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Existence and regularity results of parabolic problems
with convection term and singular nonlinearity

Mounim El Ouardy, Youssef El Hadfi, and Abdelaaziz Sbai

Abstract. In this work, we investigate the influence of the convection term and the singular lower
order term on the existence and regularity of solutions to the following parabolic problem:8̂<̂

:
@u
@t
� div.M.x; t/ru/ D � div.uE.x; t//C f

u�
in � � .0; T /;

u.x; t/ D 0 on @� � .0; T /;

u.x; 0/ D u0.x/ in �;

where � > 0,� � RN .N > 2/ is a bounded smooth domain with 0 2�, and f 2 Lm.�� .0; T //
with m � 1 is a non-negative function. The function u0 is a non-negative function that belongs to
the space L1.�/ such that

8! �� �; 9c! > 0; u0 � c! in !:

The main idea of this research explains the combined impact of the convection term and the singular
lower order term on the existence and regularity of a solution to the above problem.

1. Introduction

In this paper, we deal with the existence and regularity results of solutions to the following
singular parabolic boundary value problem:8̂̂<̂

:̂
@u
@t
� div.M.x; t/ru/ D � div.uE.x; t//C f

u�
in �T D � � .0; T /;

u.x; t/ D 0 on �T D @� � .0; T /;

u.x; 0/ D u0.x/ in �;

(1.1)

where 0 2 � is a bounded smooth domain subset of RN .N > 2/, � > 0, andM W �T !
RN�N is a bounded measurable matrix, which satisfies the following conditions: there
exist two positive constants ˛1 and ˇ1 such that, for a.e. .x; t/ 2 �T and � 2 RN ,

˛1j�j
2
�M.x; t/� � �; jM.x; t/j � ˇ1: (1.2)
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Furthermore, the vector field E satisfies

jEj �
B

jxj
; B 2 R�C: (1.3)

f .x; t/ is a non-negative measurable function which satisfies

f 2 Lm.�T /; m � 1:

Here, Lm.�T / denotes the Lebesgue space.
There are considerable researches dealing with the problem as (1.1) when � D 0 or

E � 1. The problem (1.1) with � D 0 has been thoroughly investigated in the past by
Boccardo et al. in a series of works under different hypotheses on the vector field E. To
be more specific, when � D 0, the stationary case of problem (1.1) becomes´

� div.M.x/ru/ D � div.uE.x//C f in �;

u D 0 on @�;
(1.4)

where E 2 .LN .�//N , f 2 Lm.�/, 1 � m < N=2, and M is a bounded measurable
matrix. In [3], the author proved the existence and regularity results of solution to prob-
lem (1.4) for all f 2Lm.�/withm� 1. More precisely, they have obtained the following
results.

• If 2N
NC2

<m< N
2

and jBj< ˛1.N�2m/
m

, then there exists a weak solution u 2W 1;2
0 .�/\

Lm
��

.�/.

• If 1 < m < 2N
NC2

and jBj < ˛1.N�2m/
m

, then there exists a distributional solution u 2

W
1;m��

0 .�/.

• If f 2 L1.�/ and E 2 .L2.�//N , then there exists an entropy solution such that
log.1C juj/ 2 W 1;2

0 .�/.

Some interesting example in [3] showed that the existence and summability results of
solution to problem (1.4) obtained in [2] lost with this slightly weaker assumption (1.3).
For more details, see [3, Examples 2.1 and 2.2].

Recently, Boccardo and Orsina in [11] studied the existence of distributional solution
u 2 W

1;q
0 .�/ to problem (1.4) with q < N˛1

BC˛1
provided (1.3) holds with ˛1.N � 2/ �

B < ˛1.N � 1/ and f 2 L1.�/. Furthermore, u satisfies�Z
�

jrujq
� 1
q

� CEkf kL1.�/:

The constant CE depends on E, ˛1, and �. For some other related results about elliptic
problems with convection term, see the works [4–10, 17, 18] and references therein.

Concerning the evolutive case as problem (1.1) with � D 0, many authors have inves-
tigated this type of problem. Boccardo et al. in [12] have studied problem (1.1) when
� D 0, f � 0, u0 2 L1.�/, and E 2 .L2.�T //N . In the same kinds, Boccardo, Orsina,
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and Porzio in [14] have studied problem (1.1) in the case f � 0, � D 0, andE is a non-zero
measurable vector field satisfies the following assumption:

jE.x; t/j � �jB.x/j; � > 0; B 2 LN .�/ 8.x; t/ 2 �T I

also, the authors studied problem (1.1) when the vector field is less regular, i.e.,

jE.x; t/j �
B

jxj
; B > 0: (1.5)

More recently, Farroni–Moscariello [33] and Farroni in [29] studied the following singular
parabolic problem:8̂̂<̂

:̂
@u
@t
� div

�
M.x; t/ruC A x

jxj2
u
�
D � divF in �T ;

u D 0 on �T ;

u.x; 0/ D u0.x/ in �;

where F 2 L2.�T /, u0 2 L2.�/, and M is a measurable, symmetric, matrix field satis-
fying the uniform bounds

�j�j2 � hM.x; t/�; �i � �j�j2 8� 2 RN ; .x; t/ 2 � � .0; T /; 0 < � � �:

Farroni, Greco, Moscariello et al. in [31] have generalized the problem contained in [29].
For some other results of parabolic equations with convection terms, see [15,32,34,35,39].

If the convection term does not exist (i.e., E � 0), problem (1.1) has been extensively
studied in the past. De Bonis and De Cave in [19] have studied the existence and regularity
of solution to problem (1.1) when the operator is nonlinear with classical Leray–Lions
conditions, � > 0, 0 � f 2 Lm.�T /, m � 1, and u0 2 L1.�/ such that u0 � c in !,
for all ! �� �. In the presence of the absorption terms, the existence and regularity
of solution to problem (1.1) has been proved in [24, 27]. When the singular term u�� ,
.� > 0/, is replaced by a continuous function h possibly singular at the origin and bounded
outside the origin, problem (1.1) has been treated in many works: Oliva and Petitta in [42]
have shown the existence of a non-negative distributional solution to problem (1.1), with
f 2 L1.Q/ and u0 2 L1.�/. In the same kinds, Oliva and Magliocca in [38] have proved
the existence of non-negative solution to problem (1.1) with a superlinear gradient term
which is possibly singular. For more and different aspects concerning singular elliptic and
parabolic problems we refer to [20, 22, 23, 25, 26, 28, 30, 40, 41, 43–48] and references
therein.

Concerning the case in the presence of the convection and the singular terms (i.e.,
� > 0, E ¤ 0), the literature concerned with this type of problems is more limited. More
recently, He and Huang in [36] have studied the following singular elliptic problem:´

� div.M.x/ru/ D � div.uE.x//C f

u�
in �;

u.x/ D 0 on @�;
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where 0 � f 2 Lm.�/ with m � 1, � > 0, M is a bounded measurable matrix satis-
fies some conditions, and the vector field E satisfies condition (1.5). More precisely, the
authors have been proved the existence of a solution u to the above problem and satisfy
the following summability:

• u 2 H 1
0 .�/ if � D 1, A < ˛1.N�2/

2
, and f 2 L1.�/.

• u 2 H 1
loc.�/, u

�C1
2 2 H 1

0 .�/ if � > 1, A < ˛1.N�2/
�C1

, and f 2 L1.�/.

• u 2 H 1
0 .�/ if � < 1, A < ˛1.N�2/

2
, and f 2 Lm.�/ with m D 2N

NC2��.N�2/
.

