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Cubic decomposition of a Laguerre-Hahn
linear functional I

Francisco Marcellan and Mohamed Khalfallah

Abstract. The aim of this contribution is to study orthogonal polynomials via cubic decomposi-
tion in the framework of the Laguerre—Hahn class. We consider two monic orthogonal polynomial
sequences {Wy}n>0 and {Pn}n>0, and we let w and u be, respectively, the corresponding reg-
ular linear functionals such that Wa, (x) = Pp(x3), n > 0. We prove that if either w or u is a
Laguerre—Hahn linear functional, then so is the other one. Based on this result, we deduce a com-
plete analysis of the class s of the Laguerre—Hahn linear functional w. More precisely, we show that
3s’ <5 < 3s’ + 6, where s’ is the class of u. An illustrative example of class 1 is analyzed.

1. Introduction

Laguerre—Hahn orthogonal polynomials are related to Stieltjes functions, S, that satisfy a
Riccati differential equation with polynomial coefficients [17,30, 34]

®S' = BS?+CS+D, ®#0. (1.1)

To define the so-called Laguerre—-Hahn linear functionals, the authors in [17,20,30] gave
a detailed formalism of the necessary operations, along with the suitable topological
framework. More precisely, in [17, Theorem 3.1], the equivalence between the Riccati
differential equation (1.1) for the Stieltjes function S(z) = — Y, (w)n/z" !, where
(w), denotes the nth moment of the corresponding linear functional w, and the distribu-
tional equation

(dw) + Yw + B(x'w?) =0, ¥=-9'—C. (1.2)

is given. Moreover, if w is a Laguerre-Hahn linear functional, then the class of w, denoted
by s, is defined as

s := min(max(deg ¥ — 1, max(deg ®, deg B) — 2)),

where the minimum is taken over all triplets (®, ¥, B) such that (1.2) holds.
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Looking back at the rich archive of orthogonal polynomials (OP), from a structural
and constructive point of view, the Laguerre—Hahn polynomials are indeed one of the
very remarkable families of OP, since most of the monic orthogonal polynomial sequences
(MOPS) considered in the literature belong to this family. Namely, either one of the equa-
tions (1.1) or (1.2) can be simplified to become semiclassical. Indeed, if B = 0, then
semiclassical case appears. However, the fact that B is not identically zero can also yield
the semiclassical case, which is the case with the Stieltjes functions related to second-
degree linear functionals [31]. In a more general context, the same thing can occur with
the third-degree class. Indeed, a third degree linear functional belongs to the Laguerre—
Hahn class [9], but the converse is not true in general.

As far as it concerns the techniques used to study the Laguerre—Hahn orthogonal poly-
nomials, there is actually a variety of them: the modifications of linear functionals and the
analysis of the corresponding perturbations on the sequences of orthogonal polynomials,
to name a few. Another technique deals with the problem of classification of families
of orthogonal polynomials in terms of classes of differential equations (1.1) whose goal
was to describe the systems of difference equations for the recurrence relation coefficients
of the corresponding sequence of orthogonal polynomials, the so-called Laguerre—Freud
equations [4,5, 18,23,28]. Some of them have been studied in the framework of discrete
Painlevé equations (see [21,22,39]).

In general, the problem of determining in an explicit way the Laguerre-Hahn linear
functional becomes a very difficult task when the class is greater than or equal to one.
We should point out that several classes of Laguerre—Hahn linear functionals have been
described: the class s = 0 [10, 11]; the symmetric class s = 1 [1, 3]; the symmetric class
s = 2 when ® and B vanish at zero [36]. Some of the families of Laguerre—Hahn MOPSs
were also unfolded by using some processes or by solving some algebraic equations in the
dual space of polynomials [2,6,9,12,13,16,19,35]. One of these processes is the quadratic
decomposition [29, 33].

On the other hand, a very important topic of research, often encountered in the litera-
ture of orthogonal polynomials, deals with the so-called cubic decomposition [32]. Nev-
ertheless, questions related to cubic decompositions of orthogonal polynomial sequences
satisfying some extra conditions as their Laguerre—Hahn character have not been con-
sidered in the literature up to the recent contributions [7, 14,37, 38] for particular cases
of semiclassical, second degree and third degree linear functionals of class one and two,
respectively, and [27] for Laguerre—Hahn linear functionals of class s = 1.

Our work is focused on presenting a generator system of the set of Laguerre—Hahn
linear functionals in a way that allows us to answer the following questions.

Consider two sequences of monic orthogonal polynomials

{Wn}nZO and {Pn}n207
let w and u be, respectively, the corresponding regular linear functionals such that

Win(x) = Py(x?), n>0. (1.3)
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Assuming that either w or u is a Laguerre—Hahn linear functional, the following questions
can be posed.

(i)  Can the same be said about the remaining one?
(ii) If so, Can a connection between their classes be stated?

In this direction, we mention the work in [14], where the authors proved that w is a
semiclassical linear functional if and only if the linear functional u is a semiclassical lin-
ear functional. In addition, in [7] the authors prove that w is a second degree (resp., third
degree) linear functional if and only if the first component ¥ = 04 (w) is a second degree
(resp., third degree) linear functional. On the other hand, based either on spectral pertur-
bations of the linear form [8] or on a cubic decomposition of the corresponding sequences
of orthogonal polynomials (see [24—26], among others), a constructive approach to some
families of TDREF is presented therein.

The main purpose of this paper is fully answering the previously raised questions
which in their turn, constitute a generalization of all the results mentioned above. The
paper is organized as follows. In Section 2, we review some basic tools concerning the
general theory of OP’s, focusing our attention on the cubic decomposition (CD) and on
the theory of Laguerre—Hahn MOPS’s. In Section 3, we deal with the stability, i.e., the
preservation of the Laguerre—Hahn character. Indeed, if one of the two linear functionals
w and u, such that {W, },>0 and { P, } >0 are, respectively, the corresponding sequences of
orthogonal polynomials which are related by the cubic decomposition (1.3), is a Laguerre—
Hahn linear functional then it is the same for the other one. In Section 4, a complete
analysis of the class s of the Laguerre-Hahn linear functional w in terms of the class s’ of
the linear functional ¥ = 04 (w) is done. In particular, we show that 35" <s < 3s’ + 6 and,
more precisely, an accurate description of all the possible situations is given. Finally, in
Section 5 we provide new examples of Laguerre—Hahn linear functionals of class 1. This
is done by analyzing the case when u = 04 (w), the first component of linear functional
w in the cubic decomposition, is a singular Laguerre—Hahn linear functional of class zero.

2. Background

In this section, we summarize some basic ideas concerning Laguerre—Hahn OPS’s, but
first let us recall some basic tools about algebraic (topological) aspects in the theory of
OP’s and the cubic decomposition of sequences of orthogonal polynomials (CD, in short).

2.1. Basic tools

First of all, let us recall some basic notations from [30] that we will use throughout this
paper. Let & be the vector space of polynomials with complex coefficients, and let P’ be
its algebraic dual. The elements of &’ will be called linear functionals (linear forms). By
{-,-) we denote the duality brackets between & and P’.
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Let us introduce some useful operations in &’. For any linear functional w, any poly-
nomial g and any (a, b, c) € (C —{0}) x C2, let w’, gw, haw, pw, (x — ) 'w and §,
be the forms defined by duality as

W' f)i=—=w. f). (gw.f):=(w.gf) fge?,

(haw, £) = (w.ha f) = (w0, (@),
(. f) = (0.t ) = (0, fx + D). [ € P,
(= ) = w.6e) = (w, L),

(8. f) = f(c) (6o =6), [feP.
For f € # and w € £’, the product w is the polynomial [30]
xf(x) =¢f(©) SYRL ;
(wf)(x) := <w, M> = Z Z(w)j_,-aj x*, 2.1
x—¢ , —
i=0 \j=i
where
n .
) =) aix'.
i=0
This allows us to define the Cauchy product of two linear functionals v and w as follows:
(vw, f):={v,wf), wedP, feP.

In particular, the moments of the above Cauchy product are

W)y =Y kW)y—t. 1 >0. (2.2)

k=0
The above product is commutative, associative and distributive with respect to the sum of
linear functionals.
Thus, we have the well-known formulas [30]

x(x7lw)y =w, x'(xw)=w-—34,
x "Dy = x Iy, we P, n>0, (2.3)
x tow) = xToyw = vx"tw), v,we P, 2.4)

where § is the unit element for Cauchy product of two linear functionals, i.e., (§, p(x)) =

p0), pep.
Now, we define the operator 0 : $’ — P’ by

(o). f):=(w.0w(f)), weP fep, (2.5)

where the linear operator 04 : & — P is defined by

0w (f)(x) = f(x?)

forevery f € 8.
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For any f € # and w € $’, the following properties hold [37]:

fow (W) = 00 ((f o w)w), (2.6)
0w (W) = (0m (w'w)). 2.7

We will also use the so-called formal Stieltjes function associated with w € £’. It is
defined by [30]
(w)n
s =3 W

n>0

In what follows, we will call polynomial sequence PS for any sequence {W, },>0 such
that deg W,, = n, n > 0. We will also call monic polynomial sequence MPS for any PS
such that all polynomials have a leading coefficient equal to one.

The linear functional w is called regular (or quasi-definite) if there exists a MPS
{Wa}n>0 such that [15]

(w, Wy W) :rn(sn,m, n >0,

where {7, }»>0 is a sequence of nonzero complex numbers and &, ,, is Kronecker symbol.

The sequence {W,},>0 is then said to be orthogonal with respect to w. Henceforth,
a monic orthogonal polynomial sequence {W, },>o will be indicated as MOPS. It is well
known (see [15]) that an MOPS is characterized by a three-term recurrence relation of the
form

Wat2(x) = (x = Butr D) Wnt1(X) = Yup 1 Wa(x), n >0, (2.3)

with initial conditions Wy(x) = 1 and W;(x) = x — Bo, being {Bn}n>0 and {Vu+1}n>0
sequences of complex numbers such that y,,+1 # 0 for all n > 0.

2.2. Laguerre-Hahn linear functionals
Now, let us recall some features about the Laguerre—Hahn linear functionals.

Definition 2.1 ([3, 11,34]). A linear functional w is said to be of Laguerre-Hahn class if
its Stieltjes function satisfies a Riccati equation

®(2)S’ (w)(z) = B(2)S*(w)(z) + C(2)S(w)(z) + D(z2), 2.9)
where ®(z) # 0, B(z), C(z) are polynomials with
D(z) = —(wh®) (z) — (whVY)(z) — (W6 B)(2). (2.10)

Remark 2.1. In particular, if B = 0, then the linear functional is said to be Laguerre—
Hahn affine or semiclassical.

Proposition 2.1 ([3, 11,34]). Let w be a quasi-definite and normalized linear functional,
i.e, (W)o =1, and let {Wy }n>0 e its corresponding MOPS. The following statements are
equivalent.

(i)  w is a Laguerre—Hahn functional.
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(i)  w satisfies the functional equation
(dw) + Yw + B(x 'w?) =0, (2.11)
where ®(x), B(x), C(x) are the polynomials in (2.9) and
U(x) = —[®'(x) + C(x)].

Notice that the above equation is not unique. Indeed, if w is Laguerre—Hahn and y is
an arbitrary polynomial, then w also satisfies the functional equation

(x®w) + (¥ — x'¢)w + (xB)(x~'w?) = 0.
With this in mind, we give the following definition.

Definition 2.2 ([3,11,34]). The class of a Laguerre—Hahn functional w is the non-negative
integer number defined as

s := min max { deg W(x) — 1, max{deg ®(x) — 1,deg B(x) — 1} — 2},

where the minimum is taken among all polynomials ®(x), W(x), and B(x) such that w
satisfies (2.11).

Taking into account that the class of a Laguerre—Hahn linear functional is very useful

in order to state a hierarchy of such families, we need to give a simple way to character-
ize it.
Proposition 2.2 ([3,34]). Let w be a Laguerre—Hahn linear functional and let ®(x) and
W(x) be non-zero polynomials with deg ®(x) =: r, deg V(x) =: ¢ and deg B(x) =: m,
such that (2.11) holds. Let s = max (t — 1,d — 2) with d = max{r, m}. Then, s is the
class of w if and only if

1_[ (|®'(c) + ¥(c)| + |B(c)| + [{w, 02® + 6.V + whyb.B)|) # 0, (2.12)
ceZy

where Z g denotes the set of zeros of ®.

