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Logarithmic Sobolev and interpolation inequalities on the
sphere: Constructive stability results

Giovanni Brigati, Jean Dolbeault, and Nikita Simonov

Abstract. We consider Gagliardo–Nirenberg inequalities on the sphere which interpolate between
the Poincaré inequality and the Sobolev inequality, and include the logarithmic Sobolev inequal-
ity as a special case. We establish explicit stability results in the subcritical regime using spectral
decomposition techniques, and entropy and carré du champ methods applied to nonlinear diffusion
flows.

1. Introduction and main results

Functional inequalities are essential in many areas of mathematics. The knowledge of
optimal constants, or at least good estimates of them, is crucial for various applications.
Whether optimality cases are achieved is a standard issue in analysis. The next natural
question is to understand how the deficit, say the difference of the two sides of the func-
tional inequality, measures the distance to the set of optimal functions. Such a question
has been actively studied in critical Sobolev inequalities, but much less in subcritical
interpolation inequalities. In the case of the sphere, a global stability result based on
Bianchi–Egnell-type methods was recently obtained for a family of Gagliardo–Nirenberg
inequalities by Frank [32], with the striking observation that only the power 4 of a natural
distance is controlled by the deficit. Here we give a more detailed picture, which includes
the logarithmic Sobolev inequality, and provide explicit estimates.

On the sphere Sd with d � 1, the logarithmic Sobolev inequality can be written asZ
Sd
jrF j2 d� �

d

2

Z
Sd
F 2 log

�
F 2

kF k2
L2.Sd /

�
d� 8F 2 H1.Sd ; d�/; (LS)

where d� denotes the uniform probability measure. The equality case is achieved by con-
stant functions and d=2 is the optimal constant, as shown by taking the test functions
F".x/ D 1C "x � �, for some arbitrary � 2 Sd , in the limit as "! 0. Our first result is
an improved inequality under an orthogonality constraint, which improves upon [23, Pro-
position 5.4].
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Theorem 1. Let d � 1. For any F 2 H1.Sd ; d�/ such thatZ
Sd
xF d� D 0; (1.1)

we haveZ
Sd
jrF j2 d� �

d

2

Z
Sd
F 2 log

�
F 2

kF k2
L2.Sd /

�
d� � Cd

Z
Sd
jrF j2 d�; (1.2)

with Cd D
2

dC2
.

Since equality in (LS) is achieved if and only if F is a constant function, the right-
hand side in (1.2) is an estimate of the distance to the set of optimal functions under the
constraint

R
Sd xF d�D 0. Alternatively, Theorem 1 amounts to the improved logarithmic

Sobolev inequalityZ
Sd
jrF j2 d� �

d C 2

2

Z
Sd
F 2 log

�
F 2

kF k2
L2.Sd /

�
d�

8F 2 H1.Sd ; d�/ such that
Z

Sd
xF d� D 0:

Without condition (1.1), there is no such inequality as (1.2). With F".x/ D 1C "x � � as
above, as "! 0 one can indeed check that

krF"k
2
L2.Sd / �

d

2

Z
Sd
F 2" log

�
F 2"

kF"k
2
L2.Sd /

�
d� D O."4/ D O.krF"k

4
L2.Sd //:

In the absence of an additional constraint, like (1.1), such behaviour is in fact optimal. The
following estimate arises from the carré du champ method.

Proposition 2. Let d � 1,  D 1=3 if d D 1 and  D .4d � 1/.d � 1/2=.d C 2/2 if d � 2.
Then, for any F 2 H1.Sd ; d�/, we haveZ

Sd
jrF j2 d� �

d

2

Z
Sd
F 2 log

�
F 2

kF k2
L2.Sd /

�
d� �

1

2

krF k4
L2.Sd /

krF k2
L2.Sd /

C dkF k2
L2.Sd /

:

With kF k2
L2.Sd /

D 1, notice that the deficit can be estimated from below byZ
Sd
jrF j2 d� �

d

2

Z
Sd
F 2 log.F 2/ d� �



2d
krF k4L2.Sd / C o.krF k

4
L2.Sd //

if krF k2
L2.Sd /

is small enough.

Let …1F denote the orthogonal projection of a function F 2 L2.Sd / on the spherical
harmonics corresponding to the first positive eigenvalue of �� on Sd , i.e.,

…1F.x/ D .d C 1/x �

Z
Sd
yF.y/ d�.y/ 8x 2 Sd :
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Our main stability result for the logarithmic Sobolev inequality combines the results of
Theorem 1 and Proposition 2 as follows.

Theorem 3. Let d � 1. For any F 2 H1.Sd ; d�/, we haveZ
Sd
jrF j2 d� �

d

2

Z
Sd
F 2 log

�
F 2

kF k2
L2.Sd /

�
d�

� Sd

�
kr…1F k

4
L2.Sd /

krF k2
L2.Sd /

C
d
2
kF k2

L2.Sd /

C kr.Id �…1/F k
2
L2.Sd /

�
for some stability constant Sd > 0.

An explicit estimate of Sd is given in Section 4.
We also consider the subcritical Gagliardo–Nirenberg inequalitiesZ

Sd
jrF j2 d� �

d

p � 2
.kF k2Lp.Sd / � kF k

2
L2.Sd // 8F 2 H1.Sd ; d�/; (GN)

for any p 2 Œ1; 2/ [ .2; 2�/. Here, d� again denotes the uniform probability measure
on Sd , the critical Sobolev exponent is 2� WD 2d=.d � 2/ if d � 3 and we adopt the
convention that 2� D C1 if d D 1 or d D 2. Inequality (GN) with p D 1 is equivalent
to the Poincaré inequality. If d � 3, inequality (GN) also holds for the critical exponent
p D 2� and it is in fact Sobolev’s inequality with optimal constant on Sd , but this is out
of the scope of our paper which focuses on the subcritical regime p < 2�. The logarithmic
Sobolev inequality (LS) is obtained from (GN) by taking the limit as p ! 2, and the
counterpart of the above results for p¤ 2, in the subcritical range p < 2�, goes as follows.

Theorem 4. Assume that d � 1 and p 2 .1;2/[ .2;2�/. For any functionF 2H1.Sd ;d�/
such that the orthogonality condition (1.1) holds, we haveZ

Sd
jrF j2 d� �

d

p � 2
.kF k2Lp.Sd / � kF k

2
L2.Sd // � Cd;p

Z
Sd
jrF j2 d� (1.3)

with Cd;p D
2d�p.d�2/
2.dCp/

.

Taking F".x/ D 1 C "x � � as above shows that (1.1) is needed in Theorem 4. We
also have a higher-order estimate of the deficit as a consequence of the carré du champ
method.

Proposition 5. Let d � 1 and p 2 .1; 2/ [ .2; 2�/. There is a convex function  on RC

with  .0/ D  0.0/ D 0 such that, for any F 2 H1.Sd ; d�/, we haveZ
Sd
jrF j2 d� �

d

p � 2
.kF k2Lp.Sd / � kF k

2
L2.Sd // � kF k

2
Lp.Sd / 

�
krF k2

L2.Sd /

kF k2
Lp.Sd /

�
:

An explicit expression for  will be given in Section 3. The two results of Theorem 4
and Proposition 5 can be combined to prove the analogue of Theorem 3 for p ¤ 2, with
an explicit constant: see Section 4.
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Theorem 6. Let d � 1 and p 2 .1; 2/ [ .2; 2�/. For any F 2 H1.Sd ; d�/, we haveZ
Sd
jrF j2 d� �

d

p � 2
.kF k2Lp.Sd / � kF k

2
L2.Sd //

� Sd;p

�
kr…1F k

4
L2.Sd /

krF k2
L2.Sd /

C kF k2
L2.Sd /

C kr.Id �…1/F k
2
L2.Sd /

�
for some explicit stability constant Sd;p > 0.

Let us give a brief account of the literature. In this paper, we address the distinction
between improved inequalities (inequalities with improved constants under orthogonality
constraints) and quantitative stability (as a measure of a distance to the set of optimal
functions). There are many adjacent directions of research like, for instance, stability in
weaker norms (see for instance [25, 40] for Sobolev’s inequality) or notions of stability
with no explicit notion of distance. To our knowledge, not so much has been done in
subcritical interpolation inequalities (see [11,32] and some references therein), except for
the logarithmic Sobolev inequality, for which we refer to [28, 30] and [31, 38, 39, 41].

