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On quantitative metastability for accretive operators

Andrei Sipoş

Abstract. Kohlenbach and the author have extracted a rate of metastability for approximating
curves associated to continuous pseudocontractive self-mappings in Banach spaces which are uni-
formly convex and uniformly smooth, whose convergence is due to Reich. In this note, we show
that this result may be extended to Reich’s original convergence statement involving resolvents of
accretive operators.

1. Introduction

If T is a nonexpansive – or, more generally, continuously pseudocontractive – self-map-
ping of a convex, closed, bounded, nonempty subset of a uniformly smooth Banach space
and one denotes, for any x in that set and any t 2 .0; 1/, by xt the unique point such that

xt D tT xt C .1 � t /x;

then one has that the ‘approximating curve’ .xt / converges to a fixed point of T as t ! 1.
This was first shown by Reich in 1980 [29], thirteen years after this result had been proven
for Hilbert spaces independently by Browder [3] and Halpern [11], thirteen years in which
no such result was known to be true in any Lp space other than the L2 ones.

In a recent paper [18], Kohlenbach and the author have extracted a ‘rate of metastabil-
ity’ for the above result, and we shall now detail what we mean by that. That paper falls
into the research program of ‘proof mining’, which aims to analyze proofs in mainstream
mathematics using tools from mathematical logic (interpretative proof theory) in order to
extract additional (usually computational) content which may not be immediately apparent
(for more details, see the book [13] and the recent survey [15]). Such additional content for
a convergence theorem like the one above would naturally be a rate of convergence, but, in
this case, counterexamples (due to e.g. Neumann [23]) show that a computable rate cannot
exist even in Euclidean spaces. The next best thing, that in most cases theoretical results –
‘metatheorems’ – of proof mining guarantee to be extractable is the above-mentioned rate
of metastability – in the sense of Terence Tao [31, 32], the name having been suggested
to him by Jennifer Chayes – which is an upper bound on the N in terms of the " and of
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the g (and possibly of more parameters specific to the problem at hand) in the following
non-constructively equivalent formulation of the Cauchy property of a sequence:

8" > 08g 2 NN
9N 2 N8m; n 2 ŒN;N C g.N /�.kxn � xmk � "/:

The work of Kohlenbach and the author has shown that, by adding the additional hypoth-
esis that the space is uniformly convex (and thus still covering the case of Lp spaces), the
proof may be simplified to a sufficiently tame form that it falls under the guarantees of
the metatheorems (see [18] for more details), and thus that a rate of metastability may be
obtained from the modified proof, which the paper’s authors proceed to do (the question
of finding such a rate had stood as an open problem in proof mining for ten years after
similar rates had been found at the level of Hilbert spaces in [14,17]). The extracted bound
is at once complicated (reflecting the manifold ways the various facets of the proof are put
together) and complex (featuring the use of functional recursion going beyond primitive
recursion), representing one of the most intricate rates of metastability ever produced by
the proof mining program (and also a highly intricate formula by the standards of a general
mathematical paper). As the authors of that paper point out in its introduction, ‘the enor-
mous complexity of the final bound reflects the profound combinatorial and computational
content of Reich’s deep theorem’ [18, p. 5] (also, see that paper’s introduction for more
information on the historical significance of Reich’s result and of the characterization of
the limit point as the sunny nonexpansive retraction onto the fixed point set of T ).

However, even disregarding the restriction to uniformly convex spaces, Reich’s origi-
nal result in [29] is more general than the one which has been analyzed above. Specifically,
he states that, in the same background, if A is an accretive operator satisfying some range
condition (recovering the particular case above by taking A WD Id � T ), then for any
appropriate point x, the ‘approximating curve’ .J�Ax/ converges to a fixed point of T
as �!1. Accretive operators were introduced independently in 1967 by Browder [4]
and Kato [12], as one of the natural generalizations of Hilbert spaces’ monotone opera-
tors, and are motivated by the fact that many physical phenomena may be modelled by
evolution equations of the form

dx
dt
C Ax D 0:

What we do in this paper is to show that the arguments in the paper [18] may be general-
ized to the convergence of resolvents of accretive operators.

The modifications that need to be made are non-trivial, but concentrated into some
discrete regions of the proof. For that reason, and also due to the excessive length of
the proof, we have chosen to focus our paper on the modifications themselves, referring
frequently to the arguments and presentation of [18] and only detailing the portions which
are, relatively speaking, significantly changed.

