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Coupled variational inequalities and application
in electroelasticity

Azzeddine Bensaada, El-Hassan Essoufi, and Abderrahim Zafrar

Abstract. This work is devoted to the mathematical and numerical study of a framework handling
a system of coupled variational inequalities. We prove both the existence and the uniqueness of a
weak solution to the problem. Then, we introduce a convergent iterative scheme. Using this latter,
we decouple the problem into further subproblems and derive their corresponding minimization
problems. As a practical application of this class of coupled abstract variational inequalities, we
consider a class of problems that model an electroelastic body coming into frictional contact with
a rigid electrically conductive foundation. Both electrical and mechanical contacts are of Signorini
type. In other words, our model prescribes the mechanical response produced by the foundation
and the outflow of the free charges across the contact zone. The last part of this paper is mainly
reserved for the numerical resolution of the problem at hand. For this purpose, we have developed
an alternating direction method of multipliers and convex dualities to compute and illustrate the
solutions.

1. Introduction

The theory of variational and quasi-variational inequalities (of the first and second order)
has an important role in the study of both qualitative and numerical analyses of nonlinear
boundary value problems. The fundamental importance of this theory is essentially due
to its various applications in physics, mechanics, and engineering. As a consequence, the
literature in this area is very extensive, and the progress made over the past four decades is
very impressive. An important part of this progress has been driven by models from con-
tact mechanics. The mathematical study of variational and quasi-variational inequality is
raised and addressed in [18,23,35]. The study of variational and quasi-variational inequal-
ities and their application to contact problems can be found in, for example, [9, 10, 34].
A more general setting of variational and quasi-variational and their applications to con-
tact mechanics, which are well known as hemi-variational inequalities, are introduced and
studied in, for example, [21, 28–30].

In this paper, we study an abstract nonlinear, non-coercive, and non-symmetric cou-
pled system. We prove the existence and uniqueness of solutions by employing variational
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inequalities theory’s tools [35] and the Banach fixed point theorem [2]. We derive a con-
vergent Bensoussan–Lions iterative scheme [7, 10] in order to decouple the unknowns,
for example, “u” from “'”. Using this scheme, we state an equivalent constrained mini-
mization problem to compute “u” and another one to compute “'”. This kind of coupled
variational can find a large application in elastic and electroelastic contact problems [13,
14], dynamic electro-viscoelastic contact problem [3] and can be developed to thermo-
electroelastic contact problems [1, 6]. In this paper, we choose as application a unilateral
contact problem arising in electroelasticity [5, 22, 27, 31, 36] with nonlocal Coulomb
friction [23, 32]. The electroelastic body may come into contact with an electrically con-
ductive foundation [14, 26] which may lead to a non-linearity in the problem.

On the contact zone, we assume both contact and electric Signorini conditions. The
electric Signorini condition (unilateral condition) controls the electric potential outflow of
free charges on the surface of the domain between the body and the conductive foundation.
This means that either the potential vanishes in the contact zone or there is an outflow
of the free charges in the direction of the conductive foundation. When it is combined
with the unilateral contact condition, this condition implies that the normal component of
the electric displacement field may vanish even under the contact process. The resulting
variational formulation of this problem is given by two nonlinearly coupled variational
problems of second kind. The numerical analysis of this class of problems is commonly
effectuated by the finite element method [4, 13, 20, 26]. The classical Coulomb friction is
approximated by solving a sequence of problems with Tresca friction [11]. The Uzawa
block decomposition method is employed in [14]. The method in [14,15,24] was initiated
by Glowinski, Fortin, Le Tallec, and Marocco in [16, 17, 19] who systematically adopted
augmented Lagrangian method for solving nonlinear partial differential equations. The
augmented Lagrangian method is adapted for contact problems in elasticity in [24].

In the considered application, since the obtained minimization problems are convex
and not differentiable, we propose an employment of an ADMM (alternating direction
method of multipliers) decomposition method [8, 14, 15]. In fact, the ADMM allows us
to decouple the differentiable part from the non-differentiable one. Thereafter, we derive
KKT conditions for the differentiable subproblem, and we develop Fenchel duality for the
non-differentiable one [12].

This work is briefly structured as follows. In Section 2, we present the framework
of two coupled nonlinear variational inequalities. We prove the existence and uniqueness
of the solution through the Banach fixed point theorem. By employing the Bensoussan–
Lions scheme, we state an equivalent minimization problem. Section 3 is dedicated to the
application of this framework. The results of the previous section are applied to a contact
problem in electroelasticity with nonlocal Coulomb friction. ADMM is the basic strat-
egy to decouple the differentiable and non-differentiable parts, then KKT conditions and
Fenchel duality are used to compute the solutions. The numerical simulations are visu-
alized with Matlab by adopting the piecewise finite element method and the vectorized
Matlab codes [25]. We illustrate the deformation and the distribution of the electric poten-
tial in the domain and the Lagrange multipliers are visualized to identify, where the “stick”
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and “slide” modes occur on the contact zone. Finally, the von Mises distribution over the
domain is shown and the performance (CPU time and number of iterations) of the method
is demonstrated.

2. Framework: Abstract coupled variational inequalities

The coupled system of variational inequalities under consideration is given by the follow-
ing problem.

Problem (QV-a). Find .u; '/ 2 Km �Ke such that

hAu; v � uiV ��V C h�
�'; v � uiV ��V C j.u; v/ � j.u; u/

� hf; v � uiV ��V 8v 2 Km;

hB'; � � 'iW ��W � h�u; � � 'iW ��W C `.u; '; � � '/

� hq; � � 'iW ��W 8� 2 Ke;

(2.1)

where f 2 V �, q 2W � are given data, .V; k � kV / and .W; k � kW / are two given reflexive
Banach spaces, and .V �; k � kV �/ and .W �; k � kW �/ are their topological dual spaces,
respectively. The notations h�; �iV ��V and h�; �iW ��W are the duality pairing between the
space and its topological dual space. The sets Km and Ke are non-empty, convex, and
closed subsets of V and W , respectively. In specific applications of this framework, we
suppose that V and W are Hilbert spaces.

