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Energy scattering for a 3D Hartree equation with inverse
square potential

Tarek Saanouni and Radhia Ghanmi

Abstract. This work studies the focusing inhomogeneous nonlinear equation of Hartree type
107 — Ky 4 x| T ulP "2 (Jo % |- |7 ulP)u =0, u(t.x):RxR3 - C.

Here, the linear Schrédinger operator reads K := —A + ﬁ for some A > — %. The Riesz poten-

tial is Jo(x) = Ca|x|’(37°‘) for certain 0 < « < 3. The singular decaying term |x|~7 for some
T > 0 gives an inhomogeneous non-linearity. One considers the inter-critical regime, namely, 1 +
w < p <142(1 — 1)+ . Moreover, one assumes that p > 2 in order to avoid a singular
term |u|?~2. Furthermore, one restricts A > 0 because there is no dispersive estimate L1 — L for
A < 0. Contrarily to the homogeneous case t = 0, for A > 0, there is a ground state which minimizes
the associated Gagliardo—Nirenberg-type estimate. The purpose is to investigate the energy scatter-
ing of global solutions under the ground state threshold. One uses the method of Dodson—-Murphy
based on Tao’s scattering criteria and Morawetz estimates. The decay of the inhomogeneous term

|x|~7 avoids any spherically symmetric assumption.

1. Introduction

This paper is concerned with the Cauchy problem for a focusing inhomogeneous general-
ized Hartree equation

{ia,u — JCau + x| 7 [ulP 7 (G | [Tl Pu = 0, (W

M|t=0 = MO.
Here and hereafter, the wave function is u := u(¢, x) : R x R3 — C. The linear
Schrodinger operator is denoted by K := —A + ﬁ, where the classical Laplacian oper-
ator is A := Zi:l 8{1_22' The inhomogeneous singular decaying term is | - |~F for some
k

7 > 0. The Riesz potential is defined on R3 by

INE=3
5”0{ = 2

= —2 |7
I'(5)m22%

, O<a<3.
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In all this note, one assumes that
min{7t,¢,3 —o,3—1,2—-27 4+ a} > 0. (1.2)

Motivated with the next sharp Hardy inequality [3],

L[ofeP 5
Z/];Q3 x[2 dxf[I;Wf(xﬂ dx, (1.3)

one assumes that A > —i, which guarantees that extension of —A + ﬁ, denoted by X,
is a positive operator. In the range _41'1 <iA<l1l-— 41'1’ the extension is not unique [12,29].
In such a case, one picks the Friedrichs extension [12,23].

Note that by the definition of the operator K and Hardy estimate (1.3), one has

I3 I = (||V-||2+AH|7'|H2)é ~ Il

The nonlinear equations of Hartree type, namely, (1.1), model many physical phenom-
ena. Indeed, it is used in nonlinear optical systems with spatially dependent interactions
[4]. In particular, when A = 0, it can be thought of as modeling inhomogeneities in the
medium in which the wave propagates [2,13]. When t = 0, it models quantum field equa-
tions or black hole solutions to the Einstein’s equations [12].

When A # 0, equation (1.1) is not space-translation invariant, contrarily to the case
A = 0. It is known that Sobolev norms using VX are not equivalent to the classical
ones [15]. This restricts the application of Strichartz estimates to the study of the local
well-posedness and scattering of global solutions [21].

The inhomogeneous generalized Hartree equation, namely, (1.1) with A = 0, was
treated first by the second author [1], where the ground state threshold dichotomy was
investigated using a sharp adapted Gagliardo—Nirenberg-type estimate. After that, the
second author treated the intermediate case in the sense of the local well-posedness in
H'N H%,0 < s. < 1. The scattering under the ground state threshold with spherically
symmetric data, was proved by the second author [27] and extended to the non-radial
regime in [26, 30]. The well-posedness in the energy-critical regime was investigated
recently [16,17,25]. The energy critical scattering was treated in [10]. Recently, the inho-
mogeneous generalized Hartree equation with inverse square potential, namely, (1.1) with
A # 0, was investigated in the inter-critical and the energy-critical regimes. Indeed, in [24],
a dichotomy of global existence versus blow-up under the ground state threshold for inter-
critical solutions was investigated and a local energy-critical well-posedness theory was
developed in [16].

