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A remark on solutions to semilinear equations with Robin
boundary conditions

Antonio Celentano, Alba Lia Masiello, and Gloria Paoli

Abstract. Symmetry properties of solutions to elliptic quasilinear equations have been widely stud-
ied in the context of Dirichlet boundary conditions. We show that, in the context of Robin boundary
conditions, the symmetry property 4 la Gidas, Ni, and Nirenberg does not hold in dimension n > 2,
even for superharmonic functions, and we provide an explicit example.

1. Introduction

The task of proving symmetries of solutions to quasilinear or nonlinear PDEs that reflect
the symmetries of the domain has interested many authors. In this context, the classical
result by Gidas, Ni, and Nirenberg, contained in the celebrated paper [12, Theorem 1], is
stated as follows.

Theorem 1.1 (Gidas—Ni—Nirenberg symmetry result). Let f : R — R be such that [ =
f1 + fa, where f1 is a locally Lipschitz function and f, is non-decreasing. Then, any
positive solution u € C2(B) to the problem
—Au = f(u) inB,
(1)
u=20 on 0B,

where B is a ball of R" of radius R, has to be radial and

ou
— <0 forO<r <R.
or

In order to prove this result, the authors make use of the method of moving planes,
first introduced by Aleksandrov in [1], and then applied by Serrin in [22] in the context of
PDE:s.

In the case n = 2, Lions in [14] gives an alternative proof of Theorem 1.1, which
allows one to consider weaker smoothness assumptions on f and u, under the additional
hypothesis f > 0. The technique used in [14] relies on the Schwartz symmetrization,
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the isoperimetric inequality, and the Pohozaev identity. These techniques were applied
and generalized in [13] to the context of the n—Laplacian, and, eventually, in [21] to the
solutions to the p—Laplace equation for any p, in any dimension n > 2.

The result contained in [12] is a milestone in proving the symmetry of solutions to
PDEs: in the linear case, see, for instance, [4, 5, 11,20] and, for the p—Laplace opera-
tor, we refer to [3,7,9, 10]. In all the aforementioned papers, it is possible to prove the
radiality of positive solution to (1) either under the regularity hypothesis on f stated in
Theorem 1.1 (using the moving plane method as in [12]) or under the assumption f > 0
(with symmetrization techniques as in [13, 14,21]). For a sign-changing f, the Lipschitz
continuity property cannot be relaxed to Holder continuity, as shown in [8]. Indeed, in this
case, the author finds a positive solution to (1) that is not radially symmetric.

Recently, the study of symmetrization techniques for PDEs problem with Robin
boundary condition has gained attention; see, for instance, [2, 15, 16]. The aim of the
present work is to study the behavior of the solution to the Robin problem

{ auAu = f(u) in B, @
3, +Bu=0 ondB

whenever 8 is a positive parameter. To our knowledge, in the literature, few results deal
with symmetry properties of the solutions to differential equations with Robin boundary
conditions. For instance, in [6], the authors consider the following problem:

(€)

—&2Au = f(u) —u in B,
sg—’ﬁ +Bu=0 on 0B,

where ¢ > 0, f : R — R is a continuous function of the form

f(0) = fi@) = fa(r)

for t > 0, with f1, fo > 0, satisfying some structural growth conditions (for the precise
details, see [6, Section 1]). Under these assumptions, it is possible to prove the existence of
positive least-energy solutions to (3) by making use of the Palais—Smale condition and the
mountain pass lemma. The authors show that there exists a 8« > 1 such that, for § > B,
a least-energy solution has the maximum at the center of the ball, while, for § < 4 and
& — 0, a least-energy solution has the maximum near the boundary, and, consequently,
the function cannot be radially symmetric. These results regarding the location of the
maximum of a least-energy solution to problem (3) are actually obtained in [6] for the
more general case of a bounded and smooth domain Q C R”.

For the sake of completeness, we recall that the case f = 0, i.e., the Neumann prob-
lem, and the case B = +o0, i.e., the Dirichlet problem, have been studied, for instance,
respectively, in [17-19].

In Theorem 2.1, we show that in the one-dimensional case the symmetry result for the
solution to (2) holds under the standard hypotheses of Gidas, Ni, and Nirenberg and the
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additional hypothesis f > 0. On the other hand, this is not the case for n > 2, as pointed
out in Corollary 3.2:

In dimension n > 2, there exists a positive superharmonic function ¢ that is a
solution to (2) and that is not radially symmetric.