Our result even improves slightly on the original one in the sense that a modulus of
uniform continuity for T is no longer needed. This is due to the fact that the resolvent
of A not only replaces the use of the operator hT (which was already, as it will be seen,
a particular case of the resolvent), but also some (in hindsight extraneous) uses of T itself.
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This is largely in line with the metatheorems for accretive operators recently obtained by
Pischke [26]. Another small improvement is due to the fact that a careful examination of
the proof shows that a bound on the point x is no longer needed, and instead, one just
needs the bound on the diameter of the set C (or on the distance from x to some zero of A
in the ‘unbounded’ versions of the theorem).

Section 2 reviews the necessary facts from the preliminaries section in [18], adding
a new subsection on accretive operators. Section 3 details the new versions of the quali-
tative convergence result, and how the increasingly quantitative proofs of it in [18] need
to be modified to accommodate the more general case of accretive operators. Section 4
presents and discusses our final, quantitative theorems.

We shall use the notation N� WD N n ¹0º.

2. Preliminaries

2.1. Banach spaces

As in [18], we shall express and use uniform convexity for a Banach space X in terms of
the existence of a modulus �W .0; 2�! .0; 1�, having the property that, for all " 2 .0; 2� and
all x; y 2 X with kxk � 1, kyk � 1 and kx � yk � ", one has that


x C y

2




 � 1 � �."/:
The following proposition has been obtained in [18] as an application of [1, Proposi-

tion 3.2], which is a quantitative version of a theorem of Zălinescu [33, Theorem 4.1].

Proposition 2.1 ([18, Proposition 2.4]). Let X be a uniformly convex Banach space hav-
ing � as a modulus and let b � 1

2
. Put, for all " 2 .0; 2�,

 b;�."/ WD min
��min

�
"
2
; "

2

72b
�2
�
"
2b

���2
4

;
"2

48
�2
� "
2b

��
:

Then, for all " 2 .0; 2�,

•  b;�."/ > 0.

• for all x; y 2 X with kxk � b, kyk � b, kx � yk � ", we have that


x C y
2




2 C  b;�."/ � 1

2
kxk2 C

1

2
kyk2:

We shall use the single-valued normalized duality mapping j WX ! X� which exists
in all smooth spaces, with its usual properties, and we shall denote, for all spaces X , all
x� 2 X� and y 2 X , x�.y/ by hy; x�i. More information about duality mappings may be
found in the book [6].

Analogously to uniform convexity, and again as in [18], we shall express and use uni-
form smoothness for a Banach spaceX in terms of the existence of a modulus � W .0;1/!
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.0;1/ such that, for all " > 0 and all x; y 2 X with kxk D 1, kyk � �."/, one has that

kx C yk C kx � yk � 2C "kyk:

It is known that uniform smoothness implies the norm-to-norm uniform continuity on
bounded subsets of the normalized duality mapping (in addition, as pointed out in [18],
it has been proven independently by Bénilan [2, p. 0.5, Proposition 0.3] and Körnlein
[20, Appendix A] that the norm-to-norm uniform continuity on bounded subsets of an
arbitrary duality selection mapping implies back uniform smoothness; see also the related
characterization in [30, Lemma 2.2 and the remark on page 116]); the following proposi-
tion, first obtained in [16], expresses this fact quantitatively.

Proposition 2.2 ([18, Proposition 2.12]). LetX be a uniformly smooth Banach space with
modulus � . Put, for all b > 0 and " > 0,

r1."/ WD min."; 2/; r2.b/ WD max.b; 1/; !� .b; "/ WD
r1."/

2

12r2.b/
� �
� r1."/
2r2.b/

�
:

Then, for all b >0, "> 0 and all x;y 2X with kxk� b and kyk� b, if kx� yk�!� .b;"/,
then kj.x/ � j.y/k � ".

For the remainder of this section, we fix a smooth Banach space X and C � X
a closed, convex, nonempty subset.

2.2. Nonexpansive mappings and sunny nonexpansive retractions

Definition 2.3. A map QWC ! X is called nonexpansive if, for all x; y 2 C , we have
kQx �Qyk � kx � yk.

Let E � C be nonempty.

Definition 2.4. A map QWC ! E is called a retraction if, for all x 2 E, Qx D x.

Definition 2.5. A retraction QWC ! E is called sunny1 if, for all x 2 C and t � 0 such
that Qx C t .x �Qx/ 2 C ,

Q.Qx C t .x �Qx// D Qx:

Proposition 2.6 ([9, Lemma 1.13.1]). Let QWC ! E be a retraction. Then Q is sunny
and nonexpansive if and only if, for all x 2 C and y 2 E,

hx �Qx; j.y �Qx/i � 0:

Proposition 2.7. There is at most one sunny nonexpansive retraction from C to E.