The purpose of this paper is to investigate the scattering of energy solutions to the
Schrodinger problem (1.1) in the inter-critical regime and under the ground state threshold.
This naturally extends the recent work [24], where the global existence versus finite-time
blow-up under the ground state threshold was proved, but the scattering was not treated.
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The scattering is obtained by using the new approach of Dodson—-Murphy [7] which is
based on Tao’s scattering criteria [28] and Morawetz estimates.

The rest of this paper is organized as follows. The next section contains the main result
and some useful estimates. Sections 3 proves the main result.

2. Background and main result
This section contains the main result and some useful estimates.

2.1. Preliminary

Here and hereafter, one denotes for simplicity some standard Lebesgue and Sobolev spaces
and norms as follows:

L' :=L" R, W =W ([R?, H°®:=W"%
e = 0tz =1 2

Similarly, one defines Sobolev spaces in terms of the operator K as the completion of
C$°(R?) with respect to the norms

-ty e o= IV Kol -l 2= VKR -l

where (-) := (1 + | - |2)2. Take also, for short, the Hilbert space H! := Wll’2 and H} :=
WAI’Z. Note that, by the definition of the operator X, and Hardy estimate, one has

1
Iy = VT = (1912 + 2] =) =1
Let us also define the real numbers
y:=3p—3—a+2r, p:=2p—y,
and the source term
N ] i= x| 75 (o |- 77| P) P20

Ifue H )}, one defines the quantities related to energy solutions of (1.1):

Pu] :=/ uN[u]dx, 2.1)
R3
Il = || JCAu||2—2lfP[u]; 2.2)
p
M[u] :=/ lu(x))? dx; 2.3)
]R3

1
Efu] := ||V Kaul* — ;f/’[u]- 2.4
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Equation (1.1) enjoys the scaling invariance

2214w 2
U =k 20-D u(k=-, k), Kk >0.

The critical exponent s, keeps invariant the following homogeneous Sobolev norm:
_(3_2-2t+a —
e e = =730 u(e0) | g 1= P 0| -

Two cases are of particular interest in the physical context. The first one s, = O corre-
sponds to the mass-critical case which is equivalentto p = p, := 1+ @ This case
is related to the conservation of the mass (2.3). The second one is the energy-critical case
s¢ = 1, which corresponds to p = p€ := 1 + 2 — 2t + «. This case is related to the con-
servation of the energy (2.4). A particular periodic global solution of (1.1) takes the form
el g, where ¢ satisfies

Fop + 9 =1x["lo|? 2 (Ja x| - | "lolP)p, 0#¢ € HJ. (2.5)

The existence of such a ground state is related to the next Gagliardo—Nirenberg-type
inequality [24].

Proposition 2.1. Let0 <« <3 and 1 + % < p < p°. Assume that A > —% and (1.2) is
satisfied. Thus, the following hold.

(1) A sharp constant Cp 1 o 3 > 0 exists such that, for all u € H}

Plul = Cpranllull®llvFoul”, (2.6)

(2) Moreover, there exists ¢ as a solution to (2.5) satisfying
2P (P\Z \—a(p—
Cpran = —(2) eI 2070, @7
p Ny
(3) Furthermore, one has the following Pohozaev identities:
2p 2p
Plol = Mgl = 7II\/J<WIIZ- (2.8)

In the inter-critical regime 0 < s, < 1, one denotes the positive real number Sl —1:=
ac € (0,1), ¢ to be a ground state of (2.5) and the scale-invariant quantities

us = (ﬁiﬂ)%(g@
L
= (jet) ()

M (Pl
MJW“‘(M@J (wa-




Energy scattering for a 3D Hartree equation with inverse square potential 333

Let e %4 be the operator associated to the free Schrodinger equation (id; — K;) = 0.
Then, by Duhamel integral formula, energy solutions to the problems (1.1) are fixed point
of the function

F) = e " Fayy +i /.efi('ﬂ)x’1 [N [u(s)]] ds. (2.9)
0

In the next sub-section, one lists the contribution of this note.
2.2. Main results
The contribution of this note is the next energy scattering under the ground state threshold.