With regard to the latter proposition, to show that whether or not, can the functional
equation (2.11) can be simplified by x — ¢, where ¢ is a zero of ®, one must find ®’(c) +
U(c), B(c) and (w, 62® + 6,V + wby 6, B). The computational work will indeed become
more delicate due to the recurrence of the simplification process. As a matter of fact, the
following lemma elucidates the simplification procedures.

Lemma 2.1 ([13]). Let c; € C be a zero of @ such that

@' (c1) + Wlen)| + [Blen)| + [(w, 67, @ + b, ¥ + whob, B)| = 0.

s Ve

Then, (2.11) can be simplified dividing by x — c1 and it becomes
(®1w) + Ww + Bi(x~'w?) =0,
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where
O =6,9, ¥ =62P+6,¥. By =06,B.
Moreover, for all c € C, we have

&'(c) + V()
c—c

(®1)'(c) + ¥i(c) = (2.13)

0,V + 02d + wbyb. B
(W, 0,91 + 021 + why0.By) = (w, + 0P+ who >. (2.14)
Cc —C1

From Proposition 2.2, there is an alternative way to find the class in terms of the poly-
nomials involved in the Riccati equation (2.9). Indeed, we have the following corollary.

Corollary 2.1 ([3,34]). Let w be a Laguerre—Hahn functional satisfying (2.9) such that
deg ®(x) = r, deg B(x) = m and deg ¥(x) = t with ¥(x) = —[®'(x) + C(x)]. Let
s =max (t — 1,d —2) with d = max{r,m}. Then, s is the class of w if and only if the
polynomials ®(x), B(x), C(x) and D(x) are coprime or, equivalently,

[T (B@©I+IC©]+ D)) #o.

ceZyp

Next, the concept of displacement is considered. Given a € C — {0}, b € C, if a linear
functional w of class s satisfies (2.11), then the linear functional W = (h,-1 o T_p)w is of
class s, and it satisfies

(W) + ¥ + B(x"'w?) =0, (2.15)

where
d(x)=a"%E%p(ax +b), VU(x)=a"®Wax +b), B(x)=a *¢®Bax +b).
(2.16)
Hence, a displacement does not change neither the Laguerre—Hahn character nor the class
of a Laguerre—Hahn linear functional [30]. Therefore, we can take canonical functional

equations by re-situating the zeros of ® in equation (2.11). This will be put in evidence in
the sequel.

2.3. Cubic decomposition

In what follows, we are concerned with the following cubic decomposition (CD, in short)
defined in [32]. Let us consider @ (x) = x3.
For any MPS {W,, },>0 there are three MPSs, { P, }n>0, { On }n>0 and { R, }»>0, so that

Wian(x) = Pp(x3) + xa,ll_l(x3) + xzaﬁ_l(x3), n >0, 2.17)
Want1(x) = by (x%) + x0u(x®) + x%b7_; (+°). n =0, (2.18)

Win42(x) = c,i (x3) + xc,zl(x3) +x2R,(x%), n=>0, (2.19)
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with deg a,ll_1 <n-—1, deg a%_l <n—1, deg b; < n, deg bﬁ_l <n—1, deg c,i <
ndegc? <nandal (x) =a?,(x) = b2,(x) = 0. This is a particular case of the gen-
eral cubic decomposition of any MPS presented in [32], where all the parameters involved
are equal to zero. In this cubic decomposition (2.17)—(2.19) of {W,},>0, the sequences:
{Pn}n>0, {On}n>0, { Rn}n=>0 are called the principal components; {a)_, }»>0, {a>_, }n>0,
(b =0, {b2_1Inz0, {c}nz0, {c2In>0 are called the secondary components, since they
are sequences of polynomials, although not necessarily bases for the vector space of poly-
nomials P.

The next result is a particular scenery of [32, Theorem 5.4] characterizing the orthogo-
nality case such that Wa, (x) = P, (w (x)), n > 0, with = (x) = x3 (i.e., the two secondary
components {a) }n>0 and {a2},>¢ vanish).

Proposition 2.3 ([32]). Let {W, }n>0 be a MOPS with respect to the linear functional w
defined by (2.17)—(2.19). The following statements are equivalent.

(a) a,llza,%zo,nzo.

(b) The recurrence coefficients of { Wy }n>0 satisfy

Bsn = Po. PBan+1+ Bant2 =—Po, n=0,
Yant+z = —v1 — Bo(Ban+1 + Bo) — Bipsr1. 1 >0,
Yan + Van+1 =y1, n >0, withyy =0.
Moreover, { Pp}n>0 is orthogonal with respect to the linear functional u =04 (w).

Let us conclude this subsection with the following result that will be required in the
sequel.

Proposition 2.4 ([37]). Let {Wy }n>0 be a MOPS with respect to the linear functional w
defined by (2.17)—(2.19) and such that a,% = a,zl =0,n > 0. Then,

o ((x — Bo)w) = 0, (2.20)

0w (x> = y1 — BHw) = 0. (2.21)

Furthermore, the formal Stieltjes functions S(w) and S (04 (w)) associated with the linear
Sfunctionals w and u = 04 (W), respectively, are related by [7]

Sw)(z) = p(2)S (0% w)(2>), (2.22)
where p(z) = 2% + Boz + y1 + B2

3. Stability of Laguerre—Hahn character via cubic decomposition

In this section, we deal with a stability problem, i.e., we show that w is a Laguerre—Hahn
linear functional if and only if the first component ¥ = 04 (w) is also a Laguerre—Hahn
linear functional. We start by stating some preliminary lemmas.

After that, we will give some properties related to the operator o4 which will be
needed later.
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Lemma 3.1. Let {Wy},>0 be a MOPS with respect to the linear functional w defined
by (2.17)~(2.19) and such that a; = a,% =0,n>0. Forany f € P, we have

0w (xW) = Boom (W), 3.1

0w (XPw) = (y1 + B0 (w), (3.2)

0w (f ()W) = f(X)og (), 3.3)
0w (Xf(x*)w) = Bo f(X)0w (W), (3.4)
0r (X2 f(P)w) = (11 + BY) [ (x)00 (). 3.5)

Proof. Equations (3.1) and (3.2) follow immediately from (2.20) and (2.21). Equation
(3.3) was stated in [37, Lemma 2.1]. Equations (3.4) and (3.5) can be computed similarly
taking into account (3.1) and (3.2). ]

Relying on Lemma 3.1, we prove the following results.

Lemma 3.2. Under the hypotheses of Lemma 3.1, the following formulas hold:

0w (W?) = (0 (W))? + 2Xx L0 (xW) 0 (x2w), (3.6)
0w (XW?) = 200 (W)0m (xw) + x (0 (x2w))?, (3.7)
0w (x Tw?) = x_l(ZUw(w)aw (x2w) + (ow(xw))z). 3.8)

Proof. Foreachn > 2,

(aw(wz), x")

3n n n—-l1
RECS > Wan—k = Y WakW)an—sk + Y, (W)3k41(W)3n—3k-1
k=0 k=0 k=0

n—2
+ Z (W) 3k+2(W)3n—3k—2
k=0

n n—1
=Y Ok (O W)k + Y, (O (W) (0w (Pw))n-1-%

k=0 k=0

n—2
+ ) (00 (W) (0w (X*w))n—2k
k=0

YL (0 (W) X") + (00 (XW)0m (F2W), XY + (00 (X2W)0 (x4), x"2)

= <(Uw(w))2+xilaw(xw)0w(x2w)+x72aw(x2w)aw(x4w)v x™)

= ((0m (W)* + x7om (xw)om (*w) + X205 (A w) (x07 (xw)), X")

Y CLCY (0 ()2 + X 0 (X)o7 (x2w) + X L0 (x2w) [0 (xw) — 5], x")

= (0w (W) 4 237 (0 (xw)) (0 (x*w)).
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Notice that this equality is also true for n = 0. Indeed, using (2.2) we obtain
(0 (W) 4+ 2x L om (xW)0g (x*w), 1) = 1 = (05 (w?), 1).
Finally, it is easy to check that
(0w (W), x) = 2((W)o(w)3 + (W)1 (W)2).
On the other hand, from (2.2), we easily obtain
(0w (W))? x) = 2(w)o(w)s  and (X~ og (X)o7 (x*w), X) = 2(w)1(w)2,

which correspond to (3.6) for n = 1. Thus, we have proved (3.6). Equations (3.7) and (3.8)
follow in a similar way. ]

We give now the following lemma for further use in the paper.

Lemma 3.3. Let i be a linear functional and let ®, U and B be three polynomials. If we
deal with the cubic decompositions

B(x) = D1 (x3) + xPo(x3) + x2P3(x?), (3.9)
T(x) = Uy (x3) + x T (x3) + x2U5(x3), (3.10)
B(x) = B1(x?) + xBy(x?) + x2B3(x>), (3.11)

then one has
0w (P) + Vit + B(x~'i2))
= (3xD2(x) 0w (1)) + U1 (X)o7 () + x Bo(x) (x ™ (00 ())?)
+ (3x®3(x) 05 (x11)) + Wa ()0 (xi1) + By (x)(x ™ (0 (x1))?)
+ (3% ()0 (x210)) + U3(x)0m (x%01) + B3(x)(x " (0 (x210))?)
+ 2(B1(x) (x L0 () 0 (x%10)) + B (x)(x ™ 0 (x18) 0 (x21))
+ X B3(x) (x T 0 (i) 0 (x10))).
Proof. From the linearity of the operator o, we have
0w (P + Wi + B(x7'#2)) = 0 ((P0)) + 00 (Vi) + 05 (B(x7152)).
On the one hand, we use (2.7) to obtain
0w ((@0)) = 3(0w (x* (7))’
3(0 ((x2®1 (x3) + X302 (x3) + x*®3(x))it))
= 3(®1 (1) (x%01)) + 3(x P2 ()05 (1)) + 3(xP3(x)0m (xi0)) .

Ow
Ow
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On the other hand, from (3.3) and according to (3.10), we deduce
0w (Wil) = 0 (U1 (x%) + xWa(x3) + x2W3(x?))it)
= 0y (0)0 (i) + To(¥)0 (i) + U3 (x) 00 (x270).
Similarly,
0w (B(x7'12%)) = 00 (B1 (x®) (x7'1%) + Bo(x*)u? + x B3(x*)ii?)
= B1(x)00 (x7'i?) + By(x)0 (#1%) + B3(x)0s (xii?)
= Bi(0)(x (0w (x10))?) + x B2 (x) (x ™ (07 (1))?)
+ By(x) (v (0w (¥70)))
+ 2(B1 (%) (x L0 () 0 (x%10)) + B (x)(x 0 (x18) 0y (x21))
+ x B3 () (x 0 (i) 0 (x70))).
Hence, the desired statement follows. .

Proposition 3.1. Let {W,}n>0 be a MOPS with respect to the linear functional w ful-
filling (2.17)~(2.19) with al = a2 = 0, n > 0. Let u = 04 (w) be the regular functional
associated with { P, }n>0. If U = 04 (W) is a Laguerre—Hahn linear functional of class
s’, then w is a Laguerre—Hahn linear functional of class s < 3s’ + 6. Furthermore, if u
satisfies

(@Pu) +wPu + BP (x"'u?) =0, (3.12)

then w satisfies (2.11) with

D(x) = p(x)@” (x?). (3.13)
W(x) = 3x%p(0) WP (x%) = 20" ()7 (%), (3.14)
B(x) = 3x2BP (x?), (3.15)
where
p(x) = x> + Box + y1 + B5. (3.16)

Proof. Set W := (®dw)’ + Yw + B(x~'w?). To prove that & = 0, it is enough to show
that 0 (W) = 0, 0 (x1) = 0 and 04 (x2W) = 0.
The components of the polynomials ®, W, and B in (3.13)—(3.15) are

Dy (x) = (y1 + NPT (x).  Pa(x) = o®F (x), P3(x) = B (x),
Wy (x) = 3B0x WP (x) = 26007 (x),  Wa(x) =3xW’ (x) — 407 (x).
W3(x) = 3(n1 + BYE (x),

Bi(x) =0, By(x)=0, Bs(x)=3BF(x).
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Then, from Lemma 3.3, we get

0w (10) = 3Bo(x®” (X)o7 (W) + BPox W’ (x) = 280®” (X))o (w)
+ 3(x®F (X)o7 (xw)) + Bx W (x) — 40 (X)) 04 (xw)
+ 6xBP(x)(x_low (W)ow (xw))
+3(r1 + BT (V)0w (°w)) + 3(y1 + BV (¥)ow (x7w)
+3BP (x)(x " Hom (x%2w))?).