Proof. See [18, Proposition 2.17].

More information about sunny nonexpansive retractions may be found in [19].

1The term was first introduced in the paper [27].
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2.3. Pseudocontractions

Definition 2.8 ([4, Definition 1]). A map T WC ! C is called a pseudocontraction if, for
all x; y 2 C and t > 0, we have that

tkx � yk � k.t C 1/.x � y/ � .T x � Ty/k:

Proposition 2.9. Any nonexpansive map is a pseudocontraction.

Proof. See [18, Proposition 2.21].

We have the following equivalence.

Proposition 2.10 ([4, Proposition 1]). Let T WC ! C . Then T is a pseudocontraction if
and only if, for all x; y 2 C ,

hT x � Ty; j.x � y/i � kx � yk2:

Definition 2.11 (cf. [10, (2.9)]). Let k 2 .0; 1/. We say that a map T WC ! C is a k-strong
pseudocontraction if, for all x; y 2 C ,

hT x � Ty; j.x � y/i � kkx � yk2:

Proposition 2.12. Let T WC ! C be a continuous pseudocontraction, k 2 .0; 1/, u 2 C .
Define the map U WC ! C , by putting, for all x 2 C , Ux WD kT x C .1� k/u. Then U is
a continuous k-strong pseudocontraction.

Proof. See [18, Proposition 2.24].

Proposition 2.13. Let k 2 .0; 1/ and let T WC ! C be a continuous k-strong pseudocon-
traction. Then T has a unique fixed point.

Proof. If x and y are fixed points of T , kx � yk2 � kkx � yk2, so x D y. The existence
of a fixed point follows from [21, Proposition 3] (or [7, Corollary 1]) and the convexity
of C .

2.4. Accretive operators

Definition 2.14. An operator A � X � X is called accretive if one of the following
equivalent conditions holds (the equivalence follows from the classical lemma of Kato
[12, Lemma 1.1]):

• for all � > 0 and all .x1; y1/, .x2; y2/ 2 A,

kx1 � x2k � kx1 � x2 C �.y1 � y2/kI

• for all .x1; y1/, .x2; y2/ 2 A,

hy1 � y2; j.x1 � x2/i � 0:
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Remark 2.15. If A � X �X is accretive and � > 0, then �A is also accretive.

Definition 2.16. An operator A � X � X is called m-accretive if it is accretive and, for
all � > 0, ran.IdC �A/ D X .

Remark 2.17. If A � X �X is m-accretive and � > 0, then �A is also m-accretive.

Definition 2.18. If A � X �X is accretive, one defines the resolvent of A,

JAW ran.IdC A/! X;

for every x 2 ran.IdCA/, by setting JAx to be the unique y 2X such that there is a z 2X
with .y; z/ 2 A and y C z D x.

Remark 2.19. If A � X � X is accretive, then JA is nonexpansive and its fixed points
coincide with the zeros of A.

From now on, if we have a mapping T WC ! C , by A WD Id � T , we shall mean

A WD ¹.x; x � T x/ j x 2 C º:

Remark 2.20. Let T WC ! C be a pseudocontraction and A WD Id� T . Then A is accre-
tive and the zeros of A coincide with the fixed points of T .

Proposition 2.21. Let T WC ! C be a pseudocontraction and A WD Id � T . Let x 2 C
and � > 0. Set t WD �

1C�
2 .0; 1/ and let xt 2 C be such that xt D tT xt C .1 � t /x

(if T is continuous, a unique such point exists by Propositions 2.12 and 2.13). Then x 2
ran.IdC �A/ and J�Ax D xt .

Proof. Since

xt D
�

1C �
T xt C

1

1C �
x;

we have that
.1C �/xt D �T xt C x;

so
xt C �.xt � T xt / D x:

Since .xt ; xt � T xt / 2 A, the conclusion follows.

Corollary 2.22. Let T WC ! C be a continuous pseudocontraction and A WD Id� T . Let
� > 0. Then C � ran.IdC �A/ and, for all y 2 C , J�Ay 2 C .

More information on accretive operators and their resolvents can be found in the
paper [28].
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3. Modifications to the proofs

The main qualitative theorem that we focus on is the following (note that, compared to
[18], we have removed the bounding condition on the elements of C , leaving just the
bounding of the diameter, as said condition does not feature at all in the proof).

Theorem 3.1 (cf. [29]; see also [5]). Let X be a Banach space which is uniformly convex
and uniformly smooth. LetC �X be a closed, convex, bounded, nonempty subset. LetA�
X �X be an accretive operator such that, for all � > 0, we have that C � ran.IdC �A/
and that, for all y 2 C , J�Ay 2 C . Let x 2 C . Then, for all .�n/ � .0;1/ such that
limn!1 �n D1, we have that .J�nAx/ is Cauchy.