Theorem 2.1. Let A > 0 and 1, « satisfying (1.2). Take p € (pc, p€) such that p > 2, and
letu € Crx (H/{) be a maximal solution to (1.1). Then, u is global and scatters if one of
the following assumptions holds:

sup MPu()] <1, (2.10)
t€[0,T*)
max{M& [uo], MK [uo]} < 1. 2.11)

In view of the results stated in the above theorem, some comments arise and we enu-
merate them in what follows.

Remarks 2.1. (1) In the first point, the threshold is expressed in terms of the non-
conserved potential energy in the spirit of [6].

(2) In the second point, the threshold under the ground state threshold follows the
pioneering works of [11, 14].

(3) The assumption A > 0 exists there is no dispersive estimate L' — L for A <O0;
see [22].

(4) Compared with the homogeneous regime t = 0, the minimizing problem associ-
ated to (2.6) is never reached for A > 0; see [19].

(5) The above results do not require any radial assumption.

2.3. Useful estimates

In this sub-section, one gathers some standard tools needed in the sequel. Let us start with
the Hardy—Littlewood—Sobolev inequality [20].

Lemma 2.1. Let 0 < o < 3.

(1) Lets > 1 and r > 1 such that% = % + % Then,

o * glls < Cselgllr. VYgelL.

2) Lett > 1and1<s,r<oobesuchthat%+%=%+%. Then,

I/ (Fa * )l < Cnsal fllrligls.  V(fig)e L x L
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Now, one gives some estimates related to Schrodinger problem (1.1).

Definition 2.1. A couple of real numbers (g, 7) is said to be p admissible (admissible if

n = 0)if
3l ! 2—i— 6 <r<6
———)=- , r .
2 r q H 3-2u

For simplicity, one denotes by I'* the set of 1 admissible pairs and " := I'°. Let also, for
any real interval 1,

A= () LIAL), N-laun = sup |- lLe,ery;
(q.r)eT (q,r)er#
-l = (q’ri)féfrw I Nlpa 2,2y

Take also the particular cases
A(I) :=Ao(I), A'T):=Ay(I), Ay:=Au((0,00)), A’_ = A ~,.((0,00)).

An essential tool used in this note is Strichartz estimate [5,9,31].

Proposition 2.2. Let A > —1, € R, and 0 € I be a real interval. Then, there exists
C > 0 such that

() e Frulla, ) < Cllull g

@) || Joe % f(R)ydelaay < Clf laay

(3) if2 20,50l foe % f(D) drlla, ) = ClIS Az, )

The above Strichartz estimates are consequence of the next dispersive estimates [8,22].
Proposition 2.3. There exists C > 0 such that

) et Fry||, < ¢ e el yphenever 1 < % <min{l,1—%};

|‘3(1 1) 2

Q) e Kry||, < C| ‘J("IH’I) whenever r € [2,00] and A > 0.

Let ¢ : R? — R be a convex smooth function. Define the variance potential
Ve = /R3 e |u(, x)?dx, (2.12)
and the Morawetz action
M; = 2\3/ u(V¢-Vu)dx = 253/ u(Guj)dx, (2.13)
R3 R3

where, here and in the sequel, repeated index are summed. Let us give a Morawetz-type
estimate for the Schrodinger equation with inverse square potential [18].
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Proposition 2.4. Take u € Ct (H)t) to be a local solution, to (1.1). Let ¢ : R3 — R be a
smooth function. Then, the following equality holds on [0, T]:

V{'lu] = M{[u]

Ju|?

