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Liouville theorems for a fourth order Hénon equation
in the half-space

Abdelbaki Selmi and Cherif Zaidi

Abstract. We investigate here the nonlinear elliptic Hénon-type equation

�2u D jxjajujp�1u in RnC; u D
@u

@xn
D 0 in @RnC;

where p > 1, a � 0 and n � 5. Based on the approach of Hu [J. Differential Equations 256 (2014),
1817–1846], we prove Liouville-type theorems for stable solutions and solutions which are sta-
ble outside a compact set possibly unbounded and sign-changing. In contrast with the results of
Hu (2014), we apply a new method to provide an implicit existence of the fourth-order Joseph–
Lundgren exponent. To classify finite Morse index solutions in the supercritical case, we adopt a
new method of monotonicity formula together with blowing down sequence. In addition, a diffi-
culty stems from the fact that applying the doubling lemma leads to the singularity. For this reason,
we use a more delicate approach to the interval .nC 4C 2a;pJL2.n; 0//. Our analysis uses a com-
bination of some integral estimates, Pohozaev-type identity, and monotonicity formula of solutions.

1. Introduction

We are interested in the Liouville-type theorems, that is, the nonexistence of the solution
u which is stable or with finite Morse index of the following problem:

�2u D jxjajujp�1u in RnC; u D
@u

@xn
D 0 on @RnC; (1.1)

where

p>1; a�0; n� 5; RnC WD
®
xD.x0; xn/;x

0
2Rn�1; xn>0

¯
; @RnC WD

®
x 2RnC; xnD0

¯
:

Liouville-type theorems and properties of the subcritical case have attracted much atten-
tion of scientists and many results were obtained. The most remarkable result on this
aspect is the first Liouville-type theorem obtained by Gidas and Spruck [14], in which
they proved that for 1 < p < nC2

n�2
the problem

��u D jujp�1u in Rn (1.2)
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does not possess positive solutions. Moreover, this result is optimal in the sense that, for
any p � nC2

n�2
and n� 3, there are infinitely many positive solutions to problem (1.2). Soon

afterward, similar results were established in [13] for positive solutions of the subcritical
problem in the half-space RnC,

��u D jujp�1u in RnC; u D 0 on @RnC: (1.3)

Later, Chen, and Li [3] obtained similar nonexistence results for the above two equa-
tions by using the moving plane method. These results received wide attention as regards
the theory itself and its applications. Particularly, when variational methods cannot be
employed, one uses them to establish a prior bound of solutions for general operator,
and therefore, existence of solutions may be dealt with via topological methods; see, for
instance, [5, 8, 11, 13, 14].

We note that the above-mentioned results only claim that the above equations do
not possess positive solutions. In a so important paper [1], Bahri and Lions proved the
nonexistence of sign-changing finite Morse index solutions of (1.2) or (1.3), provided that
1 < p < nC2

n�2
. Their proof is based on some integral estimates via Morse index com-

bined with the Pohozaev identity. So, motivated by [13], they used blow-up argument
to obtain a relevant L1-bound for solutions of semilinear boundary value problems in
bounded domain from the boundedness of Morse index (see also [1, 10, 19]). We mention
also that when the Palais–Smale; or the Cerami compactness conditions for the energy
functional do not seem to follow readily, the proof of existence of solutions is essentially
reduced to deriving L1-estimate from Liouville-type theorems via Morse index (see, for
instance, [9, 26, 27]). After these works, many authors investigated various Liouville-type
theorems for solutions with finite Morse indices in subcritical case such as problems with
Neumann boundary condition, Dirichlet–Neumann mixed boundary conditions and non-
linear boundary conditions (see [2, 17–20, 29, 32, 33]).

In a famous paper [10], Farina completely classified finite Morse index solutions posi-
tive or sign-changing possibly unbounded. In particular, he proved that a smooth nontrivial
solution to (1.5) exists if and only if p � pJL1.n/ and n � 11, or p D nC2

n�2
and n � 3.

Here, pJL1.n/ denotes the so-called Joseph–Lundgren exponent (see [10,15]). In addition,
similar results were established in [10] for finite Morse index solutions in the upper half-
space RnC with homogeneous Dirichlet boundary conditions on @RnC. His proof makes a
delicate application of the classical Moser iteration method. There exist many excellent
papers to use the generalization of Moser’s iteration technique to discuss the harmonic and
fourth-order elliptic equation. (See [4, 6, 16, 28, 30, 31] and the references therein). How-
ever, the classical Moser’s iterative technique may fail to obtain the similarly complete
classification for the biharmonic equation:

�2u D jujp�1u: (1.4)

Recently, Davila, Dupaigne, Wang, and Wei [7] have derived a monotonicity formula and
employed blow down analysis to reduce the nonexistence of nontrivial entire solutions
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for the problem (1.4) to that of nontrivial homogeneous solutions and gave a complete
classification of stable solutions and those of finite Morse index solutions. Furthermore,
in a recent paper [6], Dancer, Du, and Guo extended some results in [10] have considered

��u D jxjajujp�1u in Rn (1.5)

with a > �2 they prove that (1.5) has no nontrivial stable solution in Rn if 1 < p <

pJL1.n; a/ and that for p � pJL1.n; a/, admits a positive radial stable solution in Rn,
where pJL1.n; a/ is the Joseph–Lundgren exponent for the Hénon-type equation. In addi-
tion, Wang and Ye [28] obtained a Liouville-type result for finite Morse index solutions
in Rn, which is a partial extension of results in [6]. However, in case of the biharmonic
equation, when a > 0, Hu [22] proved Liouville-type theorems for solutions belonging
to one of the following classes: stable solutions and finite Morse index solutions posi-
tive or sign-changing. His proof is based on a combination of the Pohozaev-type identity,
monotonicity formula of solutions and a blowing down sequence.

