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On Trudinger-type inequalities
in Musielak-Orlicz-Morrey spaces of an integral
form over metric measure spaces

Takao Ohno and Tetsu Shimomura

Abstract. We establish Trudinger-type inequalities for variable Riesz potentials Jy.y . f of func-
tions f in Musielak—Orlicz-Morrey spaces of an integral form over metric measure spaces X . As an
application and example, we give Trudinger’s inequality for double-phase functionals with variable
exponents. Finally, we prove the result for Sobolev functions satisfying a Poincaré inequality in X .

1. Introduction

Let G be a bounded open set in R¥. A famous Trudinger inequality in [43] insists that
Sobolev functions in WV (G) satisfy finite exponential integrability (see also, e.g., [4,
28]). For 0 < o < N and a locally integrable function f on RY, the Riesz potential U, f
of order « is defined by

Ut ) = [ 1= y1" f) dy.

In [25], Trudinger-type inequalities were studied for U, f of locally integrable functions
f on RY satisfying

4 d 1/p
S“P(fo r”‘”wl(r)( /B (xr)If(y)l”qoz(lf(y)l)dy)Tr) <o, (LD

xeG

where dg = sup{d(x,y):x,y € G} and ¢; (i = 1,2) are positive monotone functions on
the interval (0, oo) satisfying the conditions (¢), (i), and (ii). See also, e.g., [6-9,22,24,27]
for Trudinger-type inequalities.

In the present paper, we work in metric measure spaces X = (X, d, i), where X is
a bounded set, d is a metric on X, and u is a nonnegative complete Borel regular outer
measure on X with pu(X) < co. We denote by B(x, r) the open ball in X centered at
x € X with radius r > 0 and dxy = sup{d(x, y) : x,y € X}. We assume that dy < oo,
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nw({x}) =0forx € X and 0 < u(B(x,r)) < oo forx € X and r > O for simplicity. We do
not assume that p satisfies the doubling condition. Recall that a Radon measure u is said to
be doubling if there exists a constant ¢g > 0 such that u(B(x,2r)) < cou(B(x,r)) for all
x € supp(p)(= X) and r > 0. Otherwise, u is said to be non-doubling. See, e.g., [31,41]
for examples of non-doubling metric measure spaces.

Let a(-) be a measurable function on X such that

0 <o := inf a(x) < supa(x) =:a® < co.
xeX

xeX
Following [34, 36] and [11] by Hajtasz and Koskela, we consider the Riesz potential
Ju(),c f of order a(-) for r > 1 and a locally integrable function f on X by

Zi(x(x)

Jao /0= 3, ey

2i<2dy

) S)du(y),

which is better suited to the metric measure case. Trudinger’s inequality for Jo 1 f* was
studied on L?(X) in [11, Theorem 5.3] and on PO (X) in [13, Theorem 4.8]. It is known
that

~ d(x, y)*®
loy f(x) = /X w(B(x,d(x,y)))

when p satisfies the doubling condition. For I, f, see, e.g., [11,29,32].

Our main aim is to establish a Trudinger-type inequality for variable Riesz potentials
Ju(),c f of functions f in Musielak—Orlicz-Morrey spaces of an integral form 2220 (X)
defined by general functions ®(x, ¢) and w(x, r) (Theorem 5.1), as an extension of [25,
Theorem 5.4] and [11, 13]. See Section 2 for the definition of £%®-¢ (X ). We prove The-
orem 5.1 by relaxing (®5; v) in [18,36] by (®5; @) below. See Remarks 2.4 and 6.3. We
refer to [39, Section 8] for the relationship among (®5; w), (D5;v) and [12, (A1)] by
Harjulehto and Hésto. To obtain Theorem 5.1, we use Hedberg’s method [15] and apply
the boundedness of the (modified) Hardy—Littlewood maximal function defined by

S dp(y) < Clyeya f(x)

1
M; f(x) = sup ————= | f )l dpy)
r>0 W(B(x,Ar)) B(x,r)
for a locally integrable function f on X and A > 1.
As a good example, we give a Trudinger-type inequality for double-phase functionals
with variable exponents [18]

(x,1) = PP +a(x)t 1™ (= 17O + (b(x))1W), xe X, t >0,

where p(-) and ¢(-) satisfy log-Holder conditions, p(x) < g(x) for x € X, a(-) is nonneg-
ative, bounded and Holder continuous of order 6 € (0, 1] and b(x) = a(x)"/4® (Corol-
lary 6.5). Thanks to the relaxed condition (®5; w), we give an improvement of [37,
Theorem 5.1] (see Corollary 6.2 and Remark 6.3). For the study on double-phase func-
tional, we refer to, e.g., [2, 3, 5] by Baroni, Colombo, and Mingione and [21, 26].
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As an application of our discussions, we study a Trudinger-type inequality for Sobolev
functions satisfying a Poincaré inequality in X (Theorem 7.2 and Corollary 7.3), as an
extension of [11, Theorem 5.1].

For Sobolev’s inequality for Musielak—Orlicz—Morrey spaces, see [34,37,38].

Throughout the paper, we let C denote various constants independent of the variables
in question and let C(a, b, .. .) be a constant that depends on a, b, . . . only.