=4/ a,akgm(akua,a)dx—f A2§|u|2dx+4/\/ V¢ -x——dx
R3 R3 R3

x|
+2(3—1)[ Agﬁdv[u]dx+i/ VE-V(xI™)Nu|? (e * |- |7 ul?)dx
V4 R3 P JRr3

F 2@ N) [ V(e s | l?) i,
p R3 |- 17

From now on one hides the time variable ¢ for simplicity, spreading it out only when
necessary. Moreover, one denotes the centered ball of R3 with radius R > 0 and its com-
plementary, respectively, by B(R) and B€(R). Furthermore, C(R, R’) is the centered
annulus of R3 with small radius R and large radius R’. Finally, the critical Sobolev embed-
ding H' — L gives the index 2* := 6. In what follows, one proves the main result of
this note.

3. Proof of Theorem 2.1

The proof of the energy scattering is divided into several steps.

3.1. Global existence
The global existence follows by the conservation laws via the next coercivity result.

Lemma 3.1. Ler u € H} satisfying
MPu] <v < 1. (3.1

Then, there is ¢ (v, ¢) > 0 such that

IV Full* < c(v, @) Eul, (3.2)
ITu] > c(v. @)/ Kull*. (3.3)

Remark 3.1. It is obvious that one can apply the above result to { gu rather than to u.
Proof. A direct computation gives the useful identities

2(p—Dse =y =2, (3.4)
ac(y —2) =p. (3.5)
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Using the Gagliardo—Nirenberg inequality (2.6) via Pohozaev identities (2.8), the explicit
expression (2.7), and the equalities (3.4)—(3.5), one writes

z
2

y ” -1
[P[]]% < Cpran (]2 PL]) > | VK puel|”

< 2_p<£)§||<P||_2("_1)(M[u]"“f/°[u])%_l||\/J<_w||y
P Ny
< 2_p(§)§¢/%[(p] o=2p-1) [J)[(p]]%_l(e/%f/)[u])%_l WE L

0
EM)Z(M?[u])g_III\/K_wIIV

IA
—

Mlg]
Yy_1(2 %
< (MP[u)* 1(7’)” chnz) .
Thus,
) 2p D 2 2
Plu] < 7(MJ [ul) 7 IV Foull*. (3.6)

This implies that
1
Elu] = ||V Kull” ~ ;ﬂ’[u]
2 o 2 2
> 1—;(=MJ [ul) ¥ IV Kaul”

The proof of (3.2) follows by (3.1) via the assumption s, > 0, which gives y > 2. More-
over, by (3.6) and (3.1), one has

Ilu) = |Vl - - Plu]
4

> [V KulP(1 = (MP)) 7 )

2 vV Kau|.
This proves (3.3). ]

3.2. Scattering criteria

Here and hereafter, one denotes a smooth function y € C$°(IR?) such that Y = 1 on B(%),
¥ =0on B°(1),and 0 < ¢ < 1. Take also Yg := ¥ (). In this sub-section, one proves
the next scattering criteria.

Proposition 3.1. Tuke the assumptions of Theorem 2.1. Let u € C(R, H j) be a global
solution to (1.1). Assume that

0 <sup lu@)||g1 := E < oo.
teR A
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There exist R, & > 0 depending on E, d, p, T such that u scatters if

lim inf lu(t, x)|* dx < €. (3.7
t—>oo Jp(R)

Proof. Using an interpolation via the bound in L*°(H /{)’ it is sufficient to prove that
ue LY (LY.
Moreover, by Sobolev embeddings and Holder estimate, one writes
lulls gary < T4l ooy
So, it is sufficient to prove that there is 7' > 0 such that
u e L*(T, 00), L.