• u 2 W
q
0 .�/, q D

Nm.�C1/
N�m.1��/

if � < 1, ˛1.N�2/
2

< A < ˛1.N�2/
�C1

, and f 2 Lm.�/ with
1 � m < 2N

NC2C�.N�2/
.

The difficulty of studying problem (1.1) comes from the presence of the convec-
tion term div.uE.x; t//, which leads to the noncoercivity of the differential operator
� div.M.x; t/ru/C div.E.x; t/u/ on L2.0; T; IH 1

0 .�// and in the presence of the sin-
gular term u�� , � > 0. Therefore, in order to overcome the noncoercivity of the operator
� div.M.x; t/ru/C div.E.x; t/u/, we apply truncation method and consider the corre-
sponding approximate Dirichlet problem.

Our main results are in Section 3. More precisely, we start by treating the case � D 1,
the existence of a solution to problem (1.1) given by Theorem 3.3 (see below), and then
the regularity of solutions is given by Theorem 3.5. Also, we will state the existence
and regularity of solutions to problem (1.1) in the case � > 1 in Theorems 3.7 and 3.8,
respectively. Finally, the existence of solutions to problem (1.1) when � < 1 is given by
Theorems 3.10 and 3.13, and the summability of the solution is given in Theorem 3.11.

Preliminaries and notations. Now, we give the Gagliardo–Nirenberg inequality that we
will use afterwards in the proof of main results.

Lemma 1.1 ([21, Theorem 1.2]). Let v be a function in W 1;h
0 .�/ \ L�.�/ with h � 1,

� � 1. Then, there exists a positive constant CGN , depending on N , h, �, and � , such that

kvkL� .�/ � CGN krvk
�

.Lh.�//N
kvk

1��

L�.�/

for every � and � satisfying

0 � � � 1; 1 � � < C1;
1

�
D �

�
1

h
�
1

N

�
C
1 � �

�
:

An immediate consequence of the previous lemma is the following embedding result:Z
�T

jvj� � CGN kvk
�h
N

L1.0;T IL�.�//

Z
�T

jrvjh;

which holds for every function v in Lh.0; T IW 1;h
0 .�// \ L1.0; T IL�.�// with h � 1,

� > 1, and � D h.NC�/
N

(see, for instance [21, Proposition 3.1]).
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Note that problem (1.1) is related to the following Hardy inequality (see, e.g., [16,50]):

H

�Z
�

jvj2

jxj2

� 1
2

�

�Z
�

jrvj2
� 1
2

8v 2 W
1;2
0 .�/;

where H D N�2
2

.
For the sake of simplicity, we will often use the simplified notationZ

�T

f WD

Z T

0

Z
�

f .x; t/ dx dt and
Z
�

f WD

Z
�

f .x/ dx;

when no ambiguity in the integration variables is possible. If not otherwise specified, we
will denote by C several constants whose value may change from line to line and, some-
times, in the same line. These values will only depend on the parameters (for instance, C
can depend on N; ˛1; �; m; T; �;�T ), but they will never depend on the indexes of the
sequences we will often introduce.

Here, we give the definition of a weak solution to problem (1.1).

Definition 1.2. If � � 1, a weak solution to problem (1.1) is a function

u 2 L1.0; T IW
1;1
0 .�//

such that

8! �� � 9c! > 0 W u � c! in ! � .0; T /; (1.6)

jM.x; t/ruj; juE.x; t/j 2 L1.0; T IL1loc.�//; (1.7)

and

�

Z T

0

Z
�

u
@'

@t
C

Z T

0

Z
�

M.x; t/rur'

D

Z T

0

Z
�

uE.x; t/ � r' C

Z T

0

Z
�

f '

u�
C

Z
�

u0.x/'.x; 0/;

8' 2 C 1c .� � .0; T //; with '.T / D 0: (1.8)

If � > 1, a weak solution to problem (1.1) is a function u 2 Lr .0; T IH r
loc.�// with r > 1

and u
�C1
2 2 L2.0; T IH 1

0 .�// such that u satisfies (1.6)–(1.8).

2. Approximations problem

First, in order to get the existence and regularity of solutions to problem (1.1), we need to
consider the following non-singular approximate problem:8̂̂<̂
:̂
@un
@t
� div.M.x; t/run/ D � div

�
un

1C 1
n junj

E.x;t/

1C 1
n jE.x;t/j

�
C

fn
.junjC

1
n /
�

in �T ;

un.x; t/ D 0 on �T ;

un.x; 0/ D u0.x/ in �;

(2.1)
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where

fn D
f

1C 1
n
f
� n: (2.2)

The following lemma gives the existence of solutions to the approximate problem (2.1).

Lemma 2.1. Let B < ˛1.N�2/
2

; then problem (2.1) has a non-negative solution

un 2 L
2.0; T IH 1

0 .�// \ L
1.�T /:

Proof. For given n 2 N and v 2 L2.�T /, let w be the unique solution to the following
problem (see, for instance, [37]):8̂̂<̂

:̂
@w
@t
� div.M.x; t/w/ D � div

�
w

1C 1
n jwj

E.x;t/

1C 1
n jE.x;t/j

�
C

fn
.jvjC 1

n /
�

in �T ;

w.x; t/ D 0 on �T ;

w.x; 0/ D u0.x/ in �:

(2.3)

Now, we take w as a test function in (2.3); by (1.2), we have

1

2

Z
�

w2.x; T /C ˛1

Z
�T

jrwj2 �
1

2

Z
�

w2.x; T /C

Z
�T

M.x; t/rw � rw

�

Z
�T

jwE.x; t/jjrwj C

Z
�T

jfnwj

.jvj C 1
n
/�
C
1

2

Z
�

u20.x/

�

Z
�T

jwE.x; t/jjrwj C n�C1
Z
�T

jwj C
1

2

Z
�

u20; (2.4)

where in the last estimate we have used (2.2). Recalling (1.3), and applying Hölder and
Hardy inequalities on the second term on the right-hand side of (2.4), we find thatZ

�T

jwE.x; t/jjrwj � B

Z
�T

jwj

jxj
jrwj

� B

�Z
�T

jwj2

jxj2

� 1
2
�Z

�T

jrwj2
� 1
2

�
B

H

Z
�T

jrwj2; (2.5)

where H is the Hardy constant. Combining (2.4) and (2.5) and using the fact that u0 2
L1.�/, we obtain

1

2

Z
�

w2.x; T /C

�
˛1 �

B

H

�Z
�T

jrwj2 � n�C1
Z
�T

jwj C
1

2
ku0k

2
L2.�/

: (2.6)

SinceB < ˛1.N�2/
2

, then ˛1 � B
H
> 0. Dropping the first non-negative term and apply-

ing the Poincaré inequality, Hölder inequality to the left- and right-hand side of (2.6),
respectively, we reach thatZ

�T

jwj2 � Cn�C1
�Z

�T

jwj2
� 1
2

C
C

2
ku0k

2
L2.�/
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for some constant C D C.˛1; N /. Using this fact and applying Young’s inequality, we
obtain

kwkL2.�T / � C1 WD C.˛1; N;B;H; ku0kL2.�//:

Define w D S.v/ so that the ball of L2.�T / of radius C1 is invariant for S . It is
obvious to verify, applying the embedding, that S is both continuous and compact on
L2.�T /. Therefore, by Schauder’s fixed-point theorem, there is un 2 L2.0; T IH 1

0 .�//

satisfying un D S.un/, which implies that un satisfies8̂̂<̂
:̂
@un
@t
� div.M.x; t/run/ D � div