Relying on Hu’s approach [22] and using the technics developed in [7, 10], we give
Liouville-type theorems for solutions belonging to one of the following classes: stable
solution and finite Morse index solutions of (1.1) possibly unbounded and sign-changing.
In contrast with the results of Hu [22], we apply a new method to provide an implicit
existence of the fourth-order Joseph–Lundgren exponent. Let us note that, to classify finite
Morse index solutions in the supercritical case, we adopt a new method of monotonicity
formula together with blowing down sequence. In addition, a difficulty stems from the fact
that applying the doubling lemma leads to the singularity. For this reason, we use a more
delicate approach to the interval .nC 4C 2a; pJL2.n; 0//. Before stating our results, we
need to recall some definitions.

Definition 1.1. We say that a solution u of (1.1) belonging to C 4.RnC/ has the following
cases.

• It is stable if

Qu. / WD

Z
Rn
C

.� /2dx � p

Z
Rn
C

jxjajujp�1 2dx � 0 8 2 C 2c .R
n
C/: (1.6)

• It is stable outside a compact set K � RnC if Qu. / � 0 for any  2 C 2c .R
n
CnK/.

• It has a Morse index equal to K � 1 if K is the maximal dimension of a subspace XK
of C 2c .R

n
C/ such that Qu. / < 0 for any  2 XKn¹0º.

Remark 1.1. (i) Clearly, a solution is stable if and only if its Morse index is equal to zero.
(ii) Any finite Morse index solution u is stable outside a compact set K �RnC. Indeed,

there existK � 1 and XK WD span¹ 1; : : : ;  Kº � C 2c .R
n
C/ such thatQu. / < 0 for any

 2 XKn¹0º. Then, Qu. / � 0 for every  2 C 2c .R
n
CnK/, where

K WD

K[
jD1

supp. j /:
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Now, we can state our main results. For any fixed a � 0 and n � 5, we have the
following theorem.

Theorem 1.1. Let u 2 W 2;2
loc .R

n
Cn¹0º/ be a homogeneous, stable solution of (1.1) in

RnCn¹0º, p 2 .
nC4C2a
n�4

; pJL2.n; a// and assume that jxjajujpC1 2 L1loc.R
n
Cn¹0º/. Then,

u � 0.

Theorem 1.2. Let u 2 C 4.RnC/ be a stable solution of (1.1). If 1 < p < pJL2.n; a/, then
u � 0

Theorem 1.3. Let u 2 C 4.RnC/ be a solution of (1.1) that is stable outside a compact set.

• If 1 < p < pJL2.n; 0/; p ¤ nC4C2a
n�4

, then u � 0.

• If p D nC4C2a
n�4

, then u has finite energy, i.e.,Z
Rn
C

.�u/2 D

Z
Rn
C

jxjajujpC1 < C1:

Here, the representation of pJL2.n; a/ in Theorem 1.1 is the fourth-order Joseph–
Lundgren exponent given by (2.1) below.

Remark 1.2. From Theorem 1.3 and the fact that any finite Morse index solution is stable
outside a compact set K � RnC, we directly obtain that under the same assumption of
Theorem 1.3, there is no finite Morse index solution to (1.1).

The proof of Theorem 1.2 or 1.3 is rather long and contains several technical aspects.
The idea of the proof relies on some integral estimates together with blowing down se-
quence combined with a version of monotonicity formula of equation (1.1). We mention
that the monotonicity formula is a powerful tool to understand supercritical elliptic equa-
tions or systems. This approach has been used successfully for Lane–Emden equation
in [23].

This paper is organized as follows. In Section 1, we establish some finer integral esti-
mates for the solutions of (1.1) which will be the key that we will use in the proofs of
Theorems 1.2 and 1.3, and we construct a monotonicity formula which is a crucial tool
to handle the supercritical case. Section 2 is devoted to the proof of 1.1. In Section 3, we
prove Liouville-type theorem for stable solutions of (1.1), that is, Theorem 1.1. While in
Section 4, we prove Theorem 1.3.

In the following, we use Br .x/ to denote the open ball in Rn centered at x with
radius r , we also write Br D Br .0/. C denotes a generic positive constant, which could
be changed from one line to another.