By continuity argument, Strichartz estimate, and Sobolev embedding, the key of the proof
of the scattering criterion is the next result.

Proposition 3.2. Take the assumptions of Proposition 3.1. Then, for any € > 0, there exist
T, 1 > 0 satisfying
” el(-—T)eKA u (T) ”L“((T,oo),LZ*) 5 k.

Proof. By the integral formula, one has

T
e—l(t—T)JC)Lu(T) — e—ltJCAuO 4 / e—l(t—r)JCA [N[M]] dr
0

A T—¢F T A
= e "My 4+ i( / - / )e—"—fm [Nulldt
0 T—c P

= Ky 4 (/ +/ )e_i("’”‘* [Nl d
J1 J>
= e Ayy + Fy + Fo. (3.8)

Now, one estimates the three different parts in (3.8).

The linear term. By Holder and Strichartz estimates via Sobolev injections, one has

1 1

—iK —i K —iK
le™uollzaqroonz2ty = e ol oo g0y, oy €7 40l Lo 7,00y 127

1
i X 3
o™ Koo |

—i-K 3 2
= C”e AMOH L2((T,00),L2*)

2
Lo((T00),H}
1

K 3
< C”e 1 Au0||12,2((T,00),L2*).

Thus, by the dominated convergence theorem via Strichartz estimates and the fact that
(2,2*) € T', one may choose Ty > e > 0, where B > 0is to pick later, such that

||e_i.x/1u0||L4((T0’oo)’L2*) S 82. (39)
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The term Fy. First, the integral formula (2.9) gives

Fy = e 7150 (e CTH DKoy (T — g7F) — ), (3.10)

So, using Strichartz estimate via (3.10), the fact that (2,2*) € T, and an interpolation, one
writes

1 1
IE s roerzy = W oo 000,22 11 L2 1,00, 227)
1

<c|Fy ”Zoo((T,oo),Lz*)'

Let us prove the next claim:

[ Ve < iy G
R3 A

One decomposes the integral on the unit ball and its complementary as follows:

N ] dx

B(1)

2p—1 — — — —

37 (11 llzer an X" ey + Hx1 lza@an X7 llLagey)

2p—1
fcllullf}}

< lull

Here, one uses Lemma 2.1 so that

« 1 2p—1 1 1 2p—1 1

1 —_— = — _ = — —,
+3 a1+ b +c a2+ b +d
3 .{3 3}
— <7 <ming—, — ¢,
d c aj
1<1<1
6 b2
Thus,
o 2p—1 1 1 2z
1 - I - _7
+3 b a ¢ 3
o 2p—1 1 1
14+ = - = — ,
+ b @ d
3<t<m1n 33
d ¢’ a;
1<1<1
6 b2
This reads
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This is possible because p < p.. Moreover, by Lemma 2.1, one has

Nuldx
Be(1)
< ully?~ (17" | e e - - : -
< lully! Lar ey 11X 7" llzer gy + 1117 Loz ey X177 | Lar (e ay))
2p—1
fﬂwé

Here, by Lemma 2.1, one has

1+a 1 2p—1 1 _ 1 2p —1 1
3 aq b1 Cl_az b1 dl,
3 3
max{—,dl} <T < —,
a; C1
1 1<1
—-< =< -
6 b2
Thus,
a 2p-—1 1 1 2t
14+ - - = — + — ,
3 bl an dl 3
2p—1 1 1
I e
3 bl ai (&1
o]
maxqs —,dj; <1< —,
a; C1
1 1 <1
_<_ p—
6 b1~ 2
This reads 3 ) ) | ) |
ta- T< P~ < p— .
3 b1 2
This is satisfied because
- >1+3+a—2r
P = PDe ) 3 .

Now, an interpolation via (3.10), (3.11) and Proposition 2.3 implies that

IF Ol < IR O RO

2
=A@l

T—eF 5 2
< c(/ 0 —s|z||w[u1||1ds)
0

—B\1-3 2p—1y 2
sqa—T+sﬁlww4 )3

B
ces.