�
un

1C 1
n junj

E.x;t/

1C 1
n jE.x;t/j

�
C

fn
.junjC

1
n /
�

in �T ;

un.x; t/ D 0 on �T ;

un.x; 0/ D u0.x/ in �:

Thus, un is solution to (2.1). Note that the second term on the right-hand side of (2.1)
belongs to L1.�T / implies that un 2 L1.�T /; see [1]. Now, taking u�n D min.0; un/
as a test function in (2.3) and using (1.2), we obtainZ T

0

Z
�

@un

@t
u�n C

Z
�T

M.x; t/run � ru
�
n D

Z
�T

unE.x; t/ru
�
n C

Z
�T

fn

.junj C
1
n
/�
u�n I

therefore,

1

2

Z
�

u�n .x; t/
2
�
1

2

Z
�

u�0 .x/
2
C ˛1

Z
�T

jru�n j
2

�

Z
�T

unE.x; t/ru
�
n C

Z
�T

fn

.junj C
1
n
/�
u�n :

From (1.3), and applying Hölder and Hardy inequalities, we obtainZ
�T

unE.x; t/ru
�
n �

Z
�T

ju�n jjE.x; t/jjru
�
n j

� B

Z
�T

u�n
jxj

� B

�Z
�T

ju�n j
2

jxj2

� 1
2
�Z

�T

jru�n j
2

� 1
2

�
B

H

Z
�T

jru�n j
2: (2.7)

By the last inequality, (2.7) becomes

1

2

Z
�

u�n .x; t/
2
C ˛1

Z
�T

jru�n j
2
�
B

H

Z
�T

jru�n j
2
C

Z
�T

fn

.junj C
1
n
/�
u�n :
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Therefore,
1

2

Z
�

u�n .x; t/
2
C

�
˛1 �

B

H

�Z
�T

jru�n j
2
� 0:

Since B < ˛1H , then we deduce that

ku�n kL2.0;T IH1
0 .�//

� 0:

This implies that u�n D 0, and so, un � 0 a.e. in �T .

In the following lemma, we prove the strict positivity of the sequence un solution to the
approximate problem (2.1), which we will apply later in the case � > 1 in the boundedness
of un in the space L2.0; T IH 1

loc.�// as well as in the convergence passages.

Lemma 2.2. Let un be a solution to problem (2.1) given by Lemma 2.1. Then, for every
w �� �, there is a positive constant c! > 0 (independent of n) such that

un � c! in ! � .0; T / 8n 2 N:

Proof. With some modifications and using the same techniques as in the proof of [36,
Lemma 3.2] (see also [13]), we can get the proof of Lemma 2.2.

3. Main results

To show the main results of the present work, we need to obtain a priori estimates on un.
These estimates will effectively depend on f , � , and B , so we have three separate cases
for evaluation. At this point, we start with � D 1.

3.1. The case � D 1

Lemma 3.1. Assume that B < ˛1.N�2/
2

and un is a solution to (2.1) with � D 1 and 0 �
f 2 L1.�T /. Then, un is uniformly bounded in L2.0; T IH 1

0 .�// \ L
1.0; T IL2.�//.

Proof. Taking un as a test function in (2.1) and using (1.2) and the fact 0 � fn � f , we
get

1

2

Z
�

u2n.x; t/C ˛1

Z
�t

jrunj
2
�
1

2

Z
�

u2n.x; t/C

Z
�t

M.x; t/run � run

�

Z
�T

junE.x; t/jjrunj C

Z
�T

f C
1

2

Z
�

u20:

By the fact that f 2 L1.�T / and u0 2 L1.�/, we have

1

2

Z
�

u2n.x; t/C ˛1

Z
�t

jrunj
2
�

Z
�T

junE.x; t/jjrunj C kf kL1.�T / C
1

2
ku0k

2
L2.�/

:

(3.1)
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Recalling (1.3) and using Hölder’s and Hardy inequalities, we estimate the first term on
the right-hand side of (3.1) as follows:Z

�T

junE.x; t/jjrunj � B

Z
�T

junj

jxj
jrunj

� B

�Z
�T

junj
2

jxj2

� 1
2
�Z

�T

jrunj
2

� 1
2

�
B

H

Z
�T

jrunj
2: (3.2)

Combining (3.1) with (3.2) and passing to the supremum for t 2 Œ0; T �, we obtain

1

2
kunk

2
L1.0;T IL2.�//

C

�
˛1 �

B

H

�Z
�T

jrunj
2
� kf kL1.�T / C

1

2
ku0k

2
L2.�/

D C:

Since ˛1 � B
H
> 0, therefore, we reach that

kunkL1.0;T IL2.�// � C and kunkL2.0;T IH1
0 .�//

� C:

This last affirmation implies the boundedness of the sequence un in

L1.0; T IL2.�// \ L2.0; T IH 1
0 .�//:

Remark 3.2. In view of Lemma 3.1, we have unE.x; t/ bounded uniformly in L1.�T /.
From (1.3), applying Hölder’s and Hardy inequalities, we can writeZ

�T

junE.x; t/j � B

Z
�T

junj

jxj

� Bj�T j
1
2

�Z
�T

junj
2

jxj2

� 1
2

�
Bj�T j

1
2

H

�Z
�T

jrunj
2

� 1
2

D
Bj�T j

1
2

H
kunkL2.0;T IH1

0 .�//
� C:

Theorem 3.3. Let � D 1, f 2 L1.�T / with f � 0, and B < ˛1.N�2/
2

. Then, there is a
solution u 2 L2.0; T IH 1

0 .�// \ L
1.0; T IL2.�// in the sense of Definition 1.2.

Proof. By Lemma 3.1, we have un bounded in L2.0; T IH 1
0 .�//. Then, there exists a

function

u 2 L2.0; T IH 1
0 .�//
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such that un converges weakly to u in L2.0; T IH 1
0 .�//. From Lemma 2.2, we have

fn
unC

1
n

bounded in the space L1.0; T IL1loc.�//. On the other hand, by Remark 3.2, we
have unE.x; t/ bounded in L1.�T /, and div.unE.x; t// is bounded in

L1.�T / � L
2.�T / � L

2.0; T IH�1.�//I

then, we deduce that ¹ @un
@t
ºn is bounded in the space

L2.0; T IH�1.�//C L1.0; T IL1loc.�//I

using compactness argument in [49], we obtain

un ! u strongly in L1.�T / and a.e. in �T : (3.3)

In the following lemma, we will prove the convergence a.e. of run to ru in �T .

Lemma 3.4. The sequence ¹runº converges to ru a.e. in �T .

Proof. Let ' 2 C 1c .�/, ' � 0, independent of t 2 .0; T /, ' D 1 on w D supp.'/ �� �,
and we take Th.un � Tk.u//' as a test function in (2.1); we haveZ T

0

Z
�

@un

@t
Th.un � Tk.u//' C

Z
�T

M.x; t/runrTh.un � Tk.u//'

C

Z
�T

M.x; t/run � r'Th.un � Tk.u//

�

Z
�T

junE.x; t/jjrTh.un � Tk.u//j' C

Z
�T

junE.x; t/jjTh.un � Tk.u//jr'

C

Z
�T

fn

.un C
1
n
/�
Th.un � Tk.u//':

Since w D supp.'/ �� � and, by Lemma 2.2, we have un � csupp.'/, then the above
inequality becomes

1

2

Z
�

T 2h .un � Tk.u//' C ˛1

Z
�T

jrTh.un � Tk.u//j
2

�

Z
�T

junE.x; t/j'jrTh.un � Tk.u//j

C

Z
�T

junE.x; t/jjTh.un � Tk.u//jr'

C h

Z
�T

junE.x; t/jjr'j C
h

c�!