2. Musielak-Orlicz—-Morrey spaces of an integral form

In this section, we define Musielak—Orlicz—Morrey spaces of an integral form. Let us
consider a function

®(x,1) : X x [0,00) — [0, 00)

satisfying the following conditions (®1)—($3):

(®1) P(-, 1) is measurable on X for each ¢t > 0 and ®(x, -) is continuous on [0, co)
for each x € X

(®2) there exists a constant A; > 1 such that
AT' < ®(x,1) < Ay forallx € X;

(®3) t + O(x,t)/t is uniformly almost increasing on (0, 00), namely, there exists a
constant A, > 1 such that

D(x,t1)/t1 < Ay D(x,t,)/t, forall x € X whenever 0 < t; < 15.
Remark 2.1. By ($2) and ($3), we have
D(x,1) < A1Axt for0<t <1 and ®(x,1) > (A142)" 't fort>1. (2.1)

Letting ¢(x, 1) = SUpg<s<(®(x,s)/s) and D(x,1) = f(f ¢(x,r)dr for x € X and
t > 0, then ®(x,-) is convex and

D(x,1/2) < B(x,1) < Ay D(x,1) (2.2)

forall x € X and ¢ > 0. In fact,

®(x,1) > /,/2 $(x.r)dr = %5(& %) = q’(x’ %)

and

3)(x,t) = /Ot ¢_>(x,r) dr < t(ﬁ(x,l) < A, ®(x,1)

by (3).
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We also consider a weight function w(x,r) : X x (0, 00) — (0, co) satisfying the
following conditions:

(w0) w(x,-) is measurable on (0, 0o) for each x € X;

(wl) r — w(x, r) is uniformly almost increasing on (0, co), namely, there exists a
constant ¢; > 1 such that

w(x,r)) <cio(x,rp)

for all x € X whenever 0 < r; < rs;

(w3) there exist a constant ¢3 > 1 such that
w(x,r) <c3

forall x € X and r > 0 and

w(x,dy) > &1

forall x € X.

Note that (w2) in [38], which is the doubling condition on w, is not needed in this
paper.

Let us write that L. (t) =log(c +t) forc > 1 and ¢ > 0, Lgl)(t) =L.(1), ng'H)(t) =
L. (ng)(t)). Let f~ :=infyex f(x) and f* :=sup,cy f(x) for a measurable function
fonX.

Example 2.2. Let o(-) and (), j = 1,..., k be measurable functions on X such that
0<o” <ot <ooand —oc0 < B; 5/3;' <ooforall j =1,...,k. Then,

rox) ]_[le(Lg/)(l/r))ﬂf(x) when 0 < r < dy,

o ()48, ()} (x, ) =
’ ' {“’0(~),{ﬂ;(~))(xa dx) when r > dy

satisfies (w0), (wl), and (w3).

Recall that f is a locally integrable function on X if f is an integrable function on all
balls B in X.Let 6 > 1. In connection with (1.1), given ®(x, t) and w(x, r) as above, we
define the £ norm by

I/ | 200 )

. . 24y o(x,r) — dr -
- “‘f{* 202 ([ 00 gy 20 VONI00) ) 1}'

The space of all measurable functions f on X with | f|lgew6(x) < 0o is denoted by
£®2.9(X). The space £%®¢(X) is referred to as a Musielak—Orlicz—Morrey space of
an integral form. In the case when ®(x, 1) = 12, £®®9(X) is denoted by £7-°-¢(X) for
simplicity.
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Remark 2.3. We remark from (w3) that 2dy in the definition of || /|| ¢e.0.6(x) can be
replaced by kdy with « > 1.
We will also consider the following conditions for ®(x, t): let p > 1 be given.

(®3;p) t > t7PP(x,t) is uniformly almost increasing on (0, co), namely, there
exists a constant A, , > 1 such that
tl_pCD(x, 1) < Az,ptz_pd>(x, t;) forall x € X whenever 0 < £; < 15;
(P5; w) forevery n > 0, there exists a constant B;, > 1 such that
O(x,1) < D(y, Byt)

whenever y € B(x,r), ®(x,t) < na)(x,r)_l, and ¢t > 1.
Note that (®4) in [18], which is the doubling condition on @, is not needed in this
paper.

Remark 2.4. For a measurable set E C RY, | E| denotes its Lebesgue measure. In the
Euclidean setting, Maeda, Mizuta, and the authors [18] considered the following condition
for ®(x,1):

(®5;v) foreveryt > 0, there exists a constant EL,V > 1 such that
d(x,1) < B, ®(y.1)

whenever x,y e RV |x —y| <™V, and t > 1.

For the metric measure setting, see (®5; v) in [33, 36]. Harjulehto and Histo [12] con-
sidered the following condition:

(A1) there exists a constant 0 < 8 < 1 such that
O™ (x, 1) < 7 (y,1)
forevery 1 <t <1/|B|, x,y € B and ball B with |B| < 1.
On the relationship between (®5; w), (P5;v), and (A1), see [39, Section §].
We give two good examples of ®(x, t).

Example 2.5. Let w(x, r) be as in Example 2.2. Let p(-) and ¢;(-), j = 1,...,k, be
measurable functions on X such that 1 < p~ < pT™ < o0 and —o0 < q; =< q;r < oo for
all j =1,...,k.