Taking into account (3.1) and (3.2), we obtain
0w (@) = 3Q2Box + (1 + B)H@Tw) + WPu + BP(x"uP)]=0. (317

Following the same approach used to obtain (3.17), together with some straightforward
computations, we get

0w (x0) = 32y1 + 3B2)x[(@Fu) + ¥Pu + BP (xu?)] =0, (3.18)
0 (x2W) = 3(x + 2Bo(y1 + B)x[(®Pu) + ¥Pu + BP(x"Wu?)] =0. (3.19)

Summing up (3.17), (3.18) and (3.19), we get w = 0. Hence, w satisfies (2.11) with (3.13),
(3.14) and (3.15). As a consequence, w is a Laguerre—Hahn linear functional.
To end the proof, it remains to prove that the class s of w is at most 3s” + 6. Indeed,
if deg® = r, deg¥ = ¢, deg B = m, deg ®F = ¢/, deg ¥¥ = ¢', and deg BY = m’,
then from (3.13), (3.14), and (3.15) it follows that t = 3¢t + 2, m = 3m’ +2, and r <
max (3r’ + 4,3t’ + 1). As a consequence, we have the following cases.
(i) Ifeithert’ =s"+2orm’ =5 +2and p’ <s'+ 1,thent =3s' + 8orm =
3s’ +8and r < 3s' + 7.
G) If'<s'+1,m<s+1landr' =5 +1,thent <3s'+8orm <35’ +8
andr = 35" + 7.
One than can deduce that, in any case, s < 3s’ + 6, which completes the proof of the
proposition. ]

Remark 3.1. Note that the above proposition provides only an upper bound to the class s
of the linear functional w. In the sequel, a thorough investigation of the class of the linear
functional w in terms of the class of the linear functional ¥ = o, (w) will be carried out.

The following proposition states a result which is, in fact, the converse of the previous
one. Indeed, we consider the Laguerre—Hahn linear functional w and we show that the
first component 4 = 04 (w) of the cubic decomposition is also a Laguerre-Hahn linear
functional.

Proposition 3.2. Let {W,},>0 be a MOPS with respect to the linear functional w ful-
filling (2.17)~(2.19) with al = a2 = 0, n > 0. Let u = 04 (w) be the regular functional
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associated with { Pp }n>0. If w is a Laguerre—Hahn linear functional satisfying (2.11), then
U = 04 (w) is a Laguerre—Hahn linear functional and satisfies

(@Fu) +Vfu+ BE(x"'u?) =0, kef{l,23), (3.20)
where

P () =3((y1 + BP1(x) + xD2(x) 4 BoxP3(x)),

WP () =W (x) + BoWa(x) + (11 + B2 W3 (x),

BY (x)=(2y1+3B2)B1(x) +(x + 2Bo(y1 + B2)) B2(x)+(2Box+(y1 + B2)?) B3 (x)
(3.21)

and

OF (x)=3((y1 + B3)xP3(x) + x P (x) + BoxPa(x)).

WP (x) =xWs(x) — @1(x) + Bo(¥1(x) — P2(x)) + (y1 + B (Wa(x) — P3(x)),

BY (x) = (2y1+3B3)xB3(x)+(x + 2Bo(y1 + B3)) B1(x) +(2Box + (y1 + B2 B2(x),
(3.22)

and finally,

F (x)=3((y1 + B2)xD2(x) + x2@3(x) + BoxP1(x)),

WP (x) =xWa(x) — 2xP3(x) + Bo(xW3(x) — 2P (x)) + (y1 + B3)(¥1(x) — 2D (x)),

BE (x) = Q2y14+3B2)x B2 (x) + (x +2B0(y1 + B2))x B3 (x) + (2Box + (y1 + 2)?) B1 (x).
(3.23)

Proof. Applying Lemma 3.3 to (2.11) and using (3.1) and (3.2) we get (3.20) and (3.21)
with k = 1. Next, multiplying both sides of (2.11) by x (resp., by x2) gives, respectively,

x®(x)w) + (x¥(x) — P(x))w + xB(x)(x"'w?) =0, (3.24)
(xX2P(x)w) 4+ (x>W(x) — 2xP(x))w + x2B(x)(x 'w?) = 0. (3.25)

In the same way, applying Lemma 3.3 to (3.24) (resp., to (3.25)) and using (3.1) and (3.2)
one gets (3.20) and (3.22) with k = 2 (resp., (3.23) with k = 3).

Finally, notice that from (3.20)—(3.23) we cannot conclude that v is a Laguerre-Hahn
linear functional since we have not proved that at least one of the polynomials &£, lIJ,f ,
and B,f ,k € {1,2,3} is not equal to zero, a fact that is not always true. As a matter of fact,
let us suppose that ®F = WP = B =0, 0f =P = B =0and ®§ =P =Bf =0.
Then, one has from (3.21), (3.22), and (3.23)

(y1+ B2 ®@1(x) + xD2(x) + BoxP3(x) =0,
(y1 + BHxP3(x) + xP1(x) + BoxPa(x) = 0, (3.26)
(1 + B3)xP2(x) + x2P3(x) + BoxPi(x) =0,
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which readily gives, by simple computations,
P1(x) = Pa(x) = P3(x) = 0.

Then, it is clear that ®(x) = 0. Similarly, we use (3.21), (3.22), and (3.23), and proceed
as above to deduce that
Y(x) = B(x) =0,

which yields a contradiction. As a consequence, at least one of the polynomials
P P P wP wP P RP npP pP
@y, &y, @3, Wy, Wy, W3, By, By, Bs
is not identically zero. Hence, u is a Laguerre—Hahn linear functional. ]

To end this section, the polynomial coefficients A, B, C, and D of the Riccati equa-
tion (2.9) satisfied by the Stieltjes function corresponding to the linear functional w will
be given in terms of those of the linear functional u = o, (w) which we denote by A%,
BP C?, and DP.

Proposition 3.3. If S(u)(z) satisfies
AP (2)S"(w)(2) = BY (2)S*(u)(2) + CT (2)S(u)(2) + D (2), (3.27)

then S(w)(z) satisfies (2.9) with

A@z) = p(2)A" (2?), (3.28)
B(z) = 3z2BF (z%), (3.29)
C(z) = p'(2)AP (%) 4+ 32%p(2)C P (7). (3.30)
D(z) = 3z2p*(z) DT (23). (3.31)

Proof. Taking formal derivatives in (2.22), we get

p)S" (W) (z) — p'(2)S(w)(z)

S'(u)(2%) = 3222(2)

(3.32)

In (3.27), the change of variable z < z3 yields
AP (23S () (%) = BP (23)S?w)(23) + CP () Sw)(z%) + DP(z3).  (3.33)

Substituting (2.22) and (3.32) in (3.33) multiplying both sides of the resulting equation by
32z2p?(z), one obtains

p(2) AP (23)S (w)(2) = 322 BT (2*)S*(w)(2) + 3z%p(2)C P (2?)
+ 0/ (2)AF (2%)S(w)(2) + 322p*(2) DF (23),

which is what we wanted to prove. ]
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4. The class of the linear functional w

The aim of this section is to optimize the results already established. As shown before,
Proposition 3.1 does not specify the class s of the linear functional w. We focus our
attention on the analysis of the class of the linear functional w in terms of the class of the
linear functional u = 04 (w). Thus, an accurate description of all the possible situations
is given.

Henceforth, we will assume that (3.12) satisfied by the linear functional w cannot be
simplified. In other words, denoting by s’ = max{deg ®* —2,deg W — 1,deg B —2},
in order to find s, condition (2.12) is in play.

We begin by stating the auxiliary lemmas that are crucial to our remaining results.

Lemma 4.1. Foreachc € C, f € P and allv € P, we have

(Ocom (/)(x) = (x> + cx + ) (0w (03 ) (%), 4.1
(vV.0cf —00f) = c(v,000f). (4.2)
Proof. The proof of this lemma is straightforward and will be omitted. ]

Lemma 4.2. Forall f € P, we have

(w, £(x?)) = (u, f(x)), (4.3)
(w, xf(x?)) = Bolu. f(x)). 4.4
(w,x2f£(x*)) = (y1 + B3 (u, f(x)), (4.5)

(o ())(x) = @) + (1 + BD)x + Box®) b ))(x%).  (4.6)
(Wx0m ())(x) = (x + Bo)uf) (%) + (1 + BHx* Wb [)(x%), 47

(wx?0g ())(x) = p(x)(Uf)(x>). (4.8)
Proof. Equations (4.3), (4.4), and (4.5) follow immediately from (2.5), (2.20), and (2.21).
Equations (4.6), (4.7), and (4.8) are deduced in a straightforward way using (2.1). ]

The following lemma contains properties that will be used throughout the sequel.
Lemma 4.3. For every ¢ € C, we have

V(o) + @'(c) = =p' (@@ (c?) + 3¢ p(e) (¥ () + (@F)'(c?)). 4.9)

(w, 0V + O2® + whobe B) = 3c?p*(c)(u, 0,3 VF + 0240F +ubo6.sBY).  (4.10)

Proof. Equation (4.9) follows in a straightforward way from (3.13) and (3.14).
Observe that, from (3.13)—(3.15), we have
(W, 0¥ + 02® 4+ whyb. B) = (w, 0. (3x2p(x)¥F (x3)))
+ (W, 62 (p(x) D7 (x%)) + 6. (20" (x) " (x?)))
+ (w, whob. 3x2 BT (x?))). (4.11)
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Using the definition of the operator 0, it is easy to see that, for two polynomials f and g,
we have

0 (fg)(x) = g(x)0:(f)(x) + f(c)0c(g)(x). (4.12)
Taking g(x) = P (x3) and f(x) = 3x2p(x) in (4.12), we get

(w, 0 3x%p(x)WF (x*))) = (w. W’ (x)6:3x>p(x)) + 3¢ p(c) b (¥ (x?))).
Replacing g(x) = 3x2 and f(x) = p(x) in (4.12), it is not difficult to check that
0. (3x%p(x)) = 3(x” + (¢ + Bo)x + p(c)x + cp(c)).
Then, using (4.1), and from (4.3), (4.4), and (4.5), we obtain

(. 0.3x%p(x)WF (x))) = 3(u, xWF (x)) + 3(c + Bo)(p(c) + y1 + B {u. ¥F (x))
+3¢2p%(c) (u, (0,39 ) (x)). (4.13)

Replacing g(x) = ®(x3) and f(x) = p(x) in (4.12), and using (4.1), from (4.3), (4.4),
and (4.5) we deduce that

Oc(p(0) @ (x%)) = (x + ¢ + Bo) DT () + p(©) (¥ + ex + ) (B PT)(x). (4.14)
Again, as a consequence of (4.12), we get

Oc((x + ¢ + Bo)@F (%)) = P (x®) + 2¢ + Bo)(x? + cx + D) (02T ) (x?),
0c((x* + cx + ) (03P )(x?)) = (x + 20) (0,27 ) (x?)
+3c2(x® +cx + cz)(9623 CDP)(x3).

Applying the operator 6, to (4.14) and taking into account the last two equations,

02 (p(x)®” (x?)) = F (x®)+((2¢ + Bo)(x* + cx + ) +p(c) (x + 2¢)) (0 D) (x?)
+3c2p(c)(x? + cx + cz)(933 CIDP)(x3)

holds. Then, using (4.3), (4.4), and (4.5), we have

(w, 62 (p(x)®" (x*))) = (u, ®” (x)) + 2p(c)(2¢ + Bo) (u, (B3 D" )(x)) “.15)

+ 3¢2p2(0){u, (05 @F) (x)). '

On the other hand, if we consider in (4.12) g(x) = ®F (x3) and f(x) = —2p/(x), then,
0c (=20 (1) @7 (x%)) = 407 (x%) = 2(2¢ + Bo) (¥ + 2¢ + ¢*) (B @7) ().