We first list some corollaries, which show how one can weaken the boundedness con-
straint and how one can recover the result for pseudocontractions as stated in [18] (where,
in particular, we shall no longer need uniform continuity, neither qualitatively nor quanti-
tatively, but just the plain assumption of continuity).

Corollary 3.2. LetX be a Banach space which is uniformly convex and uniformly smooth.
Let C �X be a closed, convex, nonempty subset. LetA�X �X be an accretive operator
such that, for all � > 0, we have that C � ran.IdC �A/ and that, for all y 2 C , J�Ay 2 C
(in particular, if C D X , then A is m-accretive). Let x 2 C . Let p 2 C be a zero of A.
Then, for all .�n/ � .0;1/ such that limn!1 �n D1, we have that .J�nAx/ is Cauchy.

Proof. Let b 2 N� be such that kx � pk � b. Put D WD C \ B.p; b/, so x 2 D. We
shall apply Theorem 3.1 with C WD D, from which we will get our conclusion. The only
non-trivial condition to check is that, for all � > 0 and y 2 D, J�Ay 2 D. Let � > 0

and y 2 D. Then y 2 C , so J�Ay 2 C . Since kJ�Ay � pk � ky � pk � b, we have that
J�Ay 2 B.p; b/, so J�Ay 2 D.

Corollary 3.3. LetX be a Banach space which is uniformly convex and uniformly smooth.
Let C � X be a closed, convex, bounded, nonempty subset. Let T WC ! C be a pseudo-
contraction and x 2 C . For all t 2 .0; 1/, let xt 2 C be such that xt D tT xt C .1 � t /x
(if T is continuous, a unique such point exists by Propositions 2.12 and 2.13). Then, for
all .tn/ � .0; 1/ such that limn!1 tn D 1, we have that .xtn/ is Cauchy.

Proof. Set A WD Id � T . Set, for all n, �n WD tn
1�tn
2 .0;1/, so tn D �n

1C�n
. Clearly,

limn!1 �n D1. Using Proposition 2.21 and Corollary 2.22, we get that, for all n, xtn D
J�nAx and that all the other conditions in Theorem 3.1 are satisfied.

Corollary 3.4. LetX be a Banach space which is uniformly convex and uniformly smooth.
Let C � X be a closed, convex, nonempty subset. Let T WC ! C be a pseudocontraction
and x 2 C . For all t 2 .0; 1/, let xt 2 C be such that xt D tT xt C .1 � t /x (if T is
continuous, a unique such point exists by Propositions 2.12 and 2.13). Let p 2 C be
a fixed point of T . Then, for all .tn/ � .0; 1/ such that limn!1 tn D 1, we have that .xtn/
is Cauchy.
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Proof. Set A WD Id � T . Set, for all n, �n WD tn
1�tn
2 .0;1/, so tn D �n

1C�n
. Clearly,

limn!1 �n D1. Using Proposition 2.21 and Corollary 2.22, we get that, for all n, xtn D
J�nAx and that all the other conditions in Corollary 3.2 are satisfied.

In the paper [18], multiple proofs (which are progressively made more quantitative) are
presented of the main result, and in the following subsections, we sketch the modifications
that have to be made to said proofs in order to adapt them to proving our main result,
Theorem 3.1. Throughout, we shall take b 2 N� such that the diameter of C is bounded
by b, and � and � be moduli of convexity and smoothness (respectively) for X .

3.1. Modifications to the original proof of Morales

The first proof presented in [18] is actually the proof which started the quantitative inves-
tigations in that paper, and is due to Morales [22] (in fact, the original argument of Reich
[29] was not too different, but since he used the actual limit and not the limsup like here or
the Banach limit like in some other authors’ work, he had to first restrict himself to some
separable subspace in order to make said limit exist).

Throughout, one has to replace .tn/ by .�n/ – and denote, where appropriate, for all n,
xn WD J�nAx – and also replace fixed points of T by zeros of A (or equivalently fixed
points of JA). Then, instead of proving the ‘asymptotic regularity’ or ‘approximate fixed
point’ statement of limn!1kxn � T xnk D 0, or equivalently limn!1kxn � hT xnk D 0,
one shows that limn!1kxn � JAxnk D 0. The argument goes as follows: for all n, since�
xn;

x�xn
�n

�
2 A and .JAxn; xn � JAxn/ 2 A, and A is accretive, one has that

kxn � JAxnk �



xn � JAxn C x � xn

�n
� .xn � JAxn/




 D 


x � xn
�n




 � b

�n
;

so limn!1kxn � JAxnk D 0.
One then more generally replaces hT by JA in the course of the proof (in fact, in the

case that A is of the form Id � T , one can check that the mapping hT used in [18] is
actually the same as JA, so the use of JA is not that surprising).