Then,

k
Dp) gy (x.1) = 1P TTLS (08 @
j=1

satisfies (®1), (P2), and (P3). It satisfies ($3; p) for | < p < p~ in general and for
1<p<p~ incaseqj_ >O0forall j =1,...,k.
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Moreover, we see that @), 14, (3 (x, 1) satisfies (®5; ) if p(-) is log-Holder continu-
ous, namely,

lp(x) — p(y)| < lexy)) (x.y € X)

with a constant C,, > 0 and g, (-) is (j + 1)-log-Holder continuous, namely,

C. .
lgj (%) —q; (V)| < ——22 (x.y € X)
LYV (1/d(x. y)
with constants C, ; > 0 for each j = 1,..., k. In fact, for n > 0, let y € B(x, r),

CIJI,(.),{qj (1) < no(x, r)_l, and ¢ > 1. Then, we see from (2.1) and (w1) that
1 <1< A1 A ®p() 1g, (3 (5. 1) < A1 Aanw(x, 1)~ < C(pw(x,d(x,y)) ™",
so that () (4; ()3 (x, 1) satisfies (P5; w).
Example 2.6. The double-phase functional with variable exponents
O(x,1) = PP + a(x)19, xe X, >0,

where p(x) < g(x) for x € X, a(-) is a nonnegative, bounded, and Holder continuous
function of order 8 € (0, 1], was studied in, e.g., [18,19,32,40]. See Section 6.

3. Maximal operator

Recall that

1
—sup———— du(y).
M;, f(x) sup (Ba.an) B(x’r)lf(y)l w(y)

For A > 1, we say that X satisfies (M A) if there exists a constant C > 0 such that

C
plx € XM, £ > k) < L[ 170 du) @
X

for all measurable functions f € L'(X) and k > 0. In (3.1), we cannot remove the number
A (Stempak [42]).

The following lemma was given in [35, Theorem 2.4] when w(x,r) = w(r) and @
satisfies (w2) in [35]. In the same manner, Lemma 3.1 can be proved by using (w3).
Hence, we omit the proof.

Lemma 3.1. Let 1 <6y < 0 and A > 61(0, + 1)/(02 — 01). Assume that X satisfies
(M A). Further, suppose that

(wl") r = r~%tw(x,r) is uniformly almost increasing in (0, dx| for some &1 > 0.

If p > 1, then there is a constant C > 0 such that
M5 Sl grwtrxy < CILS lgron x)
forall f e £P®0(X).
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Here, we remark that (w1’) implies (wl). Letting w(x, r) be as in Example 2.2, then
(wl)holds for0 < ¢y <o~

Theorem 3.2. Let 1 < 0 < 0, and A > 6,(60, + 1)/(62 — 01). Suppose that ®(x, t)
satisfies (P3; p) and (P5; w) for p > 1. Assume that X satisfies (M A) and (w1’) holds.
Then, there is a constant C > 0 such that

IMa fll 200 xy < Cll Sl g2 (x)

forall f e £ (X).
For p > 1and A > 1, set

1
I(f;x,r,A) = m B S du(y)

and
1
J(fix,r,pA) = ———— d(y, VP du(y).
(f;x,r,p, ) BG ) Joien . f(») wn(y)

We show the following lemma to prove Theorem 3.2.

Lemma 3.3. Let 1 <6 < A. Suppose that ®(x,t) satisfies (93; p) and (P5;w) for p > 1.
Then, given L > 1, there exist constants C; = C(L) > 2 and C, > 0 such that

O(x. I(f:x.7. 1)/ C1)"? < CoI(fix.r. p.2)

forall x € X, 0 <r < dyx and for all nonnegative measurable functions f on X such that
f(y)=1or f(y) =0foreach y € X and

24 gy(z,1) dt
- , d — | <L. .
525([0 u(B(z,et»(/B(z,,) 0. fON aply )) r) L 62

Proof. Given f as in the statement of the lemma, x € X, and 0 < r < dy, set | =
I(f;x,r,A)and J = J(f;x,r, p,A). Taking f, note that (3.2) and (w1) imply

CU()C,}")
(B(x, Ar)) fO))d
w(B(x. Ar)) Jseen (y, f(y)) du(y)

Ar/6 a)(x,t) i
=¢ / m( /B oy 200D du(y))T <Gl

so that
J<ClPLVPw(x,r)VP. (3.3)
By (93; p), ®(y, f(y)/? = (A142,,)"/7 f(y) for all y € X. Hence,

I < (AjAy )P ).
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Thus, if J < 1, then by (®3; p)

O(x. 1/C)YP < J(Az p®(x, 1))? < (A1 45,,)P )

whenever C; > (A1 45 )"/,
Next, suppose J > 1. Since ®(x,7)'/? — oo as t — oo by (P3; p), there exists K > 1
such that
d(x, K)'/P = d(x, 1)V/7]. (3.4)

Letn = A1CoL. Since K > 1 and
O(x,K) < A1J? < A1CoLw(x,r)" ! = nw(x,r)™!

in view of (3.4) and (3.3), we see from (®5; w) that there is § = (1) > 1, independent
of f, x, r, such that
O(x, K) < @(y, BK)

for y € B(x,r). Hence, with this K, we have by (®3; p), (3.4), and (P2)

- 1p oy fON'?
[g T = BKBe ) + ALK [ S

4,'7pK ’
W/B(m Dy, fFONYP dp(y)

< BK(B(x, Ar){1 + (A1 42,,)"/7}

du(y)

< BKu(B(x.r)) +

as in the proof of [18, Lemma 3.3]. We refer to [20, Lemma 9] for details of the rest of the
proof. ]

Proof of Theorem 3.2. Consider the function
Po(x,1) = D(x,1)"/P.