Using once more (4.3), (4.4), and (4.5), and after simple computations, one obtains

(W, 0c(=2p' () (x*))) = —4(u, D (x)) = 2(2¢ + Bo)p(c) (u, (637 ) (x)). (4.16)
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Hence, from (4.15) and (4.16), we have

(w, 62 (p(x)® (x*)) + 6 (=20 ()" (%))

= —3(u, ®F (x)) + 3c?p*()u. (%P7 (x)). (4.17)

Now, replacing g(x) = B (x3) and f(x) = 3x2 in (4.12), we get

0.(3x2BY (x%)) = 3(x + ¢)BP (x3) 4+ 3¢2(x® + cx + ¢?)(0,: BY) (x?),
00 (6. 3x2BF (x3))) = 3BF (x3) + 3¢x?(6o BT ) (x®) + 3¢%(x + ¢) (0,3 BY)(x?)
+ 3¢*x%(000,3 BT) (x?). (4.18)

Using (4.6), (4.7), and (4.8), we get

w(BF (x*)) = @BP)(x®) + ((y1 + B3)x + Box*) b BF)(x),
w(x?(BoBF)(x*)) = p(x)(ubo BY)(x?).
w((x + ) (03 BP)(x*) = (x + Bo + ) b3 B )(x?)
+ le(y1 + BHx + (cBo + 1 + BDx(ubob3 BY)(x?),
w(x*(006:3 BY)(x*)) = p(x)(ubofs BY)(x?).

In other words, from (4.18) and keeping in mind the last four equations, we have

who (6. 3x*BY (x*))) = 3B”)(x?) + B(c(y1 + BY)x + c*(cBo + 11 + B)x?)
+ 3¢*p(0)] (b2 BT ) (x?)
+ B((r1 + BYx + Box?) + 3cp(x)] b BT ) (x?)
+3¢2(x + Bo + ) (b3 BY)(x3). (4.19)

Using (4.3), (4.4), and (4.5) it is not hard to check that

(w,3uB?)(x)) = 3(u,uB? (x)). (4.20)
(w. [3((y1 + BY)x + Box?) + 3cp()] (b BF)(x?))
= 3[2(Bo + ) (y1 + B3) + Bacl(u. ubo BT (x)), (4.21)
(w, 33 (x + o + )03 BT ) (x?)) = 3¢ (20 + ) (u, ub3 BY (x))
va 3¢2(2Bo + ¢)(c>(u,ub90,3 BT (x)) + (u,uby B (x))) (4.22)

and

(w, Bc?[e(y1 + BD)x + (cBo + y1 + B)x*] + 3¢*p(x)) (ubobes BT ) (x7))

= 3c¢2(2cBo(y1 + B3) + 2% (y1 + BE) + (y1 + B3)* + 2B (u, ubp6.3 BY)(x)).
(4.23)
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Adding (4.20), (4.21), (4.22), (4.23) and taking into account (4.19) we deduce that
(w. wlo (e 3x?B” (x))))) = 3(u.uB” (x)) + 3¢ () u. (b0 B) ()
+3(c + Bo)(p(c) + y1 + B (u.ubo BY (x)).  (4.24)
Replacing (4.13), (4.17), and (4.24) in (4.11), we can conclude that
(w, 0¥ + 62® + whobe B) = 3c?p*(c){u, 05VF + 620F + uby6,:BT)
+3(c + Bo)(p(e) + y1 + B (. WF (x) + ubo B” (x))
+ 3(u, x P (x) + uBF (x)).

We conclude the proof by noting that (4.10) follows from (u, ¥ (x) 4+ ufy B (x)) =
(u, xWP(x) +uB®(x)) = 0. |

Proposition 4.1. The class of w depends only on the zeros x = 0 and x = ¢, of the
polynomial ®(x), where c is a root of p(x) given by (3.16).

Proof. Let ¢ be a zero of ® such that ¢ # 0 and p(c) # 0.If ®'(¢) + ¥(c) and B(c) =0,
then from (3.13), (3.15), and (4.9), ¢3 is a common zero of ®F, B? and (<I>P)’ + WP But,
since (3.12) cannot be simplified, then (1, 6,3 ¥ + 9023<I>P + uBy6,3 BT) # 0. Therefore,
from (4.10) we conclude that (w, 6,V + 62® + wby6. B) # 0. As a consequence, we
cannot divide in (2.11) by x — c. ]

In order to find the class of w, we will investigate the behavior of the polynomials P,
W and B at x = ¢, where c is either equal to zero or a root of p(x) given by (3.16). So,
we only need to analyze separately these three possible cases.

(A) p(x) has two different zeros and one of them is zero, i.e., B9 # 0 and p(x) =
x(x + Bo).
This means that 83 + y; = 0.
: _ 2 i _ _B
(B) p(x) has a double zero, i.e., ,3(2) # 0and p(x) = (x —d)* withd = -3
This means that 83 + y; = ’5{7".
©) p(x)=(x—a)(x—>b)withab # 0,a # b.
2
This means that 83 + 1 # 0 and B2 + y1 # ’%".
Now, we are able to discuss in details the different situations. In fact, each of the three

cases (A), (B), and (C) can be split into several sub-subcases.

4.1. Case A

Let us assume that 82 + y; = 0, i.e., Bo # 0 and p(x) = x(x + Bo).

First, observe that according to Proposition 3.1, the linear functional w satisfies (2.11)
with ®(x) = x(x 4+ Bo)®F (x3) and B(x) = 3x2BP (x3). The class of w is at most 3s” +
6. From (4.9), we have

D0) =0, P(0)+ V(0)=—Lo® (), BO)=0.
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Further, from (4.10), we obtain
(w, 0¥ + 02® + whpb: B) = 3c*(c + Po)* (u, 03 WF + 050 + ubp6,:BY),

which readily gives
(w, 6o + 03P + whZB) = 0.

Al If ©F (0) # 0, then we cannot divide by x in (2.11). For this reason, we can ana-
lyze the possible division by x + B¢. Due to Proposition 3.1 and (4.9)—(4.10) one has

®(—Po) = 0, B(=Po) = 3B5BY (—B3), ¥'(—Po) + ¥(=Po) = Bo®” (=B3), and (w,
6_p, ¥ + 62 5P+ wbpb_g, B) = 0, which brings up two subcases.

A.LL If @2 (—B3) # 0 or BY (—B3) # 0, then the functional equation cannot be simpli-
fied and s = 35’ + 6.

A.1.2. If @P(—B3) = BP (—B3) = 0, then the functional equation can be simplified to
x + Bo.
Remark 4.1. Note that, for the sake of simplicity, regardless of how many times the sim-

plification of the functional equation is repeated, we will always keep the same notations
@, W, and B for the resulting polynomials.

Then, in this case, the linear functional w satisfies (2.11), with ®(x) = x®% (x3) and
B(x) =3(x — Bo)BY (x3) + 3B2(x% — Box + ﬁ%)(@_ﬂgBP)(x3). Using Lemma 2.1, we
get

(w, 0V + 02® + whobe B) = 3c*(c + Bo)(u. 0.3VF + 020F +ub6.:BY).

It follows that ®(—fo) = 0, B(—fo) = 9B (BT ) (—f3), @' (—Bo) + W(—Po) = —345¥*
(—B3) and (w, 0_pg, ¥ + GEﬂOCD + who0_g, B) = 0. Here, two more subcases emerge.

A.1.2.1. If (BP) (—B3) # 0 or WP (—B3) # 0, then simplification of the functional equa-
tion cannot occur and s = 3s” + 5.

A.1.2.2. If (BP)Y (—B3) = WP (—B3) =0, so it is possible to simplify the functional equa-
tion to x + Bo and w satisfies (2.11), with ®(x) = x(x? — Box + ,33)(9_/33@1))()63) and
B(x) =3(x — Bo)(0_gz BY)(x*) + 365 (x* — ox + 53)2(93/3331))()63)- Now, applying
Lemma 2.1 yields

(w, 0V + 02® + whobe B) = 3c*(u, 0.3 ¥F + 0507 + uby6,.: BE).
We conclude, in this case, that the functional equation can no longer be simplified. Indeed,
otherwise, we have (u, 9_/303 P4 92ﬂ3d>P + w@oe_ﬂgBP) =0, (9_/303 Oo®F)(—B3) =0
—Po

and then, naturally, (9o ®%)'(—B3) = 0. Therefore, ¥ (—B3) + (®F)'(—B3) = 0. On the
other hand, we have ®% (—83) = BF (—B3) = 0. Then, one can divide (3.12) by x + B
and this yields a contradiction. Hence, s = 3s’ + 4.



F. Marcellan and M. Khalfallah 490

A.2. If ®F (0) = 0 then simplification of the functional equation of by x can occur, and w
satisfies (2.11), with ®(x) = (x + Bo)®% (x3) and B(x) = 3xBF (x3). Using Lemma 2.1
we infer that

(W, 0V + 02® + whobe B) = 3¢ (c + Po)*(u, 03 VT + 0%0F + uby6,.: BT).

Hence, ®(0) = 0, B(0) = 0, ®'(0) + ¥(0) = 0 and (w, By ¥ + 2P + w6 B) = 0. Then,
you can divide the functional equation by x and thus w satisfies (2.11), with

D(x) = (x + Po)x2(6o®F)(x?), B(x) =3BF(x3). (4.25)
From (4.10) and taking into account Lemma 2.1, we deduce
(W, 0¥ + 02 + whobe B) = 3c*(c + Bo)*(u, 09" + 00T +uby0,:BT). (4.26)

Since ¢ = 0, then ®(0) = 0, B(0) = 3B%(0), ®'(0) + ¥(0) = 0 and (w, G ¥ + 62 +
waB) = 0. So, the current case can itself extend to two subcases.

A.2.1. If BF (0) # 0 then no dividing by x in (2.11) is possible. Thus, we move to analyz-
ing the possibility of dividing by x + S. Based on (4.25) and (4.26) we get ®(—8¢) = 0,
B(—Bo) = 3BT (=B3), ¥'(—Bo) + W(—Bo) = —B3(60®T)(—B3) = B3 ®F (—B3) and
(w, 0_g, ¥ + GEﬂOCD + whob_p, B) = 0. So, two subcases present themselves.

A2.1.1. If ®F (—,33) # 0or BP(—,BS) # 0, the functional equation remains non simpli-
fied and s = 35’ + 4.

A2.1.2. If P (—p3) = BP (—B3) = 0, so dividing the functional equation by x + B can
indeed happen and w satisfies (2.11), with ®(x) = x2(6p®%)(x3) and B(x) = 3(x2 —
Box + ﬂg)(G_ﬁgBP)(x3). It follows from Lemma 2.1 that

(w, 0V + 02® + whob. B) = 3c2(c + Po)u, 03 VT + 620 + uby6.:BF).

As a consequence, ®(—fo) = B3 (o) (—B3) = —By ®F (—43) = 0. B(—po) = 93
(BPY (=B3), ®'(—=Bo) + W(=Po) = =3B0W" (—B3), and (w, _g, W + 62 5 ® + wy x
6_p, B) = 0. At this point, two more subcases appear.

A2.1.2.1. IfWP(—p3)#0o0r (BY) (—B3) # 0, then again the functional equation cannot
be simplified and s = 35" + 3.

A2.1.22. If WP (—B3) = (BP) (—B3) = 0, then it is possible for the functional equa-
tion to be simplified by x + B and w satisfies (2.11), with ®(x) = x2(x? — Box +
B(O_g300®7)(x?) and B(x) = 3(x? — Box + B)*(02 . BY)(x?).

In this case, the functional equation cannot be sirnpliﬁedo. Indeed, suppose it does, then
we have (u, 9_133\111) + Qiﬂg o + u909_ﬂgBP) = 0 and (G_ﬂSGOQP)(—,BS) = 0. This
shows that (6o ®%)'(—B3) = 0, and so, ¥ (—B3) + (®F)'(—p3) = 0. On the other hand,
we have ®F (—=B3) = BF (—3) = 0. Therefore, dividing in (3.12) by x + f is possible
and this makes a contradiction. Consequently, s = 3s" + 2.