Z T

0

Z
!

f C
h2

2
j�j

�

Z
�T

M.x; t/run � r'Th.un � Tk.u//

�

Z
�T

M.x; t/rTk.u/rTh.un � Tk.u//':
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By removing the first non-negative term, applying Hardy and Hölder inequalities in the
first term on the right-hand side of the above estimate, we get

˛

Z
�T

jrTh.un � Tk.u//j
2
�
B

H

Z
�T

jrTh.un � Tk.u//j
2'

C

Z
�T

junE.x; t/jjTh.un � Tk.u//jr'

C h

Z
�T

junE.x; t/jjr'j C
h

c�!

Z T

0

Z
!

f C
h2

2
j�j

�

Z
�T

M.x; t/run � r'Th.un � Tk.u//

�

Z
�T

M.x; t/rTk.u/rTh.un � Tk.u//':

Since B < ˛1H , therefore the above inequality can be written as follows:�
˛ �

B

H

�Z
�T

jrTh.un � Tk.u//j
2'

� h

Z
�T

junE.x; t/jjr'j C
h

c�!

Z T

0

Z
!

f C
h2

2
j�j

�

Z
�T

M.x; t/run � r'Th.un � Tk.u// �

Z
�T

M.x; t/rTk.u/rTh.un � Tk.u//':

Since rTh.un � Tk.u// ¤ 0 (which implies that un � hC k), we can easily pass to the
limit as n tends to1, thanks to (3.3), on the right-hand side of the above inequality, and
we use the fact that ˛ � B

H
> 0 so that�

˛ �
B

H

�
lim sup
n!1

Z
�T

jrTh.un � Tk.u//j
2' � Ch:

To complete the proof of lemma, we can use exactly the same techniques used in the proof
of [24, Lemma 7]. Therefore, we find that

run ! ru a.e. in �T : (3.4)

Recalling Remark 3.2, (3.3), (3.4) and by Vitali’s theorem, we obtain the following
convergences:

lim
n!C1

Z
�T

M.x; t/run � r' D

Z
�T

M.x; t/ru � r' 8' 2 C 1c .� � Œ0; T // (3.5)

and

lim
n!C1

Z
�T

unE.x; t/ � r' D

Z
�T

uE.x; t/ � r' 8' 2 C 1c .� � Œ0; T //: (3.6)
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Concerning the passage to the limit on the term on the right of the approximating problem
(2.1), since supp.'/ is a compact subset of � � Œ0; T /, thanks to Lemma 2.2, there exists
a constant csupp.'/ > 0 such that un � csupp.'/; then,ˇ̌̌̌

fn

un C
1
n

'

ˇ̌̌̌
�
k'kL1.�T /

csupp.'/
f;

for every .x; t/2 supp.'/, since it a.e. converges to f
u

for n!C1, by Lebesgue theorem,
implies that

lim
n!C1

Z
�T

fn

un C
1
n

' D

Z
�T

f

u
' 8' 2 C 1c .� � Œ0; T //: (3.7)

Take now ' 2 C 1c .� � Œ0; T // as a test function in problem (2.1); by the convergence
results (3.3), (3.5), (3.6), (3.7) and letting n!C1, we obtain

�

Z
�T

u
@'

@t
C

Z
�T

M.x; t/ru � r' D

Z
�T

uE.x; t/ � r' C

Z
�T

f

u
'

C

Z
�

u0.x/'.x; 0/:

In the following theorem, we state some summability of u solution to problem (1.1)
which depends on B and the summability of f .

Theorem 3.5. Let � D 1 and 0 � f 2 Lm.�T / with m � 1. Then, solution u to problem
(1.1) found in Theorem 3.3 satisfies the following regularity:

(i) If B < ˛1.N�2/
2

and m > N
2
C 1, then u 2 L1.�T /.

(ii) If B < ˛1.N�2/
2

Nm
N�2mC2

and 1 � m < N
2
C 1, then u 2 L� .�T / with

� D
2m.N C 2/

N � 2mC 2
:

Proof. Let un be a solution of (2.1) given by Lemma 2.1 such that un converges to a
solution of (1.1). In order to prove (i), we choose Gk.un/ as a test function in (2.1), where
Gk.s/ D .s � k/

C, k � max¹1; ku0kL1.�/º, we haveZ
�t

@un

@t
Gk.un/C

Z
�t

M.x; t/run � rGk.un/

D

Z
�t

un

1C 1
n
junj

E.x; t/

1C 1
n
jE.x; t/j

rGk.un/C

Z
�t

fn

un C
1
n

Gk.un/: (3.8)

Recalling (1.2), and taking the advantage of the knowledge that the function Gk.un/ is
different from zero only on the set

An;k D ¹.x; t/ 2 �T W un.x; t/ � kº;
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and that, on this set, we have un C 1
n
� k � 1, we can get the following estimate:Z

�t

M.x; t/run � rGk.un/ D

Z T

0

Z
An;k

M.x; t/run � run

� ˛1

Z T

0

Z
An;k

jrunj
2
D ˛1

Z T

0

Z
�t

jrGk.un/j
2

and Z
�t

@un

@t
Gk.un/ D

1

2

Z T

0

Z
An;k

@

@t
.un � k/

2
D
1

2

Z T

0

Z
An;k

@

@t
..un � k/

C/2

D
1

2

Z
An;k

G2k.un/.t/dx �
1

2

Z
An;k

G2k.u0/.t/dx:

From (1.3), applying Hölder’s and Hardy’s inequalities, we estimate the first term on
the right-hand side of (3.8) as follows:Z

�t

un

1C 1
n
junj

E.x; t/

1C 1
n
jE.x; t/j

rGk.un/ D

Z T

0

Z
An;k

un

1C 1
n
junj

E.x; t/

1C 1
n
jE.x; t/j

runZ T

0

Z
An;k

jun.x; t/jjrunj �

Z T

0

Z
An;k

junj

jxj
jrunj

� B

�Z T

0

Z
An;k

junj
2

jxj2

� 1
2
�Z T

0

Z
An;k

jrunj
2

� 1
2

�
B

H

�Z T

0

Z
An;k

jrunj
2

� 1
2
�Z T

0

Z
An;k

jrunj
2

� 1
2

D
B

H

Z T

0

Z
An;k

jrunj
2

D
B

H

Z T

0

Z
An;k

jrGk.un/j
2: (3.9)

Since k � ku0kL1.�/, then Gk.u0/ D 0, and from (3.8), (3.9) combined with the above
estimates, we obtain

1

2

Z
An;k

jGk.un.x; t//j
2
C

�
˛1 �

B

H

�Z t

0

Z
Ak;n

jrGk.un/j
2
�

Z t

0

Z
An;k

f Gk.un/:

Passing to the supremum for t 2 .0; T /, we get

1

2
kGk.un/k

2
L1.0;T IL2.An;k//

C

�
˛1 �

B

H

�Z T

0

Z
An;k

jrGk.un/j
2
�

Z T

0

Z
An;k

f Gk.un/:
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Applying the Hölder inequality on the right-hand side of the above inequality, we find that

kGk.un/k
2
L1.0;T IL2.An;k//

C 2

�
˛1 �

B

H

�Z T

0

Z
An;k

jrGk.un/j
2

� C

�Z T

0

Z
An;k

jGk.un/j
m0
� 1
m0

: (3.10)