Our goal is to prove the existence and uniqueness of a solution and provide an equiva-
lent optimization problem to (2.1). So, let us suppose that A W V ! V � and B WW !W �

are two symmetric, Lipschitz continuous, and strongly monotone operators, i.e.,

9M > 0 such that kAu � AvkV � �Mku � vkV 8u; v 2 V; (2.2)

9mA > 0 such that hAu � Av; u � viV ��V � mAku � vk2V 8u; v 2 V; (2.3)

9N > 0 such that kB' � B�kW � � N k' � �kW 8'; � 2 W; (2.4)

9mB > 0 such that hB' � B�; ' � �iW ��W � mBk' � �k2W 8'; � 2 W; (2.5)

and the operator � W V ! W � is continuous, i.e.,

9ƒ > 0 such that h�u; 'iW ��W � ƒkukV k'kW 8u 2 V; ' 2 W: (2.6)

In addition, we suppose that the mapping j.u; �/ W V ! .�1;C1� is proper, strictly con-
vex, and lower semi-continuous with respect to the second component. Also, we suppose
that j.�; �/ satisfies´

9k > 0 such that j.u1; v1/C j.u2; v2/ � j.u1; v2/ � j.u2; v1/;

� kku1 � u2kV kv1 � v2kV 8u1; u2; v1; v2 2 Km:
(2.7)
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The mapping ` W V �W �W ! R satisfies the following conditions:8̂̂̂̂
<̂
ˆ̂̂:
.a/ `.u; '; �/ W � 7! `.u; '; �/ is linear and bounded, i.e., 9c > 0 such that

j`.u; '; �/j � ck�kW 8.u; '/ 2 V �W;

.b/ `.�; �; �/ W .u; '/ 7! `.u; '; �/ is Lipschitz continuous, i.e., 9� > 0 such that

8� 2 W j`.u1; '1; �/ � `.u2; '2; �/j � �.ku1 � u2kV C k'1 � '2kW /k�kW :

(2.8)
In the remainder of this paper, we will assume the following smallness assumption:

2ƒC k C � < min.mA; mB/: (2.9)

This condition has a physical meaning in the application of this model. This will be shown
in the next section. In the sequel, we present the result providing the existence and unique-
ness of solution to the problem (2.1).

2.1. Well-posedness: Existence and uniqueness of the solution

The proof of the existence and uniqueness of the solution of (2.1) is essentially based
on the tools of the theory of variational inequalities [23] and the Banach fixed point the-
orem [2, page 160, Theorem 6]. To claim the existence and uniqueness, we will need
the following notations. Let X D V � W be a product space of elements of the form
x D .u; '/, endowed with the following norm k � k2X D k � k

2
V C k � k

2
W .

Let us define the following operator A WX!X�, the mappings Qj , z̀defined inX �X ,
and Qf 2 X� by

hAx; yi D hAu; viV ��V C hB'; �iW ��W C h�
�'; uiV ��V � h�u; �iW ��W ; (2.10)

Qj .x; y/ D j.u; v/; (2.11)

z̀.x; y/ D `.u; '; �/; (2.12)
Qf D .f; q/ 2 X� (2.13)

for all x D .u; '/ 2 X and y D .v; �/ 2 X .
With the above notations, the following lemma is straightforward.

Lemma 2.1. The couple x D .u; '/ 2 Km �Ke is the solution of the problem (QV-a) if
and only if

hAx; y � xi C Qj .x; y/ � Qj .x; x/C z̀.x; y � x/ � h Qf ; y � xiX��X (2.14)

for all y D .v; �/ 2 Km �Ke .

Proof. Let us prove the direct implication. Let x D .u; '/ 2 Km �Ke be the solution to
the variational inequality (2.1) and let y D .v; �/ be an arbitrary element inKm �Ke . We
add the first and second inequalities in (2.1) and by the definitions (2.10)–(2.13), we get
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directly (2.14). To prove the converse implication, we take the test function y D .v; '/

in (2.14) to get the first inequality in (2.1) and the test function y D .u; �/ in (2.14) to
obtain the second inequality in (2.1).

According to this lemma, we provide the first result of this paper.

Theorem 2.2. Under the assumptions (2.2)–(2.8) and (2.9), the problem (QV-a) has a
unique solution.

Proof. Let us define the mapping � W Km �Ke ! Km �Ke which maps each w 2 Km �
Ke to the solution of the following variational inequality.

Problem (QV-af). Find �w 2 Km �Ke such that

hA.�w/; y � �wi C Qj .w; y/ � Qj .w; �w/C z̀.w; y � �w/

� h Qf ; y � �wiX��X 8y 2 Km �Ke:

The operator A defined by (2.10) is strongly monotone and Lipschitz continuous.
Indeed, let x1 D .u1; '1/ and x2 D .u2; '2/ be two elements of Km �Ke . We have

hAx1 �Ax2; x1 � x2i

D hAu1 � Au2; u1 � u2iV ��V C hB'1 � B'2; '1 � '2iW ��W

C h��'1 � �
�'2; u1 � u2iV ��V � h�u1 � �u2; '1 � '2iW ��W

D hAu1 � Au2; u1 � u2iV ��V C hB'1 � B'2; '1 � '2iW ��W ;

by (2.3) and (2.5), we have

hAx1 �Ax2; x1 � x2i � mAku1 � u2k
2
V CmBk'1 � '2k

2
W

� min.mA; mB/.ku1 � u2k2 C k'1 � '2k2/;

thus,
hAx1 �Ax2; x1 � x2i � min.mA; mB/kx1 � x2k2X ;

and hence, A is strongly monotone. Let us show that A is Lipschitz continuous. By (2.2),
(2.4), and (2.6), there exists some constant C > 0 such that, for every y 2 Km �Ke , we
have

hAx1 �Ax2; yi � C.ku1 � u2kV kvkV C k'1 � '2kW k�kW

C ku1 � u2kV k�kW C k'1 � '2kW kvkV /

� Ckx1 � x2kXkykX

for y D Ax1 �Ax2, we have

kAx1 �Ax2kX � Ckx1 � x2kX ;
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then A is Lipschitz continuous. In addition, by the assumption .a/ in (2.8) and the fact
that f 2 V �, the mapping y 7! . Qf ; y/X � z̀.w; y/ is linear and bounded. Moreover, for
each u 2 V , the map v 7! j.u; v/ is proper, strictly convex, and lower semi-continuous;
then the problem (QV-af) has unique solution.

It remains to show that the map � is a contraction. To do this, letw1;w2 2Km �Ke be
arbitrarily chosen and let �w1; �w2 be the corresponding solutions to the problem (QV-
af), respectively. Let us take y D �w2 in the problem (QV-af) for which the solution is
�w1 and y D �w1 in the problem (QV-af) for which the solution is �w2, by adding the
resulting inequalities, we get

hA.�w1 � �w2/; �w1 � �w2i � 	 C J; (2.15)

where
	 D Qj .w1; �w2/C Qj .w2; �w1/ � Qj .w1; �w1/ � Qj .w2; �w2/

and
J D z̀.w1; �w1 � �w2/C z̀.w2; �w2 � �w1/:

By (2.7) and (2.8) (b), we have

	 C J � .k C �/kw1 � w2kXk�w1 � �w2kX :

Employing the inequality (2.15), we obtain

hA.�w1 � �w2/; �w1 � �w2i � .k C �/kw1 � w2kXk�w1 � �w2kX :

The strong monotony of the operator A implies that

min.mA; mB/k�w1 � �w2k
2
X � .k C �/kw1 � w2kXk�w1 � �w2kX :

Therefore,
k�w1 � �w2kX � qkw1 � w2kX :

Since

q D
k C �

min.mA; mB/
< 1;

the mapping � is a contraction. Finally, � have a unique fixed point, and hence, the prob-
lem (QV-a) have a unique solution.