Cubic decomposition of a Laguerre—Hahn linear functional I 491

A.2.2. If BP(0) = 0, then simplifying by x the functional equation is possible and w
satisfies (2.11), with

D(x) = (x + Bo)x (B ®")(x?),  B(x) = 3x*(6oBY)(x?). (4.27)
Lemma 2.1 together with (4.10) yields
(w, 0¥ + 02® + whpb: B) = 3c(c + Po)*(u, 03 ¥F + 05 0F +uby6,.: BY). (4.28)

Considering ¢ = 0 gives ®(0) = 0, B(0) = 0, &'(0) + ¥(0) = Bo(B¥ T (0) + 2(®F)'(0))
and (w, B + 62 ® + whZ B) = 0. This provides us with two new subcases.

A.2.2.1. If 397 (0) + 2(®F)’(0) # 0 then (2.11) cannot be divided by x. Hence, as usual,
an analysis of the possible division by x + By is at play. Relying on (4.27) and (4.28) one
gets B(—Po) = 0, B(—fo) = —35 ' BF (—B3). ¥'(~Bo) + W(—Fo) = —5 20" (—B3)
and (w, 0_g, ¥ + Qzﬁ()(b + wbob_g, B) = 0. Again, two subcases unfold.

A22.1.1. If P (—B3) #0or BP(—B3) # 0, the functional equation cannot be simpli-
fied and s = 3s" + 3.

A2.2.1.2. If ®P(—B3) = BP(—p3) = 0, then the functional equation can be simplified
by x + Bo and w satisfies (2.11), with ®(x) = x (6% )(x?) and B(x) = 3x2(x2 — Box +
ﬂg)(@_ﬂg BoBT)(x?). Again, using Lemma 2.1, we get

(W, 0V + 02® + whobe B) = 3c(c + Po)u, 05WF + 0% % + ubob, B).

From the latter relation, it follows that ®(—fg) = —ﬁo(eod)P)(—ﬂg) =0, B(—Bo) =
—9Bo(BP) (—=B3). ®'(—Bo) + W(—Po) = 3P (—p3) and (w.0_g, ¥ + 625 @ + wlo x
6_p, B) = 0. This allows two new sub-subcases to be considered.

A2.2.1.2.1. If WP (—B3) # 0 or (BP)'(—B3) # 0, then simplification of the functional
equation cannot take place, leading to s = 3s’ + 2.

A2.2.1.2.2. If WP (—p3) = (BP) (—p3) = 0, in this case, the functional equation can

in fact be simplified by x 4+ By and w satisfies (2.11), with ®(x) = x(x2 — Box +

,3(2))(9_/33 Op®%)(x3) and B(x) = 3x2(x? — Box + ﬁ§)2(93ﬂ3903P)(x3). By virtue of
0

Lemma 2.1, we obtain
(W, 0V + 02® + whobe B) = 3c(u, 0.3 VF + 0% 0F +uby0,.: BY).

At this stage, the functional equation cannot be submitted to further simplification. For

if one supposes the contrary, we have (u, Q_ﬂglllp + 92ﬁ3 GLE u000_ﬂgBP) = 0 and
—Po

(0_g; 6o ®%)(—B3)=0. This yields (9p®*) (—B3)=0and so WF (—B3)+(®F) (-B3) =

0. But since one has ® (—3) = B (—B3) = 0. Then, (3.12) can be divided by x + B

yielding a contradiction, and eventually s = 3s" + 1.
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A2.2.2. If 30F(0) +2(®F)(0) = 0, now, it is possible to simplify the functional equa-
tion by x and then w satisfies (2.11), with

(x) = (x + Bo)(Bo®")(x?),  B(x) =3x(6B")(x?), (4.29)
and it follows from (4.10) and Lemma 2.1 that
(W, 0V + 02® + whobe B) = 3(c + Po)*(u, 03 VT + 0507 +ubp6.: BY). (4.30)

Hence, dividing in (2.11) by x is not possible, for the reason that if (1, oW ? + 03<I>P +
u@&BP) = 0 and (6p®%)(0) = 0. then one finds (®F)’(0) = 0. Taking into account that
3WP (0) +2(®%)'(0) = 0, we obtain W¥ (0) = 0. Therefore, ¥ (0) + (&)’ (0) = 0. But
we also have ®% (0) = B (0) = 0. Then, we can divide in (3.12) by x and this yields a
contradiction.

As a result, we can now analyze the possible division by x + S¢. From (4.29) and
(4.30) we have @(—f0) = 0, B(—fo) = =35> B* (=), '(—Bo) + W(—fo) = 5> ¥*
(—B3) and (w, 0_p, ¥ + Gfﬂoq) + wbp0_pg, B) = 0. Here, two subcases arise.

A2.22.1. If ®F(—p3) # 0 or BP(—B3) # 0, then the functional equation cannot be
subject to further simplification and s = 3s’ + 2.

A.2.22.2. If dP(—B3) = BP(—B3) = 0, then the functional equation can be simplified
by x + Bo and w satisfies (2.11), with ®(x) = (o ®%)(x?) and B(x) = 3x(x2 — Box +
ﬂg)(@_ﬂos 6o BY)(x?). By means of Lemma 2.1, we get

(w, 0V + 02® + whobe B) = 3(c + Po)u, 03 VT + 620 + uby6,.:BF).

Therefore, ®(—Bo) = 0, B(—Bo) = =965 * (B”) (=B3), ¥’ (=Bo) +¥(~Po)=—3p;" x
WP (—p3) and (w,0_p, ¥ + Qfﬁo ® 4 wbpb_g, B) = 0. By this fact, two new sub-subcases
exist here.

A2.22.2.1. If UP (—B3) # 0 or (BP)/(—ﬁS) # 0, then the functional equation cannot
be simplified and s = 3s" + 1.

A2.2.2.22. If WP (—B3) = (BP) (—B3) = 0, then simplifying the functional equation by
X + Bo can be done and w satisfies (2.11), with ®(x) = (x2 — Box + ﬂ%)(@_ﬂg Bo®F)(x3)
and B(x) = 3x(x2 — Box + B3)* (92 QOBP)(x3).
Furthermore, from Lemma 2.1, we 1nfer that
(W, 0¥ + 02® + whoO. B) = 3(u, 0.3 VF + 0507 +ub0,:BF).

In this case, the functional equation cannot be simplified. Indeed, supposing the contrary,
we have (u, e_ﬂgqﬂ’ + efﬂgcbl’ + u909_ﬂgBP) =0and (G_ﬂSQOCDP)(—/Bg) = 0. The
last equality is equivalent to (Bg®F ) (—B3) = 0, so (®F)'(—B3) =0, since (®F) (—-B3) =
—B3 (0o ®%) (—B3). Hence, UF (—B3) + (@) (—B3) = 0. Further, we have ®F (—83) =
BF (—B3) = 0. Therefore, we can divide in (3.12) by x + B¢ which yields a contradiction,
and so, s = 3s’.
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4.2. Case B

Let us assume that 3 + y; = ﬂTé’ ie., Bo#0and p(x) = (x —d)?> withd = _/5'_20_

Relying on Proposition 3.1, the linear functional w satisfies (2.11) with ®(x) = (x —
d)?®* (x3) and B(x) = 3x2BP (x3), where d := —% # 0. The class of w is at most
3s’ + 6. From (4.9) we have ®(0) = d?®*(0), B(0) = 0, ®'(0) + ¥(0) = 2dDF(0).
But (4.10) states that

(w, 0¥ + 02® + whpb: B) = 3c*(c —d)*(u, 039" + 050 + ubo6,.:BF).
Thus, this gives
(w, 0¥ + 63 @ + wh B) = 0.
We then establish the following discussion.

B.1. If ®%(0) # 0, then in (2.11) we cannot divide by x. Thus, we can analyze the possi-
ble division by x — d. According to Proposition 3.1 and (4.9)—(4.10) we have ®(d) = 0,
B(d) = 3d?>B¥ (d®), ®'(d) + ¥(d) = 0 and (w, 0,V + 07 + who0y B) = 0. This
case is divided into two subcases.

B.1.1. If B (d?) # 0, then the functional equation cannot be simplified and s = 3s’ + 6.

B.1.2. If B (d?) = 0, then the functional equation can indeed be divided by x — d and w
satisfies (2.11), with ®(x) = (x — d)®F (x3), B(x) = 3x%2(x2 + dx + d?)(0,3 BT)(x?).
Taking into account Lemma 2.1, we derive

(w, 0V + 02® + whob. B) = 3c*(c — d)*(u, 039" + 0%®F + ubp6,.: BY).

So, ®(d) = 0, B(d) = 9d*(B?) (d?), ¥'(d) + ¥(d) = —2®F (d>) and (w, 6,V +
95613 + wbyb; B) = 0. Here, two situations may arise.

B.1.2.1. If ®F(d3) # 0 or B (d?) # 0, then no simplification of the functional equation
can occur and s = 35’ + 5.

B.1.2.2. If ®F(d3) = B (d?) = 0, then the functional equation can be simplified by x —

d and w satisfies (2.11), with ®(x) = ®% (x3), B(x) = 3x2(x2+dx+d2)2(9§3BP)(x3).
Together with Lemma 2.1, we have

(W, 0.V + 62® + whyb, B) = 3¢%(c — d)?*(u,0,:VF + 620 + ub,6.:BT).
c c

It is clear that &(d) =0, B(d)=27d°(6;3BY) (d3)= %(BP)”(W), '(d)+ ¥(d) =
3d?(W(d3) — (®F)(d?)) and (w, 6, + 03® + w0, B) = 0. Again, two situations
may come up.

B.1.2.2.1. If (BY)"(d?) # 0 or W(d?) — (®F)'(d?) # 0, then no simplification of the
functional equation is possible and s = 3s’ + 4.



F. Marcellan and M. Khalfallah 494

B.1.2.2.2. If (B?)"(d3®) = W(d?) — (®%)'(d?) = 0, then the functional equation can be
simplified by x — d and w satisfies (2.11), with ®(x) = (x2 + dx + d?)(0;3DF)(x?),
B(x) = 3x2(x2 +dx + d2)3(93,3BP)(x3). Using Lemma 2.1, we get

(w, 0V + 02® + whobe B) = 3c?(c — d)u, 0.3 VT + 0507 + uby6,.: BT).

It is easy to check that &(d) =3d?(®?)'(d?), B(d)=81d%(63, BY) (d?) = %(BP)”/
d?),d'(d)+¥(d)=6d¥(d3) + 9d4(\IJP)’(d3) and (w, 05V + 05<I> + w66y B) =0.
Now, we need to consider the the following sub-subcases.

B.1.2.2.2.1. If |W(d3)| + |[(¥P) (d?)| + |(BP)"(d?)| # 0, then the functional equation
cannot be simplified and s = 35’ + 3.

B.1.2.2.2.2. If |W(d?)| + [(WP) (d3)| + |(BF)"(d?)| = 0, then the functional equation
can be simplified to x — d and w satisfies (2.11), with

O(x) = (x* + dx + d**(07: D7) (x?), B(x) =3x>(x* + dx + d*)*(05: BY) (x?).
4.31)
By Lemma 2.1, one can check that

(w, 0V + 02® + whobe B) = 3c*(u, 0.3 ¥F + 0507 +u6p6,.: BT), (4.32)

which confirms that the functional equation can no longer be subject to simplification.
Indeed, by a contradiction argument, suppose that (u, 6,3 W% + 933 ®F 4 uby6,:BP) =
0 and WP (d3) = (®P)(d?) = 0. Therefore, ¥F (d3) + (®F)'(d?) = 0. But we also
have ®F (d3) = B¥(d?) = 0. Then, dividing in (3.12) by x — d is possible which yields
a contradiction. Then, s = 35’ + 2.

