dimensional case, a
similar notion of strong solutions for double bubbles can be found in [15].

Definition 5 (Strong solution for multiphase mean curvature flow). Letd = 2,let P > 2
be an integer, and let 7 > 0 be a finite time horizon. Let jo = (x9,..., )_((},) be an initial
regular partition of R? with finite interface energy in the sense of [13, Definition 14].

A measurable map

i=1.....qp): R x[0,T] - {0, 1}

is called a strong solution for multiphase mean curvature flow with initial data y¢ if it
satisfies the following conditions:

(i) (Smoothly evolving regular partition with finite interface energy). Denote by I; ;
:=supp x; Nsupp y; fori # j the interface between phases i and j. The map y is
a smoothly evolving regular partition of R? x[0, 7] and I:= Ui’je{l’_“’P},i# I
is a smoothly evolving regular network of interfaces in R x[0, T'] in the sense of
[13, Definition 15]. In particular, for every ¢ € [0, T'], (-, ) is a regular partition
of R? and U# ; 1i,j(t) is a regular network of interfaces in R in the sense of
[13, Definition 14] such that

P

sup E[j(,t)] = sup Z / 1dS < oo.
tef0,T] tE[O’T]i,j=1 1; j(t)
i<j
(ii) (Evolution by mean curvature). Fori, j =1,..., P withi # j and (x,?) € I, ;,

let V;, j(x,t) denote the normal speed of the interface at the point x € I; ; (t).
Denoting by H; j(x,t) and 7; ;(x,t) the mean curvature vector and the normal
vector of I; j(t) at x € I; ;(t), the interfaces /; ; evolve by mean curvature in the
sense

V(e )it j(x.t) = H; j(x.t) forallz € [0,T], x € I; j(1). (2.2)

(iii) (Initial conditions). We have j;(x,0) = )E?(x) for all points x € R? and each
phasei € {1,..., P}.

Our main results centrally rely on the concept of gradient-flow calibrations introduced
in [13], whose definition we next recall.

Definition 6. Let d > 2. Let (j1,..., fn) be a smoothly evolving partition of R on
a time interval [0, T'). Denote by I; ; :=supp y; Nsupp yj, 1 <i,j < N,i # j, the
corresponding interfaces. We say that a collection of C »! vector fields &:R? x [0, T') —
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R4 1<i < N,and B:R? x [0, T) — R¥ is a gradient-flow calibration if the following
conditions are satisfied:

d:&ij + (B-V)&i; + (VB)'& j = O(dist(-, [; ;). (2.32)
1

S Oekij + (B-V)Eij) = O(dist(, Ii,;), (2.3b)
(B-&,j)&,; + (V-& )& ; = O(dist(, I ;)). (2.3¢)
VB & Q& ; = O(dist(-, I ;)), (2.3d)
VB : (&5 ®&.; + &, ® &) = O(dist(-, 1)), (2.3¢)
1 — Cen dist?(, I; ;) < & ;1> < 1 — Clen min{dist* (-, I; ;), 1}, (2.3)
& =n;; onl;, (2.3g)

N
V3§ <1 and ) & =0, (2.3h)

i=1

N
&, 17 + (4 — Sca) Z V3, - &2 < 1, (2.31)
kel )

for some constants Cie, > 0, cep € (0, 1), an arbitrarily small é., > 0 and any distinct
i,jel{l,...,N}

Moreover, we call a family of C ! functions %; a family of evolving distance weights
if they satisfy

Vi (-, 1) < —cmin{dist(-, [; ;j(¢)), 1} in{y;(.t) =1}, (2.4a)
Ui (-, t) > cmin{dist(-, [; j (¢)), 1}  outside {);(-.t) = 1}, (2.4b)
|9; (-, t)] < C min{dist(-, I; ;j(¢)),1}  globally, (2.4¢)
and
|0,9; + B - V| < C|9;]. (2.5)

Note that the existence of a calibration for a given smoothly evolving partition entails
that the partition must evolve by multiphase mean curvature flow (i.e. the partition must
be a strong solution to multiphase mean curvature flow). In fact, conditions (2.3a), (2.3c),
(2.32), and (2.3f) are sufficient to deduce property (2.2). Observe that condition (2.31) is
not stated in [13]; however, it follows from the construction of the gradient-flow calibra-
tion provided in [13] (for more details see Appendix A). For the three-dimensional case
of double bubbles, we refer the reader to [15].

For many geometries, (¥1, ..., yn) being a strong solution to multiphase mean cur-
vature flow is also sufficient to construct a gradient-flow calibration.

Theorem 7 (Existence of gradient-flow calibrations, [13, Theorem 6] and [15, Theo-
rem 11). Let d € {2,3} and let ¥ be a regular partition of R? with finite surface energy;
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for d = 3, assume furthermore that the partition corresponds to a double-bubble-type
geometry. Let x be a strong solution to multiphase mean curvature flow on the time inter-
val [0, T'] in the sense of Definition 5 (for d = 2) resp. in the sense of [15, Definition 10]
(for d = 3). Then for any 8.y > 0 and any cien > 1 there exists a gradient-flow calibra-
tion in the sense of Definition 6 up to time T. Furthermore, there also exists a family of
evolving distance weights.

Finally, we conclude this section by showing that the class of potentials W satisfying
assumptions (A1)—(A4) is indeed sufficiently broad. In fact, given

» aprescribed set of N minima; € RV"1,1 <i <N,

* aprescribed set of nonintersecting minimal paths y; ;, 1 <i < j < N, that meet at
the «; at positive angles, and
« apotential W:|J

i.jii<j Yi,j = [0,00) defined on the minimal paths y;,; and subject

to (A1) and (A3), i.e. in particular with f)’ii V2W @) dy(u) = 1,

it is always possible to extend the potential Wtoa potential W:R¥~1 — [0, 0o) that
satisfies condition (A4). More precisely, to satisfy (A4) it is sufficient to require W(u) >
(14 M |u —o;|~*dist(u, y)*) W(Pyu) in some neighborhood U; of o; (with P, denoting
the projection onto the nearest point among all paths y = | J ik Vik) as well as W(u)~2
M dist(u, \; - vi,;)* in R¥ "1\ U; U;. Here, M is a constant depending only on W,
the paths y; ;, and the neighborhoods U;.

For the sake of simplicity, we limit ourselves in our rigorous statement to the study
of potentials defined on a simplex AN=1. however, it is not too difficult to see that our
construction would generalize to the aforementioned situation.

Proposition 8. Let N > 3. Let AN~! be an (N — 1)-simplex with edges of unit length
in RV=1 Let W: AN~ — [0, 00) be a strongly coercive symmetric N -well potential on
the simplex AN i the sense of Definition 17 below. Then assumptions (A1)—(A4) (see
Section 2) are satisfied. In particular, (A4) holds true for the set of functions y;: A —
[0,1], 1 <i < N, provided by Construction 19 below.

3. Strategy of the proof

The key idea for our proof is the notion of relative entropy (or, more accurately, relative
energy) given by

N
Elug|é] = Elu, i+ V(Y oug)d
el WH;/WE (Vi o) dx

N

P 1
Z/Rd5|w5|2+EW(us)+Zs,--V(vfious)dx. 3.1)

i=1
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The form of the ansatz for the relative entropy is inspired by two earlier approaches:

* The concept of gradient-flow calibrations introduced in [13] by the first author, Hensel,
Laux, and Simon to derive weak—strong uniqueness and stability results for distribu-
tional solutions to multiphase mean curvature flow. Gradient-flow calibrations provide
a lower bound of the form — ", [ & - dVy; on the interface energy functional,
ie. % >"; J 1d|Vy;l, thereby facilitating a relative entropy approach to weak-strong
uniqueness principles for multiphase mean curvature flow. We emphasize that gra-
dient-flow calibrations are specifically designed to handle the (singular) geometries
at triple junctions in the strong solution. We refer to [12, 19] for earlier uses of rela-
tive entropy techniques for weak—strong uniqueness for geometric evolution problems
with smooth geometries (in the strong solution) (see also [16] for a further develop-
ment of the relative entropy argument in order to incorporate the constant 90° contact
angle condition).

* The relative entropy approach to the sharp-interface limit of the scalar Allen—Cahn
equation by the first author, Laux, and Simon [14], relying on the Modica—Mortola
trick to obtain a lower bound of the form [ & - Vi (u,) dx for the Ginzburg-Landau
energy Eug] = [pa §|Vu,s|2 + éW(uS) dx (see also [17] for an adaptation of this
approach in order to encode the constant contact angle condition and [21] for a subse-
quent application of the relative energy method to a problem in the context of liquid
crystals).

The two key steps towards establishing our main results are as follows:

» Establishing a number of coercivity properties of the relative entropy E [u.|£], includ-
ing for example

Eluelé] > ¢ / min{dist2 ( U 1,~,_,~), 1} <§|Vus|2 + éW(ug)) dx.  (3.2)
i)

* Deriving a Gronwall-type estimate for the time evolution of the relative energy of the

type
01 Efuglt] < CE[u.l§].

We shall illustrate this strategy by stating the main intermediate results in the present
section below.

As it is central for our strategy, let us first give the main argument for the coercivity of
the relative entropy (3.1) (despite it being slightly technical). It makes use of the following
elementary lemma.

Lemma9. Let§;, 1 <i < N, be vector fields of class C! satisfying ZZN=1 & = 0; suppose
that at any point (x,t) € R? x [0, T at most three of the &; do not vanish. Let y;: RN 1 —
[0,1], 1 <i < N, be functions as in assumption (A4). In particular, set Yo :=1— ZZN=1 vi.
Let u, € L°([0, T]; H'(R?)). Defining Vi, =V —V¥iand & ; =& —§&;, we have for
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any distinct i, j,k € {1,..., N},

N N
1 1
E Ee@V(Yyoue) = _ESi,j ® V(¥i,j oue) + E Eék ® V(o o ug) (3.3)
=1 k=1
k¢li,j}

almost everywhere in {u; € T; ;}, as well as

N N
1 1

D VE® V(o) = —VEi; @ V(i oue) + Y SVE® V(Ioous). (34)
{= k=

' KEG)

l 1 Vo

> O VE® 0y (ue) = =5 Vi ® duij(ue) + > 5 Ve ® duthous) (3.5

L= k=
! k¢{i,1j}
almost everywhere in {us € T; j}.

Proof. By adding zeros, using the definitions &; ; = § — &; and ¥, ; = ¥; — i, we
obtain

N
1 1
D VWous) ==& V(ijoue) + & V(Wi +Yj) o ue)
=1
N
1
+ 58 V(W ) o) + Y G V(Y oue).
k=
k¢{i,1j}
almost everywhere in R4 x (0, T'). Equation (3.3) now follows by exploiting that 8,y =

O on 7; ; for k ¢ {i, j}, inserting the definition of v/, and using Zé\;l & = 0. The proof
of the other properties is analogous. ]

With the previous lemma and our assumptions (A1)—(A4), it becomes rather straight-
forward to establish coercivity of our relative energy: Observe that we may compute for
(x,t) with ug(x,t) € 7 ;,

N
& 1
_|Vue|2 + —W(u,) + §-V(Ygouyg)
2 e

=1

1
= S \Vue 2 + - W)
2 g
1 N
- (Eauwi,ms) ® &ij = ,; S ubo(us) @ ﬁsk) Vg
ki /)
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1 1 /1 N 2
_ 5‘&%—ﬁ(iawi,i(ue)@a,j 3 ; fa Woltte) ® V3 sk)
ki g}
| | N 2
o P00~ gt 88 = 30 5t 93] | 06
kédi,j}

due to the fact that Y = 0 on J7; ; for any k € {I,..., N} \ {i, j}. This will be the
starting point to prove the coercivity properties satisfied by the relative energy functional
(3.1); note in particular that

N

1 1 2
~0u Vi (ue) ® & j — —— Yo (ue) ® V3
‘2 j j ké{z;'} 2ﬁ
L]

N ! )
Z |\/§i‘_k|2)mauw0(ue)
=1

1 2
= I61 | 50 o)+

ki j}
N
> 5y v () - duvpolue).
k=
k¢{i,1j}

Using our assumption (A4) and the properties of the gradient-flow calibration |&;| < f’
|& ;| <1, and (2.31), this establishes a first coercivity bound like (3.2). Going substantially
beyond this simple estimate, we shall see that in fact we have the following coercivity

properties.