2. Monotonicity formula and integral estimates
In this section, we construct a monotonicity formula and we establish various integral
estimates of stable solutions which play an important role in dealing with Theorems 1.2
and 1.3.
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To explore the main results in this paper, we need to provide an implicit existence of
the fourth-order Joseph–Lundgren exponent for equation (1.1). For any fixed a > �4 and
n � 5, we define

J2 D ˛.˛ C 2/.n � 2 � ˛/.n � 4 � ˛/

and

Fa.˛/ D pJ2 �
n2.n � 4/2

16

D .˛ C 4C a/.˛ C 2/.n � 2 � ˛/.n � 4 � ˛/ �
n2.n � 4/2

16
;

where ˛ D 4Ca
p�1

. Note that�
p >

nC 4C 2a

n � 4

�
”

�
0 < ˛ <

n � 4

2

�
;

Fa is increasing on .0; n�4
2
/. A direct computation finds

Fa

�n � 4
2

�
D
nC 4C 2a

n � 4

n2.n � 4/2

16
�
n2.n � 4/2

16
D
2.4C a/

n � 4

n2.n � 4/2

16
> 0:

We also have

Fa.0/ D
.n � 4/

16
.�n3 C 4n2 C 32.aC 4/n � 64a � 256/ D

.n � 4/

16
Ea.n/;

where
Ea.x/ D �x

3
C 4x2 C 32.aC 4/x � 64a � 256:

The function Ea satisfies the following properties:

(1) Ea.5/ > 0, for all a > �4,

(2) E 00a.x/ D �6x C 8 < 0 on Œ5;C1/,

(3) limx!C1Ea.x/ D �1.

It follows that there exists a unique xa 2 .5;C1/ such that Ea.xa/ D 0 and Ea.x/ > 0
on Œ5; xa/. If we denote by n.a/ the integer part of xa, then we have the following.

(i) 8n� n.a/;Ea.n/> 0. This implies thatFa.0/> 0. As a consequenceFa.˛/> 0
on .0; n�4

2
/.

(ii) 8n � n.a/C 1;Ea.n/ < 0. This yields Fa.0/ < 0. Then, there exists a unique
˛a 2 .0;

n�4
2
/ such that Fa.˛a/ D 0.

For any fixed a > �4 and n � 5, we define

pJL2.n; a/ D

´
C1 if n � n.a/;

p.n; a/ if n � n.a/C 1;
(2.1)



A. Selmi and C. Zaidi 440

where p.n; a/ D 4Ca
˛a
C 1. Therefore, we find that

pJ2 >
n2.n � 4/2

16

for any nC4C2a
n�4

<p <pJL2.n;a/. In particular, if aD 0, then F0.˛0 WD 4
pJL2.n;0/�1

/D 0,
where pJL2.n; 0/ in (2.1) is the fourth order Joseph–Lundgren exponent which is com-
puted by Gazzola and Grunau [12]. See also Harrabi and Zaidi [21] in the study of the
sixth-order for a > 0. Furthermore, Fa.˛0/ > F0.˛0/D 0, then ˛0 > ˛a for all n > n.a/,
this implies that pJL2.n; 0/ < pJL2.n; a/ for a > �4.

Next, we will establish a monotonicity formula. Equation (1.1) has two important
features. It is variational, with the energy functional given byZ �1

2
j�uj2 �

1

p C 1
jxjajujpC1

�
:

For � > 0, set BC
�
D B� \RnC. Under the scaling transformation

u�.x/ D �
4Ca
p�1u.�x/;

this suggests that the variation of the rescaled energyZ
BC1

�1
2
j�u�j2 �

1

p C 1
jxjaju�jpC1

�
:

For any given x 2 RnC, we choose u 2 W 4;2
loc .R

n
C/ \ L

pC1
loc .RnC/ and define

E.u; �/ D �
4.pC1/C2a

p�1 �n

�Z
BC
�

1

2
.�u/2 �

1

p C 1
jxjajujpC1

�
C

4C a

2.p � 1/

�
n � 2 �

4C a

p � 1

�
�
8C2a
p�1 C1�n

Z
@BC

�

u2

C
4C a

2.p � 1/

�
n � 2 �

4C a

p � 1

� d
d�

�
�
8C2a
p�1 C2�n

Z
@BC

�

u2
�

C
�3

2

d

d�

�
�
8C2a
p�1 C1�n

Z
@BC

�

� 4

p � 1
��1uC

@u

@r

�2�
C
1

2

d

d�

�
�
8C2a
p�1 C4�n

Z
@BC

�

�
jruj2 � j

@u

@r
j
2
��

C
1

2
�
8C2a
p�1 C3�n

Z
@BC

�

�
jruj2 � j

@u

@r
j
2
�
;

where derivatives are taken in the sense of distributions. Then, we have the following
monotonicity formula.
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Proposition 2.1. Let n � 5; a � 0 and p > nC4C2a
n�4

; u 2 W
4;2

loc .R
n
C/ and jxjajujpC1 2

L1loc.R
n
C/ be a weak solution of (1.1). Then, E.u;�/ is non-decreasing in � > 0. Further-

more, there is a constant C.n; p; a/ > 0 depending only on n, p and a such that

d

dr
E.u; �/ � C.n; p; a/�

�nC2C 8C2a
p�1

Z
@BC

�

�4C a
p � 1

��1uC
@u

@r

�2
dS:

Proof. The proof follows the main lines of the demonstration of [22, Theorem 2.1], with
small modifications. Since the boundary integrals in E.u; �/ only involve second order
derivatives of u, the boundary integrals in dE

d�
.u; �/ only involve third order derivatives of

u. Thus, the following calculations can be rigorously verified. Assume that x D 0 and that
the balls B� are all centered at 0. Take

zE.�/ D �
4.pC1/C2a

p�1 �n

Z
BC
�

1

2
.�u/2 �

1

p C 1
jxjajujpC1:

Define
v D �u; u�.x/ D �

4Ca
p�1u.�x/; v�.x/ D �

4Ca
p�1C2v.�x/:

We still have v� D �u�; �v� D jxjaju�jp�1u�, and by differentiating in �,

�
du�

d�
D
dv�

d�
:

Note that differentiation in � commutes with differentiation and integration in x. A rescal-
ing shows that

zE.�/ D

Z
BC1

1

2
.v�/2 �

1

p C 1
jxjaju�jpC1:

Then,

d

d�
zE.�/ D

Z
BC1

v�
dv�

d�
� jxjaju�jp�1u�

du�

d�

D

Z
BC1

v��
du�

d�
��v�

du�

d�
D

Z
@BC1

v�
@

@r

du�

d�
�
@v�

@r

du�

d�
:

Since u� D 0 in @RnC for any � > 0, then du�

d�
D 0 in @RnC. Therefore, all boundary terms

appearing in the integrations by parts vanish under the Dirichlet boundary conditions. So,
we get

d

d�
zE.�/ D

Z
@BC1

�
v�

@

@r

du�

d�
�
@v�

@r

du�

d�

�
: (2.2)

In what follows, we express all derivatives of u� in the r D jxj variable in terms of deriva-
tives in the � variable. In the definition of u� and v�, directly differentiating in � gives

du�

d�
.x/ D

1

�

�4C a
p � 1

u�.x/C r
@u�

@r
.x/
�
; (2.3)
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and
dv�

d�
.x/ D

1

�

�2.p C 1/C a
p � 1

v�.x/C r
@v�

@r
.x/
�
: (2.4)

In (2.3), taking derivatives in � once again, we get

�
d2u�

d�2
.x/C

du�

d�
.x/ D

4C a

p � 1

du�

d�
.x/C r

@

@r

du�

d�
.x/: (2.5)

Substituting (2.4) and (2.5) into (2.2), we obtain

d zE

d�
D

Z
@BC1

v�
�
�
d2u�

d�2
C
p � 5 � a

p � 1

du�

d�

�
�
du�

d�

�
�
dv�

d�
�
2.p C 1/C a

p � 1
v�
�

D

Z
@BC1

�v�
d2u�

d�2
C 3v�

du�

d�
� �

du�

d�

dv�

d�
: (2.6)

Observe that v� is expressed as a combination of x derivatives of u�. So, we also transform
v� into � derivatives of u�. By taking derivatives in r in (2.3) and noting (2.5), we get on
@BC1 , that

@2u�

@r2
D �

@

@r

@u�

@�
�
p C 3C a

p � 1

@u�

@r

D �2
@2u�

@�2
C
p � 5 � a

p � 1
�
du�

d�
�
p C 3C a

p � 1

�
�
du�

d�
�
4C a

p � 1
u�
�

D �2
@2u�

@�2
�
8C 2a

p � 1
�
du�

d�
C
.4C a/.p C 3C a/

.p � 1/2
u�:

Then, on @BC1 ,

v� D
@2u�

@r2
C
n � 1

r

@u�

@r
C
1

r2
��u

�

D �2
d2u�

d�2
�
8C 2a

p � 1
�
du�

d�
C
.4C a/.p C 3C a/

.p � 1/2
u�

C .n � 1/
�
�
du�

d�
�
4C a

p � 1
u�
�
C��u

�

D �2
d2u�

d�2
C

�
n � 1 �

8C 2a

p � 1

�
�
du�

d�
C
4C a

p � 1

�4C a
p � 1

� nC 2
�
u� C��u

�:

Here,�� is the Laplace–Beltrami operator on @B1 and below r� represents the tangential
derivative on @B1. For notational convenience, we also define the constants

˛ D n � 1 �
8C 2a

p � 1
; ˇ D

4C a

p � 1

�4C a
p � 1

� nC 2
�
:

Now, (2.6) reads
d

d�
zE.�/ WD I1 C I2;



Liouville theorems for a fourth order Hénon equation in the half-space 443

where

I1 WD

Z
@BC1

�.�2
d2u�

d�2
C ˛�

du�

d�
C ˇu�/

d2u�

d�2

C 3
�
�2
d2u�

d�2
C ˛�

du�

d�
C ˇu�

�du�
d�
� �

du�

d�

d

d�

�
�2
d2u�

d�2
C ˛�

du�

d�
C ˇu�

�
and

I2 WD

Z
@BC1

���u
� d

2u�

d�2
C 3��u

� du
�

d�
� �

du�

d�
��

du�

d�
:

Let � > 0. Since du�

d�
D 0 in @RnC, then all boundary terms appearing in the integrations

by parts vanish under the Dirichlet boundary conditions; hence, the calculations are even
easier. The integral I2 can be estimated as

I2 D

Z
@BC1

��r�u
�
r�
d2u�

d�2
� 3r�u

�
r�
du�

d�
C �

ˇ̌̌̌
r�
du�

d�

ˇ̌̌̌2
D �

�

2

d2

d�2

�Z
@BC1

jr�u
�
j
2

�
�
3

2

d

d�

�Z
@BC1

jr�u
�
j
2

�
C 2�

Z
@BC1

ˇ̌̌̌
r�
du�

d�

ˇ̌̌̌2
D �

1

2

d2

d�2

�
�

Z
@BC1

jr�u
�
j
2

�
�
1

2

d

d�

�Z
@BC1

jr�u
�
j
2

�
C 2�

Z
@BC1

ˇ̌̌̌
r�
du�

d�

ˇ̌̌̌2
� �

1

2

d2

d�2

�
�

Z
@BC1

jr�u
�
j
2

�
�
1

2

d

d�

�Z
@BC1

jr�u
�
j
2

�
:

Furthermore, a direct calculation implies that

I1 D

Z
@BC1

�3
�d2u�
d�2

�2
C �2

d2u�

d�2
du�

d�
C ˇ�u�

d2u�

d�2
C 3ˇu�

du�

d�

C .2˛ � ˇ/�
�du�
d�

�2
� �3

du�

d�

d3u�

d�3

D

Z
@BC1

2�3
�d2u�
d�2

�2
C 4�2

d2u�

d�2
du�

d�
C .2˛ � 2ˇ/�

�du�
d�

�2
C
ˇ

2

d2

d�2
Œ�.u�/2�

C
ˇ

2

d

d�
.u�/2 �

1

2

d

d�

�
�3

d

d�

�du�
d�

�2�
:

Here, we have used the relations (writing f 0 D d
d�
f , etc.)

�ff 00 D
��
2
f 2
�00
� 2ff 0 � �.f 0/2

and

��3f 0f 000 D �
h�3
2
..f 0/2/0

i0
C 3�2f 0f 00 C �3.f 00/2:



A. Selmi and C. Zaidi 444

Since p > nC4C2a
n�4

, direct calculations show that

˛ � ˇ D
�
n � 1 �

8C 2a

p � 1

�
�
4C a

p � 1

�4C a
p � 1

� nC 2
�
> 1:

Consequently,

2�3
�d2u�
d�2

�2
C 4�2

d2u�

d�2
du�

d�
C .2˛ � 2ˇ/�

�du�
d�

�2
D 2�

�
�
d2u�

d�2
C
du�

d�

�2
C .2˛ � 2ˇ � 2/�

�du�
d�

�2
� 0:

Then, we conclude that

I1 �

Z
@BC1

ˇ

2

d2

d�2
Œ�.u�/2� �

1

2

d

d�

�
�3

d

d�

�du�
d�

�2�
C
ˇ

2

d

d�
.u�/2:

Now, rescaling back, we can write those � derivatives in I1 and I2 as follows:Z
@BC1

d

d�
.u�/2 D

d

d�

�
�
8C2a
p�1 C1�n

Z
@BC

�

u2
�
;Z

@BC1

d2

d�2
Œ�.u�/2� D

d2

d�2

�
�
8C2a
p�1 C2�n

Z
@BC

�

u2
�
;Z

@BC1

d

d�

�
�3

d

d�

�du�
d�

�2�
D

d

d�

�
�3

d

d�

�
�
8C2a
p�1 C1�n

Z
@BC

�

�4C a
p � 1

��1uC
@u

@r

�2��
;

d2

d�2

�
�

Z
@BC1

jr�u
�
j
2

�
D

d2

d�2

�
�
1C 8C2a

p�1 C2C1�n

Z
@BC

�

�
jruj2 � j

@u

@r
j
2

��
;

and
d

d�

�Z
@BC1

jr�u
�
j
2

�
D

d

d�

�
�
8C2a
p�1 C2C1�n

Z
@BC

�

�
jruj2 � j

@u

@r
j
2

��
:

Substituting these into d
d�
E.u; �/, we finish the proof.

For ˇ > 0, set BC
ˇ
D Bˇ \ RnC and AC

ˇ
D ¹x 2 RnC; a1ˇ < jxj < a2ˇº for some

0 < a1 < a2. Let u be a solution of (1.1), which is stable outside a compact set K � BCR0 .
For all R > 4R0, we define a family of test functions  D  .R;R0/ 2 C

2
c .R

N / satisfying8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0 �  � 1 and  � 0 if jxj < R0 or jxj > 2R;

 � 1 if 2R0 < jxj < R;

jrq j � CR
�q
0 if R0 < jxj < 2R0;

jrq j � CR�q if R < jxj < 2R and 1 � q � 4:

(2.7)

Similarly, if u is a stable solution of (1.1), then  D  .R/, withR > 0 verifying (2.7) with
R0 D 0; that is,  D 1 if jxj < R. Then, we have the following integral estimates.
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Lemma 2.1. Let u 2 C 4.RnC/ be a solution of (1.1), which is stable outside a compact
set K . Let R0 > 0 such that K � BCR0 and set v D �u, there hold the following:Z

BCR

v2 C

Z
BCR

jxjajujpC1 � C0 C CR
n�

4.pC1/C2a
p�1 8R > 4R0 (2.8)

andZ
BCR

v2 C

Z
BCR

jxjajujpC1 � C0 C CR
�4

Z
ACR

u2 C CR�2
Z
ACR

juvj 8R > 4R0;

(2.9)
where C0 and C are positive constants independent of R.