Applying Lemma 1.1 (here � D 2, h D 2, v D Gk.un/), we can writeZ T

0

Z
An;k

jGk.un/j
2.NC2/
N � kunk

4
N

L1.0;T IL2.An;k//

Z T

0

Z
An;k

jrGk.un/j
2:

Invoking (3.10) in the last inequality, we deduce thatZ T

0

Z
An;k

jGk.un/j
2.NC2/
N �

�Z T

0

Z
An;k

jGk.un/j
m0
� 1
m0
. 2N C1/

: (3.11)

By virtue of m > N
2
C 1, then 2.NC2/

Nm0
> 1. Applying Hölder’s inequality with indices

.2.NC2/
Nm0

; 2.NC2/
2.NC2/�Nm0

/ in (3.11), we find thatZ T

0

Z
An;k

jGk.un/j
2.NC2/
N � C

�Z T

0

Z
An;k

jGk.un/j
2.NC2/
N

� 2CN
2.NC2/

�

�Z T

0

jAn;kj

� 1
m0
. 2N C1/.1�

Nm0

2.NC2/
/

:

From now, we can repeat the same techniques used in the proof of [25, Lemma 4] (see
also [1]); we deduce that there exists a constant C1 independent of n such that

kunkL1.�T / � C1:

Therefore, un 2 L1.�T /, and so, u 2 L1.�T /.
Now, we consider 1<m< N

2
C 1. Choosing u2��1n , .�> 1/, as a test function in (2.1),

we have

1

2�

Z
�

u2�n .x; t/C .2� � 1/

Z
�t

u2��2n M.x; t/run � run

D .2� � 1/

Z
�t

u2��1n E.x; t/run C

Z
�t

fn

un C
1
n

u2��1n C
1

2�

Z
�

u2�0 .x/

� .2� � 1/

Z
�t

junj
2��1
jE.x; t/jjrunj C

Z
�t

f u2��2n C
1

2�

Z
�

u2�0 .x/: (3.12)

Condition (1.2) allows us to writeZ
�t

u2��2n M.x; t/run � run � ˛1

Z
�t

u2��2n jrunj
2
D
˛1

�2

Z
�t

jru�nj
2:
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From (1.3) and using the Hölder and Hardy inequalities, we can estimate the first term on
the right-hand side of (3.12) as follows:Z

�t

junj
2��1
jE.x; t/jjrunj � B

Z
�t

u2��1n

jxj
jrunj D

B

�

Z
�t

u�n
jxj
jru�nj

�
B

�H

Z
�t

jru�nj
2:

Using the last two estimates in (3.12) and applying Hölder’s inequality, and by the fact
that u0 2 L1.�/, we obtain

1

2�

Z
�

u2�n .x; t/C
2� � 1

�

�
˛1

�
�
B

H

�Z
�t

jru�nj
2

� kf kLm.�T /

�Z
�T

u.2��2/m
0

n

� 1
m0

C C.ku0kL2�.�//:

Now, passing to the supremum for t 2 Œ0; T �, we find that

1

2�
ku�nk

2
L1.0;T IL2.�//

C
2� � 1

�

�
˛1

�
�
B

H

�Z
�T

jru�nj
2

� kf kLm.�T /

�Z
�T

u.2��2/m
0

n

� 1
m0

C C.ku0kL2�.�//

D C

�Z
�T

u.2��2/m
0

n

� 1
m0

C C: (3.13)

Applying Lemma 1.1 (where h D 2, � D 2, v D u�n) and from (3.13), we obtainZ
�T

Œu�n�
2.NC2/
N � ku�nk

4
N

L1.0;T IL2.�//

Z
�T

jru�nj
2

� C

�Z
�T

u.2��2/m
0

n

�. 2N C1/ 1m0
C C:

By a straightforward simplification, the above estimate becomesZ
�T

u
2�.NC2/

N
n � C

�Z
�T

u.2��2/m
0

n

�. 2N C1/ 1m0
C C: (3.14)

Choosing � such that

� D
2�.N C 2/

N
D .2� � 2/m0 (3.15)

yields

� D
Nm

N � 2mC 2
; � D

2m.N C 2/

N � 2mC 2
:
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Note that � > 1 is equivalent to m > 1 and the condition B < ˛1.N�2/
2

Nm
N�2mC2

ensures
that ˛1

�
�

B
H
> 0. Using (3.15) in (3.14), we reach thatZ

�T

u�n � C

�Z
�T

u�n

�. 2N C1/ 1m0
C C:

Since m < N
2
C 1, then . 2

N
C 1/ 1

m0
< 1; we can apply the Young inequality in the above

estimate, arriving at Z
�T

u�n � C:

Hence, the sequence un 2 L� .�T /, and so, u 2 L� .�T /.

3.2. The case � > 1

At present, we deal with the case of � > 1. In this section, we prove the boundedness of
some positive power of un in L2.0; T IH 1

0 .�//I and also, we prove the boundedness of
un in L2.0; T IH 1

loc.�//.

Lemma 3.6. Let � > 1, B < ˛1.N�2/
�C1

, un be the solution to (2.1) with 0 � f 2 L1.�T /.

Then, u
�C1
2
n is bounded in the space L2.0; T IH 1

0 .�// \ L
1.0; T IL2.�//, and un is

bounded in L
N
N�2 .0; T IL

N.�C1/
N�2 .�//. Moreover, un 2 L2.0; T IH 1

loc.�//.

Proof. Choosing u�n�.0;t/, t 2 .0; T / as a test function in (2.1), from (1.2) and using the

fact that u0 2 L1.�/,
u�n

.unC
1
n /
�
� 1, we get

1

� C 1

Z
�

u�C1n .x; t/C ˛1�

Z
�t

jrunj
2u��1n

�
1

� C 1

Z
�

u�C1n .x; t/C �

Z
�t

M.x; t/run � runu
��1
n

� �

Z
�t

ju�nE.x; t/jjrunj C

Z
�t

u�n

.un C
1
n
/�
f C

1

� C 1

Z
�

u�C10 .x/

� �

Z
�t

ju�nE.x; t/jjrunj C

Z
�t

f C
1

� C 1
ku0k

�C1

L�C1.�/
: (3.16)

Applying the Hölder inequality and Hardy inequality to the first term on the right-hand
side of (3.16), we find that

�

Z
�t

ju�nE.x; t/jjrunj �
2�B

� C 1

Z
�t

u
�C1
2
n

jxj
jru

�C1
2
n j

�
2�B

.� C 1/H

Z
�t

jru
�C1
2
n j

2: (3.17)
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Note that Z
�t

jrunj
2u��1n D

4

.� C 1/2

Z
�t

ˇ̌
ru

�C1
2
n

ˇ̌2
:

The last equation combined with (3.17) leads to

1

� C 1

Z
�

u�C1n .x; t/C

�
4˛1�

.� C 1/2
�

2�B

.� C 1/H

�Z
�t

ˇ̌
ru

�C1
2
n

ˇ̌2
�

Z
�t

f C
1

� C 1
ku0k

�C1

L�C1.�/
D C:

Passing now to the supremum for t 2 .0; T /, and using the fact that f 2 L1.�T /, we
obtain

1

� C 1
kunk

�C1

L1.0;T IL�C1.�//
C

�
4˛1�

.� C 1/2
�

2�B

.� C 1/H

�Z
�T

ˇ̌
ru

�C1
2
n

ˇ̌2
� C:

Since B < ˛1.N�2/
�C1

, then 4˛1�
.�C1/2

�
2�B

.�C1/H
> 0. Therefore,

kunk
�C1

L1.0;T IL�C1.�//
C

Z
�t

ˇ̌
ru

�C1
2
n

ˇ̌2
� C: (3.18)

By Sobolev embedding theorem and from (3.18), we can writeZ T

0

�Z
�

u
N.�C1/
N�2
n

�N�2
N

D

Z T

0

�Z
�

u
�C1
2 2�

n

� 2
2�

� C

Z T

0

Z
�

jru
�C1
2
n j

2
D C

Z
�T

jru
�C1
2
n j

2
� C: (3.19)

The estimates (3.18) and (3.19) imply the boundedness of the sequence un in the space
L1.0; T I L�C1.�// \ L

N
N�2 .0; T I L

N.�C1/
N�2 .�// and the boundedness of the sequence

u
�C1
2
n in L2.0; T IH 1

0 .�//.
In order to prove un 2 L2.0; T IH 1

loc.�//, recalling Lemma 2.2 and using (3.18), we
have that, for all ! �� �,

c��1!