Remark 2.3. This result holds true for an operator B form (2.1) that is only symmetric
and monotone, i.e.,

hB' � B�; ' � �iW ��W � 0 8'; � 2 W;

which is weaker than (2.5), and in this case the smallness condition for the uniqueness
will be simply 2k C � < mA instead of (2.9).

The proof of the above result allows us to apply the algorithm due to Bensoussan–
Lions [7] to approximate the solution to the variational problem (QV-a).
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Algorithm 1 Bensoussan–Lions scheme.

� Initialization i D 0. x0  xi is given,

� Compute xiC1 D �xi , solution to

hAxiC1; y � xiC1i C Qj .xi ; y/ � Qj .xi ; xiC1/C z̀.xi ; y � xiC1/

� h Qf ; y � xiC1iX��X 8y 2 Km �Ke:

Since � is a contraction, we have the following convergence result.

Proposition 2.1. The solution .xi / generated by Algorithm 1 is convergent; that is,

xi ! x strongly in X as i !C1:

By Lemma 2.1, this scheme is equivalent to the following system.

Problem (QV-ai). Find .uiC1; 'iC1/ 2 Km �Ke such that

hAuiC1; v � uiC1i C h�
�'iC1; v � uiC1i C j.ui ; v/ � j.ui ; uiC1/

� hf; v � uiC1i 8v 2 Km;

hB'iC1; � � 'iC1i � h�uiC1; � � 'iC1i C `.ui ; 'i ; � � 'iC1/

� hq; � � 'iC1i 8� 2 Ke:

2.2. Optimization

This subsection is devoted to the reformulation of the constrained minimization problem
equivalent to the problem (QV-ai).

The aim of this paragraph is to fix the nonlinearity in the second variational inequality
of (QV-ai) resulting from the map `.�; �; �/. The first iterative scheme is as follows: starting
with an initial data .u0; '0/ 2Km �Ke , we compute a sequence .uiC1; 'iC1/ 2Km �Ke
by the following problem.

Problem (PVi ). Find .uiC1; 'iC1/ 2 Km �Ke such that

hAuiC1; v � uiC1i C h�
�'iC1; v � uiC1i C j.ui ; v/ � j.ui ; uiC1/

� hf; v � uiC1i 8v 2 Km; (2.16)

hB'iC1; � � 'iC1i � h�uiC1; � � 'iC1i C hh.ui ; 'i /;  � 'iC1i

� hq; � � 'iC1i 8� 2 Ke; (2.17)

where we have omitted the index of duality for the sake of simplicity. The operator h.�; �/
in (2.17) is obtained from `.�; �; �/ by Riesz’s representation theorem.

Now, our aim is to decouple the variational inequalities and to set the optimization
problems. Let us look at the following iterative scheme.
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Problem (PVij ). Starting with initial guess .ui;j�1; 'i;j�1/, compute, for j � 0, uiC1;j
and 'iC1;j by solving

hAuiC1;j ; v � uiC1;j i C h�
�'iC1;j�1; v � uiC1;j i C j.ui;j�1; v/ � j.ui;j�1; uiC1;j /

� hf; v � uiC1;j i 8v 2 Km; (2.18)

hB'iC1;j ; � � 'iC1;j i � h�uiC1;j ; � � 'iC1;j i C hh.ui;j�1; 'i;j�1/; � � 'iC1;j i

� hq; � � 'iC1;j i 8� 2 Ke: (2.19)

The convergence of the problem (2.18)–(2.19) is obtained in the following theorem.

Theorem 2.4. Under (2.9) and the same assumptions of Theorem 2.2, the iterative scheme
in problem (PVij ) converges; that is,

ui;j ! ui ; strongly in V; as j !C1;

'i;j ! 'i ; strongly in W; as j !C1:

Proof. Everywhere below, we denote x WD xi and xj WD xi;j for x D u;'. We choose
the test functions like v D uj and � D 'j in (2.16) and (2.17), respectively. By adding the
resulting inequalities, we obtain

hAu;uj � ui C hB';'j � 'i C h�
�'j�1;uj � ui

� h�u;'j � 'i C j.uj�1;uj / � j.uj�1;u/C hh.u;'/;'j � 'i

� hf;uj � ui C hq;'j � 'i: (2.20)

By this way, we put v D u and � D ' in (2.18) and (2.19), and we get

hAuj ;u � uj i C hB'j ;' � 'j i C h�
�'j�1;u � uj i

� h�uj ;' � 'j i C j.uj�1;u/ � j.uj�1;uj /C hh.u;'/;' � 'j i

� hf;u � uj i C hq;' � 'j i: (2.21)

Now, we subtract (2.20) from (2.21), this produces

hAu � Auj ;u � uj i C hB' � B'j ;' � 'j i � h�.u � uj /;' � 'j i

� h��' � ��'j�1;u � uj i C hh.uj�1;'j�1/;' � 'j i � hh.u;'/;'j � 'i; (2.22)

we get

mAkuj � uk
2
CmBk'j � 'k

2
�ƒkuj � ukk'j � 'k Cƒkuj � ukk'j�1 � 'k

C �kuj�1 � ukk'j � 'k C �k'j�1 � 'kk'j � 'k;

and hence,

kxj � xk �
ƒC �

min.mA; mB/ �ƒ
kxj�1 � xk: (2.23)

From the smallness condition (2.9), it follows that

ƒC �

min.mA; mB/ �ƒ
< 1;

and this achieves the proof.
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The mechanical field and the potential electric are now decoupled, we compute the
solutions by introducing auxiliary unknowns, e.g., we will use a constrained minimization
problem to decouple the linear elasticity from the contact and friction. Once this is carried
out, we compute the electric potential by a second constrained minimization problem.
This process will be explained in the remainder part of this paper.

We first start by denoting hf j�1; vi D hf; vi � h��'j�1; vi. The operator A is coer-
cive and symmetric, thus, the problem (2.18) is equivalent to the following constrained
minimization problem:

.Pm/ W

´
Find uj 2 Km such that

J.uj /C j.uj / � J.v/C j.v/ 8v 2 Km;

where J.v/D 1
2
hAv;vi � hf j�1; vi and j.uj /D j.uj�1;uj /. The problem .Pm/ admits

a unique solution and this is due to the fact that v 7! J.v/C j.v/ is coercive and strictly
convex, and j.�/ is lower semicontinuous [12].