Proposition 10. Let W and y; be functions subject to assumption (Ad). Let &, 1 <i <N,
be any collection of C vector fields satisfying ZZIV=1 & =0, [V3&| < 1foralli, as well
as, with the notation §; ; ==& —§&;,

N
17+ (4= 8ca) Y [V3E &P <1 3.7)
k=1
ké{i,j}
for some arbitrarily small 8.y > 0. Furthermore, suppose that at each point at most three

of the vector fields & do not vanish. For any function us € H'(R?;U) with Eu,] < oo,
we then have the estimates

/ («/E|vus| - L % 2W(ue))2dx < CE[uc|§], (3.82)
Rd Ve

V(i ;i oug 2
s oe) g IV 0wty (ue)dx < CERuelsl, (:80)

|V(WI Jj° Uue)|

Z/d
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N

> /R [ min{dis®(x. ;7). V(i j o ue)l g (ue) dx < CE[uclg]. (3.8¢)
i,j=1 v

i<j

N
e £ 1
Z / min{dist*(x, I; ;), 1}<—|Vugl2 + —W(u£)>)(,r_ (ug)dx < CE[ue|€], (3.8d)
ij=1 R4 2 I i,j
i<j

N
> / L el0d—&i; ® & )VulPx, (ue)dx < CE[uclé]. (3.8¢)
ij=1"% v
i<j
These coercivity estimates will be derived as a consequence of the computation (3.6)
and the following coercivity properties.

Proposition 11. Let W and y; be functions subject to assumption (A4). Let §;, 1 <i <N,
be as in Proposition 10. For any function us € H'(R?; U) with E[u,] < 0o, we then have
the estimates

N
1
) / —[8uo(ue) 1y (ue)dx < CE[uclé], (3.9a)
ij=1"RE irj
i<j
Yo
> /Rd 2 10uvij () - auwo(us)lx%(ug) dx < CEu,lg]. (3.9b)
l,i]<=jl
N
> [,V ouls, (i< CEL G99
i,j=1 5J
i<j

To introduce a proxy at the level of the Allen—Cahn equation for the limiting mean
curvature (or, more precisely, a quantity H, such that |H,|? is a proxy for the dissipation
in mean curvature flow), we introduce the abbreviation

Vu,

1
Ha = —S(Aug — 8—28uW(u8)) . m

(3.10)
The key step in our proof is to establish the following estimate for the relative energy
using a Gronwall-type argument.

Theorem 12 (Relative energy inequality). Let x = (}1,-.., XN) be a smoothly evolving
partition of R?; let ((§;)i, B) be an associated gradient-flow calibration in the sense of
Definition 6. Let W be a potential, subject to assumptions (A1)—(A4). Let uz be a bounded
solution to the vector-valued Allen—-Cahn equation (1.1) with initial data u.(-, 0) €
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H'(R4; U) with finite energy Eus(-,0)] < co. Then for anyt € [0, T the estimate

3 Flucke) + Z/ Sl =B )61 Ve 1 ()

L,j=1
i<j
[ o ey
1 N 2
* A&d 4¢ (EAME a"W(MS)) t E(V ~§)0ui(ug)| dx

= C(d, Q) Eucl¢]

holds true, with H, as defined in (3.10) and E[u|&] as defined in (2.1).

Building on the previous estimate and the coercivity properties of the relative entropy,
we shall show the following error estimate at the level of the indicator functions.

Proposition 13. Let the assumptions of Theorem 12 be in place. In addition, let ¥; be
a family of evolving distance weights as defined in Definition 6. We then have for all
ie{l,...,N},

sup / | Wi (ug) — ji| min{dist(-, d supp j; (-, 1)), 1} dx
te[0,T] JRY

< C(d,T.(}(1))refo,r1) E [us|£1(0)
+ C(d, T, (}(1))tefo,r1)

x / 1 (e -, 0)) — 7; . 0)] min{dist(-. d supp 7: (- 0)). 1} .
]Rd

The proof of Theorem 12 crucially relies on the coercivity properties of Proposi-
tions 11 and 10 and the following simplification of the evolution equation for the relative
entropy.

Lemma 14. Let W be a potential of class Cl(l)c1 (RN=Y) subject to assumptions (Al)—
(A4). Let uz be a solution to the vector-valued Allen—Cahn equation (1.1) with initial
data ug(-,0) € H'(R?; U) with finite energy Eu,(-,0)] < oo. Let (£, B) be a gradient-
flow calibration in the sense of Definition 6. The time evolution of the relative energy (3.1)
is then given by

_E[us|é§- Z/ |H —&(B - Ez,])gz,ﬂvua” XT (ue)dx

/‘ 1
R4 28

N 2
<8Au5 - —8 W(ug)) + Z(V &)y Vi (ue)| dx

i=1
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1 1
— /ﬂ;d 5()8&46 — gauW(ug)

+ Erratiencann + Effingtay + Errdté‘ + EITMC&“ + Erromerphases » (3.11)

’ - |Hs|2> dx

where we have abbreviated

N
Errinslab = /l;d (V . B)(§|Vu8|2 + éW(ué‘) + Zgl : V(% o us)) dx

i=1
N
_ Z / lVB : (Si,j _ V(Yi,j oue) ) ® (gi,j _ V(Yi,j o ue) )
(521 Jra 2 [V (i, 0 ue)l T V(i oue)l
i<j
X |V(Wi,j oug)x, (ug)dx (3.12a)
)
and
N
V(Wi,j oug) V(Wi,joue) 1
Erratiencann == / VB:( : ® : —|V(¥i,j oug)
wecan = D Jo VB T ol © Wopn oworz 7 ¥ o)
,i<j
- SVUEV%)XT (ug) dx (3.12b)
i
and

N
1
Briug = 3. [ S0 + (B V)6 +(VB)G)
ij=1
i<j
V(i ouy) .
' (Ela./ |v(wl’J Ou8)|)|v(wl,] ué‘)lXTi’j (uE) dx

N
1
-2 /R [ 5bi Vi + (B V)& IV (Wi j oue)lty. (ue)dy, (3.12¢)
ij=1 !

i<j

as well as

2
dx

1 N
Ertyice = /Rd Z‘Z(V’Si)aul/fi(ua)
i=1
N
—;/Rd(wiw-wm o 1ug) dx

N
€ C21E |2 2
+ Z /]Rd ElB'gl,]| |El,]| N Xg;,j(ue)dx

i,j=1
i<j

N
+ Z /Rd(ld—&',j ®&i,;) 1 He ®B|Vug|x,. (ue)dx (3.12d)
ij=1 i
i<j
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and
al 1
ErtotherPhases *= Z / z(aték + (B - V)& + (VB)T%_/C) V(Y o ué‘)XT_ (us) dx
ijk=1 IR o
i<jkei,j}

N
1
_ Z / SVB :V(Yoous) ® §xx, (ue)dx
A R4 2 Ly
i,j,k=1
i<j,k¢li,j}

N
1
- X [, 5VBi&® Vinou, @ dx (3.12¢)
e RE 2 i,j
i,j,k=1
i<jkeli,j}

4. The relative energy argument

4.1. Derivation of the Gronwall inequality for the relative entropy

We first show how the evolution estimate for the relative entropy from Lemma 14 and the
coercivity properties of our relative entropy together imply a Gronwall-type estimate for
the evolution of the relative entropy.

Proof of Theorem 12. We proceed by estimating the terms on the right-hand side of equa-
tion (3.11) for the time evolution of the relative energy. Note that it will be sufficient to
prove

ErrAllenCahn + Errinstab + Errdté + EITMCE + EHOtherPhases

< C(£(1), B(1), 8) E[us|€]

N
- 1 2
+8 / —|H, —&(B - & )& |V _ d
ij2=:1 R 28| £ 8( St,])gz,ﬂ u£|| in’j(us) X
i<j

+8 ! 2d
R4 2e o

N
1
(s2ue = ~0u W) + V- )y
i=
for any § > 0, as then an absorption argument applied to (3.11) (for § < %) yields

< Eluels) < CE0). BO).5) Eluclé).

The Gronwall inequality then implies our conclusion.

Step 1: Estimates for Ertomerphases: EfTazg, and Ertingp. We first show that

Errinstab + Errdtg + ErrOtherPhases =< C(E (l), B(l))E[us |E]
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Indeed, it is immediate by definition (3.12¢) and the coercivity property (3.9¢) of our
relative energy that the inequality

N
Efonarues < 3 CE®). B(1)) /R L IV¥olzy, (ue)dx
T ij
z,ij<—jl

= C(E@). B(1)) E[ue|é]

holds. Using the defining properties (2.3a) and (2.3b) of the calibration £ and the coercivity
properties (3.8b) and (3.8c) of our relative energy, we likewise deduce from definition
(3.12c) that Errgse < C(6(2), B(1)) E[u,|§], using for instance the estimate

al 1
> [ 50k + BV + (VBTG
ij=1"R

i<j . (Ei,j . V(Yi,j o ue)

|V(Wi,j o u8)| ) |V(I//i,j ° ue)l)(?;,j (ue) dx

- 1/2
= Z (/l\{d |at€i,]' + (B . V)Ei,] + (VB)TSZ"]‘|2|V(I//1"]' o ug)b(g-;j(us) dx)

i,j=1

i<j
X
R4

(2.32),(3.8b),
(3.8¢)
<  CE@), B(1)E[usl€].

V(Yi,j o ue)

50 9y o o)

2 1/2
V0 ool (1))
L]

Similarly, recalling definitions (3.12a) and (3.8b), as well as (2.1), we immediately get
Erripsan < C(E(¢), B(t)) Eul|€]. Tt therefore only remains to estimate Errajencann and

EI‘I‘Mcg .

Step 2: Estimate for Ertapencann. By adding zeros, we may rewrite

N
V(i jou V(i jou
EITAllenCahn = Z /Rd VB : ( (1//1,] 6) ® (WZ,J a) _éi,j ® ‘Ei,j)
<J

IV(Wi,j oug)l — [V(i,j oug)l
1
% (5191 oue) = el Vuel) . (o) dx

ij=1

14

N
1
+ 3 [ Bt @8 (510 cul =Vl 1y ) an
’i]<j

N
. / VB ( Vijoue) o VWijous) _ V”lvgg)
R4 IV (i, ous)l IV(¥i,j o ue)l |Vuel
X 8|VM5|2)(T (ug)dx.
L]

i,j=1
i<j
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The first term on the right-hand side can be bounded by C(&(¢), B(t)) E[u:|£] by writing
V(ijous) _ V(i oue)
—&ij ®&i,
IV(¥i,j 0 ue)l V(5 0 ue)|
V(i jou V(i jou V(i jou
_ ( iy ous) &j) o YWow) oo ( Wijous) si,,-)
IV(¥i,j o ug)l IV (Wi, o ue)l IV (i,j o ue)l
and using Young’s inequality, together with the coercivity estimates (4.3) and (4.4) for our
relative energy. The second term on the right-hand side in the above formula can be esti-
mated similarly by exploiting Young’s inequality, as well as the gradient-flow calibration
property (2.3d) and the coercivity estimates (3.8d) and (4.4).
It remains to bound the third term on the right-hand side. To this aim, we note that for
any symmetric matrix A we have

VB:A=VB:(Id-§,; ® & ;)AId - ; ® & ;)
+(Id—&,; ® &) (VB + (VB))Ei ;- (&ij - AId =& j ® & 7))
+ & (d=&; ®& ;) (VB + (VB))E (6 j - Adij)
+&i,j - VB, (§ij - A j).

This entails by (2.3¢) and |&; ; (Id —&; ; ® & ;)| < C dist*(-, I; ;) (the latter being a con-
sequence of (2.3f)),

N
V(; i V(i ; Vulv
Z/ VB:( Wiy oue) o VWijous) _ Vide Z;e)elwglzxrf (ue) dx
R4 V(i oue)l V(Wi oue)l [V ij

i,j=1
i<j

V(i) oue) |
|V(Wi,j Ous)|

Telld—&, ® s,-,j)wzﬁ)x,f_ (ug) dx
1,]

&|Vug|?

N
< CE®. B(t))i,,zzl /R , ('(Id i) ®&ij)
i<j

N
+CEW.B@) Y / min{dist(x, I; ;), 1}
ij=1"R

i<Jj x (‘(Id—gi,j @ﬁﬂw

V(Wi o)
T el(ld =6, ® &)Vl |Vus|)x7, (ue) dx
1]

‘8|Vue|2

N
+ C(&(1), B(1)) Z/ min{dist® (x, 1 ), 1ye|Vue|* . (ue) dx
R4 i,j

i,.j=.l
i<j
Y V(i ous) |
L C(E0). B YW ote) 1T gy, 12
€050 3 Lo momre | et
i<j

—el(&i,j - Vuel?