Then, in order to obtain the first convergence statement in the proof, instead of using
the fact that T is a pseudocontraction, one uses the accretivity of A, as follows. Since�
xn;

x�xn
�n

�
2 A and .p; 0/ 2 A, and A is accretive, one has thatDx � xn

�n
� 0; j.xn � p/

E
� 0;

i.e., that hxn � x; j.xn � p/i � 0, which one then sums up with the previously obtained
inequality lim supk!1hx � p; j.xnk � p/i � 0 to get that .xnk /! p.

The proof then continues in the same way, with the appropriate modifications.

3.2. Modifications to the proof using limsup’s but only "-infima

We consider this proof to start more or less with the ‘Second Proof of the Claim’ in [18].
Claims 1 and 2 (together with the second ‘wrap-up’ of the proof of the theorem) do not
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need many changes (but those changes are consequential, as we shall see momentarily).
Again, one uses JA instead of hT , but also instead of T for ‘approximate fixed point’
statements, e.g. ku� T uk � " becomes ku� JAuk � " and kum � T umk � 1=m becomes
kum � JAumk � 1=m. Since JA does the job for both, one does not need to ‘oscillate’
between T and hT , and thus does not need to use the modulus of uniform continuity � .
Therefore, one can take

�1 WD min
�
";
1

2
 b;�."/

�
> 0:

The most elaborate changes are in Claim 3, and thus we shall express the ‘new’ portion
in detail. To orient ourselves, we give now the new statement of this claim: for all .�n/ �
.0;1/ such that limn!1 �n D1 and for all " > 0, there is a v 2 C such that

• for all z 2 C , lim supn!1kJ�nAx � vk
2 � lim supn!1kJ�nAx � zk

2 C ";

• for all � 2 .0;1/, hJ�Ax � x; j.J�Ax � v/i � ".

To prove this claim, we presuppose the truth of the new version of Claim 2, i.e., that, for
all .�n/ � .0;1/ such that limn!1 �n D1 and for all " > 0, there is a u 2 C such that

• for all z 2 C , lim supn!1kJ�nAx � uk
2 � lim supn!1kJ�nAx � zk

2 C ";

• ku � JAuk � ".

Take
�2 WD min

�
";
1

2
 b;�

�
!�

�
b;

"

2b

���
:

Apply (our version of) Claim 2 for .�n/ and �2 and put v to be the resulting u. We have
to show that, for all � 2 .0;1/, hJ�Ax � x; j.J�Ax � v/i � ". Let � 2 .0;1/ and put

ı WD min
�
�2;

"

4b�
; !� .b;

"

4b
/
�
:

Apply (our version of) Claim 2 for .�n/ and ı and put v0 to be the resulting u, so in
particular kv0 � JAv0k � ı. Since

�
J�Ax;

x�J�Ax
�

�
2 A and .JAv0; v0 � JAv0/ 2 A, we

have that Dx � J�Ax
�

� .v0 � JAv
0/; j.J�Ax � JAv

0/
E
� 0;

so Dx � J�Ax
�

; j.J�Ax � JAv
0/
E
� hJAv

0
� v0; j.J�Ax � JAv

0/i � ıb;

from which we get that

hJ�Ax � x; j.J�Ax � JAv
0/i � ıb� �

"

4
: (3.1)

On the other hand, we know that kv0 � JAv0k � ı � !� .b; "4b /, i.e., that k.J�Ax � v0/ �
.J�Ax � JAv

0/k � !� .b;
"
4b
/, so

kj.J�Ax � v
0/ � j.J�Ax � JAv

0/k �
"

4b
;
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from which we get that

hJ�Ax � x; j.J�Ax � v
0/ � j.J�Ax � JAv

0/i �
"

4
: (3.2)

From (3.1) and (3.2), we get that

hJ�Ax � x; j.J�Ax � v
0/i �

"

2
:

The proof then continues in the same way until the end of Claim 3, and all the way to
the end of Claim 7, with the usual modifications.

3.3. Modifications to the proof using approximate limsup’s

We first remark that all the routine modifications that we have applied to the previous
proof are still in effect, e.g. the use of hT is replaced by that of JA.