Proof of (2.8). First, for " 2 .0; 1/ and � 2 C 2.RN /, we haveZ
Rn
C

Œ�.u�/�2 D

Z
Rn
C

.u��C 2rur�C ��u/2

� .1C C"/

Z
Rn
C

v2�2 C
C

"

Z
Rn
C

u2.��/2 C
C

"

Z
Rn
C

jruj2jr�j2:

Using
�.u2/ D 2jruj2 C 2u�u

yields

2

Z
Rn
C

jruj2jr�j2 D

Z
Rn
C

u2�.jr�j2/ � 2

Z
Rn
C

uvjr�j2: (2.10)

So, we getZ
Rn
C

Œ�.u�/�2�.1CC"/

Z
Rn
C

v2�2C
C

"

Z
Rn
C

u2
�
.��/2C j�.jr�j2/j

�
C
C

"

Z
Rn
C

juvjjr�j2:

(2.11)
Take � D �m with m � 2. Apply Cauchy–Schwarz’s inequality, we getZ

Rn
C

juvjjr�mj2 � C"2
Z

Rn
C

v2�2m C C";m

Z
Rn
C

u2jr�j4�2m�4: (2.12)

Substitute � by  m in (2.11), then from (2.12) and (2.7), we obtainZ
BC2R

Œ�.u m/�2 � C0 C .1C C"/

Z
BC2R

v2 2m C C"R
�4

Z
ACR

u2;

where

C0 D CR
�4

Z
AC0

u2;

AC0 D
®
x 2 RnC; R0 < jxj < 2R0

¯
:
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Let u be a solution of (1.1), which is stable outside a compact set K � BCR0 . Clearly,
u m 2 H 2

0 .B
C

2R n B
C

R0
/, so after a standard approximation argument the main inequality

of stability (1.6) implies that

p

Z
BC2R

jxjajujpC1 2m �

Z
BC2R

.�.u m//2 � 0 8R > 4R0:

Therefore, we conclude that

p

Z
BC2R

jxjajujpC1 2m � .1C C"/

Z
BC2R

v2 2m � C0 C C"R
�4

Z
ACR

u2: (2.13)

On the other hand, recall that u D @u
@xn
D 0 in @RnC, then multiply equation (1.1) by u�2,

� 2 C 2.RN / and integrate by parts, using again (2.10), we deriveZ
Rn
C

�
v2�2 � jxjajujpC1�2

�
D �4

Z
Rn
C

�vru � r� � 2

Z
Rn
C

�uv�� � 2

Z
Rn
C

uvjr�j2

� C"

Z
Rn
C

v2�2 C C"

Z
Rn
C

u2.��/2 C C"

Z
Rn
C

jruj2jr�j2 � 2

Z
Rn
C

uvjr�j2

� C"

Z
Rn
C

v2�2 C C"

Z
Rn
C

u2
�
.��/2 C j�.jr�j2/

�
C C"

Z
Rn
C

juvjjr�j2: (2.14)

Using the above inequality (where one substitutes � by  m), it follows from (2.12) and
(2.7) that

.1 � C"/

Z
BC2R

v2 2m �

Z
BC2R

jxjajujpC1 2m � C0 C C"R
�4

Z
ACR

u2: (2.15)

Taking " > 0 small enough, multiplying (2.15) by 1C2C"
1�C"

, and adding it with (2.13) we
then get

C"

Z
BC2R

v2 2m C .p �
1C 2C"

1 � C"
/

Z
BC2R

jxjajujpC1 2m � C0 C C"R
�4

Z
ACR

u2:

As p > 1 and ACR � B
C

2R, using " > 0 small enough, there holds thatZ
BCR

v2 C

Z
BCR

jxjajujpC1 � C0 C CR
�4

Z
ACR

u2:

Applying Young’s inequality, we deduce then for any "0 > 0 thatZ
BCR

v2 C .1 � "0/

Z
BCR

jxjajujpC1 � C0 C CR
n�

4.pC1/C2a
p�1 8R > 4R0:

Taking "0 > 0 small enough, the estimate (2.8) is proved.
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Proof of (2.9). Invoking now (2.11) where we substitute � by  m, we obtainZ
BC2R

Œ�.u m/�2 � C0 C .1C C"/

Z
BC2R

v2 2m C C"R
�4

Z
ACR

u2 C C"R
�2

Z
ACR

juvj:

Adopting a similar argument as above where we uses the equality (2.14) and inequality
of stability (1.6), we obtain readily the estimate equality (2.9). Thus, Lemma 2.1 is well
proved.