IA

So, it follows that
IF 1l Loo((7,00), 2%y < €E" v > 0. (3.12)
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Finally, with an interpolation via (3.12), one gets

17 2y = 1 Fillpoo(7,00),22) 11 22700y, 22%) = €7 :
1P g 1oy < I I <& v>0

The term F». By the assumption (3.7), one has, for T > e h large enough,

/ VR |u(T, x)|? dx < &2,
]R3

Moreover, a computation with use of (1.1) and Holder estimate gives

d 2
5 L velutas

= ‘—2%/ YRUAU dx
R3

2%/ uViyg-Vudx
]R3

<.
R

Then, for any 7" — e h <t<Tand R > 87(2“3), this yields
1
5 T —1\2
[YRu(@)| < 3WR(X)|M(TJC)| dx+CT < Ce.
R
This gives
VRl oo 7—6-8,71,12) < CE.
Using Strichartz estimate in Proposition 2.2, one writes

1F2ll sy = 1F2llay
< [V [u] ”A’_%(Jz)
L P
= WrNIl, o)+ 1A =YRIN |

= 1D lLs + 1T DlLa)-

6
L4(J2,L5)

Now, by Holder estimate via (3.14) and (3.13), one writes, for certain 0 < 6 < 1,

2(p—1 — _
() = ||WRM||f||M||f(p Y(11x 17 e ey X1 "l e aery
+ M7 Ml aern 11" La 3o ry)
0 2(p—1)+1-6
< cllyrul® ull ™"

< 6‘89.

340

(3.13)

(3.14)

(3.15)
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Here,
5 « 1 2p—1 1 1 2p—1 1
6+3_a1+ 7 +c_a2+ 7 +d,
3< < mi 3
— < T < miny —, — ¢,
d a; ¢
1 1<1
- < =< -
6 f T2
This gives
5 32p—1) 3 3
— - = -4+ — > 21,
2+(x 7 c+a1 T
1<1<1
6 f 2
So,

2p—1 2p—1 1/5
P < P <—|\=-—-2t+a].
6 f 3\2

341

This is possible because p < p¢. Moreover, by Holder estimate via (3.14) and the

properties of i, one writes

(1)

< cllul 227 (X" e e oy 11X 1"l Lo gecryy + 11X1F ez ey 11X F Ml Lk B(RY))

—(gt— 2p—1
= cRE P h
< RT3,

Here, g := min{gy, g>} and

5+a_1 2p—1 1 1 2p—1 1

6 3 g e h g e k’
33 - <3

max{ —, — T< -,
g h k

1 1 1

< -< .

6 e 2

This reads

5 32p—1 32p—1
5+oe—27:< @p )< (pz ).

This is possible because p > p. gives

1-2t+a«

—1>
P 3

(3.16)
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Now, by (3.14), (3.15), and (3.16), one gets for 0 < B < @ and R~(E773) < &P,

1Fallpacezry < IDzscy + 1T DlILs)
< c|lF(RTE 4 ¢f)

< cs_% (R_(g’_3) + 89)
<ce". (3.17)
The proof is closed via (3.9), (3.12), and (3.17). ]
]
3.3. Virial/Morawetz estimate
The next radial identities will be useful:
V= fary
’
02 Sie xixk X] Xk
= 00 = (———)a kg2,
9x;0x 19k 3 )0t r2 7
2
A =02+ =09,
In the rest of this note, one takes a smooth radial function ¢(x) := ¢(|x]|) such that
r2 ifo<r<l,
l:r— ]
r ifr > 2.
Now, for R > 0, take via (2.12) and (2.13),
(R = Rzg(%), Mg := Mg,, and Vg := Vg,.
Moreover, one assumes that, in the centered annulus C(0, R, 2R),
9,¢>0, 87¢>0, and [3°¢| < Co|-|'"™% Vla|=1. (3.18)
Note that, on the centered ball of radius R, one has
djklr =28k, Alg =6, and A%*(g =0. (3.19)
Moreover, for x| > 2R,
R i 2R
diklr = —(8,k - %) Atg =2 and A%g=0.  (3.20)
x| x| x|

Now, one states a Morawetz-type estimate.