Since we have also replaced the sequence .tn/ by a sequence .�n/, we have to intro-
duce new moduli to govern that sequence’s behavior. We shall thus consider now moduli
˛WN ! N and 
 WN ! N� such that

• for all n and all m � ˛.n/, �m � nC 1;

• for all n, �n � 
.n/.

In the case that, for all n, �nD nC 1, we may take, for all n, ˛.n/ WD n and 
.n/ WD nC 1.
The quantities ˇ, q and �1 introduced afterwards are modified as follows:

ˇ.c; "/ WD
p."/

4b
.c/
;

q.p; c; d; "/ WD min
°
ˇ.c; "/; ˇ.sp;g.d/; "/; !�

�
b;
p."/

4b

�±
;

�1.p; c; d; "/ WD
1

2
 b;�.q.p; c; d; "//:

The proofs of Claims I and II go largely without change, and the only significant
modifications to this proof arise in Claim III, namely, in its first three sub-claims. We shall
detail those now.

In the new version of Sub-claim 1, one has to prove that

kxh � vk
2
�


xh � v C JAv

2



2; kxh � JAvk
2
�


xh � v C JAv

2



2;
kxh0 � v

0
k
2
�


xh0 � v0 C JAv0

2



2; kxh0 � JAv0k2 � 

xh0 � v0 C JAv0
2



2
are all smaller than or equal to �1.w; k; k0; "/.

To prove that, we first use the previously shown fact that

kxh � JAxhk �
b

�h
;
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so

kxh � JAvk � kJAv � JAxhk C kxh � JAxhk � kxh � vk C
b

�h
:

Then we may write

kxh � JAvk
2
� kxh � vk

2
C
b2

�2
h

C 2b �
b

�h

�




xh � v C JAv
2




2 C �1.w; k; k
0; "/

2
C

b2

4b2

�1.w;k;k0;"/

C
2b2

8b2

�1.w;k;k0;"/

�




xh � v C JAv
2




2 C �1.w; k; k
0; "/

2
C
�1.w; k; k

0; "/

4
C
�1.w; k; k

0; "/

4

D




xh � v C JAv
2




2 C �1.w; k; k0; "/:
Similarly, we may show that kxh0 � JAv0k2 �



xh0 � v0CJAv
0

2



2 � �1.w; k; k0; "/ and,
thus, the proof of Sub-claim 1 is finished.

We then remark that the modulus of uniform continuity � has disappeared from the
new definition �1, and this comes into play in the new version of Sub-claim 2, where one
only shows that kJAv � vk; kJAv0 � v0k � q.w; k; k0; "/.

In the new version of Sub-claim 3, one has to show that

• hxk � x; j.xk � w/i, hxwk0 � x; j.x
w
k0
� w0/i � �4."/

3
;

• hxw
k0
� x; j.xw

k0
� w/i, hxk � x; j.xk � w0/i � "2

96
.

As with Claim 3 in the previous subsection, we only detail the beginning of the proof of
this sub-claim.

We have kJAv � vk � q.w; k; k0; "/. Since
�
xk ;

x�xk
�k

�
2 A and .JAv; v � JAv/ 2 A,

we have that Dx � xk
�k

� .v � JAv/; j.xk � JAv/
E
� 0;

so Dx � xk
�k

; j.xk � JAv/
E
� hJAv � v; j.xk � JAv/i � q.w; k; k

0; "/ � b;

from which we get that

hxk � x; j.xk � JAv/i � q.w; k; k
0; "/ � b�k

� ˇ.k; "/ � b�k D b�k �
p."/

4b
.k/
�
p."/

4
: (3.3)

On the other hand, we know that kv � JAvk � q.w; k; k0; "/ � !�
�
b; p."/

4b

�
, i.e., that

k.xk � v/ � .xk � JAv/k � !�
�
b; p."/

4b

�
, so

kj.xk � v/ � j.xk � JAv/k �
p."/

4b
;
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from which we get that

hxk � x; j.xk � v/ � j.xk � JAv/i �
p."/

4
: (3.4)

From (3.3) and (3.4), we get that

hxk � x; j.xk � v/i �
p."/

2
:

The proof then continues in the same way until its end, and actually no more modifi-
cations need to be made to the original text in [18].

3.4. Modifications to the majorization and the rate

We now proceed to derive the actual new rate of metastability. We first remark that the
‘higher-order proof mining’ performed in [18, Section 5] to extract the actual witness
remains the same in its entirety. Only in [18, Section 6], where all those quantities are
‘majorized’, we need to operate some changes, and those only appear in the ‘majorant’
of �1, i.e., the function ��1 , which becomes

��1 .m; n/ WD
1

2
min

c�max.m;nCgM .n//
 b;�

�
min

°
ˇ.c; "/; !�

�
b;
p."/

4b

�±�
;

noting that the function ˇ is also changed from the original, as per the previous subsection.
Since, as remarked previously, the quantities no longer depend on the modulus of

uniform continuity � , one may drop it from the indices, and thus denote the final extracted
quantity by ‚b;�;�;˛;
 ."; g/.