Xg;’j (Me) d-x
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V(i) oue) |

<C B Id —§; ) \Y 6‘2
an) (r»”Zl[ (0081 @ 8 g roes v
= +el(d—§,; ® Ei,j)Vullz)XTij(ue) dx
V(Wi,j oug) 2) >
C(E(), B 1= g Vi OUe) |\ ) gy,
l<]

T eVl — |(Ei V)usP))xT (te) dx

+ C(&(7). B(1)) Z / min{dist?(x, I; ;), 1}g|w8|2)(,f (ug) dx,
1} 1
i<j

where in the last step we have used Young’s inequality. By the coercivity properties (3.8d),
(4.3), (4.6), and (3.8¢), we conclude that

Errajiencann < C(§(7), B(2)) Eue|£].

Step 3: Estimate for Erryicg. For the estimate on Erryicg, we have to work a bit more. We
begin by adding zeros and using (3.5) to obtain

i 1
E < —
s < z L~

1 Al 2
—5 (V)0 (we) + D S (V- E)duolue) | 1y (ue) dx
k=1 7
k¢di,j}

+ Z / SOV 6B V(i 0wy, (o) dx

i,j=1
i<j

+§ /—|B-§i,j|2|Vu€|2XT.(ug)dx
L]
i<j

ljl

+ Z/ (Id-&; ®&,;): He®Blvus|XT (ug) dx

i,j=1
i<j

- Z / ‘(V €k)B - V(!ﬁooue)x,v (ug) dx

i,j,k=1
t<1k¢{l Jt
v(l//lj Ug) v(wi,j o Ug)
= [ 8 i £ T~ N
Z /Rd 2'~/’ is) IV (i, o ue)| ® 30, (e ® IV(¥i.; o ug)|
2

+ \/_(B 5;,1)&,] ® Vu, XT .(ue)dx
irj
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2
—(V 1) 0uo(ue) XT (ug) dx

kﬁ{t j}

+Z/d28

l]l

S [ 30767 600 0 - Bz, () d
i<

+ Z/ SV 60— © 1) B O V(i o0z, (ue)dv

i,j=1
i<j

1]1

s / S 6B 6PV Pty () d
i<j

+ Z/ (Id—§;,; ® &) : He®Blvua|X7~ (ue) dx

lj 1
i<j

S [, 37808Vt oy, () d @
t;J]k];{llj}

where in the second step we have also used 0, ¥; ;j (us) ® % Vug = [V, o
ue)|.

Now note that the three terms on the right-hand side of (4.1) that involve a d,, Vo (u)
or V(g o ug) can be directly estimated by CE[u.|&] by relying on the coercivity prop-
erties (3.9a), (3.9b), and (3.9¢). Similarly, the third-to-last term on the right-hand side is
estimated by CE[u,|£] using (2.3f) and (3.8d). This shows

al MUBEED) VWij o ue)
E S (Vg )T OMe) o g () @ —— ] O He)
ITvce = i,]X::] [l;d 2‘ \/g( s’])|V(I'[fi,j 8)| w’J(u )® |V(wl,] Ous)|
i<j 2

E(B ) ® Vue| Xy () d

+ Z/ S 60—y ®6) B O V(i oue)r, (uo)dx

11 1
i<j

+ Z/ (Id-¢,; ® &) : He ®B|Vu£|)(7 (ue) dx

L,j=1
i<j

+ CE[u.|£]. 4.2)
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By adding zeros, the first term on the right-hand side of (4.2) can be rewritten as

al 1
Z Ad 5'[(3 “&ij)6i + (V- &ij)6i]1 © VeVue
i,j=1

S O
© (ot ) © T — e, )
+ (V- 5:',/')(%—:253 - :‘Ei,j) ® VeV 2X?7-,,- (ug) dx
= i,_,é % Ad (B -&,j)&,; + (V- Ei,j)éi,jlzelwslz)(% (ue) dx
i<j
+ é N9t [ |5t 0 @ G e, ’
i<j

X Xy (ug)dx
L]

N 2
3 2 V(Yi,j o us) 2
+ i,_IZ::l EHV : ‘i:l,j ”L,%" /]Rd m - El,/ e|Vug| XTi’j(ue) dx,
i<j

where in the second step we have used Young’s inequality. Using property (2.3c) of the cal-
ibration (£, B) and the coercivity properties (3.8d), (4.5), and (4.3) of the relative energy,
we see that the right-hand side is bounded by CE[u|£].

It remains to estimate the second and third terms on the right-hand side of (4.2).

Adding zero, these terms are seen to be equal to

ul 1
) /Rd (Id—&,; ® &) B® Vuy - (E(V i, 7)0ui,j (ue)

=
lil<j N 1
= D SV E)duo(ue)
k=1
keli,j}

- (eAus - lau W(ug))))(,v (ug) dx
e Jij

N
1
+ Y [ 380006y @) B @ Tl duole)ry, () d
i,jk=1 "
i<jkéli,j}

N
(3.5) _
< Y COIBIE: /R LElAd =6 ® & ) VulPxy (ue)dx
R i,J

t,i]<—jl
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N 2
(8Au8 — —3 W(ug)) + Z(V &)0uVi(ue)| dx

- 1

+ /
Re 2¢ i=1
Yo

+Y IVl Bl [ IV00 oty (e dr.
i =1 R "
i<jké#li,j}

Here, in the last step we have used Young’s inequality for § > 0 small enough. Using the
coercivity properties (3.8e), (3.8d), and (3.9¢) of the relative energy, we see that the first
and last terms on the right-hand side are bounded by C E[u,|£].

Overall, we have shown

N
Erryice < C(8) Efuel] + S/Rd 2—18‘(8Aus — éau W(us)) + Y (V- E) 0V (ue) ® dx.,
i=1

which was the only missing ingredient for the proof of the theorem. ]

In the above estimates, we have used the following additional coercivity properties of
the relative entropy. We shall defer their proof to that of the other coercivity properties
from Propositions 11 and 10.

Lemma 15. Let W, vy, ¥ 5, &, and & ; be as in Proposition 11. We then have

Z/Rd

i,_jz=:_1 Ad

V(i Vi, olUe) o Ug)

2
2
V(i oue)] | fAVHel 25 (o) dx = CEelé]. (43)

_Ei,j

2
Xq _(us) dx < CEu.l§], (4.4)

1 |V(¥i,j oue)l
: — /€|Vu
NN VeV

2

Dt () @ —d O ) VWijous) sy, Xy () dx < CEluglé]. (4.5)

|V(1//t ,Jj° 6‘)|

2f

VugVu, 2 >
Z ([ @i = g | EIVuel g (ue)dx < CEluelg]. (46)
— & 1]
llj<]1

4.2. Time evolution of the relative energy

We next give the technical computation that provides the estimate for the evolution of the
relative entropy stated in Lemma 14. Although in parts technical, it is at the very heart of
the proof of our results.
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Proof of Lemma 14. By direct computations, using definitions (2.1) and (1.1), as well as
(an analogue for d;£; of) relation (3.3), we obtain

d 1
EE[uSIE] =- [l;d (5Aus - gauW(u£)>atue dx

N
- &) 0u Vi (ue) - drute
,:Zl/w(w) Vi) - Dy dx

N
9:8i - V(Yi o ug
+§/R (& V(i o) dx

1 1 2
:—/ —‘sAus——E)uW(ug) dx
Rd € &

S 1
a ; /I;d (V- §)u i (ue) - (Aua - g—zau W(Mg)) dx

N
1
- / 50:6i - V(W¥ij oug)x, (ug)dx
R R4 2 i,j
i,j=1
i<j

N
1
—0:8 -V dx.
> |, 306 Vo ouz, e)ds
i<jkei.j}
By adding zeros and using (3.3) again, as well as (3.4), we get
d
—E
— Efuse]

2
dx

1 1
= —/ —‘SAME — =0, W(ug)
Rd € &

S 1
- ; /Rd (V- Ei)a"Wi (ug) - (Aus - S_ZBM W(ug)) dx

N
1
-y /R 3Ot (B V)i + (VB)E)) - Vi oz, (o) dx
ij=1 !
i<j

N
1
+ i,j,Xk:=1 /ﬂ;d 5 @ik + (B- V)& + (VB)'&) - V(Yo o Ue)tg, (e)dx

i<jkli.j}

N N
_Z/dvgi:V(wiou€)®de—Z/dVB:§,~ ® V(i oug)dx. (4.7)
i=1 7R i=1 /R
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Integrating by parts several times and making use of an approximation argument for
((&i)i, B), the last two terms in the equation above can be rewritten as

N N
_i;/w V§; :V(¢iou3)®de—i§AdVB:gi ® V(i oug)dx
N N
_ ;/R Wi e)(B - V)(V - &) dx +;/R i) (VB)T : VE dx
N
_;/RdVBZSi ® V(¥ ou,)dx
N N
B _;/Rd(v'&w-v(% ous>dx—;/m Vi ue) (V- BY(V - &) dx
al N
_;/Rd Vi (ue) (& -V)(V-B)dx—;/Rd(VB) & ® V(Y oup)dx
N
_;/RdVB:S,- Q® V(¥ oug) dx
N
= Z/ (V-B)gi —(V-&)B) - V(i o ue) dx
i—1 VR?
N N
_EAJVB:V(wiou€)®sidx_i221/]l§dVB:Ei®V(wious)dx
3.3 N
= Z/ ((V-B)s;i —(V-£)B) - V(¥ oue)dx
iz /R

N
1
+ i/2=1 Ad EVB : V(WI,] (@) Ms) ® Ei,j)(?;’j (ue) dx
i<j

N
1
+ ijZ=1 Ad EVB 26, @ V(Yo M‘S)X'f,-,j (ug) dx
,i<j

N
1
= X 3V VWeou) @b, e ds
- Rdz i,j
i,j,k=1
i<jkgli,j}

N
1
_ Z / —VB : & @ V(Wooug)y.. (ug)dx.
- R4 2 Jij
i,j,k=1
i<jké{i,j}



Sharp interface limit of the vectorial Allen—Cahn equation 1143

By adding zero, we obtain

N N
_Z;/Rdv& :V(%ouﬁ@de—E/Rd VB : & Q V(i oug)dx
N
= Z/ ((V-B)s; —(V-£)B) - V(¥ oug) dx
i—1 /R?

il 1 V(i) 0 ug) V(i o us)
— —VB: (&, — ——1L "¢ = L]~ e
/@ 2 (g TV, ous)|) ® (E TV oue>|)
<J

i,j=1
X |V (i, o us)|X7~_ (us) dx
L,J

4

N

1 V(Yi,j oue) V(i,j oue)

+ E -VB: : ® ’ V; iou U ) dx
,-,-zlfw 2B Wy oual & Wy oup] Vi vl ()
i<j

N
1
3 38 6 ® 6,1V, 0wy () dx
i<j

N
1
= Y [ 5VB VO ou) @ by (o)
L R 2 jl,]
i,j,k=1
i<jkedi,j}
l 1
- > / SVB & ® V(Yooue)y, (u)dx. (4.8)
) ,k=1 Rd 2 i,j
i<jkei,j}
Using the relation
(3.10) T
— H -B|Vugldx =" — eVB : Vu Vu,dx
R R4
€ 1
+/ (V- B) (21 Vite > + —W(ue) ) d.,
R4 2 &

in view of Z;N j=ti<j Xg (ug) = 1 we can rewrite the third term on the right-hand side

J
as

ul 1 V(i,j oue) V(Yi,j o us)
,Z-l [R VB i ® V0|V Wi ooz (o) dx

i<j

1
=/ Hs-B|Vu£|dx+/ (V-B)(£|Vus|2+—W(u5))dx
R4 R4 2 &
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N
ey VB:(Wi,jous) g YWiou) Lo
R4
<J

V(i oue)l IV(¥i,j oue)| 2

— SVMZVUE)XT (ug) dx.
L]

ij=1
=

Inserting this relation into (4.8) and inserting the resulting equation into (4.7), we
obtain by collecting terms and adding and subtracting Zf\,]j:m <j Jra %E, i (06 +

(B - V)& IV (Wi o ”€)|ij (ug) dx,

GEl = [ e - oW
dr €

Rd &

2
dx+/Rd H, -B|Vu,|dx
S 1
B ; /Rd (V- &i)ui(ue) - (Aua - 8—28uW(u8)) dx
N
_ig;[n&d(v'g")B'v(Wi oug)dx

N 1
+ Z /Rd E(atgi,_i + (B - V)&i,j + (VB)TEi’j)

i,j=1 V(w o )
1<Jj L # .
' (El,] |V(Wi,j o Ue)|)|V(WZ"] Ua)|)(,fi,j (ug) dx
N
1
- Z /Rd ESi,j <(0¢&,; + (B-V)& )V, 0 ug)uff,-,,-(%) dx
i,j=1 _
i<j

& 1 N
LB (519 4 S + Y& Vo) ax

i=1

N
1
+ Y /R SO0+ (B Ve + (VBY &) V(Yo us)r, () dx
i k=1 "
i< kgli.g)