Let f be a nonnegative measurable function on X with || /|| gew.6 (x) < 1/2. Let

1 = frlixex.ro)=1) f2 = f — fi. Applying Lemma 3.3 to f; and L = 1, there exist
constants C; > 2 and C, > 0 such that

Do(x, My f1(x)/C1) = CoM,[@o(:, f1()D)](x),

so that
®(x, My f1(x)/C1) < CE[Ma[@o(- fF(D](x)]” (3.5)

forall x € X.
On the other hand, since M), f, < 1, we have by ($2) and ($3)

<I>(x, Mkfz(x)/cl) < A1A4, (36)

forall x € X.
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Here, note from (w1’) and (w3) that there exists a constant C3 > 0 such that

2dx d 2dy d 2dy d
/ a)(z,r)—r = / rw(z,r) -rsl—r < C/ rsl—r <Cs 3.7
0 r 0 r 0 r

for all z € X. In view of (2.2), (3.5), (3.6), (3.7), and Lemma 3.1, we find that

24y w(z,1) _ dr
| e am i, P s eoraem aue)

_ A 2dx (z,r) i
- 7{/0 e 7y ¥ A0/ €000 )

2dx w(z,r) dr
A= R o

2dx w(z,r) , dr
=€ { /o 1(B(z.02r)) ( /B<z,,) [Ma[@o(, F(D)]()] d,L(x)) &

2dx
+/ a)(z,r)ﬂ}
0 r

<C

for all z € X. Thus, we conclude the desired result. [

4. Lemmas

Let us recall the following lemma from [16, Lemma 5.1].

Lemma 4.1. Let F(x,t) be a positive function on X x (0, 00) satisfying the following
conditions:

(F1) F(x,") is continuous on (0, 00) for each x € X;

(F2) there exists a constant K1 > 1 such that
K7'< F(x.1) <K, forallx € X;

(E3) t +— t=¢ F(x,1) is uniformly almost increasing for some € > 0, namely, there
exists a constant K, > 1 such that

tl_g/F(x,ll) < Kztz_a/F(x,tz) for all x € X whenever 0 < t; < t.
Set
F7Y(x,s5) = sup{t > 0; F(x,1) < s}

for x € X and s > 0. Then, the following hold.
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(1) F~Y(x,") is nondecreasing.

(2) F~(x, A1) < (KaV)YEF~Y(x,t) forallx € X, t > 0, and A > 1.

(3) F(x,F Y (x,t)) =t forallx € X andt > 0.

@) KVt < F~W(x, F(x.t)) < K¥*t forall x € X and t > 0.

(5) min{l1, (KISKZ)I/’E’} < F~Y(x,s) <max{l, (K, K2s5)"/¢'} forall x € X and s > 0.

Remark 4.2. Note that F(x,t) = ®(x,t) is a function satisfying (F1), (F2), and (F3)
with K; = A1, Ky = Ay, and ¢’ = 1.

We consider a function {(x,r) : X x (0, 00) — (0, oo) satisfying the following con-
ditions:

(¢0) ¢(x,-) is measurable on (0, co) for each x € X;

(1) there exists a constant Q¢ > 1 such that sup,cy o<y <24, {(X,7) < Q¢ and

2dy d
/ (e <o,
0 r

forallx € X.

Lemmad.3. Let1 <6y <0y and A > 61(0, + 1)/(62 — 01). Suppose that O(x,t) satisfies
(®3; p) and (P5; w) for p > 1. Assume that X satisfies (ML) and (w1’) holds. Let 0 <
& < 1. Then, there exists a constant C > 0 such that

/‘de tz.r){P 7 (z, 0(z. r)_l)}_a
0 w(B(z, 62r))

forallz € X and f € £ (X) with I/l g00.6, x) =L

( / (M3 (0} du(x))ﬂ e
B(z,r) r

Proof. Let f be a nonnegative measurable function on X with || f'[| g@.0.6, (x) < 1. Then,
by Theorem 3.2, there exists a constant C; > 1 such that

2dx w(z,r) — dr<
o i e e s o) 21w

forall z € X. Let z € X, and set ¢c; = Ay A,¢3. Then, we have by Lemma 4.1 (5) and
(w3)
CID_I(z,cla)(z, r)_l) > min{1, (A1A2)_1c153_1} =1

and by Lemma 4.1 (3)
Oz, 7z, crw(z, 1)) = cro(z, r)™!
forall z € X and 0 < r < 2dy, so that, by (®5; w), there exists a constant > 1 such that

cla)(z,r)_1 = GJ(Z, CID_I(z,clw(x,r)_l)) < dJ(x,ﬂCID_l(Z,clw(x,r)_l))
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whenever x € B(z,r) and 0 < r < 2dy. Therefore, we find by (®3), Lemma 4.1, (¢1),
and (2.2)

ez, r{@ Yz, w(z,r) )}V ° .