3. Proof of Theorem 1.1

In this section, we obtain a nonexistence result for a homogeneous stable solution of (1.1).
We have the following lemma.

Lemma 3.1. Let n � 5; a > 0, we define

J1 D .˛ C 2/.n � 4 � ˛/C ˛.n � 2 � ˛/:

If p 2 .nC4C2a
n�4

; pJL2.n; a//, then we have

J1 > 0; J2 > 0; pJ1 >
n.n � 4/

2

and

pJ2 >
n2.n � 4/2

16
:

Proof. Since

p >
nC 4C 2a

n � 4
>
nC 4

n � 4
;

then
J1 > 0 and J2 > 0:

For nC4C2a
n�4

< p < pJL2.n; a/, we get from the definition of pJL2.n; a/ that

pJ2 >
n2.n � 4/2

16
: (3.1)

From (3.1), we obtain

22p2J2 >
�1
2

�2
n2.n � 4/2: (3.2)

Using inequality
p
xy � 1

2
.x C y/ for all x � 0; y � 0 with x D .˛C 2/.n� 4� ˛/ and

y D ˛.n � 2 � ˛/, we derive
22J2 < .J1/

2: (3.3)

The last inequality combined with (3.2), yields

pJ1 >
1

2
n.n � 4/: (3.4)

This finishes the proof of Lemma 3.1.
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Let u be a homogeneous solution of (1.1); that is, there exists a w 2W 2;2.Sn�1C / such
that in polar coordinates

u.r; �/ D r
�
4Ca
p�1w.�/:

Denote ACR D B
C

2RnB
C

R . Since u 2 W 2;2.AC1 / and jxjajujpC1 2 L1.AC1 /, it implies that
w 2 W 2;2.Sn�1C / \ LpC1.Sn�1C /. A direct calculation gives

�2�w.�/ � J1��w.�/C J2w.�/ D jwj
p�1w in Sn�1C ; w D

@w

@�n
D 0 on @Sn�1C ;

(3.5)
where

J1 D
�4C a
p � 1

C 2
��
n � 4 �

4C a

p � 1

�
C
4C a

p � 1

�
n � 2 �

4C a

p � 1

�
and

J2 D
4C a

p � 1

�4C a
p � 1

C 2
��
n � 4 �

4C a

p � 1

��
n � 2 �

4C a

p � 1

�
:

Because w 2 W 2;2.Sn�1C /, we can test (3.5) with w to obtainZ
Sn�1C

.��w/
2
C J1jr�wj

2
C J2w

2d� D

Z
Sn�1C

jwjpC1d�: (3.6)

As in [7], for any " > 0, choose �" 2 C10 ..
"
2
; 2
"
// such that �" � 1 in ."; 1

"
/, and

r j�0".r/j C r
2
j�00" .r/j � 64 8r > 0:

Let �k D B2k="nB"=2k , since w 2 W 2;2.Sn�1C / \ LpC1.Sn�1C /, r�
n�4
2 w.�/�".r/ can

be approximated by C10 .�2 \ RnC/ functions in W 2;2.�1 \ RnC/ \ L
pC1.�1 \ RnC/.

Hence, in the stability condition for u, we are allowed to choose a test function of the
form

r�
n�4
2 w.�/�".r/:

Direct calculations show that

�.r�
n�4
2 w.�/�".r// D �

n.n � 4/

4
r�

n
2w.�/�".r/C 3r

� n2C1w.�/�0".r/

C r�
n
2C2w.�/�00" .r/C r

� n2��w.�/�".r/: (3.7)

Substituting (3.7) into the stability condition for u, we deduce that

p

�Z
Sn�1C

jwjpC1d�

��Z C1
0

r�1�".r/
2dr

�
�

�Z
Sn�1C

�
.��w/

2
C
n.n � 4/

2
jr�wj

2
C
n2.n � 4/2

16
w2
�
d�

��Z C1
0

r�1�".r/
2dr

�
CO

� Z C1
0

�
r�0".r/

2
C r3�00" .r/

2
C �".r/j�

0
".r/j C r�".r/j�

00
" .r/j

�
dr

�

Z
Sn�1C

.jr�w.�/j
2
C w.�/2/d�

�
:
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Note that Z C1
0

r�1�".r/
2dr � j log "j;Z C1

0

.r�0".r/
2
C r3�00" .r/

2
C �".r/j�

0
".r/j C r�".r/j�

00
" .r/j/dr � C

for some constant C independent of ". By letting "! 0, we obtain

p

Z
Sn�1C

jwjpC1d� �

Z
Sn�1C

.��w/
2
C
n.n � 4/

2
jr�wj

2
C
n2.n � 4/2

16
w2d�: (3.8)

Substituting (3.6) into (3.8), we deriveZ
Sn�1C

.p � 1/.��w/
2
C

�
pJ1 �

n.n � 4/

2

�
jr�wj

2
C

�
pJ2 �

n2.n � 4/2

16

�
w2d� � 0:

Finally, by Lemma 3.1, we observe that w � 0. Then, it follows that u � 0.

