
Z. Anal. Anwend. 43 (2024), 287–297
DOI 10.4171/ZAA/1757

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

A direct method of moving planes for logarithmic
Schrödinger operator

Rong Zhang, Vishvesh Kumar, and Michael Ruzhansky

Abstract. In this paper, we study the radial symmetry and monotonicity of nonnegative solutions
to nonlinear equations involving the logarithmic Schrödinger operator .	 ��/log corresponding to
the logarithmic symbol log.1C j�j2/, which is a singular integral operator given by

.	 ��/logu.x/ D cN P:V:
Z

RN

u.x/ � u.y/

jx � yjN
�.jx � yj/dy;

where cN D ��
N
2 , �.r/ D 21�

N
2 r

N
2 KN

2
.r/ and K� is the modified Bessel function of the sec-

ond kind with index �. The proof hinges on a direct method of moving planes for the logarithmic
Schrödinger operator.

1. Introduction

The study of Schrödinger equations received a great deal of attention from researchers in
the past decades because of its vast applications in several areas of mathematics and math-
ematical physics. In particular, Schrödinger equations arise in quantum field theory and in
the Hartree–Fock theory (see [1,20,21,23]). Recently, there is a surge of interest to investi-
gate integrodifferential operators of order close to zero and associated linear and nonlinear
integrodifferential equations (see [5,6,16,18,19,22]). In particular, the logarithmic Lapla-
cian and the logarithmic Schrödinger operator are two interesting examples of such a class
of operators. The logarithmic Laplacian was first introduced by Chen and Weth in [5] as
a limit of fractional Laplacian (see also [3,4] for the spectral properties of the logarithmic
Laplacian). The logarithmic Schrödinger operator .	 ��/log (see [10]) and the logarith-
mic LaplacianL� (see [2,5,11,12,24]) have the similar behavior locally concerning to the
singularity of kernels but the logarithmic Schrödinger operator eliminates the integrabil-
ity problem of the logarithmic Laplacian at infinity. To define the logarithmic Schrödinger
operator, let us begin with the following observation:

lim
s!0C

.	 ��/su.x/ D u.x/ for u 2 C 2.RN /; (1.1)
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where, for s 2 .0;1/, the operator .	��/s stands for the relativistic Schrödinger operator,
for sufficiently regular function u W RN ! R, which can be represented via hypersingular
integral (1.1) (see [8]),

.	 ��/su.x/ D u.x/C cN;s lim
"!0C

Z
RN nB".0/

u.x/ � u.y/

jx � yjNC2s
$s.jx � yj/dy; (1.2)

where cN;s D �
�N2 4s

�.�s/
is a normalization constant and the function $s is given by

$s.r/ D 2
1�NC2s2 r

NC2s
2 KNC2s

2
.r/ D

Z C1
0

t�1C
NC2s
2 e�t�

r2

4t dt: (1.3)

Furthermore, if u 2 C 2.RN /, then .	 � �/su.x/ is well defined by (1.2) for every
x 2 RN . Here, the function K� is the modified Bessel function of the second kind with
index � > 0, and it is given by

K�.r/ D
.�
2
/
1
2 r�e�r

�.2�C1
2
/

Z 1
0

�
1C

t

2

��� 12
e�rt t��

1
2 dt

for more properties of K� , see, e.g., [7, 9, 10, 14, 15] and references therein.
It is well known that K� is a real and positive function satisfying

K 0�.r/ D �
�

r
K�.r/ �K��1.r/ < 0 (1.4)

for all r > 0, K� DK�� for � > 0. Furthermore, for � > 0 (see [9, 15])

K�.r/ �

8̂̂̂<̂
ˆ̂:
�.�/

2

�
r

2

��
; r ! 0;

p
�
p
2
r�

1
2 e�r ; r !1:

(1.5)

It follows from (1.1) that one may expect a Taylor expansion with respect to parameter
s of the operator .	 ��/s near zero for u 2 C 2.RN / and x 2 RN as follows:

.	 ��/su.x/ D u.x/C s.	 ��/logu.x/C o.s/ as s ! 0C: (1.6)

The logarithmic Schrödinger operator .	 � �/log appears as the first-order term in the
above expansion.