So, the main novelty of our paper is that we can find a non-radial solution to prob-
lem (2) when the nonlinearity f is positive, and, moreover, this solution is explicit (see
Theorem 3.1).

2. One-dimensional case: The symmetry holds

We start by analyzing the one-dimensional case.

Theorem 2.1. Let R > 0, and let I =] — R, R[ be the open ball of radius R. Let u €
C2([—-R. R]) be a solution to

—u" = f(u) inl,
g_g(x) + Bu(x) =0 inx ==*R,

where B > 0. Let us assume that f satisfies the following assumptions:

i) f=0inR, f isnotidentically zero in u(1),

(i) f = f1 + fa, where fi is locally Lipschitz in R and f, is non-decreasing.
Then, u(x) = u(—x) for all x € [-R, R]. Moreover,

u'(x) <0, x€][0,R].

Proof. We divide the proof into two steps. In the first step, we prove that the function u is
strictly positive, and in the second one, we prove that we can apply the result contained in
Theorem 1.1.

Step 1. We start by proving that u > 0 in [-R, R]. Since u” < 0, ©’ is non-increasing in
] — R, R][, so the minimum of u on [— R, R] is achieved either in —R or in R. Let us denote
by X, the minimum point of u in [— R, R]. From the Robin boundary conditions, we have
that

d
—Bu(xm) = a—’:(xm> <o,

and, as a consequence, ¥ > 0in [—R, R].
Now, we want to prove that u > 0 in [—R, R]. By contradiction, we assume that
u(xpy) = 0. If x,,, = —R, the Robin boundary conditions imply that

0 = Bu(—R) = —g—:(—R) =u'(-R)>u'(x), Vxel,
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where we have observed that u’ is non-increasing. This implies that also u is a non-
increasing function, so —R should be both a minimum and a maximum. This is not
possible, since u should be constant and this contradicts the hypothesis f % 0 in u(7).
Therefore, we have that x,, = R and, arguing as before, we have

0=—Bu(R) = g—z(R) =u'(R) <u'(x), Vxel,

So, u is a non-decreasing function, the point R is both a minimum and a maximum,
and we get a contradiction as before.

Step 2. We prove now that u(R) = u(—R). Let us assume by contradiction that u(R) #
u(—R). Without loss of generality, we can suppose u(R) < u(—R). As a consequence
of Step 1, the function u is strictly increasing in a neighborhood of the point —R, so, by
the continuity of u, there exists y € I such that u(y) = u(—R). Therefore, the following
quantity is well defined:

A:=inf{t € I : u(t) = u(—R)},
and A > —R. Moreover, the continuity of v also implies #(A) = u(—R) and u(x) > u(—R)
in (—R,A).
We define now the function v := u — u(—R), which is a positive solution to
—Av = f(v) in(=R.A),
v=0 inx=—-R, x=2A,
where f(v) = f(v 4+ u(R)). So, we can use Theorem 1.1 in the interval (—R, 1). We

have that u is symmetric with respect to the line x = 27 !(1 — R), and, as a consequence,
we get

du du du

—(R)=—"+(—R) = — . 4

TR) == (R = =) <0 @
Using (4) and the fact that 4’ is non-increasing, we obtain

du du du du
= —— = —— > — = ——(— = —
Bu(R) = =Z(R) = —2(R) = =2 (h) = =2 (=R) = pu(=R),
and, therefore,
u(R) > u(—R),

which is a contradiction.
From Steps 1 and 2, we have that the function v = u — u(R) is a positive solution to

—Av = f(v) in 1,
v=20 inx = +R.
So, we can conclude by using Theorem 1.1. [ ]

We do not know if the hypotheses (i)—(ii) on the function f are the optimal ones to
obtain the symmetry result. Nevertheless, we will show in Remark 3.1, in the next session,
that the assumption f > 0 cannot be removed.
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A

Figure 1. Construction of the function ¢.

3. Counterexample: Symmetry breaking in dimension n > 2

In the following, we will denote by | - | the Euclidean norm in R”.