N
1
— Z / —~VB: V(WQOME)(@SICXT »(ug)dx
. R 2 0
i,j,k=1
i<jke{i,j}
il 1
- Z / SVB 5§ @ V(Yooue)y, (ug)dx
k=1 R4 2 i,j
i<jke{i,j}
N
1 V(WU ; ou V(U ou
- / SVB: (Ei,j - V(LS)) ® (Ei,j _ M)
o1 /R 2 IV (¥i.j o us)] V(Yis o o)

< < IV (Wi oue)lx, (ue)dx
L,J
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N V(Vjuou) V(W"OM)I
VB - i,j e i,j ¢ Ly ou,
" Z [I;{d (|V(Wi,j oug)| ® [V(¥i,j o ug)| 2| (Vij o ue)l

— SVuEVug)XT (ug) dx.
i.j

i,.j=.l
i<j

Lemma 14 follows from this equation using the definitions of the errors (3.12a)—(3.12¢)
and the next formula (whose derivation relies on Zf-\fj:m <ji Xy (ug) = 1 and repeated
ij

addition of zero):

1 1
—[ —lsAus — =0, W(u,)
Rd &€ &

2
+[Rd H; -B|Vu.|dx
N 1
—;[Rd(v-gi)auwi(ug) - (Aus _ g—zauW(u€)> dx
N
3 [ 80 Y eug

N
1 2
-y /R oo lHe e (B )8 Ve Py, ()
.’ i=1 1]
li]<j

[ e o

1 1
—/ —‘sAus — =0, W(u,)
R4 2¢e &

") dx

2
dx

al 1

-3 L e (Be = W) dx
N

N NUELRCTREE

N
&
+ ~|B & ;& * | Vue? ug) dx
,-]-Zﬂ/R”' 6 P16 P1V P, ()
’i<j

N
# 3 [ 00b ©8) K BVulzy ()dx
’i]<j

N
1 2
== 3 [ el —eCB -6 Vel 1y, o) d
2z ,.
li]<j

/ 1
R4 2¢

N

(sAus - éBuW(u€)> + Z(V &) 0u Vi (ue)

i=1

2
dx
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|H6‘|2> dx

1 2
_/;{d % (‘eAus -0, W(ug)| —
* /R 2%

By |68 ouar

i=1

2
)0y Vi (ug)| dx

+ Z/ _|B St]| |§‘_t]| |Vue|2)(7 (ug) dx

i,j=1
l<]

+ Z/ (Id-¢;,; ®&,;):H ®B|Vu8|)(~ (ug)dx. ]

z]l
i<j

4.3. Derivation of the coercivity properties

We next show how our assumption (A4) implies the coercivity properties of our relative
entropy.

Proof of Proposition 11. To prove (3.9a)—(3.9¢), leti, j € {1,...,N},i # j; suppose that
(x, 1) is such that uz(x, t) € 7; ;. In particular, we then have )( (ug) = 1.

Proof of (3.92) and (3.9b). Starting from (3.6), expanding the second square, and making
use of Young’s inequality, the fact that for each (x,¢) there exist at most three indices
ke{l,....,N}\ {i,j} with & (x,7) # 0, and (3.7), we obtain

N
1
SIVUe 4+~ W) + Y6 Vv oue)

=1
1 ey Ll '.Nla ﬁz
_E' € ue_ﬁ(z ulffl,J(”s)®§l,j_ kX::I m uWo(ue) ® Ek)
kﬁ{i J}
1[2W(w)—(|s,,|2+<4 o) Z V35, sk|2)\%auwi,,-<ua>2
k¢{11}
N
- X (WAl gt |

k{l}
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Then, by adding zeros and using |+/3&| < 1, we obtain

N
1
SIVIG + W) + Y6V oue)
=1
Y evu - (Lo oy e e )
NG ue—ﬁ(2 85— 3 ot © sk)
keli,j}
1 1 2 5 1 2
+ 2—8|:2W(Mg) - ‘Eauwi,j (ue)| — (Z + Scal + 8coer,1)‘§auw0(us)
- Scoer,2|au Wi,j (ME) : 8u ¢0(”s)|]
coerl 2 5c06r,2
2 oo + 52 By ) B, (49)

where 8cal, Scoer, 15 Scoer,25 Scoer,3 > 0 are arbitrarily small constants. Finally, using (A4) and
integrating over the set {x : u(x,¢) € 7; ;}, we can conclude about the validity of (3.9a)
and (3.9b).

Proof of (3.9¢). By adding zero, we can write

V(Yo oug) = dyolue) - Ve

N
1 1 /1 1
= ﬁauwo(ua) . [\/gvus - %(Eaul/fi,j ®&i; — 1; z—ﬁaullfo(us) ® \@Ek)]
k¢li,j}
1 -
JE— . ) . ) 2 —— 2
+ zgaMWO(ua) auwh] (us)éz,] e kzl 2«/_|8 WO(u£)| \/_Ek
kEdi,j}
Then Young’s inequality yields
[V(¥o o u)|
1
< 2—|auw0(us)|2
I3
1 1 (1 Yoo 2
+ E‘ﬁvus - %(Eauwi,_i(ue) ®&ij— X=: mau%(us) ® ‘/ggk)
kedi,j}

1
+ Zwul/fo(ua) <Oy Wi (ue)l| &

N
) 2f|a WWolue) P13,

k=1
keli,j}
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Using Young’s inequality and estimate (4.9), we can conclude about the validity of (3.9¢).
|

Proof of Proposition 10.
Proof of (3.82), (3.8b), and (3.8c). Using (3.3) and adding zero, we obtain

l 1
Elulé] = Efuel = > / 31V Wi oue)lxy (ue) d
l',.j='1 ]Rd i,j
l<]
ul 1
+ Z / zgk “V(¥o o us)XTT,-j(us) dx

ijk=1
i<j.keli,j}

LY M) .
+i’j2=1 /]Rd 2(1 &j IV (i, 0 us)] |v(1/ft,] ue)l)(glj(us)dx-

From assumption (A4), we can deduce

1 1
§|V(Wi,j Oue)|XT_ (”5) = §|auwi,j(”s)| |V”8|XT (us) = VZW(M8)|V”8|X7_ (”s)
i,j L] L]

Hence, using the definition of E[u.], we have

Eild S [, 30l 0wz, (o) a

i,j,k=1
i<jkeli,j}
V2W(ue) \?
> Z/ (ﬂv e|——) Xy (4e)dx
i,j=1 \/E I
i<j

V(¥i,j oue
Z / (1 =& —|VE£: oZ ;|)|V(%,;’ oug)| s (ug)dx.
i,j=1 L € I

i<j

Then, noting that

VWijoud) o o .
m‘&,z IV (i, u8)|X~Ti’j(u8)

of1-& ;- V(¥i,j o ue)
N > |V(Wi,j oug)|
together with the fact that Zl J=li<j )(ﬁ (ug) = 1, we see that both (3.8a) and (3.8b)

)i ol

follow from the preceding two formulas and (3.9¢). Furthermore, using

V(anoua))

min{dist*(x, 1; ;), 1} < C(1 — [& ;]) < C(l =& N oun)l
i,j £

we obtain (3.8¢).
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Proof of (3.8d). By exploiting (3.3) and by adding zeros, we obtain
€ 5 1
(5190el? 4+ S Wwe)) st ()
€ 1 al
<[ S+ W+ Yk Vorow ey,

=1

1 1
|31V 0wl + 519 W0 w2y, (wo). (4.10)

As a consequence, we have

N
1
Z/ min{distz(x,lij),1}<E|Vu,;|2—i——W(ug)))(‘~ (ug) dx
e R4 ’ 2 & Tij
’i<j

N

< Bl + Y [ mintdise (e, 1), DIV 0wty ) d
i,j=1 h
i<j

N
+ E / V(%o Ous)l)(T_ (ue) dx,
R R4 i,j
z,']='1
i<j

whence we deduce (3.8d) from (3.9¢) and (3.8¢).

Proof of (3.8¢). Expanding the square and using 1 — ¢ dist?(-, I; ;) < 1&,;] < max{l —
C distz(-, 1;,;), 0}, we obtain

el(d—¢&.; ® & ) Vugx;,; (ue) < [e|Vuel® —el(i,j - VIuel?1xa: ; (ue)
+ C min{dist?(-, L; ), 1}8|Vu8|2)(g;,j (ug).

Then, by adding zeros, we obtain
el(d —&;,; ® & ;) Vull* g ; (ue)
N
, 1
= |:8|Vus| + EZW(MS) —&ij - V(¥ijoue) + Z €k - V(Yoo us)i|)(rj~_ (us)
k=1 b
ké{i.j}
N 1 1
— Y & VWoouy, () + |- lduvis @l — 22w |1, o)
k=1 i,j £ & i,j
k(i)
1
[ (o) =i - VWi owe) + el - Vel [y (we)

+ C min{dist?(-, I; j), 1}5|V”8|2X7~_ (ue)
1]
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N

|:_|Vus|2 + —W(u,) + Zgl V(i o us):|X7~ (ue)

(=1
+ Z Iellse [V (o 0 uelty. ()
k¢{11}
1
+ [ P = 22w |y, o

1 2
- )2—ﬁ3u¢i,j (ug) — Ve(&ij - Vug

+ C min{dis®(-, I; ;). 1}e| Ve *x . (ue),
L]

X“Ti,j (ME)

due to (3.3). Noting that assumption (A4) implies

1
Z|auwi,j (”s)|2XT (us) = 2W(ue))(7 .(ua)»
ij ij

the validity of (3.8e) follows from (3.9¢) and (3.8d).
We next prove the additional coercivity properties stated in Lemma 15.

Proof of Lemma 15.
Proof of (4.3). Note that (4.10) yields

Z/Rd

< 8E[u.Jé] + Z /

ljl

V(i Vi, jolUe) Ug)

2
e|Vu,|? Uug)dx
Iv(wlj Ou€)| | 8| X?;',j( 8)

_Ei,j

V(Wt V¥ijolUe) o us) >
|V(1/ft J° us)|

s 4 [ V0ol oo
lj 1
i<j

Hence, using (3.9¢) and (3.8b), we obtain (4.3).

Proof of (4.4) and (4.5). First, we compute

1 |[V(i,j ous)|
2/e |Vl

11V ou)l
& 4|Vu,|?

2
LJ

el Vuel? = V(g o us)qx,, (e)
1,]

1150

—&ij| IV(Wi,jo Ms)lefi i (ug) dx
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and
2

1 V(i joue
‘—3:4%,1(%) ® (i oue) VeVue| rg (ue)dx
L]

NG IV (¥ij o ue)|
1
= |35 v s @+ el Vae? = VWi 0wl 2y, ().

Then, from assumption (A4) we deduce

V(Wi o ue)?

|V |2 ngi’j (ug) < |8uwi,j (u€)|2x7},,- (ue) < 8W(M8)X7i,j (ug).

Finally, by exploiting (3.3) and by adding zero, one can conclude about the validity of
both (4.5) and (4.4), due to (3.9a).

Proof of (4.6). Since we have

VulVu, |
§i,j ®&ij— WETSPS 8|Vu£|2)(7—i’j (ue)
Eij - VugVue - & ; 2
=< |:2— 2 VP e|Vug| X(J;',j(MS)
= 2[£|Vu8|2 - 8|(Si,_i . V)”E|Z]X7~_ (us)
1]

<26|(Id—&;,; ® &,7) - Vug > x7; ; (ue) + C min{dist® (-, 1;, ), Le| Vue >y (ue)
L]

(where in the last step we have used the estimate 1 — C dist*(-, I;, i) <&, ;| < max{l —
cdist?(-, I; ), 0}), the bound (4.6) follows from (3.8¢) and (3.8d). m

4.4. Convergence of the phase indicator functions

‘We now show how to obtain the error estimate at the level of the indicator functions.