Once uj is computed, we are able to compute the electric potential by (2.19). Let us
define � 7! h.�/ WD hh.uj�1;'j�1/; �i and hq; �i D hq; �i C h�u; �i 8� 2 W . Since the
operator B is coercive and symmetric, the variational inequality (2.19) is equivalent to the
following constrained minimization problem.

Problem (PVp). Find 'j 2 Ke such that

J .'j /C h.'j / � J . /C h. / 8 2 Ke;

where J .�/ D 1
2
hB�; �i � hq; �i.

The second part of this paper is reserved for an application of this framework. We
firstly present our linear electroelastic model (under hypothesis of small deformations),
where we introduce new boundary condition on the contact zone (see (3.13)). This condi-
tion leads to a variational inequality and then we can apply the studied framework.

3. Application: Electroelastic contact problem

We consider an electroelastic body occupying a bounded domain � � Rd for d D 2; 3,
with smooth (enough) boundary @� D � . Let us denote by n the outer normal to � . We
note that the summation over repeated indices is adopted. The index that follows a comma
means the partial derivative with respect to the corresponding component of the variable.
The notation Td expresses the space of second-order symmetric tensors on Rd while “ � ”
and j � j will be the inner product and the Euclidean norm on Td and Rd , i.e.,

x � y D xiyi ; jyj D
p
y � y 8x;y 2 Rd ;

� � � D �ij�ij ; j�j D .� � �/
1
2 8� ;� 2 Td :



A. Bensaada, E.-H. Essoufi, and A. Zafrar 268

The mechanical field u is decomposed into the normal component un and tangential com-
ponent ut , i.e., unD u � n and ut D u� unn. In the same manner, we decompose the stress
tensor � into �n and �t the normal and tangential stress tensor, respectively, that are given
by �n D �n � n and �t D �n � �nn. Furthermore, we will use the following notations,
"D ".u/D ."ij .u// to prescribe the strain tensor defined by "ij .u/D 1

2
.ui;j C uj;i / and

� D .�ij / to be the stress tensor.
Finally, we denote by ', E.'/ D .Ei .'// and D D .Di / the electric potential, the

electric field and the electric displacement, respectively, where Ei .'/ D �';i .
Next, we introduce the following usual functional spaces: H D L2.�/d , and H 1.�/

the usual Sobolev space,

H D
®
� D .�ij /ij 2 Td

j �ij D �j i 2 L
2.�/

¯
;

H1 D ¹u 2 H j ".u/ 2 Hº and H1 D ¹� 2 H j Div � 2 H º

endowed with norms k � kH , k � kH, k � kH1 and k � kH1 , respectively.
The equilibrium equations are given by

�Div.� / D f0 in �; (3.1)

div.D/ D q0 in �; (3.2)

where the constitutive relations for the piezoelectric material are

� D T ".u/ � E�E.'/ in �; (3.3)

D D E".u/C ˇE.'/ in �; (3.4)

where T D .�ijkl / is a (fourth-order) elasticity tensor, E D .eijk/ is a (third-order) piezo-
electric tensor, E� is the transpose of E , and ˇD .ˇij / is the electric permittivity. In (3.1)–
(3.2), we note that we have the following definitions: Div.� / WD �ij;j and div.D/ WDDi;i
(see [37]).

In order to complete the statement of the classical problem, we need to provide the
mechanical and electrical boundary conditions. First, we divide � into three disjoint mea-
surable parts �1, �2, �3 such that meas.�1/ > 0. The body is assumed to be clamped on
�1 and surface tractions of density f2 are applied on �2, whereas the part �3 contains the
portion of the boundary that can reach a frictional contact with the foundation. A second
partition of � , that is � D �3 [ �a [ �b , will be assumed. In addition, surface electric
charges of density q2 are applied on �b , and the electric potential vanishes on �b . The
trace of v on � is denoted by v for the simplicity of the presentation. We resume the
above boundary conditions as follows:

u D 0 on �1; (3.5)

�n D f2 on �2; (3.6)

' D 0 on �a; (3.7)

Dn D q2 on �b : (3.8)
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The Signorini contact conditions are

un � g; �n � 0; .un � g/�n D 0 on �3; (3.9)

where g 2 L1.�3/ represents the insulator gap at the reference configuration between �3
and the foundation, measured along the direction of n.

The nonlocal Coulomb friction condition is expressed by8̂̂<̂
:̂
k�tk � �.kutk/j�

\
n.u/j on �3;

k�tk < �.kutk/j�
\
n.u/j ) ut D 0 on �3;

k�tk D �.kutk/j�
\
n.u/j ) 9� � 0 such that ut D ���t on �3;

(3.10)

where � \n is a mollification (regularization by convolution product see [26]) of �n; that is,
the convolution of the given �n with C10 a mollifier !� (see [23]) is given by

.� \n/.x/ D !� � �n.x/ D

Z
�3

!�.jx � yj/�n.y/dy;

where dy denotes the measure over the boundary �3 and

!�.x/ D

´
c exp

�
�2

x2��2

�
; jxj < �;

0; jxj � �;
(3.11)

and c is a positive constant.
The electric contact condition is

Dn D  .un � g/ˆc.' � '0/ on �3; (3.12)

where '0 2 L1.�3/ is the potential of the conductive foundation.
The Signorini electric conditions are

' � 'f ; Dn � 0; .' � 'f /Dn D 0 on �3: (3.13)

Remarks 3.1. (1) Let us clarify the connection between (3.12) and the above Signorini
electric condition. The condition (3.12) is related to the contact condition in this way.

• If there is no contact, i.e., un < g, there are no free electrical charges on the surface
and the normal component of the electric displacement field vanishes, that is,DnD 0.

• if the contact occurs, un D g, the normal component of the electric displacement field
(or the free charges) is assumed to be proportional to the difference between the poten-
tial of the foundation and the body’s surface potential, with pe as the proportionality
factor, this means thatDnD pe.' � '0/. In this case, the Signorini electric conditions
are equivalent to

' � 'f ; Dn � 0; pe.' � 'f /.' � '0/ D 0 on �3:
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(2) The boundary condition (3.12) represents a regularized electrical contact condition,
similar to that used in [26], where we have

ˆc.s/ D

8̂̂<̂
:̂
�c if s < �c;

s if � c � s � c;

c if s > c;

 .r/ D

8̂̂<̂
:̂
0 if r < 0;

peır if 0 � r � 1
ı
;

pe if r > 1
ı
;

where c is a positive constant and ı is a small parameter.