Theorem 3.1. Let B C R”, n > 2, be the ball centered at the origin with radius R,
let B be a positive constant, and let xg # 0 in Br. Then, there exists a positive function
@ € C®(BR) that is a non-radial function in Bg (i.e., 9(x) # @(|x|)), and it is a solution
to

—A¢ = f(¢) inBg,
dp (5)
5+ Bp =0 ondBg,
where : i
f(t) = cit[cat PR + ¢35t PR |, (©6)
with ¢1,c3 > 0, ¢ € R defined as follows:
c1 =2BR, ¢ ==2BR+1)+n, c3=2BR+1a? o®=R>—|x|*
Proof. We define the following quantities (see Figure 1):
* a:=|xol,
o a?:=R?—-a%>>0.
We show the existence of a positive function ¢(x) = ¢(|x — xo|) = ¢(r) such that
0
a—w-l-ﬂgz):O on dBg, @)
v

where v is the unit outer normal to dBg. Let us fix x € dBg. Being

X — X

Vi) = ¢'(N=—". v = T

r
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the Robin boundary conditions (7) become

X — X

@'(r)

0o X
-+ Be(r) =0. ®)

r R
Denoting, now, by 6 the angle between the vectors x¢ and x, we have the following rela-

tion:
R? + 4% —r?

)= ———. 9
cos(6) 24R ©)
So, from (8) and (9), recalling that «®> = R? — a?, we have
/ r / r
20 (k2 Racos®) + por) = 242 + o) + Bor) =0,
rR 2rR
and, therefore,
@'(r) r
—(2BR 10
5 = PR (10)
Integrating (10), we get
c
0) = (7 7R (11)
If we choose ¢ = 1, we have
2BRr
4 - —_—
¢'(r) = 7 & a2 PR
4BRr? 28R

¢'(r) = ~(=BR—1)

(r2 + a2)PR+2 o (r2 + a2)BR+1
and, consequently,

n—

~Ap ="~ ")
28R
= 02 1 a2)PRHT
= 2BRp(r) 3R [0 — 2(BR + 1) + 2(BR + 1)a’p(r) %
= f(e(r)),

2
|:n —2(BR+1) + (BR + 1)%}

where f is the function defined in (6). So, we have proved the desired claim, since we
have found a non-radial function of the form ¢(x) = ¢(|]x — x¢|) = ¢(r), defined in (11),
that satisfies (5). [

As a consequence of Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Let n > 2. There exists a positive superharmonic function ¢ that is a
solution to (2) and that is not radially symmetric.
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Proof. In the case n = 2, the right-hand side of (6) becomes
f(t) = 4BRt(— BRIFE + o2(1 + PR 7R).
‘We notice that
BR__\P*

— < an | - (12)
@2(1 4+ BR)
so the function f o ¢ is positive if ¢ satisfies (12) for all x € Bg, and this follows by
imposing the following geometric constraint:

f(@) =0, iftz(

R—a
p= R(R+a)

If n > 3, we can choose the constant ¢, > 0; by imposing the condition

n—2

<
p= 2R

13)

and, under these assumptions, we have that f(¢) > 0 for ¢ > 0.

Therefore, we can see that, by imposing the geometrical constraints (12) and (13),
respectively, for n = 2 and n > 3, the function ¢ defined in (11) is an example of positive
superharmonic function, which is non-radial and satisfies (5). ]

We conclude with a remark on the one-dimensional case.

Remark 3.1. The function ¢ defined in Theorem 3.1, in the case n = 1, satisfies the
problem

—¢" = f(p) in(—R,+R),
% L Bp=0 inx==%R.

We note that ¢ € C*°([—R, R]) and f is a locally Lipschitz function, but f does not sat-
isfy the hypothesis (i), that is, the positiveness. Indeed, by straightforward computations,
we obtain that f o ¢ is a sign-changing function in ¢([—R, +R]) for every 8 > 0 and
R>a>0.

Acknowledgments. The authors would like to thank Professor Carlo Nitsch for the useful
and insightful discussions.

Funding. All the authors are partially supported by Gruppo Nazionale per 1’Analisi
Matematica, la Probabilita e le loro Applicazioni (GNAMPA) of Istituto Nazionale di
Alta Matematica (INdAM). During the writing of the present work, Gloria Paoli was sup-
ported by the Alexander von Humboldt Foundation through an Alexander von Humboldt
Research Fellowship.

Conflicts of interest. There are no conflicts of interest to disclose regarding the publica-
tion of this paper.