The Gagliardo–Nirenberg inequalities (GN) on the sphere have been established with
optimal constant for any p 2 .2; 2�/ in [10, Corollary 6.1] and in [7]. In dimension d D 2,
Onofri’s inequality is obtained from (GN) in the limit as p! 2� DC1: see [7,13]. With
p 2 Œ1;2/ or p > 2 but not too large (if d � 2), inequality (GN) was known earlier from [3].
A Markovian point of view is presented in [5], with many more references therein on
related questions. On Euclidean space, similar inequalities go back to [34, 49, 51]. The
logarithmic Sobolev inequality (LS) is a well-known limit case as p ! 2 and can be
considered in a common framework with (GN). Whenever possible, we shall adopt this
point of view. For an overview of early results on the sphere, we refer to [36, Section
6, (iv)]. The literature on (LS) on the circle and on the sphere can be traced back at least
to [56], [46, Theorem 1, p. 268] with computations based on the ultraspherical operator,
and [50] for a more variational approach. The inequality with optimal constant is stated
in [3, inequality (13), p. 195] as a consequence of the carré du champ method. Also see [4]
and [14, p. 342] for related results and [18, 22, 23] for a PDE approach based on entropy
estimates and the carré du champ method. After Schwarz foliated symmetrization, the
problem is reduced to a simpler family of interpolation inequalities involving only the
ultraspherical operator.

The interest for stability issues was raised by [12] and the stability result of Bian-
chi and Egnell in [9], on Euclidean space. Over the years, various approaches have been
developed, based on compactness methods and contradiction arguments as in [9,16], spec-
tral analysis and orthogonality conditions as in [23, Proposition 5.4] and [37], or entropy
methods and improved inequalities as in [2, 20, 21, 23, 27]. For spectral methods, a fruit-
ful strategy relies on the Funk–Hecke formula, which is behind (2.2), and the approach
of [7, 44], which applies to the stability result for fractional interpolation inequalities
of [16] and [29, Corollary 2.3]. This is the method we use in Section 2. Stability issues
for (GN) have recently been discussed in [32] with methods of Bianchi–Egnell type, with
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the drawback that no estimate of the stability constant is known. This drawback can be
cured by a carré du champ method as we shall see in Section 3. Without entering into
details, let us mention some recent progress on stability in [11, 15, 19, 42] for related crit-
ical inequalities.

This paper is organized as follows. Section 2 is devoted to the proof by spectral
methods of Theorem 7 (see below), which is an extension of Theorems 1 and 4: under
orthogonality constraints, these results are reduced to estimates of improved constants
in inequalities (LS) and (GN), with various refinements based on a decomposition in
spherical harmonics. An explicit stability result without constraints corresponding to Pro-
positions 2 and 5 is proved in Section 3. The proofs of Theorems 3 and 6, in Section 4,
is based on the spectral decomposition method developed by Frank [32]. We collect the
previous estimates (with and without orthogonality constraints) in global results, with
explicit constants. Various additional results are stated in two appendices: the extension
of the method to interpolation inequalities for the Gaussian measure on Euclidean space
and a discussion of its limitations in Appendix A, the details of the computations of the
carré du champ method on the sphere and its application in order to establish improved
functional inequalities in Appendix B.

2. Improvements under orthogonality constraints

In this section we prove Theorems 1 and 4 in the slightly more general framework of
Theorem 7 below. Let us consider the generalized entropy functionals

E2ŒF � WD
1

2

Z
Sd
F 2 log

�
F 2

kF k2
L2.Sd /

�
d�;

EpŒF � WD
kF k2

Lp.Sd /
� kF k2

L2.Sd /

p � 2
if p ¤ 2:

With this notation, we can rephrase (LS) and (GN) asZ
Sd
jrF j2 d� � dEpŒF � 8F 2 H1.Sd ; d�/;

for any p 2 Œ1; 2�/. The optimality case is achieved by considering the test function
F" D 1C "'1 in the limit as "! 0, where '1 is an eigenfunction of the Laplace–Beltrami
operator such that ��'1 D d'1, for instance '1.x/ D x � � for some � 2 Sd as in Sec-
tion 1.

Let us consider the decomposition into spherical harmonics of L2.Sd ; d�/,

L2.Sd ; d�/ D
1M
`D0

H`;
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where H` is the subspace of spherical harmonics of degree ` � 0. See for instance [8, 45,
47, 52]. For any integer k � 1, let us define …k as the orthogonal projection with respect
to L2.Sd ; d�/ onto

Lk
`D1 H`. The following statement extends Theorems 1 and 4.

Theorem 7. Assume that d � 1, p 2 .1; 2�/ and let k � 1 be an integer. For any function
F 2 H1.Sd ; d�/, we haveZ

Sd
jrF j2 d� � dEpŒF � � Cd;p;k

Z
Sd
jr.Id �…k/F j

2 d� (2.1)

for some explicit constant Cd;p;k 2 .0; 1/ such that Cd;p;k � Cd;p;1 D
2d�p.d�2/
2.dCp/

.

The expression for Cd;p;k is given below in the proof. Inequality (2.1) can be seen as
an improvement of (LS) and (GN), namely

.1 � Cd;p;k/

Z
Sd
jrF j2 d� � dEpŒF �

for any F 2 H1.Sd ; d�/ such that…kF D 0. With k D 1, this establishes (1.2) and (1.3),
thus proving Theorem 1 if p D 2, and Theorem 4 if p ¤ 2.

Proof of Theorem 7. Let .Fj /j2N be the decomposition of F along Hj for any j 2N. We
learn from [7, inequality (19)] or [29, inequality (1.6)] that the subcritical interpolation
inequalities

EpŒF � �

1X
jD1

�j .p/

Z
Sd
jFj j

2 d� 8F 2 H1.Sd ; d�/ (2.2)

hold for any p 2 .1; 2/ [ .2; 2�/ with

�j .p/ WD
j
�
d
p

�
� 1

p � 2
and j .x/ WD

�.x/�.j C d � x/

�.d � x/�.x C j /
:

This result is based on the Funk–Hecke theorem (see for instance [33, Section 4]) and
Lieb’s ideas in [44]. Notice that �j .p/ � 0 for any p 2 .1; 2/[ .2; 2�/. According to [29,
Lemma 2.2], the function �j is strictly monotone increasing on .1;1/ for any j � 2 and
the limits

�j D d lim
p!2�

�j .p/

are the eigenvalues of the Laplace–Beltrami on the sphere, with �j D j.j C d � 1/. Hence

dEpŒF � �

1X
jD1

�j

Z
Sd
jFj j

2 d� D

Z
Sd
jrF j2 d�;

which is the essence of the proof of (GN) in [7] and also the main idea for the proof
of the stability result for fractional interpolation inequalities of [29, Corollary 2.3]. Here
we draw some consequences in standard norms for nonfractional operators and identify
estimates of the stability constant in the corresponding stability result.



Stability of subcritical interpolation inequalities on the sphere 1295

B The case p ¤ 2. Let x D d=p 2 ..d � 2/=2; d � if d � 2 and x 2 .0; d � if d D 1. We
consider

�j .x/ WD
jj .x/ � 1j

j.j C d � 1/
and hj .x/ D

j.j C d � 1/.j C d � x/

.j C 1/.j C d/.j C x/
I

notice that j .x/ > 1 for x < d=2, while j .x/ < 1 for x > d=2. An elementary compu-
tation shows that 0 < hj .x/ < 1. Since jC1.x/�� D hj .x/�jC1j .x/, we obtain

�jC1.x/ D hj .x/�j .x/C .1 � hj .x//�
?
j .x/; (2.3)

where

�?j .x/ WD
1

1 � hj .x/

ˇ̌̌hj .x/
�j
�

1

�jC1

ˇ̌̌
D

jd � 2xj

j.j C d/.2x � d C 2/C dx
:

Notice that .�?j .x//j�2 is a monotone decreasing sequence for any fixed, admissible value
of x. We start at j D 2 with the observation that �?2 .x/ < �2.x/ if x is admissible. This
gives, by using (2.3), the estimate

�3.x/ D h2.x/�2.x/C .1 � h2.x//�
?
2 .x/ < �2.x/:

Using �?3 .x/ < �
?
2 .x/, we can iterate and conclude by induction that �j .x/ < �2.x/ for all

j � 3. As a consequence, we obtain

sup
j�3

�j .p/

j.j C d � 1/
<

�2.p/

2.d C 1/
D

p

2.d C p/
<
1

d
8p 2 .1; 2/ [ .2; 2�/:

We deduce from (2.2) that

EpŒF � �

Z
Sd
jF1j

2 d�C
p

2.d C p/

1X
jD2

j.j C d � 1/

Z
Sd
jFj j

2 d�

D
1

d

Z
Sd
jrF j2 d�C

2d � p.d � 2/

2d.d C p/

Z
Sd
jr.Id �…1/F j

2 d�;

which proves the result with k D 1 and gives the expression for Cd;p;1.
Let us consider the case k > 1. We already know that �2.x/ > �?2 .x/. For any j � 2,

we deduce from (2.3) that

�jC1.x/ � �
?
jC1.x/ D hj .x/.�j � �

?
j .x//C �

?
j .x/ � �

?
jC1.x/ � hj .x/.�j � �

?
j .x//

because j 7! �?j .x/ is monotone decreasing. By induction, this proves that �j .x/ > �?j .x/
for any j � 2. As a consequence of (2.3), j 7! �j .x/ is also monotone decreasing and

sup
j�kC2

�j .p/

j.j C d � 1/
<

�kC1.p/

.k C 1/.k C d/
<
1

d
8p 2 .1; 2/ [ .2; 2�/:
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Altogether, for any k � 1, we have

dEpŒF � �

Z
Sd
jr…kF j

2 d�C
d�kC1.p/

.k C 1/.k C d/

Z
Sd
jrF j2 d�;

and the stability constant in (2.1) is estimated by

Cd;p;k D 1 �
d�kC1.p/

.k C 1/.k C d/
:

In our method, this constant cannot be improved, as shown by a test function such that
Fj D 0 for any j 2N such that j ¤ 0 and j ¤ kC 1, but this does not prove the optimality
of Cd;p;k .

B The case p D 2. By taking the limit as p ! 2C in (2.2), we obtain

�j WD
2

d
lim
p!2C

�j .p/ D  .j C d=2/ �  .d=2/;

where  .z/ D � 0.z/=�.z/ is the digamma function, and

1

2

Z
Sd
F 2 log

�
F 2

kF k2
L2.Sd /

�
d� �

d

2

1X
jD1

�j

Z
Sd
jFj j

2 d� 8F 2 H1.Sd ; d�/:

From  .z C 1/D  .z/C 1=z obtained by differentiating the identity �.z C 1/D z�.z/
with respect to z, we learn that

�jC1 D �j C
2

d C 2j
:

We claim that

�2 � �j �
2�j

d.d C 2/
8j � 2

because there is equality for j D 2 as �2 D
4.dC1/
d.dC2/

and �2 D 2.d C 1/ on the one hand,
and

�jC1 � �j D
2

d C 2j
�
2.d C 2j /

d.d C 2/
D
2.�jC1 � �j /

d.d C 2/

on the other hand, so that the result follows by induction.
Using �jC1 D �j C .d C 2j / D �j C 2zj where zj WD j C d=2, we also have

�jC1

�jC1
D

�j C
1
zj

�j C 2zj
<
�j

�j
;

where the inequality follows from

z2j >
�j

2�j
8j � 1:
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This inequality is indeed true for j D 1 because �1 D 2=d and we obtain the result for
any j � 1 by induction using

�jC1 � �j D
2

d C 2j
�
�jC1

2z2jC1
�
�j

2z2j
D 2

4j 2 C 2.d2 C 2/j C d3

.d C 2j /2.d C 2C 2j /2
:

Altogether, for any k � 1, we have

dE2ŒF � �

Z
Sd
jr…kF j

2 d�C
d�kC1

.k C 1/.k C d/

Z
Sd
jrF j2 d�

and the constant in (2.1) is given by

Cd;2;k D 1 �
d�kC1

.k C 1/.k C d/
:

In the framework of our method, this estimate of the constant cannot be improved, as
shown by a test function such that Fj D 0 for any j 2 N such that j ¤ 0 and j ¤ k C 1,
but again this does not prove the optimality of Cd;p;k .

3. Improvements by the carré du champ method

We improve upon Frank’s stability result in [32] by giving a constructive estimate based on
the carré du champ method, without assuming any additional constraint. Various compu-
tations that are needed for a complete proof, most of them already known in the literature,
are collected in Appendix B.

3.1. A simple estimate based on the heat flow, below the Bakry–Emery exponent

Let us consider the constant  given by

 WD
� d � 1
d C 2

�2
.p � 1/.2#

� p/ if d � 2;  WD
p � 1

3
if d D 1; (3.1)

where 2# WD 2d2C1
.d�1/2

is the Bakry–Emery exponent. Notice that  D 2� p with 1 � p � 2#

means that

d D 1 and p D 7=4 D p�.1/;

d > 1 and p D p�.d/ WD
3C d C 2d2 � 2

p
4d C 4d2 C d3

.d � 1/2
:

Let us define
s? WD

1

p � 2
if p > 2 and s? WD C1 if p � 2: (3.2)
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For any s 2 Œ0; s?/, let

'.s/ D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1 � .p � 2/s � .1 � .p � 2/s/
�


p�2

2 � p � 
if  ¤ 2 � p and p ¤ 2;

1

2 � p
.1C .2 � p/s/ log.1C .2 � p/s/ if  D 2 � p ¤ 0;

1


.es � 1/ if p D 2:

(3.3)

In [20, Theorem 2.1] (also see [21] and earlier related references therein) the improved
Gagliardo–Nirenberg inequalities

krF k2L2.Sd / � d'

�
EpŒF �

kF k2
Lp.Sd /

�
kF k2Lp.Sd / 8F 2 H1.Sd / (3.4)

are stated with  given by (3.1) under the conditions

d � 1 and 1 � p � 2# if d � 2; p � 1 if d D 1:

Why this estimate is based on the heat flow is explained in Appendix B. Additional justi-
fications and discussion of the case p D 2 are also given in Appendix B.

Since '.0/ D 0, '0.0/ D 1, and ' is convex increasing, with an asymptote at s D s? if
p 2 .2; 2#/, we know that 'W Œ0; s?/!RC is invertible and  WRC! Œ0; s?/, s 7!  .s/ WD

s � '�1.s/, is convex increasing with  .0/ D  0.0/ D 0, limt!C1.t �  .t// D s?, and

 00.0/ D '00.0/ D
.d � 1/2

.d C 2/2
.2#
� p/.p � 1/ > 0 8p 2 .1; 2#/:

Proposition 8. With the above notation, d � 1 and p 2 .1; 2#/, we have

krF k2L2.Sd / � dEpŒF � � dkF k
2
Lp.Sd / 

�
1

d

krF k2
L2.Sd /

kF k2
Lp.Sd /

�
8F 2 H1.Sd /:

If p D 2, notice that  is explicit and given by

 .t/ WD t �
1


log.1C  t/ 8t � 0:

The proof of Proposition 2 follows from the observation that  .t/ � 
2

t2

1Ct
for any t � 0.

3.2. An estimate based on the fast diffusion flow, valid up to the critical exponent

The subcritical range p 2 Œ2#; 2�/ corresponding to exponents between the Bakry–Emery
exponent and the critical Sobolev exponent is not covered in Section 3.1. In that case, we
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rely on entropy methods based on a fast diffusion or porous medium equation of expo-
nent m, which are detailed in Appendix B (with corresponding references), to establish
that an improved inequality (3.4) holds for any ' D 'm;p , where

'm;p.s/ WD

Z s

0

exp
�
��..1 � .p � 2/z/1�ı � .1 � .p � 2/s/1�ı/

�
dz; (3.5)

provided m 2 Ap WD Ap WD ¹m 2 Œm�.d; p/;mC.d; p/�W
2
p
� m < 1 if p < 4º, where

m˙.d; p/ WD
1

.d C 2/p

�
dp C 2˙

p
d.p � 1/.2d � .d � 2/p/

�
; (3.6)

while the parameters ı and � are defined by

ı WD 1C
.m � 1/p2

4.p � 2/
;

� WD
.d C 2/2p2m2� 2p.d C 2/.dpC 2/mC d2.5p2� 12pC 8/C 4d.3� 2p/pC 4

.1 �m/.d C 2/2p2
:

Let s? WD 1=.p � 2/ as in (3.2) and consider the inverse function '�1m;pWR
C ! Œ0; s?/ and

 m;p.s/ WD s � '
�1
m;p.s/. Exactly as in the case m D 1, we have the improved entropy –

entropy production inequality

krF k2L2.Sd / � dkF k
2
Lp.Sd /'m;p

�
EpŒF �

kF k2
Lp.Sd /

�
8F 2 H1.Sd /;

which provides us with the following stability estimate.

Proposition 9. With the above notation, d � 1, p 2 .2; 2�/ and m 2 Ap , we have

krF k2L2.Sd / � dEpŒF � � dkF k
2
Lp.Sd / m;p

�
krF k2

L2.Sd /

dkF k2
Lp.Sd /

�
8F 2 H1.Sd /:

The function 'm;p can be expressed in terms of the incomplete � function, while  m;p
is known only implicitly.