To resume, we consider the following problem.

Problem 1. Find the displacement field u W �! Rd and the electric potential field ' W
�! R such that (3.1)–(3.12) hold.

Problem 1 is the strong formulation of (3.1)–(3.12); in this paper, we are looking for a
weak solution. To do this, let us introduce the following Hilbert spaces:

V D ¹v 2 H1=v D 0 on �1º; W D ¹' 2 H 1.�/=' D 0 on �aº;

and the closed convex subsets of V and W , respectively, given by

Km D ¹v 2 V=vn � g on �3º; Ke D ¹ 2 W= � 'f on �3º:

Moreover, by the Sobolev trace theorem, there exists a constant k1 depending only on
�, �1, and �3 such that

k�kL2.�3/ � k1k�kW 8� 2 W: (3.14)

Since meas.�1/ > 0, Korn’s inequality holds

k".v/kH � ckkvkH1 8v 2 V; (3.15)

where ck > 0 is a constant which depends only on � and �1. The space V is endowed
with the inner product given by

.u; v/V D .".u/; ".v//H; kvkV D .v; v/
1
2

V : (3.16)

and W is endowed with the inner product

.';  /W D .';  /H1 :

From the Korn’s inequality (3.15), it follows that the norms k � kV and k � kH1 are
equivalent on V ; therefore, .V; k � kV / is a Hilbert space. In addition, by the Sobolev
trace theorem, (3.15) and (3.16) there exists a constant k0 > 0 which depends only on the
domain �, �3, and �1 such that

kvkL2.�/d � k0kvkV 8v 2 V: (3.17)

We assume that the elasticity tensor T , the piezoelectric tensor E , the electric per-
mittivity tensor ˇ and the surface electrical conductivity function  satisfy the following
assumptions (see [14, 19] for example).



Coupled variational inequalities and application in electroelasticity 271

(1) The operator T W��Td ! Td , T D .�ijkl /ijkl satisfies �ijkl D �j ikl D �lkij 2
L1.�/ and there exists CT a positive constant such that

�ijkl .x/�j �l � CT k�k
2
8� 2 Td

8x 2 �:

(2) The piezoelectric tensor E W��Td !Rd ,E D .eijk/ikj , is bounded inL1.�/,
i.e., 9ƒ > 0 such that

kE� � vk � ƒk�kkvk:

(3) The electric permittivity tensor ˇ W � � Rd ! Rd , ˇ D .ˇij /j i , satisfies ˇij D
ǰ i 2 L

1.�/ and there is Cˇ , a positive constant, such that

ˇij �i�j � Cˇk�k
2
8� 2 Rd :

(4) The electrical conductivity of the surface  W �3 �R!RC is a bounded function
by a positive constant M , and x 7!  .x; u/ is measurable on �3 for all u 2 R
and is zero for all u � 0.

(5) The function u 7!  .x; u/ is Lipschitz continuous on R for all x 2 �3: 9L > 0
such that

j .x; u1/ �  .x; u2/j � L ju1 � u2j 8u1; u2 2 R:

(6) The mechanical forces satisfy f0 2 L2.�/, f2 2 L2.�2/d .

(7) The electrical forces satisfy q0 2 L2.�/, q2 2 L2.�b/.

(8) The potential of the contact surface satisfies 'f 2 L1.�3/.

(9) The frictional map � W �3 �RC ! RC is such that

(a) there is L� > 0 such that j�.�; u1/��.�; u2/j � L�ju1 � u2j for all u1; u2 2
RC,

(b) there exists �� > 0 such that �.x; u/ � �� for all u 2 RC, a.e. x 2 �3,

(c) the function x 7! �.x; u/ is Lebesgue measurable on �3 for all u 2 RC.

For the sake of simplicity, in the remainder of this paper, we will denote �.x; r/D
�.r/.

Suppose that the functions u and ' are regular (enough) and satisfy (3.1)–(3.9), then
we have Z

�

T ".u/".v/C E".v/r'

D

Z
�

f0 � v C

Z
�2

f2 � v C

Z
�3

.�n/ � v 8v 2 V;Z
�

ˇr'r� � E".u/r� C

Z
�3

 .un � g/ˆL.' � '0/�

D

Z
�

q0 � � �

Z
�b

q2 � � 8� 2 W:
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By employing the Riesz’s representation theorem, there exists f 2 V �, and q 2 W �

such that

hf; viV ��V D

Z
�

f0 � v C

Z
�2

f2 � v 8v 2 V;

hq; �iW ��W D

Z
�

q0 � � C

Z
�b

qb � � 8� 2 W:

We define the mappings j W V � V ! R by

j.u; v/ D

Z
�3

�.kutk/j�
\
n.u/jkvtk 8v 2 V;

and ` W V �W �W W! R by

`.u; '; �/ D

Z
�3

 .un � g/ˆL.' � '0/�; u 2 V; 8'; � 2 W:

By the Riesz’s representation theorem, there exists h W V �W ! W � such that

hh.u; '/; �iW ��W D `.u; '; �/;

and we introduce the operators A W V ! V �, B W W ! W � and � W V ! W � defined by

hAu; viV ��V D .T ".u/; ".v//H;

hB'; iW ��W D .ˇr';r /L2.�/d ;

h�v; �iW ��W D .E".v/;r�/L2.�/d :

From (1) and (3), we deduce that the operators A and B satisfy the conditions (2.3)
and (2.5), respectively.

The resulting weak variational formulation is formulated as a system of two coupled
quasi-variational inequalities of the second order, where we have omitted the pairing dual-
ity index for the simplicity of presentation. The system is as follows.

Problem (PV). Find a displacement field u 2 Km and an electric potential ' 2 Ke such
that

hAu; v � ui C h��'; v � ui C j.u; v/ � j.u; u/ � hf; v � ui 8v 2 Km; (3.18)

hB'; � � 'i � h�u; � � 'i C hh.u; '/;  � 'i � hq; � � 'i 8� 2 Ke: (3.19)

In this application, the smallness condition (2.9) presumes the boundary constants like
the measure of the domain’s boundary, trace and electric contact constants (M , c and
L ) and the constants corresponding to the material properties. In practice, the physical
meaning of the assumption (2.9) is that the mechanical properties of the body are relatively
dominating and the properties on the boundary are weaker than in the interior.
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To provide the existence and uniqueness result of the problem (PV), we proceed in the
same manner as in [19, 33] and in the first part of this paper.