In this paper, we study the integrodifferential operator .	 ��/log corresponding to the
logarithmic symbol log.1C j�j2/, which is a singular integral operator given by

.	 ��/logu.x/ D cNP:V:
Z

RN

u.x/ � u.y/

jx � yjN
�.jx � yj/dy; (1.7)

where cN D ��
N
2 �.N

2
/, P.V. stands for the Cauchy principal value of the integral, �.r/D

21�
N
2 r

N
2 KN

2
.r/ and K� is the modified Bessel function of second kind with index �. One
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can also easily deduce from (1.4) that �0.r/ < 0 for r > 0. Using the expression (1.7), one
can define .	 � �/log for a quite large class of functions u. To illustrate this, define the
space L0.RN / as the space of locally integrable functions u W RN ! R such that

kukL0.RN / WD

Z
RN

ju.x/je�jxj

.1C jxj/
NC1
2

dx < C1:

Then, it was proved by [10, Proposition 2.1] that for u 2 L0.RN / \ L1.RN /, which is
also Dini continuous at some x 2 RN , the quantity Œ.	 � �/logu�.x/ is well defined by
the formula (1.7). Let us recall the definition of Dini continuity. Let U be a measurable
subset of RN and let u W U ! R be a measurable function. The modulus of continuity
‰u;x;U W .0;C1/! Œ0;C1/ of u at a point x 2 U is defined by

‰u;x;U .r/ WD sup
y2U;jx�yj�r

ju.x/ � u.y/j:

We call the function u Dini continuous at x ifZ 1

0

‰u;x;U .r/

r
dr <1:

Using the generalized direct method of moving planes, in this note, we obtain the
radial symmetry and monotonicity of nonnegative solutions for the nonlinear equations
involving the logarithmic Schrödinger operator (see Theorem 1.1), namely, we consider
the nonlinear Schrödinger equation

.	 ��/logu.x/Cmu.x/ D up.x/; x 2 RN ; (1.8)

with m > 0 and u.x/ � 0 for all x 2 RN .
The following results present symmetry and monotonicity properties of Schrödinger

equation (1.8).

Theorem 1.1. Let u 2 L0.RN / be a nonnegative Dini continuous solution of (1.8) with
m > 0 and 1 < p <1. If

lim
jxj!1

u.x/ D a <
�m
p

� 1
p�1
; (1.9)

then u must be radially symmetric and monotone decreasing about some point in RN .

Remark 1.2. The condition (1.9) in Theorem 1.1 is necessary for applying the method of
moving planes using the decay at infinity principle (Theorem 2.3).

The paper is organized as follows: in Section 2, we prove some results for the logarith-
mic Schrödinger operator. By the direct method of moving planes, we obtain the symmetry
and monotonicity of nonnegative solutions for the nonlinear equations involving logarith-
mic Schrödinger operator in Section 3.
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2. Key ingredients for the method of moving planes

This section is devoted to developing basic and key results needed to apply the method of
moving planes for establishing the proof of our main result in the next section. We first
present some basic notation and nomenclatures which will be beneficial for the rest of the
paper.

Choose an arbitrary direction, say, the x1-direction. For arbitrary � 2 R, let

T� D
®
x 2 RN j x1 D �

¯
be the moving plane, and let

†� D
®
x 2 RN j x1 < �

¯
be the region to the left of the plane T�, and let

x� D .2� � x1; x2; : : : ; xN /

be the reflection of x about the plane T�.
By denoting u.x�/ WD u�.x/, we define

!�.x/ WD u�.x/ � u.x/; x 2 †�;

to compare the values of u.x/ and u�.x/.
The following results on the strong maximum principle for the operator .	 � �/log

can be deduced from [17, Theorem 1.1] (see also [13] and [10, Theorem 6.1]).

Lemma 2.1 (Strong maximum principle). Let��RN be a domain, and let u 2L0.RN /
be a continuous function on x� satisfying´

.	 ��/logu.x/ � 0 in �;

u.x/ � 0 in RN n�;
(2.1)

then u > 0 in � or u D 0 a.e. in RN .

Now, we will prove the following maximum principles for the logarithmic Schrödinger
operator.

Theorem 2.2 (Maximum principle for antisymmetric functions). Let � be a bounded
domain in †�. Assume that !� 2 L0.RN / \ L1.RN / is Dini continuous on � and is
lower semi-continuous on x�. If8̂̂<̂

:̂
.	 ��/log!�.x/ � 0 in �;

!�.x/ � 0 in †�n�;

!�.x
�/ D �!.x/ in †�;

(2.2)



A direct method of moving planes for logarithmic Schrödinger operator 291

then
!� � 0 in �: (2.3)

Furthermore, if !�.x/ D 0 at some point in �, then we have

!� D 0 a.e. in RN : (2.4)

These conclusions hold for unbounded region � if we further assume that

lim inf
jxj!1

!�.x/ � 0:

Proof. If !� is not nonnegative on �, then the lower semi-continuity of !� on x� implies
that there exists a xo 2 x� such that

!�.x
o/ WD min

x�

!�.x/ < 0:

One can further deduce from (2.2) that xo is in the interior of �. It follows that

.	 ��/log!�.x
o/ D cNP:V:

Z
RN

!�.x
o/ � !�.y/

jxo � yjN
�.jxo � yj/dy

D cNP:V:
�Z

†�

!�.x
o/ � !�.y/

jxo � yjN
�.jxo � yj/dy

C

Z
†�

!�.x
o/ � !�.y

�/

jxo � y�jN
�.jxo � y�j/dy

�
:

(2.5)

Since jxo � yj � jxo � y�j, we have 1
jxo�yj

�
1

jxo�y�j
and �.jxo � yj/ � �.jxo � y�j/ as

� is a decreasing function, and, therefore,

!�.x
o/ � !�.y/

jxo � yjN
�.jxo � yj/ �

!�.x
o/ � !�.y/

jxo � y�jN
�.jxo � y�j/;

since !�.xo/ � !�.y/ � 0.
Thus, we obtain from (2.5) that

.	 ��/log!�.x
o/ � cNP:V:

Z
†�

�
!�.x

o/�!�.y/

jxo�y�jN
C
!�.x

o/C!�.y/

jxo�y�jN

�
�.jxo�y�j/dy

D cNP:V:
Z
†�

2!�.x
o/

jxo � y�jN
�.jxo � y�j/dy < 0;

(2.6)
which contradicts (2.2). Therefore, our assumption is wrong, and, consequently, we have
!�.x/ � 0 in �.

Now, we have proved that !�.x/ � 0 in �. If there is some point Qx 2 � such that
!�. Qx/ D 0, then, from Lemma 2.1, we derive immediately !� D 0 a.e. in RN .

For unbounded domain �, the condition

lim inf
jxj!1

!�.x/ � 0
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ensures that the negative minimum of !� must be attained at some point xo, then we can
derive the same contradiction as above.

This completes the proof of Theorem 2.2.

The following decay at infinity will also be necessary for proving subsequent results.

Theorem 2.3 (Decay at infinity). Let � be an unbounded domain in †�. Suppose that a
Dini continuous !� 2 L0.RN / \ L1.RN / is a solution to8̂̂<̂

:̂
.	 ��/log!�.x/C c.x/!�.x/ � 0 in �;

!�.x/ � 0 in †�n�;

!�.x
�/ D �!.x/ in †�

(2.7)

with the measurable function c.x/ such that

lim inf
jxj!1

jxj
1CN
2 c.x/ � 0: (2.8)

Then, there exists a constant Ro > 0 such that if

!�.x
o/ D min

�
!�.x/ < 0; (2.9)

then
jxoj � Ro: (2.10)

Proof. We prove the assertion by contradiction. Suppose that (2.10) is false, then by (2.7)
and (2.9), we have

!�.x
o/ D min

†�
!�.x/ < 0:

After a direct calculation, we obtain

.	 ��/log!�.x
o/

D cNP:V:
Z

RN

!�.x
o/ � !�.y/

jxo � yjN
�.jxo � yj/dy

D cNP:V:
Z
†�

�
!�.x

o/ � !�.y/

jxo � yjN
�.jxo � yj/C

!�.x
o/ � !�.y

�/

jxo � y�jN
�.jxo � y�j/

�
dy

� cNP:V:
Z
†�

�
!�.x

o/ � !�.y/

jxo � y�jN
C
!�.x

o/C !�.y/

jxo � y�jN

�
�.jxo � y�j/dy

D cNP:V:
Z
†�

2!�.x
o/

jxo � y�jN
�.jxo � y�j/dy < 0:

Now, we fix �, and when jxoj � �, we have Bjxoj. Mx/ � z†� WD RN n†� with Mx D
.3jxoj C xo1 ; .x

o/0/. Then, for y 2 z†�, if jxoj � R1
4

with sufficiently large R1, we can
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deduce that jxo � yj � jxo � Mxj C j Mx � yj � jxoj C 3jxoj D j4xoj which together with
the fact that � is a decreasing function implies that

�.jxo � yj/

jxo � yj
�
�.j4xoj/

j4xoj
:

Thus, from (1.5) and �.r/ D 21�
N
2 r

N
2 KN

2
.r/, if R1 is sufficiently large, we haveZ

†�

1

jxo � y�jN
�.jxo � y�j/dy D

Z
z†�

�.jxo � yj/

jxo � yjN
dy �

Z
Bjxo j. Mx/

�.j4xoj/

j4xojN
dy

�

Z
Bjxo j. Mx/

21�
N
2 KN

2
.j4xoj/

j4xoj
N
2

dy

�
c1!N

2
3N
2 jxoj

1CN
2 e4jx

oj
WD

C

jxoj
1CN
2 e4jx

oj
;

(2.11)

where C D c1!N 2�
3N
2 is a positive constant.