Proof of Proposition 13. Using (1.1) and the fact that supp d; y; C 9 supp ji, as well as
¥; = 0 on dsupp y;, we compute

d _
3 Lt = 70
- / Lo (ue) - (eAus — <0, W) ) dx + [ (Wi () — 7009y dx
Rd &€ & R4
_ / Lo (ue) - (ehus — <0, W) ) dx + / B- V(s ous); dx
Rd € & R4
+f (V- B)(Wi(ue) — )9 dx +/ (Wi e — 70) @095 + B - Vi) dx, (4.11)
R4 R4

where we added a zero and then integrated by parts. Note that we used the fact that ¢; = 0
ond{y; = 1}.
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By (2.5), the last two terms on the right-hand side of (4.11) can be bounded by

(V- Bllis *C)Ad Vi () — 7 I8 v,

As for the second term on the right-hand side of (4.11), we perform the following decom-
position

/ B - V(i oup)d; dx
R4

N
= j,k2=:1 /Rd (B &) - V(¥ oue)Dixy (ue) dx
j<k

N
+ > /Rd [(Ad =&k ® §jk)B]- V(¥i o us)ﬁiXTj!k (ue) dx,

Jk=1
j<k

whence, by adding a zero and using Zj-vkzl.ﬁék X. =1,
> . J],k
/ B - V(i oug)d; dx
R4

1 Vul
= —H, —= - 0,y (ug)d
/Rd e |V ufi(te) dx

N
1 vVl
+ kz /Rd 5[8(B-Ej,k)‘§j,k|vug|_Hs]-|V_u‘:|-8u1//,~(u8)29,’)(7}k(ue)dx
k=1 :
Jj<k

N
+ j;l /Rd [(1d 5 ® i) B)] - V(Ui o)V (e d.
j<k

Note that the last two terms are nonzero only if j =i or k = i. Hence, using Young’s
inequality, the second term can be estimated by

N
1 1 R
320 [y B BBl B P
k#i

N
1 1 2ia 12
593 L 2P0y, e ds.
ki
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As for the third one, we obtain using Young’s inequality and exploiting the coercivity
property (3.8e),

N
> [ 106 © &0B] VO )by (0
et
N
T2
<3, 096 © 8.0 BV 1y, G0 0
ki
Yo
2 2
+];/R LRI, () dx
ki
Yo
< CEWlEl+ Y [ 0PIy, (o
k=1 Rd & ik
k#i

In summary, we have shown
d _

3 |, (Wilee) = Xi)¥i dx
t R4

N
_ 1
S AR AL B W I R AT L S UA LS

R4 i1 Rd € ik

k#i
1 Y 1

2
=93 [, 1B 606Vl ~ Pty (s

ki
1 Vul

1 1
+ [ st (sdue = L0 W) oidr + [ LDy dx.
Rd € & Rd € Vel

We estimate the two terms in the last line:

1 1 1 Vu!
[, 20t (sdue = S0 W) oy x| St By o9 ax
Rd € 3 Rd € |Vug|
1 1 Vu!
= [, 2| (e = 0 w0e0) + By a9
Rd € e Vg
1 1 1 vul 1
<5 [ o] (et ouwuo) s e | a
1 1
45 [, v P ax
Rd &
1 1 2
< / —(’8Au€ — =0, W(us)| — |Hg|2) dx
Rd 2¢€ £
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/ L PYERLTALTY TP
- —|ld———|: x
R4 2¢ |Vue|? ¢ ¢

1 1
45 [, 0@ ar
Rd &

Sf i(‘EAus_éauW(us)

R4 2¢

2 1 1
L) s [ S0 PP s,
Rd €

T
where we used the fact that [Id _VIgZV;s
€

10, i (ug)| < C/2W(u,) and |9;] < min{dist?>(-, d supp i), 1} < C min{dist(-, Lix), 1}
(see (2.4)), from (3.8d) it follows that

] is a positive semidefinite matrix. Since

N
1 1
L sowiolioar =3 [ So@ofiolz, )
Rd & k=1 Rd & ik
k#i
N 1
2
< c}; /R S22 () d
k#i
< CE[ucl§].

Summarizing the previous estimates, we get

d y -
I Ad(%(ug) — 7)) dx < CE[u.|§] + C /]Rd [Vi(ue) — Xil [9i] dx

N
1 1 2
33 [ et 6l Viel ~ 7, o)
ki
1 1
+/ —(‘sAug——E)uW(ua)
R4 2

2
- |H£|2) dx.
d LE &

An application of the Gronwall inequality to Theorem 12 yields

N N

1 2

sup Efu,|§](2) + / —|e(B - &i k)i k|Vue| —He| "y (ug)dx

Sup Ele 21; R“} i)Ei k| V| — He | 7 (e
ki

+ /R o= (Jedue = 0 We)

Integrating the previous formula in time and inserting this estimate, we deduce by condi-
tion (2.4) on the weight ¥;,

[ e T = 6 )91 T

T HeP) dx < C. T (2(O)reto rp Eluel10).

T
< CT.GHOewr) ELl0) + [ [ (00 = 700, dvar

The Gronwall inequality now implies our result, using (2.4) again. ]
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4.5. Proof of the main theorem

Our main theorem (Theorem 1) is a simple consequence of Theorem 12 and Proposi-
tion 13.

Proof. Combining Theorem 12 and Proposition 13, we obtain the desired bounds

sup Ee[ug|€](z) < Ce,
t€l0,T]

sup _max / [Wi (ue (-, 1)) — ji (-, 1)| dist(x, dsupp j; (-, 1)) dx < Ce.
te[O,T]iE{l,...,N} R4

Finally, proceeding as in [14, Section 3], one can conclude about the error estimate of
order £1/2 in terms of the L'-norm. n

5. Construction of well-prepared initial data

In this section we construct an initial datum u. (-, 0) complying with the following relative
energy estimate:
Efu,|§](0) < Ce, (5.1)

where the constant C > 0 depends on the initial data (jy1(-,0),..., yn (-, 0)) and the
potential W satisfies assumptions (A1)—(A4) (see Section 2). In particular, we provide an
explicit construction of u(-,0) for a network of interfaces meeting at two-dimensional
triple junctions (d = 2) satisfying the 120° angle condition. To this aim, we adopt a
geometric setting for the initial network which was introduced in [13, Sections 5-6]
in the general time-dependent case. A similar construction can be provided for three-
dimensional double bubbles (d = 3) satisfying the correct angle condition along the triple
line, this time by exploiting the corresponding geometric setting given by [15, Sections 3—
4].

Note that from our construction and the fast decay of the Modica—Mortola profiles
towards the pure phases «;, 1 <i < N, it will also be apparent that our initial data u, (-, 0)
also satisfy the estimate

~ max / | Wi (ue(-,0)) — xi (-, 0)| dist(x, d supp ji (-, 0))dx < Ce.
R4

In fact, for this lower-order quantity one may even show the stronger bound O(&?). In
summary, the considerations in the present section will establish Proposition 3.

5.1. Rescaled one-dimensional equilibrium profiles

For any distinct i, j € {1,..., N}, let y; j:[~1, 1] — R? be the unique constant-speed C'!
path connecting ; to oj such that y; ;(—1) = «;, y;,;(1) = «;, and

1
/_ WO Ol 0l dr = 1.
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Let éi, j:R — [—1, +1] be the unique solution of the ODE

611(5) = Iyl B DI 2W (1 By (s)

with boundary conditions éi,_/ (£o00) = £1. Due to the growth properties of W in the
neighborhoods of «; and ¢ (see condition (A1) in Section 2), the profile éj,j approaches
its boundary values £1 at 00 with a power law of order q%Z for ¢ > 2 and an exponential
rate for ¢ = 2 [25].

Let s{; € R such that 0;.; (s;) = 0. Let p > 0 be such that 0 i(p + sp) = é:'j
and 5,-, j(=p + sg j) = —élfj for O_iﬂfj € (0, 1). We define the rescaled one-dimensional
equilibrium profiles 6; j: R — y; ; as

1 -
Vi,j (é_+9i’j(s?’-" V(s + sgi) A(p+ sgj))) for s € [0, 00),
b (5.2)

6ij(s) ==
9 1 -
Vi.j (é—ei,j((—p + sgj) V(s + sgj) A sl-o’j)) for s € (—o0,0),

i,J
so that 6; ;(s) = o; forany s < p and 6; ;(s) = «; for any s > p. Furthermore, we have
1 y.’, .
= /2W (6., ()
ei,j |Vi,j

1 -
X(FG,-,‘,'(S?,]. V(s + sgj) Ap+ sgj))) for s € [0, p),

i,]

2W (63, (s))

7/J
1y 1

1 -
X(O_Tei’j((_p + sﬁj) V(s + sgj) A s?,j)) fors € (—p,0),
i,
0

(6:,,) () =

’
i
7
i

1
0.

for s € (—o0, —p]

U [p, +00).

Note that, if W satisfies additional symmetry properties along the path y; ;, then éi,_/ is
odd, thus sl-(” ;=0and Gijj = Gi""j. Moreover, if W satisfies additional symmetry properties

with respect to all the paths y; ;, then all Q_iﬂfj coincide.

5.2. Geometry of the initial network

For simplicity of notation, we shall omit the evaluation at initial time throughout this
chapter, i.e. we write y instead of y(-,0). Let y = (}1,..., xn) be an initial partition
of R? with interfaces d{y; = 1} N d{); = 1} = I; ; for distinct i, j € {1,...,N}. We
decompose the network of interfaces according to its topological features, i.e. into smooth
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two-phase interfaces and triple junctions. Suppose that the network has P of such topolog-
ical features 7;,,n € {1,..., P}. We then split {1,..., P} =: € U P, where € enumerates
the connected components of the two-phase interfaces and & enumerates the triple junc-
tions. In particular, if p € &, 7}, is a triple junction, whereas if ¢ € €, J; is a connected
component of a two-phase interface /; ; for some distinct i, j € {1,..., N}.

In the following we use a suitable notion of neighborhood for a single connected com-
ponent of the network of interfaces provided by [13, Definition 21]. In particular, we
adopt the notion of localization radius, which allows one to define the diffeomorphism
corresponding to a single connected component of a network as follows. Let r; ; be a
localization radius for the interface /; ; and let 71;,; be the normal vector field to /; ;
pointing towards {y; = 1} for some distincti, j € {1,..., N}. Thenthe map W; ;: I; j x
(=rij.ri;) — R2, (x ) > x + s7i; j(x) defines a diffeomorphism, whose inverse can be
split as follows: lIJ 1m(\IJl ) Ly X (=rijj,rig), x = (Pr x, dist™ (x, I; ,j)), where
Py, ;:im(Y; ;) — I ;,j represent the projection onto the nearest point on the interface I; ;,
whereas dist™ (. 1;,7):im(\; j) — (—ry,;,1i,7) is a signed distance function.

Similarly to [13, Definition 24], we provide a notion of admissible localization radius
for a triple junction.

Definition 16. Let d = 2. Let 7 = (¥1,..., fn) be an initial partition of R? with inter-
faces d{y; = 1}, i = 1,...,N. Let T be a triple junction present in the network of
interfaces of y, which we assume for simplicity to be formed by the phases 1, 2, and
3.Foreachi € {1,2,3}, denote by 7 ; +-1 the connected component of /; ; +; with an end-
point at the triple junction 7 and let r; ;41 € (0, 1] be an admissible localization radius
for the interface /; ;41 in the sense of [13, Definition 21]. We call a scale r = rg €
(0, 71,2 A 2,3 A r3,1] an admissible localization radius for the triple junction J if there
exists a wedge decomposition of the neighborhood B, (77) of the triple junction in the
following sense:

For each i € {1,2, 3} there exist sets W; ;1 and W; with the following properties:

First, the sets W; ;41 and W; are nonempty subsets of B,(J") with pairwise disjoint
interior such that

U VVz z+l W Br (T)
ie{1,2,3}
Second, each of these sets is represented by a cone with apex at the triple junction
T intersected with B, (7). More precisely, there exist six pairwise distinct unit-length

vectors (Xl it f’ﬂl)ie{m,g} such that for all i € {1, 2,3} we have

Wiiv1 = (T + {aX], , + X[} a.b € (0.00)}) N B.(T).
Wi = (T + {aX!; o, +bX]_1; 1a.b € (0,00)}) N B(T).
The opening angles of these cones are numerically fixed by

Xii,i+1 lez+1 = cos(7/2) =0, ii,i+1 -X,-i_l’i = cos(m/6).
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Third, we require that for all i € {1,2, 3} it holds that

Br(T)NTijig1 CWiip1 UT C Hyigr,
W, C H; i NH; g,

with the domains H; ;11 = {x € R? : x € im(¥; ;+1)} N B,(T), where ¥, ;11 is the
diffeomorphism defining the neighborhood of /; ; +1 in the sense of [13, Definition 21].

Let r ;= minyep rp, where r,, is the admissible localization radius for the triple junc-
tion 7,. Let p € (0, r). Consider a triple junction 7', which we assume for simplicity are
formed by the phases 1, 2, and 3. Let ¢ < p; then for all i € {1,2, 3} we define (see
Figure 2)

(1) the two-dimensional regions

. . COOR- I
WL = Wi N {x € R? 10 < dist™ (x, T i41) < p}.