Let us define the product space X D V �W with elements of the form x D .u; '/,
endowed with the norm k � k2X D k � k

2
V C k � k

2
W . Let us denote X� the dual space of

X and let us define the operator A W X ! X�, the function J, the function ` defined on
X �X , and f 2 X� by

hAx; yi D hAu; vi C hB'; �i C h��'; ui � h�u; �i;
J.x; y/ D j.u; v/;

`.x; y/ D `.u; '; �/;

f D .f; q/ 2 X�;

9>>=>>; (3.20)

for all x D .u; '/ and y D .v; �/ 2 X .
We have the following lemma, which is similar to the one in the first part of this paper.

Lemma 3.2. The couple x D .u; '/ 2Km �Ke is the solution to the problem (PV) if and
only if x is the solution to the following variational problem:

hAx; y � xiCJ.x; y/ � J.x; x/C`.x; y � x/�.f; y � x/ 8yD.y; �/ 2 Km �Ke:

(3.21)

Then, the existence and uniqueness of the weak solution to the problem (PV) is estab-
lished in the following result.

Theorem 3.3. Under the assumptions .1/–.9/ and (2.9), the problem (PV) has a unique
solution.

Proof. Let us consider the following problem obtained by fixing the nonlinear term in
equation (3.21). Define the following map:

F W z 2 Km �Ke 7! F z 2 Km �Ke;

and find F z 2 Km �Ke such that

hA.F z/; y � F zi C J.z; y/ � J.z;F z/C `.z; y � F z/

� .f; y � F z/X��X 8y 2 Km �Ke:
(3.22)

Since the operator A defined in (3.20) is strongly monotone and Lipschitz continuous,
and since the mapping y 7! .f; y/X��X � `.z; y/, defining the right-hand side in the
variational inequality (3.22), is bounded and the map v 7! j.u;v/ is proper, strictly convex
and lower semi-continuous (see [19]) the problem (3.22) has unique solution.

Now, we will prove that the function defined by z 2 Km � Ke 7! F z 2 Km � Ke
is a contraction. To do so, we select an arbitrary element .z1; z2/ in Km � Ke and let
.F z1;F z2/ be its corresponding solution to (3.22). Let us make the choice y D F z2
in (3.22), for which the solution is F z1, and y D F z1 in (3.22) for which the solution is
F z2. The sum of the resulting inequalities yields

hA.F z1/ �A.F z2/; .F z1/ � .F z2/i � 	 C J; (3.23)
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where we have put

	 D J.z1;F z2/C J.z2;F z1/ � J.z1;F z1/ � J.z2;F z2/;

J D `.z1;F z1 � F z2/C `.z2;F z2 � F z1/:

The inequality (3.17) implies that there exists a positive constant k� such that

	 � ��k�k0kz1 � z2kXkF z1 � F z2kX (3.24)

and from the definition of ` and the inequality (3.14), it follows that

kJk � .M k
2
1 C cL k0k1/kz1 � z2kXkF z1 � F z2kX ; (3.25)

whereM is the bound of andL is the Lipschitz constant of . Let us put kD��k0k�

and � DM k
2
1 C cL k0k1, by (2.9) we have since ƒ > 0

� C k < 2ƒC k C � < min.mA; mB/:

Then, the existence and uniqueness of the solution to (PV) is guaranteed by applying
Theorem 2.2.

3.1. Iterative schemes and optimization

This section is devoted to the numerical study of the above problem. The nonlinearly
coupled problem (3.18)–(3.19) is completely hard to solve numerically in a direct way.
Following the same idea as in the above section, we first solve successively the subproblem
in u and then, we use the computed u to solve the sub-problem in ', in block Gauss–Seidel
mode. To this end, let us introduce the iterative schemes.

3.1.1. Iterative schemes. The aim of this paragraph is to fix the nonlinearity in the sec-
ond variational inequality (3.19) resulting from the operator h. The first iterative scheme is
as follows. Starting with an initial data .u0; '0/ 2 Km � Ke , we compute a sequence
.uiC1; 'iC1/ 2 Km �Ke by the following problem.

Problem (PVi ). Find .uiC1; 'iC1/ 2 Km �Ke so that

hAuiC1; v � uiC1i C h��'iC1; v � uiC1i C j.ui ; v/ � j.un; uiC1/

� hf; v � uiC1i 8v 2 Km; (3.26)

hB'iC1; � � 'iC1i � h�uiC1; � � 'iC1i C hh.ui ; 'i /;  � 'iC1i

� hq; � � 'iC1i 8� 2 Ke; (3.27)

where we have omitted the index of duality for the sake of simplicity.

3.1.2. The constrained minimization problems. Now, in this part, we aim to decou-
ple the mechanical field from the electric potential. Afterwards, we decouple the contact
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and friction from the elasticity and set the optimization problems. Let us consider at the
following iterative scheme.

Starting with initial data .ui;j�1; 'i;j�1/, compute for j � 0, uiC1;j and 'iC1;j by
solving

hAuiC1;j ; v � uiC1;j i C h�
�'iC1;j�1; v � uiC1;j i C j.ui;j�1; v/ � j.ui;j�1; uiC1;j /

hf; v � uiC1;j i 8v 2 Km; (3.28)

hB'iC1;j ; � � 'iC1;j i � h�uiC1;j ; � � 'iC1;j i C hh.ui;j�1; 'i;j�1/; � � 'iC1;j i

� hq; � � 'iC1;j i 8� 2 Ke: (3.29)

The convergence of the problem (3.28)–(3.29) is proved in Theorem 2.4.
As the mechanical field and the potential electric are decoupled, we compute the

solutions by introducing auxiliary unknowns, e.g., we will use a constrained minimiza-
tion problem to decouple the linear elasticity from the contact and friction. Once this is
achieved, we compute the electric potential by a second constrained minimization prob-
lem. This process will be explained in the remainder of this article.

We first start with the following notation hf j�1; vi D hf; vi � h��'iC1;j�1; vi. The
operatorA is coercive and symmetric thus the problem (3.28) is equivalent to the following
constrained minimization problem:

.Pm/ W

´
Find uj 2 Km such that

J.uj /C j.uj / � J.v/C j.v/ 8v 2 Km;

where J.v/D 1
2
hAv;vi � hf j�1; vi and j.uj /D j.uj�1;uj /. The problem .Pm/ admits

a unique solution and this is due to the fact that J.�/C j.�/ is coercive and strictly convex
and j.�/ is lower semicontinuous [12].

Since the solution lives in the admissible displacement Km, to state a constrained
minimization problem, equivalent to the problem (Pm), we introduce several auxiliary
unknowns. For the sake of clarity, we drop the subscript j and introduce the set defined
by

Ad D
®
q 2 L2.�3/; q � g � 0 on �3

¯
:

The above constrained minimization problem is then reformulated over Ad as follows,
find .u; pc ; pf / such that

J.u/C j.pf / � J.v/C j.qf / 8.v; qf / 2 V � L
2.�3/; (3.30)

un � pc D 0 on �3; (3.31)

ut � pf D 0 on �3; (3.32)

and the augmented Lagrangian operator (see [16, 17, 19]) is given by

Lr .v; qI�/ D J.v/C j.qf /C h�c ; vn � qci�3

C h�f ; vt � qf i�3 C
r

2
kvn � qck

2
�3
C
r

2
kvt � qf k

2
�3
:

(3.33)
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The constrained minimization problem (3.30)–(3.32) is then equivalent to the follow-
ing saddle point problem.