{M( B((Z’ o ) [ (2 o)
- {(z,r){CD_l(z,a)(z,r)_l)}_s
B w(B(z, 62r))
({07 (z,0(z. 1))}

w(B(z, 6zr))

e M) f(x)/(2C1)}*P(x, M) f(x)/(2Cy))

) /B(”){M;Lf(x)} (B~ 1(z,cro(z, 1) 1)} " ®(x, O (2. crw(z, 7)) dp(x)
< 242¢1C1B)¥¢(z, 1)

+ A;+S(2C1ﬂ)scl—l+8

/1;( ){2C1,8®_1(z,cla)(z,r)_l)}8 du(x)

—&

+ A,

((z,Nw(z, 1)
w(B(z,62r)) JBiz,r)

w(z,r) _
R oy 2900/ )

forallz € X and 0 < r < 2dyx, so that

2 e 07 . ey ) Y
[) n(B(z, 6,r)) (/B(z,r){l‘/l)L J(} d”’(x)) T

2dx 2dx
< c{ (e 4 / M( / B(x. My f(x)/C1) du(x))ﬂ}
0 r 0 B(z,r) r

P(x, My f(x)/(2C1)) dju(x)

= C{Z(z,r) +

p(B(z.6ar))
<C

by (¢1) and (4.1). Hence, we obtain the required result. ]

Let E be a measurable subset of X . To consider Trudinger-type inequalities, we pre-
pare an auxiliary function. For s = min{1, 1/(2dx)}, we consider a function

I'(x,s): E x[sg,00) = (0,00) 4.2)

which satisfies the following conditions:

(I'l) s > I'(x,s) is uniformly almost increasing on [sg, 00), that is, there exists a
constant crp > 1 such that

I'(x,s1) <cril(x,s2)

forall x € E and 5o < 51 < $3;

(I'2) there exists a constant crp > 1 such that
['(x,2) < cral'(x, 50)

forallx € E;
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(I'og) there exists a constant crg > 1 such that
T(x.s%) < crel(x,s)

forallx € E and s > 1.

We recall the following lemma which gives estimates for the function I'.

Lemma 4.4 (Cf. [23, Lemmas 2.1 and 2.2]). (1) I'(x, -) has uniform doubling property
on [sg, 00), namely, there exists a constant C > 0 such that T'(x,2s) < CT'(x, s) for all

x € Eands > sg.

(2) For a > 0, there exists a constant C > 1 such that

C'T'(x,s) < T(x,5%) < CI(x,s)

forallx € E and s > 1.

(3) There exists a constant C > 0 such that

I'(x,s) < CsI'(x,s0)

forall x € E and s > sy.

We define another useful function with certain properties. We consider a function

y(x,p) : E x(0,00) — (0, 00) 4.3)

satisfying the following conditions:

(y1) y(x,-) is measurable on (0, co) for each x € E;

(y2) there exists a constant By > 1 such that
y(x,p1) < Bry(x, p2)

for all x € E whenever 0 < p1/2 < py < p1 < 2dyx;
(y3) there exists a constant 0 < B, < 1 such that infycx 0<p<2dy Y (X, 0) = Ba.
Further, we consider the following condition:

(I'®yaw) there exist constants ¢y > 1 and ¢5 > 1 such that
P*Pw(x, p)y(x. p) T O (x. y(x. p) < ¢fT(x.1/p)
for all x € E whenever 0 < p < 2dx and

2dy dp
/ P (., y e )L < 3T (x,1/8)
§ 1Y

for all x € E whenever 0 < 6 < dy /2.



On Trudinger-type inequalities in Musielak—Orlicz—Morrey spaces 389

Here, note from (I'®yaw), (y3), and Lemma 4.1 (5) that there exists a constant cp3 >
0 such that

I'(x,2/dx) = crs. 4.4
Now, we state and prove our lemma using the functions I" from (4.2) and y from (4.3).
Lemma 4.5. Let 1 < 0 < t/2. Suppose that ®(x,t) satisfies (O5;1/y). Assume that
(' ®yaw) holds. Then, there exists a constant C > 0 such that
2ioz(x)
2 W(B(x,72")) Jp(x,c2i

28<2i<2dy

| S du(y) = CI'(x,1/5)

forallx € E, 0 < § < dx /2, and nonnegative f € £%9(X) with |/l gowocxy <1

Proof. Let f be a nonnegative measurable function with || /|| go.w.6(x) < 1/2. Let x €
E and 0 < § < dx/2. Set ¢; = AlAsz’l. Then, we have by (y3), (®2), (®3), and
Lemma 4.1

>~ (x,cry(x,1)) 2 1

and

O(x, D7 (x, c1y(x, 1)) = cry(x,1)

forall x € E and 0 <t < 2dy, so that, by (®5; 1/y), there exists a constant 8 > 1 such
that

c1y(x,1) < @(y, B (x,c1y(x.1)))
whenever y € B(x,t) and 0 < t < 2dy. Therefore, we find by (®3), Lemma 4.1, and
(TCdyaw)

toz(x)

- d
LBt Jaen S du(y)

[a(x)

= 0B ) Jpen
o)
2 u(B(x,tr))
FOrey. f(»)
X f) —
/Bw) {BO~1(x, cry(x, 1)} @y, BO1(x, 1y (x, 1))
1@y (x, 1) e (x, y(x,1))
w(B(x,tt)) B(x.t)

[(x, 1/)w(x, 1) }
LW /oty 1) J |
w(B(x.71)) e ®(y, f(») du(y) 4.5)

B (x,cry(x, 1)) du(y)

+ A

du(y)

< c{t“(X>q>—1(x, y(x., 1)) + O(y, f(») du(y)}

< C{t“(x)cb_l(x, y(x,1)) +
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forall 0 <t < 2dy. It follows from (4.5) and (I'1) that

21a(x)
E Y ETIENY S du(y)
28 <2 <2dy W(B(x,72")) JB(x,2%)

gc{ > 2" W (xy(x,2)
2§<2i<2dy

L(x,1/2)w(x,2")
. w(B(x.12))  Jawan @y, f(») du(y)}

2§<2i<2dy

gc{ > 2*We T (x,y(x,2)

28<2i<2dy

w(x,2)
+T'(x,1/6) 25<§5:2d 1B, 2) Joeen @(y, f(») dﬂ()’)}

=C(L, + Iy).
By (y2), T ®yaw), and Lemma 4.1, we have

dt
L=C Z / a(x)qu(x’y(x,f))?
2i=

28 <2i<2dy

2dy dt
< c/ ta(x)CID_l(x,y(x,t))T
8
< CT(x,1/8).