Z
!�.0:T /

jrunj
2
�

Z
�T

u��1n jrunj
2
D

4

.� C 1/2

Z
�T

ˇ̌
ru

�C1
2
n

ˇ̌2
� C: (3.20)

This last affirmation implies the boundedness of the sequence jrunj in L2.! � .0; T //.
Moreover, un is bounded in L2.0; T IH 1

loc.�//I in fact, if ! �� � is fixed, using the

boundedness of u
�C1
2
n in L2.0; T IH 1

0 .�//, we find that�Z
!�.0:T /

junj
2

� 1
2

� C

�Z
!�.0:T /

junj
�C1

� 1
�C1

� C: (3.21)

From (3.20) and (3.21), we conclude that un is bounded in L2.0; T IH 1
loc.�//.
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Now, we state in the following theorem the existence of weak solution to problem (1.1)
when � > 1.

Theorem 3.7. Let � > 1, 0 � f 2 L1.�T /, and B < ˛1.N�2/
�C1

. Then, there is a solu-

tion u 2 L2.0; T IH 1
loc.�// and u

�C1
2 2 L2.0; T IH 1

0 .�// in the sense of Definition 1.2.
Furthermore,

u 2 L
N
N�2 .0; T IL

N.�C1/
N�2 .�// \ L1.0; T IL�C1.�//:

Proof. The proof of Theorem 3.7 is similar to the proof of Theorem 3.3.

In the following theorem, we give the summability of the solution u when � > 1.

Theorem 3.8. Let � > 1, 0 � f 2 Lm.�T / with m � 1. Then, the solution u of (1.1)
given by Theorem 3.7 satisfies the following regularity:

(i) If B < ˛1.N�2/
2

and m > N
2
C 1, then u 2 L1.�T /.

(ii) If B < ˛1.N�2/.N�2mC2/
Nm.1C�/

and 1 � m < N
2
C 1, then u 2 L� .�T / with � D

m.NC2/.1C�/
N�2mC2

.

Proof. Let un be a solution of (2.1) given by Lemma 2.1 such that un converges to a
solution of (1.1).

The proof of item (i) of Theorem 3.8 is similar to item (i) of Theorem 3.5, so we
omit it.

Now, we give the proof of (ii). If m D 1, the result comes from the fact that u
�C1
2 2

L2.0; T IH 1
0 .�// and the Sobolev embedding theorem.

If 1 < m < N
2
C 1, taking u2��1n �.0;t/, t 2 .0; T / and � � �C1

2
, as a test function

in (2.1), we have

1

2�

Z
�

u2�n .x; t/C .2� � 1/

Z
�t

M.x; t/run � runu
2��2
n

D .2� � 1/

Z
�t

u2��1n E.x; t/run C

Z
�t

fn

.un C
1
n
/�
u2��1n C

1

2�

Z
�

u2�0 .x/

� .2� � 1/

Z
�t

junj
2��1
jE.x; t/jjrunj C

Z
�t

f u2��1��n C
1

2�

Z
�

u2�0 .x/:

Repeating the same argument used in the proof of Theorem 3.5, we haveZ
�T

u
2�.NC2/

N
n � C

�Z
�T

u.2��1��/m
0

n

�. 2N C1/ 1m0
C C: (3.22)

Now, choose � such that

� D
2�.N C 2/

N
D .2� � 1 � �/m0: (3.23)
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From the last equality, we get the following equalities:

� D
Nm.1C �/

2.N � 2mC 2/
; � D

m.N C 2/.1C �/

N � 2mC 2
:

From (3.23), inequality (3.22) becomesZ
�T

u�n � C

�Z
�T

u�n

�. 2N C1/ 1m0
C C:

The condition � > �C1
2

is equivalent to m > 1. Since m < N
2
C 1, then . 2

N
C 1/ 1

m0
< 1;

we can apply the Young inequality to the above estimate, arriving atZ
�T

u�n � C:

Hence, the sequence un 2 L� .�T /, and so, u 2 L� .�T /. Therefore, the proof of Theo-
rem 3.8 is completed.

3.3. The case � < 1

In this section, we will prove the existence of solution u 2 L2.0; T IH 1
0 .�// to prob-

lem (1.1) for m � 2.NC2/
2.NC2/�N.1��/

and for some condition assured at B . We will also
prove the existence of solution u belonging to some space larger than L2.0; T IH 1

0 .�// if
1 � m < 2.NC2/

2.NC2/�N.1��/
.

Lemma 3.9. LetB < ˛1.N�2/
2

, � < 1. Let un be the solution to (2.1) and 0� f 2Lm.�T /
withmD 2.NC2/

2.NC2/�N.1��/
. Then, un is uniformly bounded in the spaceL1.0;T IL2.�//\

L2.0; T IH 1
0 .�// \ L

2.NC2/
N .�T /.

Proof. Let un�.0;t/, t 2 .0; T /, be a test function in (2.1), and using (1.2) and the fact that
u0 2 L

1.�/, we obtain

1

2

Z
�

u2n.x; t/C ˛1

Z
�t

jrunj
2
�

Z
�t

junE.x; t/jjrunj C

Z
�t

f u1��n C
1

2
ku0k

2
L2.�/

:

(3.24)
From (1.3), applying Hölder’s and Hardy’s inequalities, we estimate the first term on the
right-hand side of (3.1) as follows:Z

�T

junE.x; t/jjrunj � B

Z
�T

junj

jxj
jrunj

� B

�Z
�T

junj
2

jxj2

� 1
2
�Z

�T

jrunj
2

� 1
2

�
B

H

Z
�T

jrunj
2: (3.25)
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Combining (3.25) with (3.24) and applying Hölder’s inequality and passing to the supre-
mum for t 2 .0; T /, we obtain

1

2
kunk

2
L1.0;T IL2.�//

C

�
˛1 �

B

H

�Z
�T

jrunj
2

� kf kLm.�T /

�Z
�T

u.1��/m
0

n

� 1
m0

C
1

2
ku0k

2
L2.�/

D C

�Z
�T

u.1��/m
0

n

� 1
m0

C C: (3.26)

Now, applying Lemma 1.1 (where h D 2, � D 2 and v D un) and using inequality (3.26),
we can write Z

�T

u
2.NC2/
N

n � Ckunk
4
N

L1.0;T IL2.�//

Z
�T

jrunj
2

� C

�Z
�T

u.1��/m
0

n

�. 2N C1/ 1m0
C C: (3.27)

Based on the assumption of m, it is easy to check that

2.N C 2/

N
D .1 � �/m0: (3.28)

Invoking (3.28) in (3.27), we find thatZ
�T

u
2.NC2/
N

n � C

�Z
�T

u
2.NC2/
N

n

� 1��
2

C C:

Since � < 1, then 1��
2
< 1; we can apply the Young inequality, obtainingZ

�T

u
2.NC2/
N

n � C: (3.29)

This last estimate implies the boundedness of the sequence un in L
2.NC2/
N .�T /. Since

B < ˛1.N�2/
2

, then ˛1 � B
H
> 0, and using (3.29) in (3.26), we obtain

1

2
kunk

2
L1.0;T IL2.�//

C

�
˛1 �

B

H

�Z
�T

jrunj
2
�C

�Z
�T

u
2.NC2/
N

n

� 1
m0

CC �C: (3.30)

The estimates (3.29) and (3.30) give the boundedness of the sequence un in the space
L1.0; T IL2.�// \ L2.0; T IH 1

0 .�// \ L
2.NC2/
N .�T /.