Find .u; pI / 2 V � L2.�3/2 � L2.�3/2 such that 8.v; qI �/ 2 V � L2.�3/2 �
L2.�3/

2:
Lr .u; pI�/ � Lr .u; pI / � Lr .v; qI /: (3.34)

The components of a saddle point of the problem (3.34) are computed separately by
the alternating direction method of multipliers (ADMM, see [8,24] for more details on the
introduction and the convergence of this scheme) and it is stated as follows. Starting with
.pj�1I j�1/,

uj 2 argminu Lr .u; p
j�1
I j�1/; (3.35)

pj 2 argminp Lr .u
j ; pI j�1/; (3.36)

jc D 
j�1
c C r.ujn � p

j
c /; (3.37)


j

f
D 

j�1

f
C r.u

j
t � p

j

f
/: (3.38)

Finally, the solutions to the problems are computed employing Lagrange and Fenchel
dualities (see [12]) and are summarized in Algorithm 2.

Once u is computed, we are able to compute the electric potential by (3.29). Let us
define

� 2 Ke 7! h.�/ WD hh.uj�1;'j�1/; �i

and
hq; �i D hq; �i C h�u; �i

for given .uj�1;'j�1/. Since .ˇ�; �/L2.�/ is coercive and symmetric, the variational (3.29)
is equivalent to the following constrained minimization problem.

Problem (PVp). Find ' 2 Ke such that

J .'/C h.'/ � J . /C h. / 8 2 Ke; (3.44)

where
J .�/ D

1

2
hB�; �i � hq; �i:

To handle the difficulty induced by the constraint inKe , we introduce the set of admissible
potentials defined by

„ D
®
� 2 L2.�3/; � � 'f on �3

¯
:

The constrained minimization problem (PVp) is equivalent to the following problem.
Find ' 2 W such that

J .'/C h.�/ � J . /C h.�/ 8� 2 W; (3.45)

' � � D 0 on �3: (3.46)
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Algorithm 2 Solution to the saddle point problem (3.34).

1: Initialization j D 0 W .p0I 0/

2: Iterations

3: for j � 1 do
4: Compute uj by the Euler–Lagrange equation, applied to u 7! Lr .u; pI /, given

by

hAuj ; vi C rhu
j
t ; vti�3 C rhu

j
n; vni�3

D C
˝
rpj�1c � c ; vn

˛
�3
C
˝
rp
j�1

f
� f ; vt

˛
�3

� hf j�1; vi 8v 2 V (3.39)

5: Compute pj D .pjc ; p
j

f
/ by

piC1c D uiC1n C
1

r

�
 ic � .

i
c C r.u

iC1
n � g//C

�
; (3.40)

p
j

f
D

8̂̂<̂
:̂
j
j�1

f
C ru

j
t j � S

r j
j�1

f
C ru

j
t j

�

j�1

f
C ru

j
t

�
if
ˇ̌

j�1

f
C ru

j
t

ˇ̌
> S;

0 if
ˇ̌

j�1

f
C ru

j
t

ˇ̌
� S

(3.41)

6: Update jc and j
f

by

jc D 
j�1
c C r.ujn � p

j
c /; (3.42)


j

f
D 

j�1

f
C r.u

j
t � p

j

f
/ (3.43)

7: end for

The Lagrangian formulation associated to the constrained minimization problem in-
equality (3.45)–(3.46) is given by

Lr .'; � I�/ D J .'/C h.�/C h�;' � �i�3 C
r

2
k' � �k2�3 ; (3.47)

and then the constrained minimization (3.45)–(3.46) problem is equivalent to the saddle
point problem

Lr .'; � I �/ � Lr .'; � I�/ � Lr . ; �I�/ 8. ; �I �/ 2 W � L
2.�3/

2: (3.48)
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The saddle point can be computed separately by alternating the solutions, employing
ADMM, as follows. Starting with initial guess .�j�1I�j�1/, compute

'j 2 argmin Lr . ; �
j�1
I�j�1/; (3.49)

�j 2 argmin� Lr .'
j ; �I�j�1/; (3.50)

�j D �j�1 C r.�j � 'j /: (3.51)

In order to calculate the solution to the subproblem (3.49), let us consider the following
map � 7! Lr .�; � I�/ D J .�/C r

2
k�k2�3 � h�C r�; �i�3 . The subproblem (3.49) is then

equivalent to the Euler–Lagrange equation given by the following:

Find ' 2 W such that hB'; �i C rh'; �i�3 � hq; �i � h� � r�; �i�3 D 0 8� 2 W;

which is equivalent to the following system:

hB'; �i C rh'; �i�3 D hq; �i C h� � r�; �i�3 :

To get the solution to the subproblem (3.50), we consider the Gâteaux differentiable
mapping � 7! Lr .'; � I�/ D h.�/ C r

2
k�k2�3 � h� C r'; �i�3 . The KKT conditions

(Lagrange duality) lead to the following equations:

rh�; "i�3 C h�; "i�3 D h�C r'; "i�3 � hh.u
j�1;'j�1/; "i�3 8" 2 L2.�3/; (3.52)

h�; � � 'f i�3 D 0; � � 0; (3.53)

thus,

� D
1

r
.�C r' � h.uj�1;'j�1/ � �/; (3.54)

we substitute this expression in (3.53), we get

h�;
1

r
.�C r' � h.uj�1;'j�1/ � �/ � 'f i�3 D 0: (3.55)

If � > 0 then
�C r' � h.uj�1;'j�1/ � � � r'f D 0;

hence,
� D �C r.' � 'f / � h.u

j�1;'j�1/;

that is,
� D .�C r.' � 'f / � h.u

j�1;'j�1//C; (3.56)

where xC D max.0; x/. From (3.52) and (3.56), we obtain

� D 'C
1

r

�
� � h.uj�1;'j�1/ � .�C r.' � 'f / � h.u

j�1;'j�1//C
�
: (3.57)

We summarize the solutions to the subproblems (3.49)–(3.51) in Algorithm 3.
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Algorithm 3 Solution to the saddle point problem (3.48).