3.3. Comparison with other estimates

Let us assume that p 2 .2; 2�/. In [32], Frank proves the existence of a positive constant
c?.d; p/ such that

krF k2L2.Sd /�dEpŒF � � c?.d; p/

�
krF k2

L2.Sd /
CkF � xF k2

L2.Sd /

�2
krF k2

L2.Sd /
C

d
p�2
kF k2

L2.Sd /

8F 2 H1.Sd ; d�/
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where xF WD
R

Sd F d�, which in particular implies the existence of a positive constant
c.d; p/ such that

krF k2L2.Sd / � dEpŒF �

� c.d; p/
krF k4

L2.Sd /

krF k2
L2.Sd /

C
d
p�2
kF k2

L2.Sd /

8F 2 H1.Sd ; d�/; (3.7)

for all p 2 .2; 2�/. The value of the constant c?.d; p/ found in [32] is unknown as it
follows from a compactness argument, in the spirit of [9], but the exponent 4 in the right-
hand side of (3.7) is optimal. With the test functions F".x/D 1C "x � � for some arbitrary
� 2 Sd , we can indeed check that

lim
"!0

1

"4
.krF"k

2
L2.Sd / � dEpŒF"�/ D

.d C p/.p � 1/

2d.d C 3/
;

which gives the upper bounds

c.d; p/ �
.p � 1/.d C p/

2.p � 2/.d C 3/
and c?.d; p/ �

d2

.d C 1/2
.p � 1/.d C p/

2.p � 2/.d C 3/
:

Let us notice that krF k2
L2.Sd /

� dkF � xF k2
L2.Sd /

by the Poincaré inequality, so that we
have

.krF k2L2.Sd / C kF �
xF k2L2.Sd //

2
� krF k4L2.Sd /

�
d2

.d C 1/2
.krF k2L2.Sd / C kF �

xF k2L2.Sd //
2

and, at least if c?.d; p/ and c.d; p/ are the optimal constants,

d2

.d C 1/2
c.d; p/ � c?.d; p/ � c.d; p/:

We claim that the carré du champ method provides us with a constructive estimate of
c.d; p/. Let

�c.s/ WD
d

2.1 � c/

�
2cs � s? C

q
s2? C 4cs.s � s?/

�
:

Corollary 10. Let p 2 .2; 2�/. With the notation of Proposition 9, inequality (3.7) holds
with

c D sup
®
c > 0W 9m 2 Ap such that �c.s/ � 'm;p.s/ 8s 2 Œ0; s?/

¯
:

Proof. With no loss of generality, let us assume that kF kLp.Sd / D 1 and define

i D krF k2L2.Sd / and e WD
1 � kF k2

L2.Sd /

p � 2
;
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so that kF k2
L2.Sd /

D 1 � .p � 2/e. With c D c.d; p/, we can rewrite (3.7) as

i � de �
ci2

iC d
p�2
� de

;

which amounts to
i � de � �c.e/:

Since we know that i� de� 'm;p.e/, the conclusion follows for the largest possible c > 0
such that 'm;p � �c .

4. Global stability results

We collect the statements of Theorems 3 and 6 into a single result. The whole section is
devoted to its proof.

Theorem 11. Let d � 1 and p 2 .1; 2�/. For any F 2 H1.Sd ; d�/, we haveZ
Sd
jrF j2 d� � dEpŒF �

� Sd;p

�
kr…1F k

4
L2.Sd /

krF k2
L2.Sd /

C kF k2
L2.Sd /

C kr.Id �…1/F k
2
L2.Sd /

�
(4.1)

for some explicit stability constant Sd;p > 0.

The value of Sd;p is elementary and explicit but its expression is lengthy. We explain
in the proof how to compute it with all necessary details to obtain a numerical expression
for Sd;p for given p and d , if needed.

Proof of Theorem 11. By homogeneity of (4.1), we can assume that kF kL2.Sd / D 1

without loss of generality. For clarity, we subdivide the proof into various steps. Let us
start with the case p > 2.

• An estimate based on the carré du champ method. If krF k2
L2.Sd /

=kF k2
Lp.Sd /

� #0 > 0,
we know by the convexity of  m;p that

krF k2L2.Sd / � dEpŒF � � dkF k
2
Lp.Sd / m;p

�
1

d

krF k2
L2.Sd /

kF k2
Lp.Sd /

�
�
d

#0
 m;p

�#0
d

�
krF k2L2.Sd /: (4.2)

In that case, we conclude, from krF k2
L2.Sd /

D kr…1F k
2
L2.Sd /

C kr.Id�…1/F k
2
L2.Sd /

and

kr…1F k
2
L2.Sd / �

kr…1F k
4
L2.Sd /

krF k2
L2.Sd /

C kF k2
Lp.Sd /

:
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Let us assume now that krF k2
L2.Sd /

< #0kF k
2
Lp.Sd /

. By taking into account (GN), we
obtain

krF k2L2.Sd / < #0kF k
2
Lp.Sd / � #0

�
kF k2L2.Sd / C

p � 2

d
krF k2L2.Sd /

�
:

Using kF kL2.Sd / D 1, under the assumption that #0 < d=.p � 2/, we know that

# WD krF k2L2.Sd / <
d#0

d � .p � 2/#0
: (4.3)

Notice that the parameter #0 still has to be chosen.

• An estimate of the average. Let us estimate…0F WD
R

Sd F d�. By the Poincaré inequal-
ity we have

1 D kF k2L2.Sd / D

�Z
Sd
F d�

�2
C k.Id �…0/F k

2
L2.Sd / �

�Z
Sd
F d�

�2
C
#

d
;

and on the other hand we know that .
R

Sd F d�/
2 � kF k2

L2.Sd /
D 1 by the Cauchy–

Schwarz inequality, so that

d � #

d
<

�Z
Sd
F d�

�2
� 1: (4.4)

We assume in the sequel that
# < d: (4.5)

• Partial decomposition on spherical harmonics. With no loss of generality, let us write

F DM.1C "YC �G/ (4.6)

such that MD…0F and…1F D "MY, where Y.x/D
q
dC1
d
x � � for some given � 2 Sd .

Here the functions Y and G are normalized so that krYkL2.Sd / D krGkL2.Sd / D 1 and

M�2krF k2L2.Sd / D "
2
C �2 D # and M�2kF k2L2.Sd / D 1C

1

d
"2 C �2kGk2L2.Sd /:

We observe that …0.F �M/ D 0. Using (GN) and the Poincaré inequality, we have

kF �Mk2Lp.Sd / � kF �Mk2L2.Sd / C
p � 2

d
krF k2L2.Sd / �

p � 1

d
krF k2L2.Sd /:

Similarly, by (2.1), i.e.,

dp

2.d C p/
krGk2L2.Sd / D

�
1 �

2d � p.d � 2/

2.d C p/

�
krGk2L2.Sd / � dEpŒG�;

and the improved Poincaré inequality (2.1), written with p D 1 and k D 1,

kGk2L2.Sd / �
1

2.d C 1/
krGk2L2.Sd / D

1

2.d C 1/
;
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we have

kGk2Lp.Sd / � kGk
2
L2.Sd / C

p.p � 2/

2.d C p/
krGk2L2.Sd / � Cp;d

using krGkL2.Sd / D 1, with Cp;d WD 1
2.dC1/

C
p.p�2/
2.dCp/

. By the Cauchy–Schwarz inequal-
ity, we also have

kGkL1.Rd / �
1p

2.d C 1/
;

We recall that the eigenvalues of �� on Sd are �k D k.k C d � 1/ with k 2 N. In
preparation for a detailed Taylor expansion as in [32], let us consider the function

Y.x/ WD

r
d C 1

d
x � �;

which is such that ��Y D �1Y with �1 D d and

krYk2L2.Sd / D 1; kYk2L2.Sd / D
1

d
;

kYk4L4.Sd / D
3.d C 1/

.d C 3/d2
; kYk6L6.Sd / D

15.d C 1/2

.d C 3/.d C 5/d2
:

The function Y2 WD Y2 � 1
d

is such that ��Y2 D �2Y2 with �2 D 2.d C 1/ and

kY2k
2
L2.Sd / D

2

d.d C 3/
; krY2k

2
L2.Sd / D

4.d C 1/

d.d C 3/
:

The function Y3 WD Y3 � 3.dC1/
d.dC3/

Y is such that ��Y3 D �3Y3 with �3 D 3.d C 2/ and

kY3k
2
L2.Sd / D

6.d C 1/2

.d C 5/.d C 3/2d2
; krY3k

2
L2.Sd / D

18.d C 2/.d C 1/2

.d C 5/.d C 3/2d2
:

As a consequence of (4.6), we know that…0G D…1G D 0 and krGkL2.Sd / D 1. Let

g2 WD

R
Sd rY2 � rG d�

krY2kL2.Sd /
and g3 WD

R
Sd rY3 � rG d�

krY3kL2.Sd /
:

With k D 1, 2, using ��Yk D �kYk with �k D krYkk2L2.Sd /=kYkk
2
L2.Sd /

, we computeZ
Sd

YkG d� D

Z
Sd

YkG d� D
kYkk

2
L2.Sd /

krYkk
2
L2.Sd /

Z
Sd
rYk � rG d� D gk

kYkk
2
L2.Sd /

krYkkL2.Sd /

and obtainZ
Sd

Y2G d� D

Z
Sd

Y2G d� D
g2p

d.d C 1/.d C 3/
;

Z
Sd

Y3G d� D

Z
Sd

Y3G d� D c3g3 with c3 WD
d C 1

d.d C 3/

s
2

.d C 2/.d C 5/
:
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• Taylor expansions (1). Let us start with elementary estimates of k1C "YkLp.Sd /. If it
holds that 2 � p < 3 and jsj < 1, we have

1

2
..1C s/p C .1 � s/p/ � 1C

p

2
.p � 1/s2

�
1C

1

12
.p � 2/.p � 3/s2

�
because all other terms in the series expansion of the left-hand side around s D 0 corres-
pond to even powers of s and appear with nonpositive coefficients. If either 1 � p < 2 or
p > 3 and jsj < 1=2, let

fp.s/ WD
1

2
..1C s/p C .1 � s/p/ �

�
1C

p

2
.p � 1/s2

�
and notice that f 00p .s/D

p
2
.p � 1/..1C s/p�2 C .1� s/p�2 � 2/ � 0 by convexity of the

function y 7!yp�2, so that c.C/p defined as the maximum of s 7!fp.s/=s6 on Œ�1=2;1=2�3
s is finite and we have

1

2
..1C s/p C .1� s/p/ � 1C

p

2
.p � 1/s2

�
1C

1

12
.p � 2/.p � 3/s2

�
C c.C/p s6: (4.7)

We adapt the convention that c.C/p D 0 if p 2 Œ2; 3/. Using the fact that Y.�x/ D �Y.x/,

k1C "Yk
p

Lp.Sd /
D
1

2

�
k1C "Yk

p

Lp.Sd /
C k1 � "Yk

p

Lp.Sd /

�
:

For any " 2 .0; 1=2/ we use (4.7) to write

k1C "Yk
p

Lp.Sd /
�

�
1C

p

2
.p � 1/

�
kYk2L2.Sd / C

1

12
.p � 2/.p � 3/kYk4L4.Sd /"

2
�
"2
�

� c.C/p kYk
6
L6.Sd /"

6:

For similar reasons, one can prove that there is another constant c.�/p which provides us
with a lower bound c.�/p kYk

6
L6.Sd /

"6. Altogether, this amounts to

c
.�/

p;d
"6 � k1C "Yk

p

Lp.Sd /
� .1C ap;d"

2
C bp;d"

4/ � c
.C/

p;d
"6; (4.8)

with

ap;d WD
p.p � 1/

2d
; bp;d WD

1

4
.p � 2/.p � 3/

d C 1

d.d C 3/
ap;d ;

c
.˙/

p;d
WD

15.d C 1/2

.d C 3/.d C 5/d2
c.˙/p :

Estimate (4.8) is valid under the condition that " < 1=2. We shall therefore request that

# <
1

4
; (4.9)
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which is an obvious sufficient condition according to (4.3). Now we draw two conse-
quences of (4.8). First, let us give an upper estimate of k1C "Yk2

Lp.Sd /
. Using

.1C s/
2
p � 1C 2

s

p
� .p � 2/

s2

p2
C
2

3
.p � 1/.p � 2/

s3

p3
;

we obtain

k1C "Yk2Lp.Sd / � 1C
2

p
ap;d"

2
C

1

p2
.2pbp;d � .p � 2/a

2
p;d /"

4
C r .C/"6; (4.10)

where the remainder term r .C/ is explicitly estimated by

96p3r .C/ D 64a3p;d .p
2
� 3p C 2/C 48a2p;d .p

2
� 3p C 2/.2bp;d C cp;d /

C 12ap;d .p � 2/.2bp;d C cp;d /.2bp;d .p � 1/C cp;d .p � 1/ � 8p/

C 8b3p;d .p
2
� 3p C 2/C 12b2p;d .p � 2/.cp;d .p � 1/ � 4p/

C 6bp;dcp;d .p � 2/.cp;d .p � 1/ � 8p/

C cp;d
�
c2p;d .p

2
� 3p C 2/ � 12cp;d .p � 2/p C 192p

2
�
:

To do this estimate, we simply write that "˛ � 26�˛"6 for any ˛ > 6 using the (nonoptimal)
bound "2 < 1=2. Similarly, using

.1C s/
2
p�1 � 1 � .p � 2/

s

p
C .p � 1/.p � 2/

s2

p2
�
1

3
.p � 1/.p � 2/.3p � 2/

s3

p3

C
1

6
.p � 1/.p � 2/.3p � 2/.2p � 1/

s4

p4
;

we obtain

k1C "Yk
2�p

Lp.Sd /
� 1C

p � 2

p
ap;d"

2
�
p � 2

p2
.pbp;d � .p � 1/a

2
p;d /"

4
C r .�/"6; (4.11)

where the remainder term r .�/ also has an explicit expression in terms of ap;d , bp;d and
c
.�/

p;d
, which is not given here.

• Taylor expansions (2). With u � 0, uC r � 0 and p > 2, we claim that

.uC r/p � up C pup�1r C
p

2
.p � 1/up�2r2 C

X
2<k<p

C
p

k
up�kjr jk CKpjr j

p

for some constant Kp > 0, where the coefficients

C
p

k
WD

�.p C 1/

�.k C 1/�.p � k C 1/
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are the binomial coefficients if p is an integer. It is proved in [19] that Kp D 1 if p 2
.2; 4� [ ¹6º. The proof is similar to the above analysis and is left to the reader. Let us
integrate this inequality and raise both sides to the power 2=p to get

kuC rk2Lp.Sd / � kuk
2
Lp.Sd /.1C s/

2
p ;

with

s D
1

kuk
p

Lp.Sd /

�
p

Z
Sd
up�1r d�C

p

2
.p � 1/

Z
Sd
up�2r2 d�

C

X
2<k<p

C
p

k

Z
Sd
up�kjr jk d�CKp

Z
Sd
jr jp d�

�
:

By assumption 2=p < 1 so that we may use the identity .1C s/2=p � 1C 2s=p for any
s � �1. Notice that we can assume that uC r � 0 and deduce from (1) that s � �1. As a
consequence, we have

kuC rk2Lp.Sd / � kuk
2
Lp.Sd /

C
2

p
kuk

2�p

Lp.Sd /

�
p

Z
Sd
up�1r d�C

p

2
.p � 1/

Z
Sd
up�2r2 d�

C

X
2<k<p

C
p

k

Z
Sd
up�kjr jk d�CKp

Z
Sd
jr jp d�

�
:

We apply these computations to u D 1C "Y and r D �G to obtain

M�2kF k2Lp.Sd / � k1C "Yk
2
Lp.Sd /

�
2

p
k1C "Yk

2�p

Lp.Sd /
�

�
p

Z
Sd
.1C "Y/p�1G d�

C
p

2
.p � 1/�

Z
Sd
.1C "Y/p�2jGj2 d�

C

X
2<k<p

C
p

k
�k
Z

Sd
.1C "Y/p�kjGjk d�

CKp�
p

Z
Sd
jGjp d�

�
:

Let us detail the expansion of each of the terms involving G in the right-hand side of this
estimate. For any s 2 .�1=2; 1=2/, using the expansion

.1C s/p�1 � 1C .p � 1/s C
1

2
.p � 1/.p � 2/s2

C
1

6
.p � 1/.p � 2/.p � 3/s3 CRps

4
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for some constant Rp > 0 applied with s D 1C "Y, we obtain

�

Z
Sd
.1C "Y/p�1G d� �

1

2
.p � 1/.p � 2/

g2p
d.d C 1/.d C 3/

�"2

C
1

6
.p � 1/.p � 2/.p � 3/c3g3�"