B.2. If ®F(0) = 0, then the functional equation can be simplified to x and w satisfies
(2.11), with ®(x) = (x — d)?x%(0p®F)(x3), B(x) = 3xBP (x3). Due to Lemma 2.1, we
get

(w, 0V + 02® + whobe B) = 3c(c — d) {u, 0.3 ¥F + 0507 + uby6,.: BT),
which implies that ®(0) = 0, B(0) =0, ®’(0) + ¥(0) =0 and (w, g ¥+ 63 P+ w6 B) =
0. Then, the functional equation can indeed be simplified by x and w satisfies (2.11), with

O(x) = (x —d)’x(0o@%)(x3), B(x) =3BF(x?). (4.33)
Now, by Lemma 2.1, we get
(w, 0¥ + 02® + whob: B) = 3(c — d)*(u, 030" + 050F + ubo0,.:BF). (4.34)

Then, in (2.11), we cannot divide by x. Because, suppose we have (u, oW f + GgCDP +
u62BP) = 0, BP(0) = 0 and (®%)'(0) + WP (0) = 0. But, we also have @ (0) = 0.
So, one can divide in (3.12) by x and this yields a contradiction. Therefore, an analysis
of the possible division by x — d is at play. From (4.33) and (4.33) we have ®(d) = 0,
B(d) =3B?(d?), ®'(d) + ¥(d) = 0and (w, 05V + 63® + whby B) = 0. Here, two
cases occur to discuss.
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B.2.1. If B (d?) # 0, then the functional equation cannot be simplified and s = 3s’ + 4.

B.2.2. If BP (d?) = 0, then the functional equation can be simplified to x — d and w sat-
isfies (2.11), with ®(x) = (x —d)x (B ®F)(x?), B(x) =3(x% + dx + d?) (0,3 BF)(x?).
From Lemma 2.1 one can easily see that

(w, 0V + 02® + w6 B) = 3(c — d)*(u, 0.3 ¥F + 050F +uby6,.: BT).

One then has ®(d) = 0, B(d) = 9d?(B¥) (d?), ¥'(d) + ¥(d) = —2d 2®F (d?) and
(w, ;¥ + 95@ + whyb; B) = 0. Again, the following two subcases arise.

B.2.2.1. If ®¥(d3) # 0 or (BF)'(d?) # 0, then the functional equation cannot be sim-
plified and s = 3s’ + 3.

B.2.2.2. If ®¥(d3) = (B?)'(d?) = 0, then the functional equation can be simplified
again to x — d and w satisfies (2.11), with ®(x) = x (6o ®F)(x3), B(x) = 3(x2 + dx +
d?)*(67, B*)(x?). Using Lemma 2.1, we get

(w, 0V + 02® + whb. B) = 3(c — d)*u, 039" + 0%®F + ubp6,.: BY).

So. d(d) = d &P (d%) = 0, B(d) = 222 (BP)"(d%), ®'(d) + W(d) = —3(¥F (%) —
(@F)'(d?)) and (w, 05V + 03P + w6y B) = 0. In this case, we will consider the fol-
lowing two subcases.

B.2.2.2.1. If (BP)"(d?) # 0 or ¥(d3) — (®F)(d?) # 0, then no simplification of the
functional equation is possible and then s = 3s" + 2.

B.2.2.2.2. If (BP)"(d?) = W(d?) — (%) (d?) = 0, so it is possible to divide the func-
tional equation by x — d and w satisfies (2.11), with ®(x) = x (x% + dx + d?)(0,360pPF)
(x?) and B(x) = 3(x? + dx + d?)3(63, B¥)(x?). Lemma 2.1 provides the fact that

(w, 0V + 02® + whobe B) = 3(c — d){u, 0,3VF + 02% + ubo6,BF).

Hence, ®(d) = 3(®%)'(d?) =3W(d?), B(d) = 81d°(82, BY) (d?) = %(BP)”’(CP),
'(d) + ¥(d) = 6d7 W (d>) + 9d*(¥P) (d?) and (w, 6% + 95@ + whpbyB) = 0.
Again, two situations come up to be discussed.

B.2.2.2.2.1. If |W(d?)| + [(¥P) (d3)| + |(BF)"(d?)| # 0, then the functional equation
cannot be simplified and s = 3s’ + 1.

B.2.2.2.2.2. If |W(d3)| + |(¥P) (d?)| + |(BF)"(d?)| = 0, then the functional equation
can be simplified to x —d and w satisfies (2.11) with ®(x) = x (x2+dx +d2)2(9§3 O ®F)
(x3) and B(x) = 3(x2 +dx + d2)4(9;‘3BP)(x3). Lemma 2.1 implies that

(w, 0V + 62® + whobe B) = 3(u, 0.3 ¥F + 0507 + uby6,.: BT).

In this case, the functional equation cannot be simplified. Suppose (u, 6,3 T +9§3 oF 4+
10083 BY)=0and WP (d3) = (®F) (d?)=0. Therefore, W (d3)+(®F)'(d?)=0. But



F. Marcellan and M. Khalfallah 496

we also have
of (% = BP(d? =o.

Then, we can divide in (3.12) by x — d and this yields a contradiction. Hence, s = 3s’.

4.3. Case C

Let us assume that 83 + y; # 0 and 82 + y1 # ﬂTOZ, ie., p(x) = (x —a)(x — b) with
ab #0,a #b.

According to Proposition 3.1, the linear functional w satisfies (2.11) with ®(x) = (x —
a)(x —b)®P (x3) and B(x) = 3x2BF (x3), witha # 0,b # 0,a — b # 0. The class of w
is at most 3s’ + 6. From (4.9) we have ®(0) = ab®* (0), B(0) = 0 and &'(0) + ¥(0) =
(a + b)®F (0). But due to (4.10),

(w, 0V + 02® + whpbe B) = 3c*(c —a)*(c — b)*(u, 030 + 050 + uby6,:B”).

So,
(w, B¥ + 65 @ + whg B) = 0.

As done in the previous cases, an in-depth discussion of several subcases take place.

C.1. If ®%(0) # 0, then dividing by x in (2.11) is not possible. Thus, naturally, we move
on to analyzing the possibility of dividing by x — a or by x — b. Indeed, Proposition 3.1
and relations (4.9)—(4.10) give that ®(a) = 0, B(a) = 3a®>BF (a?), ®'(a) + ¥(a) = (b —
a)®F (a3) and (w, 6, ¥ + 62® + whob, B) = 0. Therefore, two cases occur to discuss.

C.1.1. If Bf (a®) # 0 or ®F (a®) # 0, this will indeed prevent us from dividing by x — a
in (2.11), which leads usually to an analysis of the possible division by x — b. Given that
®(h) = 0, B(b) = 3b2BF (b3), @' (b) + W(b) = (a — b)®F (b3) and (w, O, ¥ + 07® +
wBy0p B) = 0, The current case can itself provide two more subcases.

C.1.1.1. If BP(b3) # 0 or ®F (b3) # 0, then the functional equation cannot be simplified
and s = 35’ + 6.

C.1.1.2. If BP(b®) = ®P(h3) = 0, then the functional equation can be simplified to
x — b and w satisfies (2.11), with ®(x) = (x — a)®F (x3) and B(x) = 3x2(x? + bx +
b2)(6p3 B ) (x3).

Now, using Lemma 2.1, one finds

(w, 0¥ + 02® + whpb: B) = 3c*(c —a)*(c — b)(u, 0.3 ¥F + 0507 + ubp6,.: BT).

Hence, ®(b) = (b — a)®F (b3) = 0, B(b) = 9b*(BF)'(b3), &' (b) + ¥(b) = 3b%(b —
a)¥P (b3) and (w, 0¥ + szCD + w6y 6 B) =0. This subcase splits into two sub-subcases.

C.1.1.2.1. If (BP) (b3) # 0 or WP (h3) # 0, then no simplification of the functional equa-
tion occurs and the class remains s = 35’ + 5.
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C.1.1.2.2. If (BP) (b?) = WP (b3) = 0, this indeed allows the functional equation to
be simplified by x — b and then w satisfies (2.11), with ®(x) = (x — a)(x? + bx +
b2)(0ps ®P)(x3) and B(x) = 3x%(x2 + bx + b2)2(9§3BP)(x3). By Lemma 2.1 we get

(w, 0V + 62® + whobe B) = 3c*(c —a)*(u, 0.3 ¥F + 0%0F + uby6,.: BY).

Note that at this stage, the functional equation cannot be subject to simplification any-
more. As a matter of fact, suppose we have (u, 6,3 WF + 9§3<I>P + u6y6ps BP) =0
and WP (b3) = (®F)'(h3) = 0. Then, ¥ (b3) + (®F)'(b3) = 0, and since ®F (h3) =
B? (b3) = 0. Hence, dividing in (3.12) by x — b can occur which yields a contradiction
and eventually, s = 3s" + 4.

C.1.2. If B (a®) = ®%(a?) = 0, then the functional equation can be simplified by x —
a and w satisfies (2.11), with ®(x) = (x — b)®F (x?) and B(x) = 3x2(x? + ax +
a?)(0,3BF)(x?). Applying Lemma 2.1 yields

(w, 0¥ + 02® + whpb: B) = 3c*(c — a)(c — b)*(u, .3 ¥F + 050F +uby6,.: BT).

So that ®(a) = (a — b)®F (a®) = 0, B(a) = 9a*(BFY) (a?), ®'(a) + ¥(a) = 3a>(a —
b)WP (@3) and (w, 6, ¥ + 03CI> + whyb, B) = 0. Hence, two cases present themselves.

C.1.2.1. If (B?) (a®) # 0 or ¥¥ (a®) # 0, then the functional equation cannot be sim-

plified to (x — a). So, an analysis of the possible division by x — b is required. We have
2

®(b) = 0, B(b) = 3b*(b% + ab + a®)(0,: BY)(b%) = 32 BP (b3), ¥'(b) + V(b) =

—(b —a)(b? 4 ab + a®) (0,3 DF)(b3) = —(b3 — a®)(0,:PF)(b?) = =P (h?) and (w,

Op ¥ + 9,3@ + whybp B) = 0. Two situations arise to discuss.

C.1.2.1.1. If BP(b®) # 0 or ®F (b) # 0, then the functional equation can not be sim-
plified and s = 3s’" + 5.

C.1.2.1.2. If BP(b3) = ®%(h3) = 0, then the functional equation can be simplified to
x — b and w satisfies (2.11), with ®(x) = ®F (x3) and B(x) = 3x%(x2 + ax + a?)(x% +
bx + b?)(6p36,5BY)(x3). By Lemma 2.1, we get

(w, 0V + 62® + whobe B) = 3c*(c —a)(c — b){u, 05VF + 6%F + ubob,sBT).

Hence, ®(b) = ®F (%) = 0, B(b) = 9b*(b* + ab + a®)(6,3BF) (b%) = 22 (BT Y (b*),

@' (b) + W (b) = 3b2WF (b3) and (w, 6, ¥ + 0§CI> + whybp B) = 0. In this case, two more
subcases arise.

C.1.2.1.2.1. If (BY)/(b3) # 0 or WP (b3) # 0, then the simplification of the functional
equation cannot take place which makes s = 3s’ + 4.

C.1.2.1.2.2. If (B?) (b3) = WP (h3) = 0, in this case the functional equation can be
simplified to x — b and w satisfies (2.11), with ®(x) = (x2 + bx + b?)(03 DL )(x3) and
B(x) =3x2(x2 4+ ax + a®>)(x2 + bx + b2)2(91339asBP)(x3).
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Again, using Lemma 2.1, we get
(w, 0V + 020 + whobe B) = 3¢ (c —a)u, 0,9 + 02" + ubp6,.: BY).

So, the functional equation cannot be simplified anymore. It suffice to see that if one has
(u, 0,3 WP + 02,0F + 1663 BY) = 0 and WP (b%) = (®F)'(b*) = 0, then WP (b%) +
(®F)'(h?) = 0. And since we have ®F (h3) = BP (b?) = 0. Then, one can divide by
x — b in (3.12) which brings us to a contradiction. Hence, s = 3s" + 3.

C.1.2.2. If (B?) (a®) = WP (a®) = 0, then the functional equation can be simplified
by x — a and w satisfies (2.11), with ®(x) = (x — b)(x% + ax + a?)(6,: PP )(x>) and
B(x) = 3x2(x? + ax + a*)* (0%, BY)(x?).

Using Lemma 2.1, we get

(w, 0V + 62® + whobe B) = 3c*(c — b)*(u, 0.3 ¥F + 0%0F + ubp6,.: BT).