1: Initialization j D 0 W .�0; �0/
2: Iterations
3: for j � 1 do
4: Compute 'j by

hB'j ; �i C rh'j ; �i�3 D hq; �i C h�
j�1
� r�j�1; �i�3 8� 2 W: (3.58)

5: Compute �j by

�j D 'j C
1

r

�
�j�1 � h.uj�1;'j�1/ � .�j�1 C r.'j � 'f /

� h.uj�1;'j�1//C
� (3.59)

6: Update �j by
�j D �j�1 C r.'j � �j / (3.60)

7: end for

3.2. Numerical Examples

In practice, to compute the solution to the problem with nonlocal Coulomb friction, a
fixed point strategy is used. This process gives rise to a sequence of problems with Tresca
friction. Once the solution .uj ;'j / is obtained with Algorithms 2–3, we update the slip
bound SjC1D�.kujt k/j�

\
n.u

j /j to get the new solution, this corresponds to the following
fixed-point Algorithm 4 which is stopped if the relative error on Sj becomes “small”.

Algorithm 4 FP for problem (PVI).

Initialization j D 0. S0 given.

Iteration j � 1. Compute successively .uj ;'j / and SjC1 as follows:

1. Compute .uj ;'j / with Algorithms 2–3.

2. Update the friction functional with SjC1 D �.kujt k/j�
\
n.u

j /j.

We have implemented the algorithms described previously in Matlab, using piecewise
linear finite element and vectorized codes [25], on a computer equipped with running
Windows 10 with 2.4 GHz clock frequency and 6 GB RAM.
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The chosen stopping criterion for the algorithms is as follows:

kxj � xj�1k

kxj�1k
< 10�6:

3.3. Updating the slip bound and example

Let us recall that each iterative step leads to a contact problem with given Tresca friction
law. The iterative Step 2 in Algorithm 4 updates the slip bound using the data from the
previous iteration. Since this represents the crucial step in the algorithm, we need further
details. In the right-hand side in Step 2 of Algorithm 4, we recall that

.� \n/.x/ D !� � �n.x/ D

Z
�3

!�.jx � yj/�n.y/dy:

Following [23], the constant c in (3.11) is chosen such that

c

Z �

��

exp
�

�2

x2 � �2

�
dx D 1; (3.61)

making the change of variable x D �z, we obtain

c D
1

�
R 1
�1

exp. 1
z2�1

/dz
;

and A D
R 1
�1

exp. 1
z2�1

/dz needs to be evaluated. Using a Gaussian integration with 4
integration points provides the following value A D 0:4437.

The friction function �.�/ is given by

�.r/ D 0:2C
2

tr C 2
; (3.62)

where t is a given parameter.
As a numerical example, we are dealing with two dimensional (d D 2) numerical

realization of the problem (3.26)–(3.27) with nonlocal Coulomb friction law. We consider
� D .0; 2/ � .0; 1/ with �1 D ¹0º � Œ0; 1�, �3 D Œ0; 2� � ¹0º and �2 D Œ0; 2� � ¹1º. The
material constants are the following.

(1) Elasticity: E D 58:7102GPA, n D 0:3912.

(2) Piezoelectric .C=m2/: e22 D �5:4, e33 D 15:8 and e24 D 12:3.

(3) Dielectric .nF=m/: ˇ22 D 8:11, ˇ33 D 7:35.

On �2, non-homogeneous Neumann boundary condition is prescribed � .u/n D �2y. On
�b we consider homogeneous Neumann condition, i.e., Dn D 0. For the normalized gap
between the foundation and �3, we take g.x/ D 0:01. In addition, we consider a uniform
mesh with mesh size hD 1=32 (i.e., Figure 1). We choose r D 600 (the penalty parameter)
for Algorithm 2 and r D 10�3 for Algorithm 3. Also, we take t D 3 � 104 in (3.62).
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Figure 1. Simple mesh for � D .0; 2/ � .0; 1/ with mesh size h D 1=32.

When loaded, the deformed configuration is shown in Figure 2. The outside electric
potential is 'f D 1 and the contour plot of electric potential is visualized in Figure 3. It
is clear that there is no outflow of charges, i.e., the potential vanishes on the contact zone.
In order to identify the “stick” and “slide” on the contact zone, we visualize the Lagrange
multipliers (normal and tangential constraints) and the slip bound of nonlocal Coulomb
friction in Figure 4. In the sub-figures of Figure 5, we show the electric potential contour

1

0:8

0:6

0:4

0:2

0

0 0:5 1 1:5 2

Figure 2. Deformed configuration.
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Contour plot of electric potential and deformation
1

0:8

0:6

0:4

0:2

0
0 0:2 0:4 0:6 0:8 1 1:2 1:4 1:6 1:8 2

0:05

0:045

0:04

0:035

0:03

0:025

0:02

0:015

0:01

0:005

0

Figure 3. Contour plot of the distribution of electric potential inside the deformed domain.

plot with several choices of 'f . We can see the value of 'f for which there may be an
outflow between the body and the conductive foundation.

The number of iterations of Algorithms 2, 3 and 4 versus mesh size is reported in
Table 1. The different mesh sizes are 1=16, 1=32, 1=64, 1=128, and 1=256 which corre-
spond, respectively, to 153, 561, 2145, 8385, and 33153, numbers of nodes. The symbol
@ designs that the number of iterations is up to 103, which means that the smallness con-
dition is not satisfied for mesh of big size. We remark that the number of iterations is

N
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Figure 4. Elastic Lagrange multipliers and slip bound of nonlocal Coulomb friction.
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Contour plot of electric potential and deformation
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(a) Electric potential contour plot with
'f D 0:1.

Contour plot of electric potential and deformation
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(b) Electric potential contour plot with
'f D 0:01.
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(c) Electric potential contour plot with
'f D 0:001.
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(d) Electric potential contour plot with
'f D 0:0005.
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(e) Electric potential contour plot with
'f D 0:0002.
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(f) Electric potential contour plot with
'f D 0:0001.

Figure 5. Visualization of the contour plot of the electric potential with different choices of 'f .

independent of mesh size and this is because all of the methods and algorithms are con-
structed in infinite-dimensional spaces.

Conclusion

We proved the existence and uniqueness of the solution to coupled variational inequalities.
This kind of variational inequalities can be applied to contact problem in electroelastic-
ity and can be developed to the thermoelctroelasticity. Other future work could be the
development of this framework for two coupled nonlinear variational inequalities and
hemi-variational inequalities modeling an electroelastic material with a locking effect.
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Mesh size 1=16 1=32 1=64 1=128 1=256

Algorithms 2–3 iterations @ 36 36 36 36

Algorithm 4 iterations 4 3 3 4 4

CPU (in Sec.) 0.4601 0.0600 0.8620 5.7591 56.4617

Table 1. Total number of iterations in Algorithms 2, 3, and 4.
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