4. Final results and discussion

Summing up, we may express the main result of the present paper as follows.

Theorem 4.1. Let X be a Banach space which is uniformly convex with modulus � and
uniformly smooth with modulus � . Let C � X be a closed, convex, nonempty subset. Let
b 2 N� be such that the diameter of C is bounded by b. Let A � X � X be an accretive
operator such that, for all � > 0, we have that C � ran.IdC �A/ and that, for all y 2 C ,
J�Ay 2 C . Let x 2 C .

Let .�n/ � .0;1/, ˛WN ! N and 
 WN ! N� be such that

• for all n and all m � ˛.n/, �m � nC 1;

• for all n, �n � 
.n/.

Then, for all " > 0 and gWN ! N, there is an N � ‚b;�;�;˛;
 ."; g/ such that, for all m,
n 2 ŒN;N C g.N /�, kJ�mAx � J�nAxk � ".

We shall now detail the corresponding quantitative corollaries.



On quantitative metastability for accretive operators 429

Corollary 4.2. Let X be a Banach space which is uniformly convex with modulus � and
uniformly smooth with modulus � . Let C � X be a closed, convex, nonempty subset.
Let A � X � X be an accretive operator such that, for all � > 0, we have that C �
ran.IdC �A/ and that, for all y 2 C , J�Ay 2 C (in particular, if C D X , then A is m-
accretive). Let x 2 C . Let p 2 C be a zero of A and b 2 N� be such that kx � pk � b=2.

Let .�n/ � .0;1/, ˛WN ! N and 
 WN ! N� be such that

• for all n and all m � ˛.n/, �m � nC 1;

• for all n, �n � 
.n/.

Then, for all " > 0 and gWN ! N, there is an N � ‚b;�;�;˛;
 ."; g/ such that, for all m,
n 2 ŒN;N C g.N /�, kJ�mAx � J�nAxk � ".

Proof. Put D WD C \ B.p; b=2/, so x 2 D. We shall apply Theorem 4.1 with C WD D,
from which we will get our conclusion. The only non-trivial condition to check is that, for
all � > 0 and y 2D, J�Ay 2D. Let � > 0 and y 2D. Then y 2 C , so J�Ay 2 C . Since
kJ�Ay � pk � ky � pk � b=2, we have that J�Ay 2 B.p; b=2/, so J�Ay 2 D.

We now turn to instantiating the above results for continuous pseudocontractions. In
the following corollaries, we shall consider, for sequences .tn/� .0; 1/, moduli �WN!N
and 
 WN ! N� such that

• for all n and all m � �.n/, tm � 1 � 1
nC1

;

• for all n, tn � 1 � 1

.n/

.

In the case that, for all n, tn D 1 � 1
nC2

, we may take, for all n, �.n/ WD n and 
.n/ WD
nC 2.

We also define, for any �WN ! N, the function � 0WN ! N, where we set, for all n,
� 0.n/ WD �.nC 1/. We also denote, for any choice of parameters, Q‚b;�;�;�;
 WD‚b;�;�;� 0;
 .

Corollary 4.3. Let X be a Banach space which is uniformly convex with modulus � and
uniformly smooth with modulus � . Let C � X be a closed, convex, nonempty subset. Let
b 2 N� be such that the diameter of C is bounded by b. Let T WC ! C be a pseudo-
contraction and x 2 C . For all t 2 .0; 1/, let xt 2 C be such that xt D tT xt C .1 � t /x
(again, if T is continuous, a unique such point exists by Propositions 2.12 and 2.13).

Let .tn/ � .0; 1/, �WN ! N and 
 WN ! N� be such that

• for all n and all m � �.n/, tm � 1 � 1
nC1

;

• for all n, tn � 1 � 1

.n/

.

Then, for all " > 0 and gWN ! N, there is an N � Q‚b;�;�;�;
 ."; g/ such that, for all m,
n 2 ŒN;N C g.N /�, kxtm � xtnk � ".