A. Celentano, A. L. Masiello, and G. Paoli 468

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

(14]
(15]
(16]
(17]

(18]

A. D. Aleksandrov, Uniqueness theorems for surfaces in the large. V. Amer. Math. Soc. Transl.
(2) 21 (1962),412-416 Zbl 0119.16603 MR 0150710

A. Alvino, C. Nitsch, and C. Trombetti, A Talenti comparison result for solutions to elliptic
problems with Robin boundary conditions. Comm. Pure Appl. Math. 76 (2023), no. 3, 585-603
Zbl 152535076 MR 4544805

M. Badiale and E. Nabana, A note on radiality of solutions of p-Laplacian equation. Appl.
Anal. 52 (1994), no. 1-4, 35-43 Zbl 0841.35008 MR 1380325

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of
semilinear elliptic equations. J. Geom. Phys. 5 (1988), no. 2, 237-275 Zbl 0698.35031

MR 1029429

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method. Bol.
Soc. Brasil. Mat. (N.S.) 22 (1991), no. 1, 1-37 Zbl 0784.35025 MR 1159383

H. Berestycki and J. Wei, On singular perturbation problems with Robin boundary condition.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 1, 199-230 Zbl 1121.35008

MR 1990979

F. Brock, Radial symmetry for nonnegative solutions of semilinear elliptic equations involving
the p-Laplacian. In Progress in partial differential equations, Vol. 1 (Pont-a-Mousson, 1997),
pp. 46-57, Pitman Res. Notes Math. Ser. 383, Longman, Harlow, 1998 Zbl 0920.35051

MR 1628044

F. Brock, Continuous rearrangement and symmetry of solutions of elliptic problems. Proc.
Indian Acad. Sci. Math. Sci. 110 (2000), no. 2, 157-204 Zbl 0965.49002 MR 1758811

L. Damascelli and F. Pacella, Monotonicity and symmetry results for p-Laplace equations and
applications. Adv. Differential Equations 5 (2000), no. 7-9, 1179-1200 Zbl 1002.35045

MR 1776351

L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of
m-Laplace equations. J. Differential Equations 206 (2004), no. 2, 483-515 Zbl 1108.35069
MR 2096703

L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems.
Cambridge Tracts in Math. 128, Cambridge University Press, Cambridge, 2000

Zbl 0947.35002 MR 1751289

B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum
principle. Comm. Math. Phys. 68 (1979), no. 3, 209-243 Zbl 0425.35020 MR 0544879

S. Kesavan and F. Pacella, Symmetry of positive solutions of a quasilinear elliptic equation via
isoperimetric inequalities. Appl. Anal. 54 (1994), no. 1-2, 27-37 Zbl 0833.35040

MR 1382205

P-L. Lions, Two geometrical properties of solutions of semilinear problems. Applicable Anal.
12 (1981), no. 4, 267-272 Zbl 0445.35043 MR 0653200

A. L. Masiello and G. Paoli, Rigidity results for the p-Laplacian Poisson problem with Robin
boundary conditions. J. Optim. Theory Appl. (2024), DOI 10.1007/s10957-024-02442-1

A. L. Masiello and G. Paoli, A rigidity result for the Robin torsion problem. J. Geom. Anal. 33
(2023), no. 5, article no. 149 7Zbl 1512.35176 MR 4554054

W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann
problem. Comm. Pure Appl. Math. 44 (1991), no. 7, 819-851 Zbl 0754.35042 MR 1115095
W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann
problem. Duke Math. J. 70 (1993), no. 2, 247-281 Zbl 0796.35056 MR 1219814