3
C

Rp�"
4p

2.d C 1/
:

The other terms admit simpler expansions:

�2
Z

Sd
.1C "Y/p�2jGj2 d� � �2.1C "/p�2kGk2L2.Sd /

� kGk2L2.Sd /�
2
C

1

2.d C 1/
�2..1C "/p�2 � 1/

and X
2<k<p

C
p

k
�k
Z

Sd
.1C "Y/p�kjGjk d�CKp�

p

Z
Sd
jGjp d�

�

X
2<k<p

C
p

k
�k.1C "/p�kkGkkLp.Sd / CKp�

p
kGk

p

Lp.Sd /

�

X
2<k<p

C
p

k
�k.1C "/p�kC

k=p

p;d
CKp�

pCp;d :

Collecting (4.10) and (4.11) with the above estimates, we arrive at

M�2kF k2Lp.Sd /

� 1C
2

p
ap;d"

2
C

1

p2
.2pbp;d � .p � 2/a

2
p;d /"

4
C r .C/"6

C

�
1C

p � 2

p
ap;d"

2
�
p � 2

p2
.pbp;d � .p � 1/a

2
p;d /"

4
C r .�/"6

�
�

�
.p� 1/.p� 2/

g2p
d.d C 1/.d C 3/

�"2 C
1

3
.p� 1/.p� 2/.p� 3/c3g3�"

3

C
2Rp�"

4p
2.d C 1/

C .p � 1/
�
kGk2L2.Sd /�

2
C

1

2.d C 1/
�2..1C "/p�2 � 1/

�
C
2

p

� X
2<k<p

C
p

k
�k.1C "/p�kC

k=p

p;d
CKp�

pCp;d

��
:

Using jg2j<1, jg3j<1, and 2.d C 1/kGk2
L2.Sd /

<1, this gives rise to an explicit although
lengthy expression for a positive constant Rp;d such that

M�2
�Z

Sd
jrF j2 d� � dEpŒF �

�
� A"4 � B"2�C C�2 �Rp;d .#

p
C #5=2/;
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with A WD .p�1/.dCp/
2d.dC3/

, B WD d.p�1/
p
d.dC1/.dC3/

and C WD dC2
2.dC1/

. The discriminant

B2 � 4AC D �
1

d.d C 3/
.p � 1/.2d � p.d � 2//

is negative if (and only if) p 2 .1; 2�/, so that we can write

As2 � Bs C C D .A � �/s2 � Bs C .C � �/C �.s2 C 1/ � �.s2 C 1/;

where
� WD

1

2

�
AC C C

p
.A � C/2 C B2

�
is given by the condition that B2 � 4.A � �/.C � �/ D 0. Altogether, we obtain

M�2
�Z

Sd
jrF j2 d� � dEpŒF �

�
� �."4 C �2/ �Rp;d .#

p
C #5=2/:

• Conclusion if p > 2. We choose # > 0 such that (4.5) and (4.9) are fulfilled. With the
additional assumption that

# � #p;d WD
®
� > 0WRp;d .�

p
C �5=2/ D �

4
�2
¯
;

using �4 � �2 and 2"2�2 � "4 C �2 if � < 1, we have

Rp;d .#
p
C #5=2/ �

�

4
#2 D

�

4
."2 C �2/2 �

�

2
."4 C �2/ �

�

2

� "4

"2 C �2 C 1
C �2

�
:

For any F such that krF k2
L2.Sd /

D # , we obtainZ
Sd
jrF j2 d� � dEpŒF � �

�

2

�
kr…1F k

4
L2.Sd /

krF k2
L2.Sd /

C kF k2
Lp.Sd /

C kr.Id �…1/F k
2
L2.Sd /

�
:

Using (4.2) and (4.4), this completes the proof of Theorem 11 if p > 2 with

# � min
°d
2
;
1

4
; #p;d

±
D

d#0

d � .p � 2/#0
and Sd;p D min

° d
#0
 m;p

�#0
d

�
;
�

2

±
:

• The case p � 2. The strategy is the same, with some simplifications, so we only sketch
the proof and emphasize the changes compared to the case p > 2. Let us notice that

.1C s/p � 1C ps C
p

2
.p � 1/s2 if 1 � p < 2

and .1 C s/2 log..1 C s/2/ � 2s C 2s2 C 2
3
s3 in the limit case p D 2. The estimates

involving 1C "Y are therefore essentially the same if we assume " < 1=2, while the com-
putation of kuC rk2

Lp.Sd /
is in fact simpler, when applied to uD 1C "Y and r D �G. The

estimate on the average is simplified because kF kLp.Sd /�kF kL2.Sd / by Hölder’s inequal-
ity, since d� is a probability measure on Sd . Spectral estimates are exactly the same and
the Taylor expansions present no additional difficulty, as we can use (GN) for some expo-
nent q 2 .2; 2�/ to control the remainder terms if p D 2, so that .1C s/2 log..1C s/2/ �
2s C 2s2 C �qs

q for some �q > 0. The conclusion is the same as for p > 2 except that
we have to replace  m;p by  defined as in Proposition 8.
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A. Improved Gaussian inequalities, hypercontractivity and stability

Whether the results of Theorems 1, 4 and 7 can be extended to the Euclidean case with the
Gaussian measure is a very natural question. Spherical harmonics can indeed be replaced
by Hermite polynomials and there is a clear correspondence for spectral estimates. The
answer is yes for a whole family of interpolation inequalities, but it is no for the logar-
ithmic Sobolev inequality, which is an endpoint of the family.

Let us consider the normalized Gaussian measure on Rd defined by

d�.x/ D .2�/�
d
2 e�

1
2 jxj

2

dx:

For any p 2 Œ1; 2/, Beckner [6] established the family of interpolation inequalities

kf k2
L2.Rd ;d�/

� kf k2
Lp.Rd ;d�/

2 � p
� krf k2L2.Rd ;d�/

8f 2 H1.Rd ; d�/: (A.1)

With p D 1, inequality (A.1) is the Gaussian Poincaré inequality, while one recovers the
Gaussian logarithmic Sobolev inequality of [35] in the limit as p! 2. For any p 2 Œ1; 2/,
the inequality is optimal: using f" WD 1 C "' as a test function, where ' is such thatR

Rd ' d� D 0, we recover the Gaussian Poincaré inequality with optimal constant in the
limit as "! 0, so that the constant in (A.1) cannot be improved. Based on [1, 43], the
improved version of the inequality

kf k2
L2.Rd ;d�/

� kf k2
Lp.Rd ;d�/

2 � p
�
p

2
krf k2L2.Rd ;d�/

8f 2 H1.Rd ; d�/ (A.2)

holds under the additional conditionZ
Rd

xf .x/ d� D 0: (A.3)

Let us give a short proof of (A.2). Assume that f D
P
k2N fk is a decomposition on

Hermite functions such that Lfk D �kfk where L D � � x � r is the Ornstein–Uhlen-
beck operator, and let ak WD kfkk2L2.Rd ;d�/

for any k 2 N, so that

kf k2L2.Rd ;d�/
D

X
k2N

ak and krf k2L2.Rd ;d�/
D

X
k2N

kak :

Let us consider the solution of
@u

@t
D Lu (A.4)

with initial datum u.t D 0; �/ D f and notice that

ku.t; �/k2L2.Rd ;d�/
D

X
k2N

ake
�2kt :
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Hence, if (A.3) holds, a1 D 0 and

kf k2L2.Rd ;d�/
� ku.t; �/k2L2.Rd ;d�/

D

X
k�2

ak.1 � e
�2kt /

�
1

2
.1 � e�4t /

X
k2N

kak

D
1

2
.1 � e�4t /krf k2L2.Rd ;d�/

; (A.5)

because k 7! .1� e�2kt /=k is monotone nonincreasing for any given t � 0. Next we use
Nelson’s hypercontractivity estimate in [48, Theorem 3] to find t� > 0 such that

ku.t�; �/k
2
L2.Rd ;d�/

� kf k2Lp.Rd ;d�/
:

As noted in [35], this estimate can be seen as a consequence of the Gaussian logarithmic
Sobolev inequalityZ

Rd

jvj2 log
�

jvj2

kvk2
L2.Rd ;d�/

�
d� � 2

Z
Rd

jrvj2 d� 8v 2 H1.Rd ; d�/; (A.6)

and the argument goes as follows. With h.t/ WD ku.t; �/kLq.t/.Rd ;d�/ for some exponent q
depending on t and u solving (A.4), we have

h0

h
D
q0

q2

Z
Rd

jujq

hq
log
�
jujq

hq

�
d� �

4

hq
q � 1

q2

Z
Rd

jr.jujq=2/j2 d� � 0

by (A.6) applied to v D jujq=2, if t 7! q.t/ solves the ordinary differential equation

q0 D 2.q � 1/:

With q.0/ D p < 2, we obtain q.t/ D 1C .p � 1/e2t and find that Nelson’s time t� is
determined by the condition q.t�/ D 2 which means e�2t� D p � 1. Replacing t D t�
in (A.5) completes the proof of (A.2), which can be recast in the form of a stability result
for (A.1).