Wif)i’;l =Wy N{xe R?: —p < distT(x, Tii11) < 0},
Wiy = WL VWL
VVii?il = szzitl N B (7),
Wi = iifil U Wi

satisfying the inclusions

Tit1NB(T) C Wiy, Tiiv1 N Be(T) C W CWSL s
(i) the one-dimensional segments resp. arcs

R;,i+1 = (T + {aXii,i+1 ‘ae (0»00)}) N 81/Vif)i+1’

Ri-t_i+1 = R;T}A Riiy = Rf,i+1’

His,i+1 = VVif)i+1 N 0B (T7),

HELy = Hfpp N {x € R?:0 < dist™ (x, Tri41) < p),

Hi7 = Hfppy N {x € R?: —p < dist™ (x, Tii41) < 0}:
(iii) S7 as the segment connecting R;:,i+l N dB.(T) to Rf’i_l N dB:(T);

(iv) the two-dimensional triangular regions Wip resp. W as the one with sides Rf,i 11

and Rf,i_l resp. the one delimited by S¥, Rf,i+1’ and Rf,i_l, thus satisfying the
inclusions
WE Cc WP cw.
Furthermore, we introduce
Ppe WPU WS n{x e WiipiUiiva x[0.0)}) = R4,
WU W N {x € Wi (Tiipr X (—=p.0D}) = Riipy
Wi = Hiip

PSf: I/Vis — Slf9
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Figure 2. Notation and geometry for the construction of well-prepared initial data at a triple junction
T (d = 2) formed by the phases i, j, and k for mutually distinct i, j, k € {1,...,N}.
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as the orthogonal projections onto the nearest point on R Riit1s Hfiygs

respectively.

i,i+1° and Sis’
5.3. Construction of the initial datum

We construct the initial datum u, o := u.(:, 0) separately in each two-dimensional region
identified by the geometry of the network as introduced above. Then we show that in each
of these regions the initial relative energy estimate (5.1) holds true.

Neighborhood of a connected component of a two-phase interface. Let 7; ; be a con-
nected component of /; ; with either one or two endpoints at a triple junction for some
distinct i, j € {1,...,N}. Let P; ; C & enumerate the numbers of triple junctions as
endpoints of 7; ;. Then we can define

M; ;= ({x eR?: —p <dist*(x.7,,) < p} \ | Br(?};))
pEJ)i,j
u( U (WEA\WE )).
PEP;

In the two-dimensional region M; ; we define the initial datum u.o by means of the
rescaled one-dimensional equilibrium profile (5.2) as

Ugo(x) = 0; ; (5_1 disti(x, Ti,j)) forany x € M, ;,
whence we obtain
EMi,j [u:|€](0)
1 1
= / 22100 (7" dist™ (v, T ) + —W (61, (e7" dist™(x, 7))
Mi,j & . &
— _(Si,j . n,-,j)(G,- j)/(é‘_l disti(x, T; 1)) . 8,,,1#, JJ (9, j(&‘_l disti(x, ?7’]))) dx
< / —|(9 ) (871 dist™ (x, 77,,)) | + - W( i, (67" dist™ (x, 77,)))
M;

- _|Slj|2 2W( lj(S_IdISt (x, sz)))
lJ

1
<[ a- |si,_,~|2>[—|<9i,_,->/<e—1 dist (v, 55,)?
M;, ;
+ EW(Q,, (e distE(x, T, ,-)))] dx

Here, we used that ¢ = O along y; j forany k € {1,..., N} \ {i, j} and that 9, ¥; ; (i, j) .

I;:ijl = 2/2W(yi,;). Indeed, our assumption (A4) implies that du¥i,;(vi,;) - Vi, ;=

2/2W(yi,; |yl’ ] |, and then (A3) gives the equality sign by contradiction. Then, in the
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last step, we added a zero and we used [(6;,;)/(s)|> < (oi B ——=2W(0;,;(s)). Note that 1 —

&% < c dlst (-, 7i,;), and that W(6; ;(s)) has an exponentlal resp. a power-law decay
of order 5 for g = 2 resp. ¢ > 2 as s approaches the extrema of (—p, p), and then it
vanishes for s € (—00,—p] U [p, 00). As a consequence, we obtain Epy, ; [ue]§](0) < Ce?
for some constant C > 0.

Pure-phase region. Leti € {1,...,N}. Let $ C P enumerate the numbers of triple
junctions as endpoints of a connected component of an interface between phase i and any
other one. We set 4, o = «; in the pure-phase region

(i = 1}\( U wiu [ tx—snijx). xelij. se [o,p)}).
PEP; Jij#i
Then |Vu, 0| = 0 and, having W(e;) = 0, the initial relative entropy is equal to zero in

the pure-phase region.

Triple junction wedge containing a connected component of a two-phase interface.
Given a triple junction 7, leti, j € {1,..., N},i # j, be two of the three phases forming

T andletk € {1,...,N}\ {i, j} be the third one. The initial datum u, ¢ in the corre-
sponding wedge iji is given by interpolation via orthogonal projections PHf,,- s Pr ;s
and P Rii’j , which reads

dist(x, 1;,;) + dist(x, Riij)
, . : - un;, (Pag X)
dist(x, Hi,j) + dist(x, /;, ;) + dist(x, Ri’j) by b
dist(x, Hf ;) 4 dist(x, R;)
_l’_
dist(x, H ) + dist(x, /;,;) + dist(x, R:|E )
dlst(x Hf )+ dist(x, 7; ;)
dlst(x Hf )+ dlst(x, I; ;) + dist(x, Riﬂfj)

us,O(x) =

ur, ; (Pr, ;x)

UR;; (PRii/. X)

for any x € W, *, where

i,j °
E(x,T) _ SE_pE (x, T)
umg, (x) = HTQi,j (:I:e_lhf:;-_L) + % 6;,j(0) for any x along H; ;,
e Er
i j(x,T) I —1ij(x,T) _
ug ,(x) = ”Tei,j 0) + ”Ta for any x along I; ;,
i,j i,j
rl:b(x, ) — rl?tj (x,7) _

ug,,; (x) = VTQijj (:I:e_lhs jE) + for any x along R;ij,

where @ = w, ﬁfji = disti(Hf’ Rli], I;,j), If ; resp. hf]i is the length of
I;;j N Bg(T) resp. B,(7) N Wls]i, whereas hf/( ,T), 1 j (-, T) resp. rl.j’tj (-, 7) is the

length of the path along Hf’ji , I, j resp. Riij connecting to 7. Since /7 ; and hf]i are
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of order ¢, then this construction gives that [Vue,o(x)| is of order 1/¢ for any x € W ;.
Hence, the area of Ws being of order £2, we can deduce

B, lul€l0) = [ S19uoP +iW(Uao)+Z§£ V(e 0 up0) de

ij (=1

e C
</ ~|Vueol* + — + C|Vugo|dx < Ce,
we. 2 €
L]
for some constant C > 0 varying from line to line.
Triple junction wedge not containing any connected component of a two-phase inter-
face Given a triple junction 7, let i, j, k € {l,..., N} be three distinct phases forming

T . The initial datum u, o in the region st is given by interpolation via orthogonal pro-
jections PS;, PRj_k’ and Pp+ , which reads
) 1]

dist(x, R, ) + dist(x, ;")
Ugo(x) = — e ————upe (Psex)
dist(x, S¢) + dist(x, Rj o)+ dist(x, Ri’j) by
dist(x, S¥) + dist(x, R;"))
+ :
dist(x, S7) + dist(x, Rfk) + dist(x, Rl.'fj)
dist(x, S7) + dist(x, R] o)

dlst(x S7) + dist(x, R; k) + dist(x, R ;)

ug;, (Pr;, X)

YR (PRiJ,r/x)’

for any x € Wja, where

; - s&—si(x) -
uS;(x) = @Gi,j (E_Ihi_/) + %Gj,k(—s_lhj-,k) for any x along S?,
J J
riglx, T - e—rip(x,7)_ _
UR;, (x) = Mej,k(—'S 1hik) + %a for any x along R .
ST, i (6, T)
”R;r/, (x) = WQU (s lhf,_j) + z-:r,,]g#a for any x along Rl Iy

where hf ;= dist(Hf; 0 R, 1 j), Sy = dist(H, N Ry, Iig), ¢ is the length of
the segment S j‘?, whereas s; resp. r;,j (-, 7) is the length of the path along S Je resp. RZ’ ;
connecting to R]._k resp. 7. Since s; is of order &, we have that |Vu, ¢(x)| is of order 1/¢

forany x € ng, whence as above we can deduce that

Eysluel£](0) = /W = Vtgol? + W(ueo)+2a V(e 0 ue0) dx < Ce,
J =1

for some constant C > 0.
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Interpolation between two rescaled one-dimensional equilibrium profiles. First, we
introduce for any x € Wp \ W the set of coordinates (s, /1), where h denotes the distance
from S while s is such that Vs Vh =0and s = 0 whenever x € R}, . Hence, h e [0,7¢],
where 7 := (r — &) cos({5) is fixed, and s € [0, 2h, sin({5)], where hg = (cos({5))~ Ih+
e. The initial datum u g in W/ \ W is given as

s 1
Ue0(x) = —=————0; (=&~ dist(Pk- x, I;£))
sin({%) e
2, sin({5) — s
—E 127 g (e dist(PE, x, I ,
2he sin( %) bl (Pre,x-101))

for any x € Wp \ Ws where PISr and P? R+ are projections along the s-axis onto R
R; N

and Rl+ L respectively. Hence, we compute
1
Iste0(x) = —=——— (04 (—e M dist(Pg- x, Ijx)) — 6;, (e dist(PEy x, 11 ))),
sUe,0(x) 2hgsm(%)( ik ( (P, % 1ja0) = B, ( (P % 1i.1)))
and
ahus,O(x)
s -1 4 -1 4 s
= o (—ehdist(Poy- x, I i) —6; i (e " dist(P2 . x, I; ;
2/125111(12)(308(12)(]’](( ( R].Jc k,])) l,j( ( R:—j l,j)))
s . 1
— mah dlSt(P;e;kx, Ij’k)(ej’k),(—g 1 dlSt(P;e;kX, Ij,k))
€ 12
2%, sin(%) —
N #ah dist(PS, x, 1i,;)(0;,;) (7" dist(PS, x. 1 ;).
2¢h, sin({5) ij ij

For the sake of brevity, we introduce the notation i(x) = > —— € [0,1] for any x €

. . . . 2hg sin({5)
ij \ Wja. By adding zeros and using Young’s inequality, togetglllner] with the fact that s2 <
402 sin?(%), one can obtain

& 3 &
51 Vieo()I? = 2 [dsute0(0)|* + = [9ntte,0(0)

IA

3 1 4
Cﬁ|9j,k(_5 1 d1st(PIS3;kx, Iix)) — ozj|2
&
€ -1 4 s 2
+ Cﬁ—2|9i,j(8 dlSt(Pleiji,j)) — o
2 \

7 1 ’ —1 3. s
+ sz(x)g|(9,,k) (e~ dist(Pg- x. )|

- 1 o
+C(1— )k(ﬁc))zgl(@i,j)’(s_1 dist(Pp: X, L),
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for some constant C > 0. First, we consider

/W”\WE h2 10 k(=& dist(PfQ;kx, Iix)) — ozjlzdx

. (T e 1 gior( DS 2
=2sin(73) | 1B dist (P x L) =y
Te
< C/ |0 (=&~ dist(Pg- x, k) — ;| dh
0 Js
Te h
=€ [ I s P 130) = o 6100 (-7 PR x| d
0 & Js Js

Fe h
<c / 2\ B00) (et dist(Py x. 1;4))] i,
0o ¢ ik

where we integrated by parts and C > 0 is a suitable constant varying from line to line.
Then we observe that dist(P}- x, /) is a homogeneous and increasing function with
J.k

respect to /. On the other hand, we recall that |(6; &)’ (s)| has an exponential resp. a power-
law decay of order qu for ¢ = 2 resp. ¢ > 2 as s approaches the extrema of (—p, p), and
then it vanishes for s € (—oo0, —p] U [p, 00). As a consequence, we obtain

/W”\Weh_2|6’k( & 1dlst(PR X I;k))—a]| dx < Ce,

and analogously
/ |9, e 1dlst(P - x, ;7)) —ozjl2 dx < Ce.
WIWE h2
Second, we have
s2, 1 re =1 g s 2
AZ(0) —[(0)1) (=™ dist(Pg- x. 1j))|” dx
W.”\st & ik
=zsin(£) ;512(x)é|(9- Y (=~ dist(PS- x, I;1))|? dh
12/ Jo g Ik Ry ik

Te h , . \ ,
=< C/O (; + 1)'(9j,k) (=& dist(Pg. x, )| d
= Ce,

and analogously

/ (1 — x(x))2-|(9, ) (g7 dist(P$ & X I; )|*dx < Ce.
WAW,
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Observe that by adding zeros we can write
W (e 0(x)) = AW (Wttso(x) = W (B4 (—&" dist(Pg, x. 1))
(1= A (W0 () = W (0 (™" dist(Pe . 1))
+ AW (G (—e ™" dist(PR-, x. 1jx))
+ (1= X)W (6, (7! dist(PISeI]_x, 1i,)),

where i(x), 1 - i(x) € [0,1] for any x € Wj" \ I/Vf. Since W is Lipschitz (see (A1) in
Section 2), then by adding zeros we obtain