Here, the functional equation cannot be simplified by x — a. Indeed, in the contrary, we
have (u, 0, WP + 933<I>P +ubo0,3BY) = 0and WP (a®) = (®F)/(a®) = 0. Hence, we
derive WF (a3) + (®F)(a®) = 0. But we also have ®F (¢?) = B¥ (a?®) = 0. Therefore,
we can divide in (3.12) by x — b and this yields a contradiction.

Thus, we need to see if a division by x — b is possible. Since ®(b) = 0, B(b) =
3b%(b? + ab + a2)2(933BP)(b3) = (bibaz)zBP(b3), @' (b) + W(b) = (b*> + ab + a?)
0,3 0F) (b3 = %CDP (b3) and (w, O ¥ + 9b2<1> + wby6p B) = 0. Then, two subcases
come up to discussion.

C.1.2.2.1. If BP(h3) # 0 or @ (h3) # 0, then the functional equation cannot be simpli-
fied and s = 35" + 4.

C.1.2.2.2. If BP (b3) = ®F (b)) = 0, then the functional equation can be simplified by
x — b and w satisfies (2.11), with ®(x) = (x? + ax + a?)(0,3PF)(x3) and B(x) =
3x2(x% + ax + a?)?(x? + bx + bz)(9b3933BP)(x3).

Using Lemma 2.1, we get

(w, 0V + 02® + whpb: B) = 3¢ (c — b)u, 0.3 ¥ + 0507 +uby6,.: BT).

Then, it is easy to check that ®(b) = (b2 +ab+a?)(0,:PF)(b3)=0, B(b)=9b*(b? +
4 2

ab+a*)*(02,B") (b°) = 5> (BT) (%), @' (0) +W(b) = 32, ¥ (b*) and (w. 6, ¥ +

95@ + whybp B) = 0, and so, we need to consider the two ensuing sub-subcases.

C.1.2.2.2.1. If (BPY (h3) # 0 or WP (h3) # 0, the functional equation cannot be subject
to simplification and then s = 3s’ + 3.

C.1.2.2.2.2. If (BP) (b?) = P (h3) = 0, in this case, the functional equation can indeed
be divided by x — b and w satisfies (2.11), with

d(x) = (x? + ax + a?)(x* + bx + b?) (030, D7) (x?),
B(x) = 3x?(x? + ax + a*)*(x* + bx + b*)* (0% 60% BY) (x?).
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Lemma 2.1 yields
(W, 0¥ + 02® + w0, B) = 3¢(u, .3 VF + 02407 +ub0,:BF).

At this point, the functional equation is no longer subject to simplification. By a contradic-
tion argument, suppose we have (u, 053 W’ + 62, ®F + ubpb: BY) = 0 and W (b3) =
(®P)(b3) = 0. Therefore, ¥ (b3) + (®P) (b)) = 0. But since ®F (b3) = BF (b3) = 0.
Then, we can divide in (3.12) by x — b which yields a contradiction. Eventually, s =
35" + 2.

C.2. If ®F(0) = 0, then the functional equation can be simplified by x and w satis-
fies (2.11), with ®(x) = (x —a)(x — b)x%(6p®F)(x3) and B(x) = 3xBF (x3). We derive
from Lemma 2.1 that

(w, 0V + 02® + whobe B) = 3c(c —a)*(c — b)*(u. 0VF + 020F + ub6.:BT),

which implies that (0)=0, B(0)=0, ®(0)+ ¥ (0)=0 and (w, 6oV + 63 P + w2 B) =
0. The functional equation can then be simplified by x and w satisfies (2.11), with ®(x) =
(x —a)(x —b)x (0o ®F)(x3) and B(x) = 3B (x?).

Again, by Lemma 2.1, we get

w, 6.,V 4 + woyo, =3(c—a)(c — u, 0.3 + 0% + ubob,3 .
(w, 0V + 02® + whobe B) = 3(c —a)*(c — b)*(u, 0.3V + 0507 + ubp6,.: BY

So, ®(0) =0, B(0) = 3BT (0), ®'(0) + ¥(0) = 3ab((®F)'(0) + W (0)) and (w, b ¥ +
62 ® + wh?Z B) # 0. Then, dividing by x in (2.11) cannot occur. So, as customary, we ana-
lyze the potential division by x — @ and by x — b. We have ®(a) = 0, B(a) = 3B (a?),
®'(a) + ¥(a) = —a=2(a — b)®F (a®) and (w, 6, ¥ +62 D +wby, B) =0. Consequently,
two cases are unfolded.

C.2.1. If BP (a®) # 0 or ®F (a®) # 0, then the functional equation cannot be simplified
by x — a. Thus, we can analyze the possible division by x —b. We have ®(b) =0, B(b) =
3B (b3), @' (b) + W(b) = —(b — a)b~2®F (b%) and (w, 6, ¥ + 67D + whyb), B) = 0.
Two different sub-use cases should be considered.

C.2.1.1. If BP(b3) # 0 or @ (b3) # 0, then no further simplification of the functional
equation is possible and s = 3s’ + 4.

C.2.1.2. If BP(b?) = ®P(b3) = 0, this infers that the functional equation can be sim-
plified to x — b and w satisfies (2.11), with ®(x) = (x — a)x(6p®%)(x?) and B(x) =
3(x% 4 bx + b?)(6p3 BP)(x3). Both (4.10) and Lemma 2.1 imply that

(w, 0V + 62® + whobe B) = 3(c — a)*(c — b){u. 03VF + 0%®F + uby6,:BY).

Hence, ®(h) = (b — a)b(8p®P ) (b3) = 0, B(b) = 9b2(BP) (b3), ¥ (b) + W(b) = 3(b —
a)¥P (b®) and (w, 0¥ + 62® + whob) B) = 0. This situation shades the light on two
other subcases.
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C.2.1.2.1. If (BP) (b3) # 0 or WP (b3) # 0, then the functional equation cannot be sim-
plified and s = 3s’ + 3.

C.2.1.2.2. If (BP) (b®) = WP (b3) = 0, then the functional equation can be simplified
to x — b and w satisfies (2.11), with ®(x) = x(x — a)(x2 + bx + b?)(0p:6oPF)(x3),
B(x) = 3(x2 + bx + b2)2(9133BP)(x3).

Using Lemma 2.1, we obtain

(W, 0¥ + 02® + whoO. B) = 3(c —a)*(u, 039" + 02" + ubp6,.: BY).

In this case, the functional equation is no longer subject to simplification. Indeed, on
the contrary, if (u, 6 WP + 9§3<DP +uBbps BY) = 0 and WP (h3) = (®F)'(b3) = 0.
Therefore, ¥ (b3) + (®F)(h3) = 0. But we also have ®F (b3) = B (b?) = 0. Then,
one can divide in (3.12) by x — b yielding a contradiction. Hence, s = 3s" + 2.

C.2.2. If BY (a®) = ®F (a®) = 0, then the functional equation can be simplified by x —
a and w satisfies (2.11), with ®(x) = (x — b)x (o ®F)(x3) and B(x) = 3(x% + ax +
a?)(0,3B)(x3).

Using Lemma 2.1, we get

(w, 0¥ + 02® + whpb: B) = 3(x —a)(x —b)*(u, 0¥ + 050 + ubh6,:B).

Hence, ®(a) = (a — b)a(6o®F)(a®) =0, B(a) = 9a>(BF )Y (a?), ¥'(a) + ¥(a) = 3(a —
b)WF (a®) and (w, 0, ¥ + 62® + w6, B) = 0. This leads to the following subcases.

C.2.2.1. If (BP) (a®) # 0 or WP (a?) # 0, then the functional equation cannot be sim-
plified by x — a. Thus, we can analyze the possible division by x — b. We have ®(b) =
0, B(b) = 3(b> + ab + a*)(6,3BY)(b3) = ﬁBP(lf), ' (b) + W(b) = —3b3(b —
a)(0,300PF)(b) = =3(b* + ab + a®) ' ®F (b3) and (w, 6V + 67D + wby 6, B) = 0.
There are two subcases that may arise in this case.

C.2.2.1.1. If BP(b3) # 0 or @ (h3) # 0, then the functional equation cannot be simpli-
fied and s = 3s’" + 3.

C.2.2.1.2. If BP(b®) = ®F (b) = 0, then the functional equation can be simplified by
x — b and w satisfies (2.11), with ®(x) = x(p®F)(x3) and B(x) = 3(x? + ax +
a?)(x? + bx + b?)(0y36,3 BT ) (x3).

Lemma 2.1 implies that

(W, 0¥ + 02® + whob. B) = 3(x —a)(x — b)(u, 0.3 V" + 62507 +u60,:BF).

Hence, ®(b) = b(6p®F)(h3) = b20F (b3) = 0, B(b) = 9b%(b* + ab + a®)(6,3 BT
b3 = %(BP)/(M), ' (b) + W(b) =3¥F (b?) and (w, 6 ¥ + 2P + whH, B) = 0.
This fact provides us with two more sub-cases.

C.2.2.1.2.1. If (BP) (b3) # 0 or WP (b3) # 0, then no simplification of the functional
equation may occur and s = 3s’ + 2.
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C.2.2.1.2.2. If (BP) (b3) = WP (b3) = 0, then it is possible to simplify the functional
equation by x — b and w satisfies (2.11), with ®(x) = x(x2 + bx + b?)(0p36o DT ) (x3),
B(x) = 3(x? + ax + a?®)(x?> + bx + b2)2(9§3«9a3BP)(x3).

According to Lemma 2.1, we get

(w, 0¥ + 02® + whpb: B) = 3(x — a)(u, O3 ¥F + 050F +ubp6,.: BT).

In this case, the functional equation cannot be simplified. Indeed, by a contradiction argu-
ment, we have (u, 63 WF + 9§3<DP +ufyys BY) = 0 and UF (%) = (®#F)' () = 0.
Hence, WP (b3) + (®F)/(b3) = 0. In other words ®F (b3) = BF (b3) = 0. Then, we
can divide in (3.12) by x — b and this brings us to a contradiction. As a consequence,
s =35+ L.

C.2.2.2. If (B?) (a®) = WP (a®) = 0, then the functional equation can be simplified
by x —a and w satisfies (2.11), with ®(x) = x(x — b)(x2 + ax + a®)(0,30,DF ) (x3),
B(x) =3(x2+ax + a2)2(9§3BP)(x3).

We use Lemma 2.1 to find

(w, 0¥ + 02® + whyb. B) = 3(x — b)*(u, 0,:9F + 0% 0F + uby6,5BY).
c C

Here, the functional equation cannot longer be divided by x — a. Indeed, on the contrary,
we have (u, 0,3WF + 0%,®F 4+ ubp6,3BF) = 0 and W (a?) = (®%) (a®) = 0. This
implies that UF (a3) + (®F) (a®) = 0. Also, we have ®F (a®) = B¥ (a®) = 0. Then,
dividing in (3.12) by x — b is not possible and this yields a contradiction.

So, we move now to inspect the possible division by x — b. We have ®(b) = 0,
B(b) = 3(b% + ab + a2)2(933BP)(b3) = (bfa)zBP(b3), ®'(b) + W(b) = —b(b? +
ab + a?) (0,360 7)) (b3) = Wl_a)cbp(b% and (w, Op ¥ + 9§<I> + w6y6y B) = 0. Then,
two situations may emerge.

C.2.2.2.1. If BP(h3) # 0 or ®F (h3) # 0, then the functional equation cannot be simpli-
fied and s = 35" + 2.

C.2.2.2.2. If BP (b?) = ®F(b3) = 0, then in this case, it is possible to divide the func-
tional equation by x — b and w satisfies (2.11), with ®(x) = x (x2 4+ ax + a?)(0,360,PF)
(x3) and B(x) =3(x?+ax+a?)?(x>+bx+b?)(6y36% BF)(x?). Relying on Lemma 2.1
we get

(w, 0V + 02® + whO. B) = 3(x —b){u, 039 + 0%®F +uby6,.:BY).

Hence, ®(b) = b(b? + ab + a®)(0,: ®F)(b?) =0, B(b) = 9b%(b*> + ab + a2)2(9§3BP)’
(b3 = (b9_b:)2(BP)/(b3), @' (b)+W(h) = 22 WP (b3) and (w, 0y W+ 62D+ whoby B) =
0. As a consequence, we split the current subcase into two sub-subcases.