Energy scattering for a 3D Hartree equation with inverse square potential 343

Proposition 3.3. Thereis 0 < ¢ < 1 and t,, R, — 00 such that

T . H
f (/ u(s, x)? dx) ds < T, (3.21)
0 B(R)

lim lu(ty, x)|* dx = 0. (3.22)
n—00 B(Rn)

Proof. Taking account of Proposition 2.4, one writes

Vglul = 4/ 070k CRN (O ud;t) dx—/ A2§R|u|2 dx
R3 R3
+4A Vir - xl uf? dx +2(2 1)/ ACRuN[u]dx
R3 |x|* p R3
4
+ —/ VR - V(xI™)ul? (Fa * | - " |ul?) dx
P Jr?

4 -7 -7
2= [l VR (o ¢ 1 ) d
— () + () + (1), (3.23)

where one decomposes the above integrals as (fB(R) + fc(R 2R) T ch(zR)). By (3.19) via
[27, Section 5], one has

2
(1) = 8([ |Vul?dx — - N [u] dx +A/ ﬂdx)
B(R) 2

P JB(R) B(R) 1X|?

+ 0(/ ﬁN[u]dx). (3.24)
Be(%)

Moreover, taking ¥ := V — | |2x to be the angular gradient, by (3.20), it follows that

R R |u|?
(I11) = 4[ = (8 — T ) M @Ogudri) dx + 41/ R B g
Be@2R) |X| |x| Bv(zR) x| |x]

1 2R 4
—2(1 — —)/ —uN[u]dx T/ —uJV[u] dx
2p) Je@ry |x| P JBe@ry x|

+ O(AC(R)QN[u]dx)

R 2
=4/ —|Wu|2dx+4k —%
Be2R) x| Be@R) x| |x]

1 2R 4 R
—2(1 ——)/ SR AN ] dx — T/ Z AN [u] dx
2p ) JBe@ry |x| P JBe@Rr) |1X]
+ 0(/ ﬁN[u]dx)
Be(%)

> —R‘Z/ |u|2dx—/ AN [u] dx. (3.25)
R3 Be(%)
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Furthermore, by (3.18), one has

(II):= 4/ 010 CRN (O udsit) dx —/ A2§R|u|2 dx
C(R,2R) C(R,2R)
|u|?

2
+ 4A V§R~x—4dx+2(——l)/ ACRUN [u] dx
C(R2R) |x] b4 C(R2R)
4

* _/ VER - V(X7 ul? (Fo * | - |7 |u]?) dx
P JC(R,2R)

4 _— ) -7
+=(@=N) el VER (g x| 177 ul?) dx
p ) |

z —R_3/ lu|* dx —/ uN[uldx.
R3 Be(®)

C(R,2R

Now, by (3.23), (3.24), and (3.25), it follows that, for certain & > 0,

2
V,;’[u]z/ \Vul?dx — 2 adv[u]dxuf g
B(R)

2p JBR) B(R) 1X|?

— R_Z/ lu|? dx —/ uMNuldx
R3 Be(%)
Jul?

z/ \Vul2dx — 2 AN u] dx + A L
B(R) 2p JBwr) BR) x|

- ey 12
—R 2/ ul> dx — R™%||ul| 7/,
R3 A

z/ \Vul2dx — 2 AN [u] dx
B(R) 2p JBw)

uf?

344

+ A —_dx—cR2—¢R". (3.26)

B(R) 1X|?

Indeed, by Lemma 2.1 and Sobolev embeddings, one gets

f uMNuldx
Be(%)

< ||”||§p(|||x|_t||La1(Bc(§))|||x|_r||Lb1(B(1)) + [[[x7F ||Laz(3c(§))|||x|_r||Lb2(BC(1)))

—b 2
< R ul}7.