1 1 .
;W(ue,o(x)) - ;W(Oj,k (—8_1 dlst(PR;’kx, ]j,k)))‘

C 1
< —lueo(x) = 6 (=" dist(Pie, x. 1)
C = -1 5
= — (=) (0 (=e7" dist(P, X 1j4)) — |

+ |9i,j (8_1 diSt(PIs?i*,.x’ ]i,j)) —Q; |)
and

1 1 iy
W ie () = W (67" dist(Py, x. I )|

IA

C 1 .
;|u€,0(x) -6 1 dlSt(PISQi*'jx’ )l

IA

C - 1 .
;)&(X)(w}',k(—é‘ 1 dlst(PISngx, Iix)) — ol

+ |9i,j(€_1 diSt(PISQi*jx’ Il"j)) —Qj |)
In particular, we have

1 1 4
/ o ;|9j,k(—8 1d1st(P§;kx,Ij,k)) —aj|dx
Wi\, ’

-
“
- zsm(%)/ 10y (e dist(Ph- x. Ix. ) — | dh
A ,
Te k. —lh
<o [l e, dist(Ph- x. 1;0)) — ;| dh
0 € 7 ’

Te h2 h ~ . .
= C/O (5_2 + g>|(0j,k)/(—8 ldlst(PRka, Lix))| dh,

where we integrated by parts and C > 0 is a suitable constant varying from line to line.
Once again, since dist(PS_ka, 1; 1) is ahomogeneous and increasing function with respect
J»
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to &, recalling the decay of |(6x)'(s)| in s mentioned above, then we get

/W,,\ngmjk( € 1dlst(PR_)c I;4)) — oj]dx < Ce,

and also .
/W”\W g|9j,j(8_l dist(Pp+ x. 1i,;)) —ej|dx < Ce.
! & L]
J

Similarly, we estimate

1
/W"\WE EW( 0 k(™ 1dlst(PR X I1; k)))

€

;=
¢ h
< C/(; ?W(ej,k(_é‘_l dist(PISQka, Ij,k))) dh < Ce,

due to the fact that dlSt(Ps - X I ) is a homogeneous and increasing function with

respect to & and the decay of W(9, x(s)) in s. Analogously, we have
1
/ —W (6, (7" dist(Pyy x, 1)) dx < Ce.
M; € i.j

Finally, (3.3) together with (A4) (see Section 2) and an application of Young’s inequal-
ity give

Ee V(g 0 ug) dx

< C/ \/ZW(ugo Vgl dx

1
<C U & Vg o] dx +/ “Witeo) dx]
[/V]ﬂ\pV]S 2 VVjp\Vng F

Then, from the estimates above, we can conclude that

WP

Eij\Wis[u£|§](O) = / ) —|Vueo| + - W(us 0) + Zfl V(Ygougg)dx < Ce
' wowy 2 =1

for some constant C > 0.

6. Suitable multi-well potentials and a construction for the y;

We next proceed to show that the class of N-well potentials satisfying assumptions (A1)—
(A4) is in fact sufficiently broad.
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aj

Figure 3. Illustration of the disjoint partition {'J}i }i,j:i; of the simplex A2,

6.1. A class of multi-well potentials

Let AN~! be an (N — 1)-simplex with edges of unit length in RN~ We denote by
{Vi,j}i,j:i+j its edges and by {a; }; its N vertices, so that |o; — o;| = 1 for any mutually
distinct i, j € {1,..., N}. We decompose A¥~! (almost) symmetrically into a disjoint
partition {J; j}; j:i<; such that each point x € AN~ s assigned to the set Tijifyjis
the edge of AN~ that is closest to x, with x being assigned to the edge with the lowest i
and j in the case of ties. Each J; ; can be further split nearly symmetrically into ’J‘}i and

’.T;j by defining Tji to consist of the points in 77 ; that are closer to «; than to «;. For an
illustration of this partition, we refer to Figure 3 for N = 3.

For the purpose of our construction of the v; from condition (A4), we introduce some
further notation:

 Fori e{l,...,N}, we denote by U; := By, (;) a ball around the vertex o; with
radius ry € (0, %]

e Fori < j,i,je{l,...,N}, we denote by N, ; :={u € RN sdist(u, yi,;) <
rq sin(Buy)} a neighborhood of the edge y; ;. Here, Bx € (0, #_2)] is a fixed
positive angle.

For a depiction of the resulting partition in the case N = 3, we refer to Figure 4. We
furthermore make use of a couple of additional abbreviations.

» Foranyi < j,i,je{l,...,N}, wedenoteby P; ;: 7; ; — y; ; the standard orthog-
onal projection onto ¥; ;, i.e. the projection onto the nearest point on y; ;.

*  We denote by Pl.mjfi’i: Ti,j — vi,; the radial projection onto y; ; with respect to o;,
. d,i . . d,i
ie. P/*"'u denotes the point on y; ; with [P/ u — ;| = |u — a;.

* Foranyu € 7; j, we denote by ﬂ;- (u) the angle formed by u — o;; and y; ;.

For an illustration of these notions, we refer to Figure 5 (again in the case N = 3).



J. Fischer and A. Marveggio 1168

Figure 4. Illustration of the partition of the simplex A2 given by {U; N A2);, (N7 \ U N
Az}i<j, and A2 \ N,

Definition 17 (Strongly coercive N-well potential on the simplex). We call a function
W:AN=1 [0, 00) a strongly coercive symmetric N -well potential on the simplex if it
satisfies the following list of properties:

(1) The nonnegative function W € C 1 (AN~=1;[0, 00)) vanishes exactly in the N ver-
tices {a1,...,an} of the simplex AN =1 It furthermore has the same symmetry
properties as the simplex AN ™1,

(2) Given the geodesic distance
disty (v, w) := inf{fol V2W(y(s)|y'(s)|ds : y € C1([0,1]; R?)
with y(0) = v, y(1) = w},

the infimum for distw (o;, ;) is achieved by y; ; and distw (o, ) = 1 for any
i,je{l,...,N},i#].

1
1

1

- It AL

-7 Jj 1

P u 1

.7 _a 1

P PESENT 1

.7 -7 " 1

PR 1 1

-7 i 1 1

Pithe '\‘ ,3’(14) [ 1

al ] 11 J
.. rad,i

Vi,j P ju P

Figure 5. Projections of u € ’Tji onto y;, j C A2,
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(3) (Growth near the minima «; depending on the angle). For any distinct i, j €
{1,...,N}and any u € U; N 7; ;, we have the estimate

(1+ w(BL ) W(P M u) < W(u),

where w: [0, m] — [0, 00) is a C'! increasing function such that

oB)=0 forf =0, (6.1a)
w(B)>0  for B e (0, By), (6.1b)
w(B) > C, forf e [,BN, m] (6.1¢)

where C, > 0 is a suitable large constant depending on N and where By <
B

(4) (Growth properties of W and Lipschitz estimate for \/2W (u) on the edges y; ;).
There exist constants ¢, Cy, > 0 such that

cy(u =) (u — ;) < W) < Cy(u — ;) (u — j)? (6.2)

holds for all u € y; ; and any distinct i, j € {1,..., N}. Furthermore, there exists
a constant L, > 0 such that for any u1,u> € y; ;,

IV2W(u1) — V2W(uz)| < LyJuy — usl. (6.3)

(5) (Growth behavior as one leaves the shortest paths y; ;). For any distinct i, j €
{1,...,N}andanyu € 7; ; N (N;; \ (U; U U;)), the lower bound

(1 + Cy dist?(u, y; ;) )W(Pi ju) < W(u) (6.4)

holds, where Cy > 0 is a suitable large constant depending on rqy, B, Ly, ¢y.

(6) (Lower bound away from the paths y; ;). Forany u € A\ (U; Wi U, <; M),
1
max W() < W(u), (6.5)
velU;i<j vi,j int

where Ci, > 0 is a suitable large constant depending on N, rq;, B, ¢y, Cy.

Note that, by following the procedure sketched above Proposition 8, one may indeed
construct a large variety of potentials W satisfying the conditions of Definition 17.

6.2. Construction of the approximate phase indicator functions v;

In this subsection we provide an ansatz for the set of functions ¥;: AN-T [0,1],1 <
i < N, in the case of a strongly coercive N -well potential on the simplex W: AN~1 —
[0, 00). Recall that the goal is to construct the v; to satisfy condition (A4) (as introduced
Section 2).
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Since (¥ o U, ..., YN o U,) represents an approximation of the limit partition (1,
.., Xn) and since by assumption we have disty (¢;, ;) = 8;;, our ansatz for ¥; on the
edges y;,; is

1 —distw (o;,ug) along y; ; for j e {1,..., N} \ {i},

iUg) ==
viliie) {O along yjx for j,k e {1,... . N}\{i}:j <k.

In the following we extend this definition of the set of functions ¥; on the domain AN ™1,
In order to do this, we introduce three interpolation and/or cutoff functions.

Lemma 18 (Interpolation functions). Let B € (0, w] and ry € (0, %]. The follow-
ing statements hold:
(1) There exists a function A: [0, g] — [0, 1] of at least C! regularity satisfying the
properties A(B) = 0 and dgA = 0 for all B € [0, Bu], k(ﬁ) =1, and

max  |dgA| < 4(N —2). (6.6)
BEl0, 5] g

(2) There exists a function 1: [0, 1] — [0, 1] of at least C! regularity satisfying the
properties n(s) =1 fors €[0,ry], n(s) =0fors €[l —ry,1], n(s) +n(1—s)=1
foralls € [0,1], and

5
max |dgn| < —. 6.7
se[oﬁ]l sn| < ) (6.7)

We omit the proof of the lemma, as it is straightforward. We finally proceed to the
construction of the functions v; from (A4) in the case of a strongly coercive N-well
potential on the simplex.

Construction 19. Let W: AN~1 — [0, 00) be a strongly coercive symmetric N -well
potential on the simplex in the sense of Definition 17. We define the associated set of
Sfunctions ;2 A — [0,1], 1 <i < N, as follows. Fori € {1,..., N}, we construct ¥; on
the edge between a; and o (j € {1,..., N} \ {i}) by

Yi(u) == 1—distw(o;,u) foruey; ;. (6.8)
Let j €{l,...,N}\{i}. Foranyu € Tf, we set
Yr(u) =0 foranyk € {1,...,N}\ {i,j}.
Furthermore, we define \r; and \; on ?;-i N (MN,; U U;) as follows:
e IfuelU; N ’J;’ we set

Vi () = i (P ), (6.92)
¥ () = (1= A(BE)) Y, (P ). (6.9b)
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o Ifue(N,;\U)N ?;i, we set

Vi) = (| Prju — i DY (P w) + (| Prju — o Dy (P u). - (6.10a)
V) = 1 Prje — oy (PR + (| Paju — e Dy (PR“Tw). (6.10b)
Finally, outside the domain M; = J; U; U U;.; 2 Mi,j U U, k:jati,j<k Tjk on which
we have defined Vr; so far, we define \; as a suitable C! extension:
o Ifu e AN\ M;, we define

Vi (ue) = Y™ (u) (6.11)

where yi": AN=1 — [0, 1] is a suitable C11 extension of yi: M; N AN™1 — [0, 1]
that almost preserves the Lipschitz constant of ¥;: M; 0 AN™1 — [0, 1].

6.3. Existence of a set of suitable approximate phase indicator functions

Proof of Proposition 8. 1t directly follows from Construction 19 that the set of functions
Yit A —[0,1],1 <i < N, satisfy ; = 1 at o; and 1//,-(14) < 1foru # q;.

We next show the vahdlty of (A4) in a given set 7', which we further decompose into
U N T Ny \ U) N T and TF\ (U UM,

Step 1: Proof of (A4)in U; N T "’ Letu e U; N T’ Recall 9 :=1— Zz 1 ¥¢. Due to

disty (e, 7)) = 1 and (6.8), it follows that y; (Prad' )=1—1y; (Pl.ra;1 "u). Thus, we have

Wo(u) = A(BE@))Y; (P4 u). We also have (imgry - V)i (P15 u) = [ 2W (P w).