C.2.2.2.2.1. If (BP) (b3) # 0 or WP (b3) # 0, then the functional equation cannot be
simplified and s = 35’ + 1.
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C.2.2.2.2.2. If (BP)'(b3) = WP (h3) = 0, then the functional equation can be simplified
to x — b and w satisfies (2.11), with ®(x) = x (x2 4+ ax + a?)(x? + bx + b?) (036, PT)
(x%)and B(x) =3(x? 4+ ax +a?)®(x? + bx + b2)2(¢9§3 93331))()63). Using Lemma 2.1,
we get

(W, 0V + 02® + whobe B) = 3(u, 0.3 ¥F + 0507 +uby6,.: BE).

In this case, the functional equation can no longer be submitted to further simplifica-
tion. Indeed, suppose we have (u, 6,3 UF + 953 O + ubybp3 BY) = 0 and WP (h3) =
(®P)(b?) = 0. Therefore, ¥F (b3) 4+ (®F) (h?) = 0. But we have &% (b3) = BF (b3) =
0. Then, we can divide in (3.12) by x — b and this yields a contradiction. Hence, s = 3s’.

Next, we will introduce some notations in order to enlight the presentation of our main
result. Let

XP(x):=10P ()| + B (x). YP(x):= 9P x)|+ [(BFY (x)l.

ZP(x) .= 30P (x) + 2(®%) (%), (4.35)
MP (x) == 9" (x)| + |(BY) ().

NP (x) = WP (x) = (") ()| + |(BP)"(x)]. (4.36)
RP (x) := [WF ()] + [(¥F) (0)] + [(BF)" (x)]. (4.37)

Then, we have the following theorem.

Theorem 4.1. Let s, s’ be the class of w and u = o4 (w), respectively. Then, we distin-
guish the following cases.

Case A. p(x) = x(x + Bo), Po # 0. Then,

XP(-B3) #£0=5 =35 +6,

P /
or(0) £0= XPph =0 YP(-B3) #0= 5 =35 +5,
YP(-B) =0=s=35+4.
o) =0=
XP(—B) #0=5=35+4,
BP0)£0=> XPpD =0 YP(-B3) #0= 5 =3s'+3,
YP(-B) =0=5=35+2,
XP(—B3) #0= 5 =35 +3,
ZP0) #£0 YP(—p3#£0 =35 +2,
0) #0= XPD) =0 P( ﬁg)# = S,+
» YP(-BH =0=s=35+1,
BP0)=0= P a3 )
XP(=B3) #0= 5 =35 +4,
zZP)=0 YP (B3 +£0 =35 +1,
©=0= XP(_ﬁS):O:{ PP 0= =3
Y5 (=B5) =0=s =35
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Case B. p(x) = (x —d)? withd = —% #£ 0. Then,

of ) #£0=
BP(d3) £0=s5 =35 +6,
MP @3 #£0=5 =35 +5,
NP@3) £0=5=35 +4,
RP(d3) #£0= 5 =35 +3,
RP@@3H=0=s5=3s+2.

BPW@¥H=0=>
MP@3H=0=
@) NP(d3)=0:>{
P 0)=0=
BPd3) #£0= s =35 +4,

MP @3 #£0=5=35"+3,
NP@3) £0=5=35+2,
RPA3#£0=s5s=35+1,

RP @3 =0=s5=73s.

BP @3} =0= Poaa
MP@3H=0= Np(d3)zoz>{

Case C. p(x) = (x —a)(x —b) withab # 0, a # b. Then,

of ) £0=
XPb3) £0=5=35+6,
XP@d+£0=> YP(B3)£0= 5 =35 +5,
xPp3H=0=
YP(B3) =0= 5 =35 +4,
XPB3) #£0=5=35+5,
Y@ #£0= YP(B3) £0= 5 =35 +4.
xXPp3H=0=> )
» YPh3) =0=s5=35+3,
XP@H=0= P
XP(3)H#0=5=35+4,
YP@)H=0= YP(B3) #£0= 5 =35 +3,
XPp3H=0= #
YP03) =0= s =35 +2.
oP0)=0=
XP(3)£0= 5 =35 + 4,
xP@? #0=> YPB3) #£0=5=35+3,

xXPp3H=0=
YPB3) =0= 5 =35 42,

XP13)£0= 5 =35 43,

YPB3) #£0=5 =35 +2,
YPb3)=0=s5=35+1,
XP13)£0= 5 =35 42,

YPB3) £0=5=35+1,
YPh3) =0=s5=3s.

P/ 3
YP@3) £0= XP(b3):0:>{
XP@®)=0=>

YP@3)=0=

xPp3H)=0=> {
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5. An example of Laguerre—-Hahn linear functional of class 1

In this section, as an application of the results of the previous sections, we determine all the
Laguerre—Hahn orthogonal polynomial sequences {W,},>¢ of class 1 obtained via cubic
transformations Wa, (x) = P, (x?), requiring { P, }»>0 to be a singular Laguerre-Hahn
sequence of class zero.

Proposition 3.1 and Theorem 4.1 state that w is a Laguerre-Hahn linear functional
of class s = 1 if and only if the first component ¥ = 04 (w), is a Laguerre—Hahn linear
functional of class s’ = 0 and one of the following conditions hold:

A22221. p(x) =x(x + o), Bo#0; ®F©0) =0 BFO)=0 ZP0) =0,
XP(—p3) =0, YP(=B3) #0.

A22122. p(x) =x(x + Bo), Po#0; dF©0) =0 BFO)=0 2Z°P0)#0,
XP(-p3) =0, YP(=p3) =0.

Bo

2
MP@d* =0 NP@3»=0 RFP@W? #0.

C22122.p(x)=(x—a)(x—=b), ab#0, a#b; ®°0)=0 XF@*=0,
YP@ #£0, x*@* =0, vY*®’=o.

C22221.p(x)=(x—a)(x—=b), ab#0, a#b; ®°0)=0 XF@®=0,
YP@® =0 xP®3>=0 7YP®? £0.

B2222.1.p(x) = (x —d)?, d=-2220, oF@©) =0 BPd* =0,

First, we will analyze the conditions in A.2.2.2.2.1. Let us consider a complex number
Bo # 0 and according to (4.35), it is clear that these conditions are equivalent to p(x) =
x(x + Bo). As a consequence,

o) =0 BPO)=0 39F0) +2@F)Y0)=0 dFpd =0,
BP(—3) =0, WP(=B3)#0 or (BY)(=B3) #0.

Since s’ = 0 implies deg ®¥ < 2, then from the conditions ®% (0) = ®F (—B3) = 0 we
have
®F (x) = x(x + BY). (5.1)

Therefore, from (2.15) and (2.16), u = 04 (w) can be obtained by shifting the linear
functional satisfying (3.12) with ®° (x) = x2 — 1. In fact,

u=hgzpotad(@ p.v. i),

where (o, p1, v, 1) is the singular Laguerre—Hahn linear functional of class zero analo-
gous to the classical Jacobi. Indeed, it satisfies [10]

@3 (@ p v, ) + V3 (@, pov, ) + @(x ™ 3 (e, pv ) = 0,
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with

px) =221,
Y0 = (o~ D + .

2 a—1 W

p(x) =1 —a)x”+ [av—2pu x - +pv + ple+ 1) — 1.
oa—2 oa—2

J(a, p,v, p) is regular if and only if p # 0, ¢ # 2, @ # —n, n > 0, and @ # £p — 2n,

n>1.

In this case,

VP (x) = (@—2)x + %g(a—Z—i—u), (5.2)
2\ 2 2 —1\[( 2
BP(x) = (ﬂ_g) [(1 —oc)(ﬂ—gx + 1) + (av —ZM—Z — 2)(—8x + 1)
w2
— +uv+pla+1)— 1}. (5.3)
oa—2

P N Pyieny — R3 WPy — B
From 3¥* (0) + 2(®")’(0) = 0 and the fact that (®7)"(0) = B5, ¥7(0) = 2 (@ —2 +
W), we get

2
= - — a,
H=3
which readily yields
2
VP (x)=(@—-2)x— gﬂg. (5.4)
Moreover, conditions B¥ (0) = 0 and B? (—B3) = 0 are equivalent to
22 -3a)(a—1) 4 Ba—1)
V=, = ——
3 a(l@—2) P da(x+1)
As a consequence,
BP(x) = (1 —a)x(x + BY). (5.5)

Therefore, it follows from (5.1), (5.4), and (5.5) and Proposition 3.1 that
O(x) = x*(x + Bo) (7 + B7).
W(x) =307 (x + ,30)|:(06 —2)x* — %ﬂé} —2(2x + Bo)>(x* + B3).
B(x) =3(1 —a)x>(x* + B3).

Thus, by simple computations we obtain, after division by x*(x + Bo)

O(x) = x° + 3,
U(x) = Ba —5)x% + Box — ,33
B(x) = 3(1 — a)x(x* — Box + ). (5.6
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So, here, w is a Laguerre-Hahn linear functional of class s = 1 and satisfying (2.11) with
®, U, B given in (5.6).

The linear functionals described above are the unique Laguerre—Hahn linear function-
als of class 1 obtained via cubic transformations of the form W3, (x) = P, (x?3), requiring
{ Py }n>0 to be a singular Laguerre—Hahn sequence of class zero (see [27]). In fact, we will
show that the conditions in A.2.2.1.2.2.,B.2.2.2.2.1.,C.2.2.1.2.2.,and C.2.2.2.2.1. are not
compatible with the regularity of u. Indeed, let us assume that there exists a regular linear
functional w satisfying (2.11) under the conditions in A.2.2.1.2.2.

By the notations (4.35), it is clear that these conditions are equivalent to, p(x) =

x(x + Bo), Bo # 0;

o) =0, BP@O)=0 39F0) +2(@F)0)#0, oFp3) =0,
BY(-p) =0, WFP(-BH =0 (BF)(-B3) =0.

Since s/ = 0 implies deg ®¥ < 2, then by the conditions ®¥ (0) = 0 and &P (-B3) =0
we have
dF (x) = x(x + Bd).

Thus, in this case, ¥* and B are given by equations (5.2) and (5.3). Conditions BP 0) =
BP(—B3) = (BY)'(—B3) = 0 and on account of deg BY < 2, we assume that BY is
identically null, which gives @ = 1, v = 0 and

w?+2p—1=0. (5.7)

On the other hand, from the condition W¥ (—B3) = 0 and taking into account By # 0, it
is clear that u = —1. Hence, from (5.7) we get p = 0 which contradicts the regularity of
the linear functional u.

Next, let us assume that there exists a regular linear functional w satisfying (2.11)
under conditions in B.2.2.2.2.1.

Since s’ = 0 implies deg @ < 2, then by the conditions ®F (0) = ¥ (d3) = 0 we
have

oF (x) = x(x — d?).

Therefore,
w = h_gaj2 013 (@ p.v. ).
In this case,

P d?
W) = (@=2)x = —(@=2+p),

-2 2
BP(x) = (%) [(1 —a) (—%x + 1) + (ow — ZM(;%) (—%x + 1)
2

+uv+p(a+1)—l].
o—2



Cubic decomposition of a Laguerre—Hahn linear functional I 507

Taking into account that conditions
BY(@®) = (B")(d*) = (B")"(d*) =0

hold, and since deg B¥ < 2, we assume that the polynomial B is identically zero, which
then giveso = 1, v = 0 and
wr+20—1=0. (5.8)

On the other hand, based on W¥ (d3) — (®F)/(d3) = 0, the fact that (®F)/(d>) = d3 and
WP (d3) =~ (1 + 1), we get

d3
7(0{—“—4):0,

which gives © = —1. Hence, combined with (5.8) we then have p = 0 which is in contra-
diction with the regularity of the linear functional u.

Finally, let us assume that there exists a regular linear functional w satisfying (2.11)
under the conditions in C.2.2.1.2.2. or those in C.2.2.2.2.1. Since s’ = 0 implies deg &% <
2, so from the conditions

®”(0) = o”(a*) = o (b*) =0,
we conclude that, in this case, deg ®F > 3 which yields a contradiction.
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