By (wl) and 6 < t/2, we see that

2[
pecrway Y i [ e fondu)

28<2i<2dy

2!+1

< w(x,1) dr
ey 3 [ e (L oo ronam)

4x g(x, 1) dt
<CT(x,1/8) s m(/l;(m) O(y, f(») dﬂ()’))T

2dy
< CTI'(x, 1/5)/
0

< CT(x,1/5).

w(x,t)

dt
(L e rondum) T

This completes the proof.

390
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5. A Trudinger-type inequality

Before we state our main theorem, we give the assumptions for the function in Trudinger-
type inequalities. We consider a function

WU(x,t): E x[0,00) — [0, 00)

with the following properties:
(W1) W(,1t) is measurable on E for each ¢ € [0, 00) and W(x, -) is continuous on
[0, 00) for each x € E;
(P2) there is a constant Ql > 1 such that W(x, ;) < ¥(x, Qltz) for all x € E
whenever 0 < 11 < t7;
(UT) there are constants Q», O3 > 1 and ¢ = so such that W(x, [(x,5)/02) < Oss
forall x € E and s > s5.
Note that (I'®yaw) and (WT') give the relation between W and ®.
Theorem 5.1. Let 1 <A <t.Let1 <601 <0, A >0, (92 + 1)/(92 — 91), and 61 < ‘L’/2.
Suppose that ®(x, t) satisfies (O3; p), (P5; w), and (P5;1/y) for p > 1. Assume that

X satisfies (M L) and (w1’) holds. Suppose (I' ®yaw) holds. Then, for € > 0, there exist
constants ¢1 > 0 and cy > 0 such that

2dy g(z,r){@-l(z,w(z,r)—l)}—s( |Ja(.),tf(X)|) dr _
/o p(B(z,62r)) /EﬂB(z,r)\p(X7 1 dM(X)) roe

forallz € X and f € L2 (X) with || f || go.wsy (x) < 1.

Proof. Let f be a nonnegative measurable function on X with || f'{| ge.0.6, (x) < 1. Let
x € E and ¢ > 0. Then, we may assume 0 < ¢ < 1 since we have by Lemma 4.1 (5)

{07 (2. w(z, r)_l)}_1 < max {1, A1 A»¢3)}

forallz € X and 0 < r < 2dy.For0 < § < dy /2, Lemma 4.5 implies

2ia(x)

Ja(),c f(x) < T A
“0= E(s H(BCx,120) S

)f(y)du(y) + CF(x, é)

< c{sﬂx)fo(x) + F(x, é)}

with a constant C > 0 independent of x.
If M) f(x) < 2/dyx, then we take § = dy /2. Then, by (4.4),

d a(x)—1 7 >
Ja(~),rf(x)fc{(7X) +F(x, E)} SCF(x,E).
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By Lemma 4.4 (1), there exists a constant C > 0 independent of x such that
Ja(), f(x) = CT(x,50) if M) f(x) <2/dx. G.D

Next, suppose 2/dxy < M, f(x) < co. By Lemma 4.4 (3) and (T'1), there exists a
constant m > 0 such that I'(x, s)/s < mI'(x,2/dx) fors > 2/dx. Let

T(x, My f(x)) ]‘/“(")
mT(x,2/dx)M; f(x) '

=@/
Then, by (4.4) and Lemma 4.4 (2),

a(x) _ ai) L (. M) f(x))
M f(x) = (dx/2) T2 /dy) < CT(x, My f(x))

< C(e)T (x, {M;. f(x)}*).
By the choice of m, § < dx /2. Since I'(x,2/dx) < CT(x, M) f(x)),

© < COMy () /e,

Hence, using (I'1) and Lemma 4.4 (1) and (2), we obtain
1
r(x.5) = CT M) = COT (. (M £)).
Therefore, there exists a constant C > 0 independent of x such that
oy, f(x) < CF(x, {Mkf(x)}“’) if 2/dy < M) f(x) < oo. 5.2)

By (5.1) and (5.2), there exists a constant C* > 0 such that

Ja@,e f(x) < C*T(x, max{sg, {M f(x)}*})

forae. x € E.
Now, let ¢c; = Q10,C*. Then, by (¥2) and (VT"), we have

\Il(x, Ja()C;If(X)) < \Il(x, T (x, max{sg, {M;Lf(x)}s})/éz)
< Qs max{sy, {My f(x)}} < Os(sg +{Ms f(X)}°)

for a.e. x € E. Thus, we have by Lemma 4.3

2dy g(z,r){d)_l(z,w(z,r)_l)}_s( ( J(,(.),,f(x)) )ﬂ
J W(BG.02r) [ e L)

_ 2dy —Sd
< Gast / e (zoEn ) L

,
2 (0 (e )Y R
<0 | (B (2, 027)) (/Bu,r){M*f 2 d“(x))T

< 0355C* + 03Cy = 2
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for all z € X since we have by (w3), Lemma 4.1, and (¢1)

2dx —edr e [2% dr
[ tenten oG ) L s (matt ava)’ [ den T <c
0 r 0 r
for all z € X. Hence, we obtain the required result. ]

Letw(x,r) = wg(),(p; ()3 (x,r) be as in Example 2.2, and let ®(x,1) = @p () {¢; ()3 (X, 1)
be as in Example 2.5. Set EW (1) = e —e, EUD(t) = exp(E/ (1)) — e, and Eg)(t) =
max(E ) (t),0). Consider ¢(z,r) = r®' for some &; > 0.