It follows that

0 � .	 ��/log!�.x
o/C c.xo/!�.x

o/ �

�
C

jxoj
1CN
2 e4jx

oj
C c.xo/

�
!�.x

o/;

or equivalently,
C

jxoj
1CN
2 e4jx

oj
C c.xo/ � 0:

Now, if jxoj is sufficiently large, this would contradict (2.8). Therefore, (2.10) holds.
This completes the proof of Theorem 2.3.

3. Proof of the main theorem

Proof of Theorem 1.1. Let T�;†�; x�, and !� be defined as in the previous section. Then,
at the points where !�.x/ < 0, it is easy to verify that, for ��.x/ 2 .u�.x/; u.x//; we have

.	 ��/log!�.x/Cm!�.x/ D u
p

�
.x/ � up.x/ D p�

p�1

�
.x/!�.x/ � pu

p�1.x/!�.x/;

(3.1)
because !�.x/ < 0 and ��.x/ < u.x/.

Step 1. We will show that, for sufficiently negative �,

!�.x/ � 0; x 2 †�: (3.2)

First, from the assumption (1.9), for each fixed �, limjxj!1 !�.x/ D 0: In fact, by
(1.9), we have limjxj!1 u.x/ D a, and limjxj!1 u�.x/ D a implying that

lim
jxj!1

!�.x/ D 0:
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Thus, if (3.2) is false, then the negative minimum of !� can be obtained at some point,
say, xo in †�, that is,

!�.x
o/ D min

†�
!�.x/ < 0:

Set c.x/ WD m � pup�1.x/ in (3.1), and then, the assumption (1.9) implies that c 2
L1.RN / and

lim
jxj!1

c.x/ � 0:

Consequently, from Theorem 2.3, it follows that there exists Ro > 0 (independent of �),
such that

jxoj � Ro: (3.3)

Therefore, by choosing � < �Ro and, consequently, jx�j > R0 for x 2 †�; we obtain by
(3.3) that

!�.x/ � 0; x 2 †�: (3.4)

Step 2. Step 1 provides a starting point, from which we can now move the plane T� to the
right as long as (3.2) holds to its limiting position. Define

�o WD sup
®
� j !�.x/ � 0;8x 2 †�;8� � �

¯
:

By (3.3), we know that �o <1.
Next, we will show via a contradiction argument that

!�o.x/ � 0 8 x 2 †�o : (3.5)

Suppose, on the contrary, that

!�o.x/ � 0 and !�o.x/ 6� 0 in †�o ; (3.6)

then we must have
!�o.x/ > 0 8 x 2 †�o : (3.7)

In fact, if (3.7) is violated, then there exists a point Ox 2 †�o such that

!�o. Ox/ D min
†�o

!�o.x/ D 0:

It means that u�o. Ox/ D u. Ox/. Then, it follows from (3.1) that

.	 ��/log!�o. Ox/ D u
p

�o
. Ox/ � up. Ox/ D up. Ox/ � up. Ox/ D 0:

Hence, Theorem 2.2 implies that !�o. Ox/ � 0 in †�o , which contradicts (3.6). Thus, (3.7)
holds.

Now, we will show that the plane T� can be moved further right. More precisely, there
exists an " > 0 such that, for any � 2 Œ�o; �o C "/, we have

!�.x/ � 0; x 2 †�: (3.8)

Once it is proved, this will contradict the definition of �o. Therefore, (3.5) must be valid.
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Let us now prove (3.8). In fact, by (3.7), we have !�o.x/ > 0, x 2 †�o , which in turn
implies that there is a constant co > 0 and ı > 0 such that

!�o.x/ � co > 0; x 2 †�o�ı \ BRo.0/:

Since !� is continuous with respect to �, there exists an " > 0 such that, for � 2
Œ�o; �o C "/, we have

!�.x/ � 0; x 2 †�o�ı \ BRo.0/: (3.9)

Moreover, combining (3.3) with (3.9), we deduce that w�.x/ � 0 on †�0�ı .
To proceed with the proof, we need the following small volume maximum principle

(see [10, Theorem 6.1 (iii)] and [17, Theorem 1.3]).

Lemma 3.1. Let � be an open set of RN . Consider the following problem on �:´
.	 ��/logu.x/ � c.x/u in �;

u � 0 in RN n�;
(3.10)

with c 2 L1.RN /.
Then, there exists ı > 0 such that for every open set � � RN with j�j � ı and any

solution u 2 V!.�/ of (3.10) in �, where the space V!.�/ is given in [10, Section 6],
we have u � 0 in RN .

Consequently, according to Lemma 3.1 (by taking � D .†� n†�o�ı/ \ BRo.0/), we
obtain that (3.8) holds.

The arbitrariness of the x1-direction leads to the radial symmetry of u.x/ about some
point in RN , and the monotonicity is a consequence of the fact that (3.4) holds.

This completes the proof of Theorem 1.1.
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