Theorem 12. Let d � 1 and p 2 Œ1; 2/. For any f 2 H1.Rd ; d�/ such that (A.3) holds,

krf k2L2.Rd ;d�/
�

1

2 � p
.kf k2L2.Rd ;d�/

� kf k2Lp.Rd ;d�/
/ �

2 � p

2
krf k2L2.Rd ;d�/

:

As a by-product of the proof, with t D t� in (A.5), we have the mode-by-mode inter-
polation inequality

kf k2
L2.Rd ;d�/

�kf k2
Lp.Rd ;d�/

2�p
�

X
k�1

1 � .p � 1/k

k.2 � p/
krfkk

2
L2.Rd ;d�/

8f 2H1.Rd ;d�/;
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without imposing condition (A.3), for any p 2 Œ1; 2/. For any k � 1,

lim
p!2�

1 � .p � 1/k

k.2 � p/
D lim
p!2�

1 � .1 � .2 � p//k

k.2 � p/
D 1;

so that no improvement should be expected by this method. This is very similar to the
case of the critical exponent on the sphere of dimension d � 3. In this sense p D 2 is the
critical case in the presence of a Gaussian weight, as all modes are equally involved in
the estimate of the constant. This is a limitation of the method which does not forbid a
stability result for (A.6), to be established by other methods.

Let us conclude this appendix with some bibliographic comments on the literature on
inequality (A.1), for the Gaussian measure. The analogue of Proposition 5 in the Gaussian
case is known from [2]; also see [26, Section 2.5]. Assuming that not only condition (A.3)
is satisfied, but also orthogonality conditions with all modes up to order k0 � 2, then an
improvement of the order of

1 � .p � 1/k0

k0.2 � p/

can be achieved for inequality (A.1), which is the counterpart of Theorem 4 in the Gaus-
sian case. This has been studied in [43] but we can refer to [1] for a more abstract setting
and later papers, e.g., to [53, 55] for results on compact manifolds and generalizations
involving weights. For an overview of interpolation between Poincaré and logarithmic
Sobolev inequalities from the point of view of Markov processes, and for some spectral
considerations, we refer to [54, Chapter 6]. Notice that hypercontractivity appears as one
of the main motivations of the founding paper [3] of the carré du champ method.

B. Carré du champ method and improved inequalities

For the sake of completeness, we collect various results of [20–22, 24] and draw some
new consequences. Computations similar to those of Section B.1 can be found in [10]
for the study of rigidity results in elliptic equations. For nonlinear parabolic flows, also
see [17, 18]. Other sections of this appendix collect results which are scattered in the
literature, but additional details needed in Section 3 are given, for instance a sketch of the
proof of Proposition 16 or the computations in the case p D 2.

B.1. Algebraic preliminaries

Let us denote the Hessian by Hv and define the trace-free Hessian by

Lv WD Hv �
1

d
.�v/gd :

We also consider the trace-free tensor

Mv WD
rv ˝rv

v
�
1

d

jrvj2

v
gd ;
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where .rv ˝ rv/ij WD @iv@j v and krv ˝ rvk2 D jrvj4 D .g
ij

d
@iv@j v/

2 using Ein-
stein’s convention. Using

L W gd D 0; M W gd D 0;

where a W b denotes aij bij and kak2 WD a W a, and

kLvk2 D kHvk2 �
1

d
.�v/2;

kMvk2 D
rv ˝rv

v

2 � 1

d

jrvj4

v2
D
d � 1

d

jrvj4

v2
;

we deduce fromZ
Sd
�v
jrvj2

v
d� D

Z
Sd

jrvj4

v2
d� � 2

Z
Sd

Hv W
rv ˝rv

v
d�

D
d

d � 1

Z
Sd
kMvk2 d� � 2

Z
Sd

Lv W
rv ˝rv

v
d�

�
2

d

Z
Sd
�v
jrvj2

v
d�

a first identity that readsZ
Sd
�v
jrvj2

v
d� D

d

d C 2

�
d

d � 1

Z
Sd
kMvk2 d� � 2

Z
Sd

Lv W
rv ˝rv

v
d�

�
: (B.1)

The Bochner–Lichnerowicz–Weitzenböck formula on Sd takes the simple form

1

2
�.jrvj2/ D kHvk2 Cr.�v/ � rv C .d � 1/jrvj2;

where the last term, i.e., Ric.rv;rv/ D .d � 1/jrvj2, accounts for the Ricci curvature
tensor contracted with rv ˝ rv. An integration of this formula on Sd shows a second
identity, Z

Sd
.�v/2 d� D

d

d � 1

Z
Sd
kLvk2 d�C d

Z
Sd
jrvj2 d�: (B.2)

Hence,

KŒv� WD

Z
Sd

�
�v C �

jrvj2

v

��
�v C .ˇ � 1/

jrvj2

v

�
d�

D

Z
Sd
.�v/2 d�C .� C ˇ � 1/

Z
Sd
�v
jrvj2

v
d�C �.ˇ � 1/

Z
Sd

jrvj4

v2
d�

can be rewritten using (B.1) and (B.2) as

KŒv� D
d

d � 1

Z
Sd
kLvk2 d�C d

Z
Sd
jrvj2 d�

C .� C ˇ � 1/
d

d C 2

�
d

d � 1

Z
Sd
kMvk2 d� � 2

Z
Sd

Lv W Mv d�
�

C �.ˇ � 1/
d

d � 1

Z
Sd
kMvk2 d�
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D
d

d � 1

Z
Sd

�
kLvk2 � 2bLv W Mv C ckMvk2

�
d�C d

Z
Sd
jrvj2 d�

D
d

d � 1

Z
Sd

�
kLv � bMvk2 C .c � b2/kMvk2

�
d�C d

Z
Sd
jrvj2 d�

D
d

d � 1

Z
Sd
kLv � bMvk2 d�C .c � b2/

Z
Sd

jrvj4

v2
d�C d

Z
Sd
jrvj2 d�;

where

b D .� C ˇ � 1/
d � 1

d C 2
and c D

d

d C 2
.� C ˇ � 1/C �.ˇ � 1/:

Let � D ˇ.p � 2/C 1. The condition  WD c � b2 � 0 amounts to

 D
d

d C 2
ˇ.p � 1/C .1C ˇ.p � 2//.ˇ � 1/ �

� d � 1
d C 2

ˇ.p � 1/
�2
; (B.3)

where  D �.Aˇ2 � 2Bˇ C C/ with

A D
� d � 1
d C 2

.p � 1/
�2
C 2 � p; B D

d C 3 � p

d C 2
and C D 1:

A necessary and sufficient condition for the existence of a ˇ such that  � 0 is that the
reduced discriminant is nonnegative, which amounts to

B2 � AC D
4d.d � 2/

.d C 2/2
.p � 1/.2� � p/ � 0:

Summarizing, we have the following result, which can be found in [22] for a general
manifold with positive Ricci curvature.

Lemma 13. With the above notation, for any smooth function v on Sd , we have

KŒv� � 

Z
Sd

jrvj4

v2
d�C d

Z
Sd
jrvj2 d�

for some  > 0 given in terms of ˇ by (B.3) if p 2 .1; 2�/.

Notice that we recover the expression for  in (3.1) if we take ˇ D 1. The case p D 2
does not add any difficulty compared to p ¤ 2.