As in the proof of [17], we obtain the following corollaries in view of Theorem 5.1.

Corollary 5.2. Ler1 < A<t.Let]1 <01 <6, A> 01(92 + 1)/(92 — 91), and 61 < ‘L’/2.
Assume that X satisfies (M 1). Suppose p(x) = o(x)/a(x) on E and p~ > 1. Assume
that there exists an integer 1 < jo < k such that

inf (p(x) = () = B (¥) = 1) > 0

and

SUE(p(X) —qj(x)=Bj(x)—1) <0

forall j < jo— 1incase jo > 2. Then, for ¢ > 0, there exist constants cy1,cp > 0 such
that

sup /de . / E o) (IJa(.),rf(x)|)p(x)/(p(x)_%(x)_ﬂ""’(x)_l)
cexJo  w(B(z,02r) | JEnBG,) c1

k—jo (@jo+j () FBjo+ )/ (2 (x)—gjy (X)—Bjo (x)—1)
J Jo+J Jot+Jj Jo Jo d
i (L(,)(| aorf(xn)) )dm)}%

Jj=1 ‘1

=

whenever [ € £ 2201 (X)) with | f 1l 0.6, x) =L

Corollary 5.3. Ler 1 < A<t.Letl1<0; <6 A>0 (92 + 1)/(92 — 91) and 61 < 1/2.
Assume that X satisfies (M 1). Suppose p(x) = o(x)/a(x) on E and p~ > 1. Assume
that

Slelg(p(X) —qj(x)=Bj(x)—1) <0

forall j = 1,... k. Then, for ¢ > 0, there exist constants cy, c > 0 such that
sup [2dX ré f E(k+1)((|Ja(.),rf(X))p(x)/(p(x)_l))du(x) dr
zeX JO M(B(Z, 92}")) ENB(z,r) + 1
=c2

whenever f € 20 (X) with /1l g@w.61(xy < 1.
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6. Double-phase functions with variable exponents

Let o(-) be a measurable function on X such that0 < o~ < o' < oo. Set
w(x,r)=r°®.
In this section, let us assume that p(-) and ¢(-) be real-valued measurable functions on X
such that
P 1<p <pt <oo,
QD) 1<g <gTt <oc.
We assume that
(P2) p(-) is log-Holder continuous, that is,
P = P = —— L (x.y€X)
PX)=PUN =775 WY
Le(1/d(x.y))
with a constant C, > 0, and
(Q2) ¢(-) is log-Holder continuous, that is,
¢y
g = 7
Le(1/d(x.y))

with a constant C; > 0.

lq(x) (x,y € X)

As an example and application, we consider the case where ®(x, t) is a double-phase
function with variable exponents given by

(x,1) = 7Y 4+ a(x)t 1™ (= 1P® 4 (b(x))7™), xe X, t >0,

where p(x) < ¢(x) for x € X, a(-) is nonnegative, bounded, and Holder continuous of
order 6 € (0, 1] and b(x) = a(x)'/4™ (cf. [1,40]).
This ®(x, t) satisfies (P1), (D2), and (P3; p~). Set Xg = {x € X : a(x) > 0}.
Let us write
E;y ={x e X\ Xo:0(x) =a(x)p(x)},
E, ={x e Xp:0(x)=ax)q(x)}

and £ = E, U E,. We define
y(x,p) = p°™(log(e + 1/p)) ™"
forx € E and p > 0 and

(log(e + 5))@)=D/p(x) x € Eq,

I'(x,s) =
( {b(x)_l(log(e +5))UO=D/a®) -y e By

for s > 5.
This y(x, p) satisfies (y1), (y2), and (y3); I'(x, s) satisfies (I'1), (I"2), and ().
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Lemma 6.1. (1) ®(x, 1) satisfies (D5; w) for 0 > sup,cx,{0(x)(g(x)/p(x) — D}
(2) @(x, 1) satisfies (P5;1/y) for 6 > sup,cx, o (x)(q(x)/p(x) — 1)}

In fact, for n > 0,let y € B(x,r), ®(x,t) < ny(x,r),and ¢t > 1. Then, note that
®(x,1) < ny(x.r) < no(x,r)~",

so that we can show (2) as in (1) [39, Lemma 6.1].
By Theorem 3.2 and Lemma 6.1, we obtain the boundedness of M) on Fow.01 (X),
as an extension of [37, Theorem 5.1] in the Euclidean case.