https://zbmath.org/?q=an:0119.16603
https://mathscinet.ams.org/mathscinet-getitem?mr=0150710
https://doi.org/10.1002/cpa.22090
https://doi.org/10.1002/cpa.22090
https://zbmath.org/?q=an:1525.35076
https://mathscinet.ams.org/mathscinet-getitem?mr=4544805
https://doi.org/10.1080/00036819408840222
https://zbmath.org/?q=an:0841.35008
https://mathscinet.ams.org/mathscinet-getitem?mr=1380325
https://doi.org/10.1016/0393-0440(88)90006-X
https://doi.org/10.1016/0393-0440(88)90006-X
https://zbmath.org/?q=an:0698.35031
https://mathscinet.ams.org/mathscinet-getitem?mr=1029429
https://doi.org/10.1007/BF01244896
https://zbmath.org/?q=an:0784.35025
https://mathscinet.ams.org/mathscinet-getitem?mr=1159383
https://zbmath.org/?q=an:1121.35008
https://mathscinet.ams.org/mathscinet-getitem?mr=1990979
https://zbmath.org/?q=an:0920.35051
https://mathscinet.ams.org/mathscinet-getitem?mr=1628044
https://doi.org/10.1007/BF02829490
https://zbmath.org/?q=an:0965.49002
https://mathscinet.ams.org/mathscinet-getitem?mr=1758811
https://doi.org/10.57262/ade/1356651297
https://doi.org/10.57262/ade/1356651297
https://zbmath.org/?q=an:1002.35045
https://mathscinet.ams.org/mathscinet-getitem?mr=1776351
https://doi.org/10.1016/j.jde.2004.05.012
https://doi.org/10.1016/j.jde.2004.05.012
https://zbmath.org/?q=an:1108.35069
https://mathscinet.ams.org/mathscinet-getitem?mr=2096703
https://doi.org/10.1017/CBO9780511569203
https://zbmath.org/?q=an:0947.35002
https://mathscinet.ams.org/mathscinet-getitem?mr=1751289
https://doi.org/10.1007/BF01221125
https://doi.org/10.1007/BF01221125
https://zbmath.org/?q=an:0425.35020
https://mathscinet.ams.org/mathscinet-getitem?mr=0544879
https://doi.org/10.1080/00036819408840266
https://doi.org/10.1080/00036819408840266
https://zbmath.org/?q=an:0833.35040
https://mathscinet.ams.org/mathscinet-getitem?mr=1382205
https://doi.org/10.1080/00036818108839367
https://zbmath.org/?q=an:0445.35043
https://mathscinet.ams.org/mathscinet-getitem?mr=0653200
https://doi.org/10.1007/s10957-024-02442-1
https://doi.org/10.1007/s10957-024-02442-1
https://doi.org/10.1007/s10957-024-02442-1
https://doi.org/10.1007/s12220-023-01202-3
https://zbmath.org/?q=an:1512.35176
https://mathscinet.ams.org/mathscinet-getitem?mr=4554054
https://doi.org/10.1002/cpa.3160440705
https://doi.org/10.1002/cpa.3160440705
https://zbmath.org/?q=an:0754.35042
https://mathscinet.ams.org/mathscinet-getitem?mr=1115095
https://doi.org/10.1215/S0012-7094-93-07004-4
https://doi.org/10.1215/S0012-7094-93-07004-4
https://zbmath.org/?q=an:0796.35056
https://mathscinet.ams.org/mathscinet-getitem?mr=1219814

(19]

(20]
(21]

(22]

A remark on solutions to semilinear equations with Robin boundary conditions 469

W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly per-
turbed semilinear Dirichlet problems. Comm. Pure Appl. Math. 48 (1995), no. 7, 731-768
Zbl 0838.35009 MR 1342381

E. Rosset, An approximate Gidas—Ni—Nirenberg theorem. Math. Methods Appl. Sci. 17 (1994),
no. 13, 1045-1052 Zbl 0806.35041 MR 1300801

J. Serra, Radial symmetry of solutions to diffusion equations with discontinuous nonlinearities.
J. Differential Equations 254 (2013), no. 4, 1893-1902 Zbl 1263.35117 MR 3003296

J. Serrin, A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43 (1971),
304-318 Zbl 0222.31007 MR 0333220

Received 26 October 2023; revised 27 June 2024.

Antonio Celentano

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Universita degli Studi di Napoli
Federico 11, Via Cintia, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy;
antonio.celentano2 @unina.it

Alba Lia Masiello

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Universita degli Studi di Napoli
Federico 11, Via Cintia, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy;
albalia.masiello@unina.it

Gloria Paoli

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Universita degli Studi di Napoli
Federico II, Via Cintia, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy;
gloria.paoli@unina.it


https://doi.org/10.1002/cpa.3160480704
https://doi.org/10.1002/cpa.3160480704
https://zbmath.org/?q=an:0838.35009
https://mathscinet.ams.org/mathscinet-getitem?mr=1342381
https://doi.org/10.1002/mma.1670171304
https://zbmath.org/?q=an:0806.35041
https://mathscinet.ams.org/mathscinet-getitem?mr=1300801
https://doi.org/10.1016/j.jde.2012.11.015
https://zbmath.org/?q=an:1263.35117
https://mathscinet.ams.org/mathscinet-getitem?mr=3003296
https://doi.org/10.1007/BF00250468
https://zbmath.org/?q=an:0222.31007
https://mathscinet.ams.org/mathscinet-getitem?mr=0333220
mailto:antonio.celentano2@unina.it
mailto:albalia.masiello@unina.it
mailto:gloria.paoli@unina.it

	1. Introduction
	2. One-dimensional case: The symmetry holds
	3. Counterexample: Symmetry breaking in dimension n≥2
	References