In the following theorem, we establish an existence result for problem (1.1) in the limit
case m D 2.NC2/

2.NC2/�N.1��/
.
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Theorem 3.10. Let � < 1, B < ˛1.N�2/
2

, and 0 � f 2 Lm.�T / with

m D
2.N C 2/

2.N C 2/ �N.1 � �/
:

Then, there exists a solution u 2 L1.0; T IL2.�// \ L2.0; T IH 1
0 .�// \ L

2.NC2/
N .�T /

in the sense of Definition 1.2.

Proof. To check the proof of Theorem 3.10, we repeat the same proof used in Theo-
rem 3.3.

Theorem 3.11. Let � < 1 and 0 � f 2 Lm.�T / with m � 2.NC2/
2.NC2/�N.1��/

. Then, the
solution u of problem (1.1) found in Theorem 3.10 satisfies the following summability:

(i) If B < ˛1.N�2/
2

and m > N
2
C 1, then u 2 L1.�T /.

(ii) If B < ˛1.N�2/.N�2mC2/
Nm.1C�/

and 1 � m < N
2
C 1, then u 2 L� .�T / with � D

m.NC2/.1C�/
N�2mC2

.

Proof. Let un be a solution of (2.1) given by Lemma 2.1 such that un converges to a
solution of (1.1).

The proof of item (i) of Theorem 3.11 is similar to item (i) of Theorem 3.5, so we
omit it.

(ii) The casemD 2.NC2/
2.NC2/�N.1��/

is true via the Gagliardo–Nirenberg inequality, since
for this value of m one has

� D
2.N C 2/

N
:

If 2.NC2/
2.NC2/�N.1��/

� m < N
2
C 1, we choose '.un/ D u�n�.0;t/, .� � 1/, as a test

function in (2.1); we have

1

�C 1

Z
�

u�C1n .x; t/C �

Z
�t

u��1n M.x; t/run � run

� �

Z
�t

ju�nE.x; t/jjrunj C

Z
�t

u�n

.un C
1
n
/�
f C

1

�C 1

Z
�

u�C10 .x/:

From the condition (1.2) and the fact that 1

.unC
1
n /
�
�

1

u�n
, u0 2 L1.�/, we can write

1

�C 1

Z
�

u�C1n .x; t/C �˛1

Z
�t

u��1n jrunj
2

� �

Z
�t

ju�nE.x; t/jjrunj C

Z
�t

f u���n C C: (3.31)

Observe that Z
�t

u��1n jrunj
2
D

4

.�C 1/2

Z
�t

jru
�C1
2
n j

2: (3.32)
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Recalling condition (1.3), applying the Hölder and Hardy inequalities, we estimate the
first term on the right-hand side of (3.31) as follows:Z

�t

ju�nE.x; t/jjrunj � B

Z t

0

Z
�

u�n
jxj
jrunj

D
2B

�C 1

Z t

0

Z
�

u
�C1
2
n

jxj
jru

�C1
2
n j

�
2B

�C 1

Z t

0

�Z
�

.u
�C1
2
n /2

jxj2

� 1
2
�Z

�

jru
�C1
2
n j

2

� 1
2

�
2B

�C 1

Z t

0

�Z
�

jru
�C1
2
n j

2

� 1
2
�Z

�

jru
�C1
2
n j

2

� 1
2

D
2B

.�C 1/H

Z
�t

jru
�C1
2
n j

2: (3.33)

Invoking (3.32), (3.33) in (3.31) and applying Hölder’s inequality, we obtain that

1

�C 1

Z
�

u�C1n .x; t/C
2�

�C 1

�
2˛1

�C 1
�
B

H

�Z
�t

jru
�C1
2
n j

2

� C

�Z
�t

u.���/m
0

n

� 1
m0

C C: (3.34)

By some simplification, inequality (3.34) becomes

1

�C 1

Z
�

Œjun.x; t/j
�C1
2 �2 C

2�

�C 1

�
2˛1

�C 1
�
B

H

�Z
�t

jru
�C1
2
n j

2

� C

�Z
�t

u.���/m
0

n

� 1
m0

C C:

Now, passing to supremum for t 2 .0; T /, we get

1

�C 1
ku

�C1
2
n k

2
L1.0;T IL2.�//

C
2�

�C 1

�
2˛1

�C 1
�
B

H

�Z
�T

jru
�C1
2
n j

2

� C

�Z
�T

u.���/m
0

n

� 1
m0

C C: (3.35)

Recalling Lemma 1.1 (where v D u
�C1
2
n , � D 2, h D 2) and from (3.35), we haveZ

�T

Œu
�C1
2
n �

2.NC2/
N �

�
ku

�C1
2
n k

2
L1.0;T IL2.�//

� 2
N

Z
�T

jru
�C1
2
n j

2

� C

�Z
�T

u.���/m
0

n

�. 2N C1/ 1m0
C C:
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Therefore, Z
�T

u
.�C1/.NC2/

N
n � C

�Z
�T

u.���/m
0

n

�. 2N C1/ 1m0
C C: (3.36)

Now, choosing � such that

� D
.N C 2/.�C 1/

N
D .� � �/m0; (3.37)

this implies that

� D
.N C 2/.m � 1/CN�m

N � 2mC 2
and � D

m.N C 2/.� C 1/

N � 2mC 2
:

From (3.37), inequality (3.36) becomesZ
�T

u�n � C

�Z
�T

u�n

�. 2N C1/ 1m0
C C: (3.38)

The condition m < N=2 C 1 ensures that .2=N C 1/ 1
m0
< 1; then, applying the Young

inequality in (3.38), we find that Z
�T

u�n � C: (3.39)

Note that the condition m � 2.NC2/
2.NC2/�N.1��/

is equivalent to the condition � � 1. There-
fore, inequality (3.39) implies that un 2 L� .�T /. Thanks to the almost everywhere con-
vergence of un, we can use Fatou’s lemma, obtaining u 2 L� .�T /. Hence, the proof of
Theorem 3.11 is completed.

In the following lemma, we will prove some a priori estimate for un; the solution of
problem (2.1) in the Sobolev space is larger than L2.0; T IH 1

0 .�//.