B.2. Diffusion flow and monotonicity

Assume that u is a positive solution of

@u

@t
D u�p.1�m/

�
�uC .mp � 1/

jruj2

u

�
: (B.4)
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In the linear casemD 1, up solves the heat equation. Otherwise we deal with the nonlinear
case either of a fast diffusion flow withm<1 or of a solution of the porous media equation
with m > 1. We claim that

d

dt
kuk2Lp.Sd / D 0 and

d

dt
kuk2L2.Sd / D 2.p � 2/

Z
Sd
u�p.1�m/jruj2 d�:

Let us assume that the parameters ˇ and m are related by

m D 1C
2

p

� 1
ˇ
� 1

�
: (B.5)

If v is a function such that u D vˇ , then v solves

@v

@t
D v2�2ˇ

�
�v C �

jrvj2

v

�
;

with � D ˇ.p � 2/C 1, and as a consequence we find that

d

dt
kuk2L2.Sd / D 2.p � 2/ˇ

2

Z
Sd
jrvj2 d�:

Similarly, we find that

d

dt
kruk2L2.Sd / D �2

Z
Sd

�
ˇvˇ�1

@v

@t

�
.�vˇ / d� D �2ˇ2KŒv�: (B.6)

By eliminating ˇ in (B.3) using (B.5), we obtain

 D
0 C 1d C 2d

2

.d C 2/2.2 � p.1 �m//2
; (B.7)

with 0 D 4.mp � 1/2, 1 D�4p.m� 3Cp.2�m/.1Cm//, 2 D .m2 � 2mC 5/p2 �
12pC 8. The condition  � 0 determines the rangem�.d;p/�m�mC.d;p/ of admiss-
ible parametersm, wherem˙.d;p/ is given by (3.6). Summarizing, we have the following
result (also see [22]).

Lemma 14. Assume that p 2 .1; 2�/ and m 2 Œm�.d; p/; mC.d; p/�. If u solves (B.4),
then we have

1

2ˇ2
d

dt

�
kruk2L2.Sd / � dEpŒu�

�
� �

Z
Sd

jrvj4

v2
d�; (B.8)

where v D u1=ˇ with ˇ and  given in terms of m by (B.3) and (B.7) respectively.

Notice that the case of the linear flow corresponds to the case m D ˇ D 1 and v D u.

Proof of Lemma 14. For a smooth solution, the result follows from (B.6) and Lemma 13.
The result for a general solution is obtained by standard regularization procedures.
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B.3. Interpolation

Depending on the value of p, we shall consider various interpolation inequalities. Let us
define

ı WD
2 � .4 � p/ˇ

2ˇ.p � 2/
if p > 2; ı WD 1 if p 2 Œ1; 2�: (B.9)

Lemma 15. If one of the conditions

(i) p 2 .1; 2#/ and ˇ D 1 (so that ı D 1),

(ii) p 2 .1; 2�/, ˇ > 1, and ˇ � 2=.4 � p/ if p > 4,

is satisfied, then u D vˇ is such thatZ
Sd

jrvj4

jvj2
d� �

1

ˇ2

R
Sd jruj

2 d�
R

Sd jrvj
2 d��R

Sd juj
2 d�

�ı�R
Sd juj

p d�
� ˇ�1
ˇ.p�2/

: (B.10)

Case (ii) was originally proved in [17, 18] and we refer to [21] for a proof in the case
of the ultraspherical operator.

Proof of Lemma 15. In case (i), v D u and inequality (B.10) is a consequence of the
Cauchy–Schwarz inequalityZ

Sd
jrvj2 d� D

Z
Sd

jrvj2

v
� v d� �

�Z
Sd

jrvj4

v2
d�

� 1
2
�Z

Sd
juj2 d�

� 1
2

;

Cases (i) and (ii) follow from two Hölder inequalities.

(1) With 1
2
C

ˇ�1
2ˇ
C

1
2ˇ
D 1, we deduce fromZ

Sd
jrvj2 d� D

Z
Sd

jrvj2

v
� 1 � v d�

�

�Z
Sd

jrvj4

v2
d�

� 1
2
�Z

Sd
1 d�

� ˇ�1
2ˇ

�

�Z
Sd
juj2 d�

� 1
2ˇ

;

and the assumption that d� is a probability measure, the first estimate�Z
Sd

jrvj4

v2
d�

� 1
2

�

R
Sd jrvj

2 d��R
Sd juj

2 d�
� 1
2ˇ

:

(2) With 1
2
C

ˇ�1
ˇ.p�2/

C
2�.4�p/ˇ
2ˇ.p�2/

D 1, Hölder’s inequality shows that

1

ˇ2

Z
Sd
jruj2 d� D

Z
Sd
v2.ˇ�1/jrvj2 d� D

Z
Sd

jrvj2

v
� v

p.ˇ�1/
p�2 � v2ˇı d�

�

�Z
Sd

jrvj4

v2
d�

� 1
2
�Z

Sd
jujp d�

� ˇ�1
ˇ.p�2/

�Z
Sd
juj2 d�

�ı
;
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from which we deduce the second estimate�Z
Sd

jrvj4

v2
d�

� 1
2

�
1

ˇ2

R
Sd jruj

2 d��R
Sd juj

2 d�
�ı�R

Sd juj
p d�

� ˇ�1
ˇ.p�2/

:

The combination of our two estimates proves (B.10).

Using (B.5), condition (ii) in Lemma 15 is changed into the condition that 2=p �m<
1 and we may notice as in [17, 18] that it is always satisfied if we choose ˇ D 4=.6 � p/
corresponding to an admissible fast diffusion exponent m D .p C 2/=.2p/, for any p 2
.2; 2�/. By “admissible”, one should understand m�.d; p/ � m � mC.d; p/, so that  is
nonnegative. With the choice of m D .p C 2/=.2p/, we find ı D 1=4.

B.4. Improved functional inequalities

Let us denote the entropy and the Fisher information respectively by

e WD
1

p � 2
.kuk2Lp.Sd / � kuk

2
L2.Sd // and i WD kruk2L2.Sd /;

and let  and ı be given respectively by (B.3) and (B.9). Up to the replacement of u by
u=kukLp.Sd /, with no loss of generality, we shall assume that

kukLp.Sd / D 1:

We learn from (B.8) and (B.10) that

.i � de/0 �
 ie0

ˇ2.1 � .p � 2/e/ı
: (B.11)

Solving the ordinary differential equation in the equality case of (B.11) is equivalent to
solving

d

dt
.i � d'.e// D



ˇ2
e0

.1 � .p � 2/e/ı
.i � d'.e//;

where ' solves

'0.s/ D 1C


ˇ2
'.s/

.1 � .p � 2/s/ı
: (B.12)

The reader is invited to check that the solution of (B.12) with initial datum '.0/ D 0 is
given by (3.3) if m D 1 and by (3.5) with � D 2=.ˇ.1 � ˇ// in the nonlinear case. We
learn from (B.11) that

.i � d'.e//0 �


ˇ2
e0

.1 � .p � 2/e/ı
.i � d'.e//:

This is enough to prove the following result.

Proposition 16. With the above notation, we claim that

i � d'.e/:
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Proof. Let us give the scheme of a proof. Let Q WD =ˇ2 in order to simplify notation. We
can argue as follows:

(1) i0 C 2 d i D .i � de/0 � 0 shows that

0 � i.t/ � i.0/e�2dt

and in particular limt!C1 i.t/ D 0.

(2) As t !C1, e converges to a constant, hence limt!C1 e.t/ D 0.

(3) From (B.11), we learn that

.i � de/0 � d Q ee0 D
1

2
d Q.e2/0;

where the inequality follows from 1 � .p � 2/e � 1 and i � de.

(4) It follows from .i � de/0 � 0 that i � de using an integration from any t � 0
toC1.

(5) Unless u is a constant, we read from .i� de/0 � 1
2
Q d.e2/0 that i� de > 1

2
Q de2,

using again an integration from any t � 0 toC1.

(6) Take some # 2 .0; 1/ and consider the solution of

N'0.s/ D 1C
# Q N'.s/

.1 � .p � 2/s/ı
; N'.0/ D 0: (B.13)

In the spirit of (B.11), we have a following chain of elementary estimates:

.i � d# N'.e//0 � .i � d N'.e//0 C d.1 � #/. N'.e//0 � .i � d N'.e//0

and obtain

.i � d# N'.e//0 �
Qe0

.1 � .p � 2/e/ı
.i � d# N'.e//: (B.14)

We know that N'.0/ D 0 and read from (B.13) that N'0.0/ D 1 and N'00.0/ D
# Q N'0.0/ D # Q so that N'.e/ � e � 1

2
# Qe2 as e! 0. Using i � de > 1

2
Qde2, we

learn that
i � d N'.e/ �

1

2
Qd.1 � #/e2.1CO.e//

for e D e.t/ small enough, i.e., for t > 0 large enough.

(7) It is simple to check from (B.14) that i � d# N'.e/ cannot change sign.

(8) We conclude as above that i � d# N'.e/ � 0 using an integration from any t � 0
toC1.

(9) Finally, we consider the limit as # ! 1�.

Altogether, we conclude that i� d'.e/, where ' solves (B.12). This completes the scheme
of the proof of Proposition 16.
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