Corollary 6.2. Let 1 <60 < 03 and A > 01(6, + 1)/(0, — 01). Assume that X satisfies
(MA). If p~ > 1and 0 > sup,cx 10 (x)(q(x)/ p(x) — 1)}, then there is a constant C > 0
such that

My fllgoworxy = CllS Il g2 (x)
forall f e £2@01(X).
Remark 6.3. In [37, Theorem 5.1], we considered (®5; v) and proved Corollary 6.2

above when sup,.cx, (¢(x) — p(x))/0 < p~/ o holds for X = R". Hence, we find that
(®5; w) is better than (P5; v).

We recall a lemma which we need in the proof of a Trudinger-type inequality.

Lemma 6.4 (Cf. [19, Lemma 4.9]). If infycg, p(x) > 1 and infyeg, q(x) > 1, then
I'(x,s) satisfies (T yaw).

If we define

exp (70 (P01, x e Ey.

U(x,1) = {exp ((b(x)t)q(x)/(q(x)—l)), x € Ey,

for ¢ >0, then W(x,?) satisfies (1), (¥2), and (VT') with s§ =2/dx wheninfyecg, p(x) >
1 and infxeg, g(x) > 1.

In view of Lemmas 6.1 and 6.4 and Theorem 5.1, we obtain a Trudinger-type inequal-
ity on Musielak—Orlicz—Morrey spaces of an integral form in the framework of double-
phase functional with variable exponents.

Corollary 6.5. Let1 <A <7t.Letl1 < 01 <6y, A>01(6, + 1)/(92 — 91), and 0 < ‘L'/2.
Assume that X satisfies (M 1). Suppose sup,.cx,10(x)(q(x)/p(x) —1)} <8 and p~ > 1.
Then, for ¢ > O, there exist constants ¢1 > 0 and ¢, > 0 such that

2dy pr
sup/ —(/ exp (c1]Ja(), f(x)|P(X)/(p(x)—1) — 1) du(x)
zex Jo w(B(z, 62r)) ElﬁB(z,r){ (1 a(),T ) }

d
+ / {exp (c1b ()| o), f(x)|[4/@=D) I}du(x))_r <5
E>;NB(z,r) r

whenever [ € 290 (X) with /1l g@w61(xy < 1.
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7. Poincaré inequality

In this section, we assume that p satisfies the doubling condition. Let u € Lll 0o (X), and
let g be a nonnegative measurable function on X. We say that the pair u, g satisfies a
Poincaré inequality in X if there exist constants Ay > 0 and o > 1 such that

1 A()r

T(R(x ) - xnld < — d
L(Bx.1) B(x’r)Iu(y) Upenl i) = Zprms B(x,gr)g(y) 1(y)

forall x € X and r > 0, where

1
UBGrr) = ————— u(y) du(y).
B6n) = B ) e ) du(y)

Remark 7.1. We say that a function u € L®(X) belongs to Musielak—Orlicz—Hajtasz—
Sobolev spaces of an integral form M1®®1(X) if there exists a nonnegative function
g € £2*1(X) such that

lu(x) —u(y)| = d(x.y)(g(x) + g(y) (1.1)

for p-almost every x, y € X. Here, we call the function g a Hajtasz gradient of u. For
spaces related to Hajtasz spaces, see, e.g., [10, 14,30]. Integrating both sides in (7.1) over
y and x, we obtain the Poincaré inequality.

We show the following result, as an extension of [11, Theorem 5.1], [13, Corollary
5.4], and [30, Theorem 7.7].

Theorem 7.2. Let u € LZIOC(X), and let g € 2P 1(X) with lgllgowixy <1 be a
nonnegative measurable function on X. Assume that the pair u, g satisfies a Poincaré
inequality in X. Suppose that ®(x,t) satisfies (P3; p), (P5; w), and (®5;1/y) for p > 1.
Assume that (w1’) holds and (I ®yaw) holds with

a() = 1.

Then, for ¢ > O, there exist constants ¢1 > 0 and ¢, > 0 such that

25 p(z, {07 (z.w(z. 1))} |u(x) — upl dr _
/o m(B(z.1)) (»/;EOBF\B(ZJ)\D(X’ €1 )dM(X)) roe

forallballs BC X andz € X.

Proof. Since u is doubling and the pair u, g satisfies a Poincaré inequality in X, we have
lu(x) —up| = CJi18(x)

for a.e. x € B (see [11, Theorem 5.2]). Hence, Theorem 5.1 yields this theorem. [
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Finally, as a corollary, we obtain the double-phase version by Theorem 7.2.

Corollary 7.3. Let Xo, p(-),q(-), a(-), and o (-) be as in Section 6. Set
d(x,1) = PP + a(x)t9%  and w(x,r) = r°®
forx € X, t >0, andr > 0. Set
Er={xe X\ Xo:0(x)=px)}
and
Ey ={x € Xo:0(x) =q(x)}.

Letu € L}OC (X), and let g € 2?1 (X) with gl gew1(x)y < 1 be a nonnegative measur-
able function on X . Assume that the pair u, g satisfies a Poincaré inequality in X . Suppose
SUPyex, 10 (X)(q(x)/p(x) = 1)} < 6 and p~ > 1. Then, for ¢ > 0, there exist constants
c1 > 0and co > 0 such that

2dy ré
x)/(p(x)-1)
swp [ (] exp (c1u(x) — ug|? ~ 1 dp(x)
zeX Jo w(B(z,r)) Ei\NBNB(z,r) { ( ) }

+f {exp (1) gl D) 1) ) ) - <
E>NBNB(z,r) r

forallballs B C X.
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