Lemma 3.12. Let � < 1, 0 < B < ˛1.N�2/.N�2mC2/p
2Nm.1C�/

, and 0 � f 2 Lm.�T / with

1 � m <
2.N C 2/

2.N C 2/ �N.1 � �/
:

Then, un is uniformly bounded in Lq.0; T IW 1;q
0 .�// \ L� .�T /, where

� D
m.N C 2/.� C 1/

N � 2mC 2
and q D

m.N C 2/.� C 1/

N C 2 �m.1 � �/
:

Proof. We fix " < 1
n

, and we take '.un/ D ..un C "/� � "�/�.0;t/, .� < � � 1/ as test
function in (2.1); we haveZ

�

‰.un.x; t//C �

Z
�t

.un C "/
��1M.x; t/run � run

� �

Z
�t

junE.x; t/jjrun.un C "/
��1
j C

Z
�t

.un C "/
�

.un C
1
n
/�
f C

Z
�

‰.u0.x//;
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where ‰.s/ D
R s
0
'.`/d`. From condition (1.2) and the fact that

1

.un C
1
n
/�
�

1

.un C "/�
; u0 2 L

1.�/;

we can write Z
�

‰.un.x; t//C �˛1

Z
�t

."C un/
��1
jrunj

2

� �

Z
�t

junE.x; t/.un C "/
��1
runj

C

Z
�t

f .un C "/
���
C C: (3.40)

Observe thatZ
�t

.un C "/
��1
jrunj

2
D

4

.�C 1/2

Z
�t

jr..un C "/
�C1
2 � "

�C1
2 /j2: (3.41)

From (1.3), applying Hölder’s and Hardy’s inequalities, we can estimate the first term on
the right-hand side of (3.40) as follows:Z

�t

junE.x; t/.un C "/
��1
runj

� B

Z
�t

.un C "/
�jrunj

jxj

D B

Z
�t

.un C "/
�C1
2 .un C "/

��1
2 jrunj

jxj

� B

�Z
�t

..un C "/
�C1
2 /2

jxj2

� 1
2
�Z

�t

.un C "/
��1
jrunj

2

� 1
2

: (3.42)

We use the algebraic inequality

.aC b/2 � 2a2 C 2b2; 8a � 0; b � 0;

and Hardy’s inequality; we can writeZ
�t

..un C "/
�C1
2 /2

jxj2
D

Z
�t

..un C "/
�C1
2 � "

�C1
2 C "

�C1
2 /2

jxj2

� 2

Z
�t

..un C "/
�C1
2 � "

�C1
2 /2

jxj2
C 2

Z
�t

"�C1

jxj2

�
2

H 2

Z
�t

jr..un C "/
�C1
2 � "

�C1
2 /j2 C 2

Z
�t

"�C1

jxj2
: (3.43)
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Invoking (3.41) and (3.43) in (3.36) and applying Young’s inequality, we find thatZ
�t

junE.x; t/.un C "/
��1
runj

� B

�
2

H 2

Z
�t

jr..un C "/
�C1
2 �"

�C1
2 /j2C2

Z
�t

"�C1

jxj2

� 1
2
�Z

�t

.unC"/
��1
jrunj

2

� 1
2

�
2
p
2B

.�C 1/H

�Z
�t

jr..un C "/
�C1
2 � "

�C1
2 /j2 CH 2

Z
�t

"�C1

jxj2

� 1
2

�

�Z
�t

r..un C "/
�C1
2 C "

�C1
2 /j2

� 1
2

�
2
p
2B

.�C 1/H

Z
�t

jr..un C "/
�C1
2 � "

�C1
2 /j2 C

p
2BH

�C 1

Z
�t

"�C1

jxj2
:

In view of (3.41), (3.42) and applying Hölder’s inequality, (3.40) becomesZ
�

‰.un.x; t//C
4�

�C 1

�
˛1

�C 1
�

B
p
2H

�Z
�t

jr..un C "/
�C1
2 � "

�C1
2 /j2

� C

�Z
�T

.un C "/
.���/m0

� 1
m0

C C C

p
2BH

�C 1

Z
�t

"�C1

jxj2
: (3.44)

If � � � < 1, by the definitions of '.s/ and ‰.s/, we can get

‰.s/ � C�jsj
�C1
C zC� 8s � 0:

Since
p
2BH

.�C 1/

Z
�t

"�C1

jxj2
< C1;

and using the last inequality in (3.44), we find that

C�

Z
�

junj
�C1
C �

�
˛1 �

B.�C 1/
p
2H

�Z
�t

.un C "/
��1
jrunj

2

� C

�Z
�T

.un C "/
.���/m0

� 1
m0

C C C zC�j�j:

Passing to the supremum for t 2 .0; T /, we obtain

C�kunk
�C1

L1.0;T IL�C1.�//
C �

�
˛1 �

B.�C 1/
p
2H

�Z
�T

."C un/
��1
jrunj

2

� C

�Z
�T

.un C "/
.���/m0

� 1
m0

C C: (3.45)
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Observe that 0 < B < ˛1.N�2/.N�2mC2/p
2Nm.1C�/

and � � � < 1 lead to ˛1 �
B.�C1/
p
2H

> 0. Let now
q < 2; applying Hölder’s inequality and using (3.45), we haveZ

�T

jrunj
q
D

Z
�T

jrunj
q

.un C "/
q.1��/
2

.un C "/
q.1��/
2

�

�Z
�T

jrunj
2

.un C "/1��

� q
2
�Z

�T

.un C "/
q.1��/
2�q

� 2�q
2

�

�
C

�Z
�T

.un C "/
.���/m0

� q

2m0

C C

��Z
�T

.un C "/
q.1��/
2�q

� 2�q
2

: (3.46)

Applying Lemma (1.1) (where � D �C 1, h D q, v D junj) and from (3.45), we getZ
�T

junj
q.NC�C1/

N

�
�
kunk

�C1

L1.0;T IL�C1.�//

� q
N

Z
�T

jrunj
q

�

�
C

�Z
�T

.un C "/
.���/m0

� q

2m0
C

q

Nm0

C C

��Z
�T

.un C "/
q.1��/
2�q

� 2�q
2

: (3.47)

Let us choose � such that

� D
q.N C �C 1/

N
D .� � �/m0 D

q.�C 1/

2 � q
I (3.48)

then, we deduce that

�D
.NC2/.m�1/CN�m

N � 2mC 2
; �D

m.NC2/.�C1/

N � 2mC 2
; and qD

m.N C 2/.� C 1/

N C 2 �m.1 � �/
:

From (3.48) and letting "! 0, inequality (3.47) becomesZ
�T

junj
�
� C

�Z
�T

junj
�

� q

2m0
C

q

Nm0
C
2�q
2

C C:

Since � < 1, then we have m < 2.NC2/
2.NC2/�N.1��/

, that is, ensure q
2m0
C

q
Nm0
C

2�q
2
< 1;

then applying Young’s inequality, we can deduce thatZ
�T

junj
�
� C: (3.49)

Putting (3.48) and (3.49) in (3.46) yieldsZ
�T

jrunj
q
� C:

The two last estimates prove the boundedness of un inLq.0;T IW 1;q
0 .�//\L� .�T /.
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Theorem 3.13. Let � < 1, 0 < B < ˛1.N�2/.N�2mC2/p
2Nm.1C�/

, and 0 � f 2 Lm.�T / with 1 <

m < 2.NC2/
2.NC2/�N.1��/

. Then, there exists a solution u 2 Lq.0; T IW 1;q
0 .�// \ L� .�T / to

problem (1.1) in the sense of Definition 1.2, where

� D
m.N C 2/.� C 1/

N � 2mC 2
and q D

m.N C 2/.� C 1/

N C 2 �m.1 � �/
:

Proof. we repeat the same techniques used in the proof of Theorem 3.3, and we obtain
the proof of Theorem 3.13.
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