Here,
o 2p 1 1 2p 1 1
l+-=—4—+ = — 4+ — 4+ —,
3 e a; b e ax b
3 3
—, <1< s 1<i<2,
wl3. 2] <1< ,
1 1 1
<<,
6 e 2
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This gives
6p 3 3
340 —— =—+ — <21,
e an b2
1 1 1
<<,
6 e 2

Such a choice is possible because p > p.. Moreover, by the identities

[ (YRrU)N [YRru]dx = / uMNuldx + 0(/ uN[u] dx),
R3 R3 B<¢(R)
[ viivup ax = 1vweol? + [ yedvlf dx,
R3 R3
via (3.26), (3.3), and Sobolev embedding, one writes

Valul + ¢R™2 + cR™® = I(Yru)
2 VK (ru)|?

2
2 1Y rulls

> (/ |u|6dx)3. (327)
B(R)

Integrating in time the estimate (3.27) and taking 0 < ¢ < 1, it follows that

T 3
/ (/ lu(s, x)[° dx) ds < Vp[u(T)] — Vgluo) + ¢cTR > + ¢TR™®
0 B(R)
<R+ c¢TR™®.

So, (3.21) follows by taking R = T1+re. Moreover, (3.21) gives

2 (T 3 .
7/7 (/ |u(s,x)|6dx) ds ST T+,
T B(R)

We conclude the proof of (3.22) by using the mean value theorem. ]

3.4. Proof of the scattering in Theorem 2.1 under (2.10)

Take R, ¢ > 0 given by Proposition 3.1 and #,,, R, — co given by Proposition 3.3. Letting
n > 1 such that R, > R, one gets by Holder’s inequality that
2
||”([n)||1242(B(R)) < |B(R)|> ||”(tn)||i6(B(R))
< R2|u () o pez,)

< &2,

Hence, the scattering of energy global solutions to the focusing problem (1.1) follows
from Proposition 3.1.
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3.5. Proof of the scattering in Theorem 2.1 under (2.11)
This part follows from the first point in Theorem 2.1 with the next result.
Lemma 3.2. The assumption (2.11) implies (2.10).

¢t and computing using (3.5), one has

Proof. Taking the real function g : t > 12 — %

Cp.r
EQAUM I = 3T a5 = =P 7520 | K ]
= g IV Haull ] *). (3.28)

Now, with Pohozaev identities (2.8) via (2.11) and the conservation laws, one has, for
some 0 <e<1,

g(IVH aullu)|®) < EQu)[M [u]]*
< (1—¢)E[p][M[p]]*
= (1= e)g(IVKrelllel*). (3.29)

Thus, with time continuity, the assumption (2.11) is invariant under the flow of (1.1)
and T* = oo. Moreover, by Pohozaev identities (2.8), one writes

— C T —
E[p)M[p]* = VTz(nﬁwnuwn“f)z = %(Hﬁwunwn%)y-

So, with (3.28) and (3.29), one gets

- 7 (Ilmwllllull"“)z_ 2 (Ilﬁxullllull‘“)y
Ty =2\ VK aelllelle v =2\ IV XKelllgle

Following the variations of > #tz - ﬁt” via the assumption (2.11) and a continuity
argument, there is a real number denoted also by 0 < & < 1 such that

IVIGu@ @] < (1= o) |VEellle|*  onR. (3.30)

Now, by (3.30) and Pohozaev identities (2.8) via (3.5), it follows that, for some real num-
ber denoted alsoby 0 < ¢ < 1,

PUIM [U]]% < Cpra il VI qul)? uPT2e
< Cprar(1 =)V K pllll@]®)”

<(- 8)27”<||ﬁw||||¢||“6)2
< (1 —e)Plp]M[p]*.

This finishes the proof. ]
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