Using (6.9), we can compute

i j () = (2= A(Bi(w))) \/2W(Pii@;f"fu)zrad,i ()

= A (B} () 1 (P[5 w)egi (u).

lu —
B to(u) = (B (w)) 2W(P»"‘“~f“u)aad i)

+ dgA (B} (u)) m |1/f, (Pij‘.”"u)aﬁj,; (u),

where €p,q,; (1), eﬁ,(u) are orthogonal vectors associated to the (N — 1)-dimensional
spherical coordinates pointing in the direction of steepest ascent of |u — «;| resp. ﬂ (u);
i.e. in particular we have €pq; (1) == \Z—gﬁl For the sake of brevity, we omit the depen—
dencies on ﬁ; (u) in the following. Then it follows that

|a 1;//t](u)|2 <(2- A)Z + |8,3/1| )ZW(Pradl ),
0o ()|> < (A2 + 19 A12W (P u),
10w, () - Do ()| < (A2 —R) + [dp A7) 2W (P w).
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For 6 > 0 small enough, we have

Soutii| + (5 +8) [ 50uv000| + 51011,500 - 000
< [3C-12 + 710502 + (3 +5) 20 + 13pAP)
+8A2 =) + |83)L|2)]2W(Pirf‘j‘.i’iu)
< [1 At 312 + 2|8/3)t|2 + ca]zW(P,.fj?""u)
< (1+ (] (u)))zvv(P“““ )

<2W(u),

where we used (6.6) and (6.1), together with the fact that § can be chosen arbitrarily small.

Step 2: Proof of (A4)inu € (N;; \ W) N T/, Letu € (Ni,; \ U;) N T} First, note that
Yo =1—1; —¢; =0o0n (N,; \ U;) N T} Using (6.10), we compute

i, () = (| Piju — e )2/ 2W (P 1)1 (u)
— (| Piju — o )2\ 2W (P u)eraa, j (1)

+ dun(| P ju — a;il)
[w](ledt ) wJ(Pradju)_{_wl(Pradju)_wl(Pradz )]7

U—a;
[u—a;|

where €p,q,; (1) = and €rq,j (u) = Note that we have

Iu oe |
dist (u, yi,;)
2|P,-,ju — Oti|7

ul < dist?(u, Vij)
T~ 2|P ju—al||P,]M—Olj|

0
| P} "w—o;| < |Piju—ai| +

|Prddl _ radj

(6.12)
As a consequence, we obtain
max{y; (P u) = v (PR ). i (P ) = 9 (P )
< \/W dist? (u, y1,7)

2|P,',ju —Ol,'| |P,-,ju —Olj|’

where vy € y;,; is the maximum of +/2W on the segment connecting P; ad Ju to Prad’ .
From (6.7) and n(| P;, ju — o;|) + n(| P;,ju — o;]) = 1 it follows that

1 2 5 2
~ i ( <(1 s,y 1)) 2W(v).  (6.13
‘2 qu,j ()| =< ( + 4|Pi,ju _ai| |Pi,ju _ajl ist=(u Vz,])) (vu) ( )
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Using 1 — | P ju — ;| = | P ju —aj| and | Py ju — oy | 711 — | Piju — o )7 <! (1—
ru) !, one can obtain

5 2
1+ distz(u,y',')) <1+ Cydist®(u, y;,;)
( 4P ju—o;| | P jue — aj] " : "

_ 5 25sin?(By)
for C1 = 5 d=rn + Tea—ro

first by adding a zero and using (6.3), then noting that |v, — ;| < |Pl.r’a;1’iu — o] and

since dist(u, y;,;) < ry sin(B). On the other hand,

using (6.12), from (6.2) together with the fact that | P; ju — ;| > % we can deduce

.. 2
2W(vy) = 2W(p,.,ju)(1 L V2V ) = V2W (P ju) )

V2W(P;,ju)

L
5””””( AP %wmmﬁ—l“”mo
suwaw00+ m#w(wﬂ
< 2W(Piju)(1 + Catan® (B} ().

where Cp = 2(/3‘,\/) pT . Moreover, one can compute

a+amwmnma+@mﬂww»

< 1+C; dist?(u, Vij) + dist?(u, Vi, ,)+C1C2tan2(ﬂ¢,v)dlst . vi,j)

C,
c 0s2 By
§1+C,,vdist . vi,j)

for Cy = C; + W + C,C5 tan?(By). Using our assumption (6.4), we can con-

clude from (6.13) and the preceding three estimates that
1 2 .5
‘Eaul/fi,j(u)’ < (1 + Cy dist™(u, yi,j))2W(P;,ju)
<2W(u).
Step 3: Proof of (A4) inu € T} \ M;. Letu € T/ \ M;. By (6.11) we have
Vi j (ue) = Y™ () — ™ (u),
Yolue) = 1= ¥™(u) — " (),

where w‘m L edi,j},isa CU! extension of ¥, from My N AN~1to AN~ that approx-
imately preserves the Lipschitz constant Liy ¢ > 0. Thus, we have

[0uVi,j] < (1 4+ 68)(Lingi + Lin,;), andsimilarly [9,%0| < (1 4+ 8)(Linei + Lint,j).
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where § > 0 is an arbitrary small constant. It is not too difficult to derive an estimate on the
Lipschitz constants Liy,; and Liy,; in terms of MaXyey ,pom Vem 2W(w). To this aim,
we first estimate

[ ()] <  Mmax V2W(w)ry foru € yim N Uy andm # i,
Vim
Vi (P ) = Ve(PI ™0l < max 2W ()| Pl — Pl

(6.12)

< max 2W(w)

ru . .
weo, Z(Tr‘u) smz(ﬁd\/) foru € M,m and m # l.

Using these estimates, the definitions (6.9)—(6.10), and the bounds (6.6) and (6.7), we
obtain

[0, (u)] < max \/ZW(w) foru € U;,
[0,y ()| < (14 4(N —2)ry) max V2W(w) foru € Uy, m #1,
WEYim

[0, ()| < (1 + sinz(ﬂw)) max V2W(w) foru € Nipm,m #1i.

5r=u
4(1 —ry)

Furthermore, we have |9, v; (u)| = 0in AN=1 N (| Tom.n). Defining

m<n:m##i,n#i

5r‘u

M = {1,1 4N = rq 1 4 —2Y%
max + 4( )ru +4(1—V‘u)

sinZ(ﬂN)} =1+ 4(N —2)ry,
this yields, by (6.5) foru € M; N AN71,

[0, (u)| < M max V2W(w) =: My

wWeUg m:t<m Ye.m

for any u € AN=1 N M;. In order to estimate the Lipschitz constant Lin; of ;] M;NAN-1,
one has to address the issue of nonconvexity of M;. It is not too difficult to see (but
rather technical to prove) that for any pair of points u, v € M; there exists a connecting
path y in M; with len(y) < Cy|u — v|. This shows Liy,; < Cy My . Having an upper
bound for Liy;, using the fact that our extension of ¥, to AN~1\ M; approximately
preserves the Lipschitz constant, and choosing Ciy; > %Cj{M 2 in (6.5), we can compute
foru € 'J'j’ \ M,

1 2

lzaul/fi,j(u)’ +

‘23 wo(u)( + 810, Wi (1) - Dy W0 ()]

<(1+6)? (1 n j +55) max L2, ,, < 2W ().

Here, we have used the fact that § > 0 can be chosen arbitrarily small. [
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A. Additional length condition for the gradient-flow calibration

In this appendix we justify the validity of condition (2.31) for the gradient-flow calibration
constructed in [13] (cf. Definition 6). To this aim, first we show that (2.31) holds on the
network of interfaces, and then we motivate the extension of the property (2.3i) to R?.
Similarly, one can check that (2.31) also holds for the gradient-flow calibration for three-
dimensional double bubbles (cf. [15]).

The global gradient-flow calibration for a network is obtained by gluing together suit-
able local constructions at each topological feature, i.e. a two phase interface or a triple
junction (for more details see [13]). More precisely, a partition of unity is defined in order
to localize around each topological feature, and then the global vector fields are defined by
gluing together locally constructed vector fields. In the following, we denote by élI’]’ resp.
£ eJ “¥ the local construction of the gradient-flow calibration in a neighborhood of a single
connected component of /;; resp. of the triple junction 7; ; x (cf. [13, Sections 5-6]).

As a starting point, we recall some useful properties of the gradient-flow calibration.
For any distinct i, j € {1,..., N}, we have

G =50 =& -5 =Fuy, g7 =35,
and & = S,fj coincides with the null vector forany k € {1,..., N} \ {i, j} on I; ; outside
a neighborhood of the triple junctions where /; ; ends. Let 7; ; x be the triple junction
where the phases i, j, and k meet, for mutually distinct i, j,k € {1,..., N}. Then, at the
triple junction 7; j .,

Tijk 1 1 . .
= , = —, by =—— A distinct £,m € {i, j, k},
f=E" Jal= m fbe=—p foranydisinet Cm < (i k)
and & = Sf’k coincides with the null vector for any £ € {1,..., N} \ {i, j, k}.
Leti, j € {1,..., N} such that i # j. If we restrict to the network of interfaces, the

vector field §; ; is nonzero only on each connected component of I; ;, I; x, I;x for any
ke{l,...,N}\ {i, j} and at the triple junctions where either the phase i or the phase
j meets other phases. Using the properties of the gradient-flow calibration listed above,
one can easily see that (2.31) is satisfied at each point belonging to a connected component
of I; j, I; k, or I ; and outside a neighborhood of the triple junctions where it ends, as
well as at the triple junctions where either the phase i or the phase j meets other phases.
As a consequence, in order to conclude about (2.31) on the network of interface, we only
need to check its validity in a neighborhood of triple junctions where either the phase i or
J meets other phases. In particular, it suffices to consider a neighborhood of 7; ; x and a
neighborhood of 7; x 5 for some distinct k, k" € {1,..., N} \ {7, j}.
In a neighborhood of 7; ; x, one can write

7 I 7

Ej=n5T +U-n§", & =ng" along /; .
Tij I; Tij I;

Gy =g+ (L —m&%, & =ng" + (1 —n§™ along g,
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where 7: R? — [0, 1] is a cutoff function decreasing quadratically with distance from
Ti,j .k and vanishing outside a neighborhood of ¥; ; x. Note thatE Tipk _ Ell'j’ along /; ; in
a neighborhood of 77 ; x. It follows that |& ;|*> = 1 and & ; - & = O fork e {1,...,N}\
{i, j} (cf. [13, Section 7.2]), hence (2.3i) holds along /; ; in a neighborhood of 7; ; «.
As a next step, we compute |& ;|? and |v/3&; - &|? for k € {1,...,N}\ {i, j}, and
then show that (2.31) with §.; = 0 holds along I; ¢ in a neighborhood of 7; ;. Since

gl{i]’.‘ = g:l = Zszk = 25 Tijk délg"k = —%Sl{",f = 2?; Tijk along I; x in a neighborhood

of J; j k, one can deduce

7 Jl 7. 7
|$t/|2_77|§ }k|2+(1 n)‘z i |* + (1 = p)g; Jk,é: jk

=n*+(1 —77)2— +n(l - rl)—,

1 ik tk zk ijk ijk
Eij - Ek———n(l—n)%‘” gy n(l—n)sf g (l—n) 2172

2
= a1 (1)
where we used §; Tijk & ik — 0in a neighborhood of 7; j x (for more details see [13,

Section 7.2]). As a consequence, one can see that
i1 + 4IV3E; - &l* < 1,

thus (2.3i) with §ca = 0 is satisfied along /; x in a neighborhood of 7; j .
As a next step, we consider a neighborhood of 7; x x/, where we can write

&i,j = 715 Tk + (- 77)5, NE € = nEk”"" + (- n)Sk”‘, Epr = Usklkk along 1; k.,
T ’ I ’ ~ ’
& =05, &= RECH 4 (1= NEM | o = TESH + (1 — EX  along Iy g,

where 7: R? — [0, 1] denotes a cutoff function decreasing quadratically with the distance
from 7; x x- and vanishing outside the neighborhood of 7; x /. Moreover, we have El{"j’-‘ =

I; 1s1; T;
él — 2‘§zk — 2&- Tikw and Eklk — _2%- ik _ 2%- ikk’

I 7 I I .
1EM = LE and £ = —1g M0 = Ek”"‘ along Iy x. Proceeding as above (cf.

[13, Section 7.2]), one can compute |£; ;|2 and |v/3&; ;- £&|? fork € {1,..., N}\ {i,/j},
and then show that (2.3i) holds along both /; 3/ and If - in a neighborhood of 7; /. In
particular, observe that on the network (2.31) is satisfied with §.,; = 0.

Finally, observe that the gradient-flow calibration satisfies first-order compatibility
conditions at any triple junction (cf. [13]). As a consequence, property (2.3i) can be
extended to R? up to errors of second order in the distance with respect to the network.
Hence, if one additionally truncates the gradient-flow calibration constructed in [13] by
means of an additional cutoff function decreasing quadratically with the distance from the
network, then condition (2.31) follows for an arbitrarily small §., > 0.

e
along Ik, as well as £ =
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