Proof. Set A WD Id� T . Set, for all n, �n WD tn
1�tn
2 .0;1/, so tn D �n

1C�n
. Using Propo-

sition 2.21 and Corollary 2.22, we get that, for all n, xtn D J�nAx, and that most of the
conditions of Theorem 4.1, which we seek to apply, are satisfied. We only need to check
the moduli conditions for � 0 and 
 .
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Firstly, let n 2N andm� � 0.n/D �.nC 1/. We want to show that �m � nC 1. Since,
by the condition on �, we have that tm � 1 � 1

nC2
D

nC1
nC2

, and so that 1 � tm � 1
nC2

, we
get that

�m D
tm

1 � tm
�
nC 1

nC 2
� .nC 2/ D nC 1:

Let now n 2 N. We want to show that �n � 
.n/. Since, by the condition on 
 , we
have that tn � 1 � 1


.n/
D


.n/�1

.n/

, and so that 1 � tn � 1

.n/

, we get that

�n D
tn

1 � tn
�

.n/ � 1


.n/
� 
.n/ D 
.n/ � 1 � 
.n/:

The conclusion then follows.

Corollary 4.4. Let X be a Banach space which is uniformly convex with modulus � and
uniformly smooth with modulus � . Let C � X be a closed, convex, nonempty subset.
Let T W C ! C be a pseudocontraction and x 2 C . For all t 2 .0; 1/, let xt 2 C be
such that xt D tT xt C .1 � t /x (again, if T is continuous, a unique such point exists
by Propositions 2.12 and 2.13). Let p 2 C be a fixed point of T and b 2 N� be such that
kx � pk � b=2.

Let .tn/ � .0; 1/, �WN ! N and 
 WN ! N� be such that

• for all n and all m � �.n/, tm � 1 � 1
nC1

;

• for all n, tn � 1 � 1

.n/

.

Then, for all " > 0 and gWN ! N, there is an N � Q‚b;�;�;�;
 ."; g/ such that, for all m,
n 2 ŒN;N C g.N /�, kxtm � xtnk � ".

Proof. Set A WD Id� T . Set, for all n, �n WD tn
1�tn
2 .0;1/, so tn D �n

1C�n
. Using Propo-

sition 2.21 and Corollary 2.22, we get that, for all n, xtn D J�nAx, and that most of the
conditions of Corollary 4.2, which we seek to apply, are satisfied. The moduli conditions
are checked as in the previous proof.

We now argue, as in [18], that our main theorem is a finitization in the sense of Tao
of the following theorem (which is, again, a somewhat restricted form of the main result
in [29]).

Theorem 4.5 ([29]). In the hypotheses of either Theorem 4.1 or Corollary 4.2, we have
that, for all .�n/ � .0;1/ such that limn!1 �n D 1, the sequence .J�nAx/ converges
to a zero of A, which we denote by Qx. In addition, the map QWC ! zer.A/ thus defined
is a sunny nonexpansive retraction (and therefore the unique such one).

As in [18], the metastability of the sequence .J�nAx/ immediately implies, using
almost purely logical principles, its convergence. It is then clear that the limit does not
depend on the .�n/, so we can unambiguously dub it Qx. For the rest of the proof, we fix
a .�n/ and denote, for all n, xn WD J�nAx. That Qx is a fixed point of JA (and thus a zero
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of A) follows from the continuity of JA and the fact (proven already in Subsection 3.1)
that

lim
n!1
kxn � JAxnk D 0:

If x is already a zero of A, then clearly, for all n, xn D J�nAx D x and therefore
Qx D x. We have thus shown that Q is a retraction. To show that Q is sunny and non-
expansive, we seek to apply Proposition 2.6. Let p be a zero of A. We now argue as in
Subsection 3.1. Let n 2 N. Since

�
xn;

x�xn
�n

�
2 A and .p; 0/ 2 A, and A is accretive, we

have that Dx � xn
�n

� 0; j.xn � p/
E
� 0;

i.e., that hxn � x; j.xn � p/i � 0. Since j is homogeneous, we have that

hx � xn; j.p � xn/i � 0:

Since the above holds for all n 2 N, by passing to the limit, using the continuity of j
(together with the fact that .xn/ is bounded), we get that

hx �Qx; j.p �Qx/i � 0;

which is what we needed to show.
Finally, I want to mention some related work in the area. The result in this paper has

been applied by Findling and Kohlenbach in [8] towards obtaining a rate of metastability
for an algorithm that finds a zero of an accretive operator in a Banach space which is uni-
formly convex and uniformly smooth, without relying on its resolvent. In addition, Pinto
has recently introduced in [24] a nonlinear generalization of smooth spaces for which
he proved the corresponding version of Reich’s theorem. A quantitative analysis of that
theorem, building on [18] and the present paper will be presented in the forthcoming
paper [25].

Acknowledgments. This work originated in and benefited from discussions with Ulrich
Kohlenbach, whom I would like to thank.
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