4. Proof of Theorem 1.2

For the case 1 < p � nC4C2a
n�4

, we apply the integral estimates. For the case nC4C2a
n�4

<

p < pJL2.n; a/ with the energy estimates and the desired monotonicity formula we can
show that the stable solutions must be homogeneous solutions; hence, by applying the
classification of the homogeneous solutions (see Theorem1.1), the solutions must be zero.

Since we assume that u is a stable solution, then the integral estimate (2.8) holds with
C0 D 0. We divide the proof into three cases.

Case 1. The subcritical 1 < p < nC4C2a
n�4

.
Applying (2.8), we deduce thatZ

BCR

v2 C

Z
BCR

jxjajujpC1 � CR
n�

4.pC1/C2a
p�1 ! 0 as R!C1:

Consequently, we obtain u � 0.

Case 2. The critical p D nC4C2a
n�4

.
Applying again (2.8), we haveZ

Rn
C

v2 C jxjajujpC1 < C1:

So, we get

lim
R!C1

Z
ACR

v2 C jxjajujpC1 � 0:
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Now, using Hölder’s inequality, we derive that

R�4
Z
ACR

u2 � CR�4
�Z

ACR

jxjajujpC1
� 2
pC1

�Z
ACR

jxj
�2a
p�1

� p�1
pC1

:

Therefore, from (2.9), we conclude thatZ
BCR

v2 C jxjajujpC1 � CR
.n� 2a

p�1 /
p�1
pC1�4

�Z
ACR

jxjajujpC1
� 2
pC1

C C

Z
ACR

v2:

Under the assumptions p D nC4C2a
n�4

, tending R!C1, we obtain u � 0.

Case 3. The supercritical nC4C2a
n�4

< p < pJL2.n; a/.
We define blowing down sequences

u�.x/ D �
4Ca
p�1u.�x/; v�.x/ D �

4Ca
p�1C2v.�x/ 8� > 0:

u� is also a smooth stable solution of (1.1) on RnC. By rescaling (2.8), for all � > 0 and
balls Br � Rn, Z

BCr

.v�/2 C jxjaju�jpC1 � Cr
n�

4.pC1/C2a
p�1 :

In particular, u� are uniformly bounded in LpC1loc .RnC/. By elliptic estimates, u� are also
uniformly bounded in W 2;2

loc .R
n
C/. Hence, up to a subsequence of � ! C1, we can

assume that u� ! u1 weakly in W 2;2
loc .R

n
C/ \ L

pC1
loc .RnC/. By compactness embedding,

one has u� ! u1 strongly in W 2;2
loc .R

n
C/. Then, for any ball BCR .0/, by interpolation

between Lq spaces and noting (2.8), for any q 2 Œ1; p C 1/, as �!C1, we have

ku� � u1kLq.BCR .0//
� ku� � u1k

�

L1.BCR .0//
ku� � u1k

1��

LpC1.BCR .0//
! 0; (4.1)

where
1

q
D �C

1 � �

p C 1
:

That is, u� ! u1 in Lqloc.R
n
C/ for any q 2 .1; p C 1/.

For any function � 2 C10 .R
n
C/, we haveZ

Rn
C

�u1�� � jxjaju1jp�1u1� D lim
�!1

Z
Rn
C

�u��� � jxjaju�jp�1u��;Z
Rn
C

.��/2 � pjxjaju1jp�1.�/2 D lim
�!1

Z
Rn
C

.��/2 � pjxjaju�jp�1.�/2 � 0:

Thus,
u1 2 W

2;2
loc .R

n
C/ \ L

pC1
loc .RnC/

is a stable solution of (1.1).
Now, we can follow exactly the proof of Lemmas 3.1–3.3 in Hu [22], (see also Lem-

mas 4.4–4.6 in Dávila et al. [7]), to obtain the following lemma.
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Lemma 4.1. We have the following:

(1) lim�!C1E.u; �/ < C1,

(2) u1 is homogeneous,

(3) limr!C1E.u; r/ D 0.

Therefore, by the monotonicity formula, we know that u is homogeneous, then by
Proposition 2.1 and using the classification of the homogeneous solutions given by Theo-
rem 1.1, we get u � 0. This finishes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

We proceed based on a Pohozaev-type identity, the decay estimates from the doubling
lemma [24], the monotonicity formula, and the classification of the homogeneous solu-
tions and stable solutions. The proof is divided into three cases.

Case 1. The subcritical 1 < p < nC4C2a
n�4

.
The proof is based on the following Pohozaev-type identity. More precisely, we start

by testing the equation (1.1) against by ru � x , where  2 C 2c .R
N /; 0 �  � 1, are

cut-off functions satisfying´
 � 1 if jxj < R;  � 1 if jxj > 2R;

jrq j � CR�q if x 2 AR D ¹R < jxj < 2Rº; q � 2:
(5.1)

Then, in view of the cut-off functions  , we can avoid the spherical integrals raised in [3,
25], which are very difficult to control and we have the following lemma.

Lemma 5.1. Let u be a solution of (1.1) and set v D �u. Then, for any  2 C 2c .B
C

2R/,

nC a

p C 1

Z
BC2R

jxjajujpC1 �
n � 4

2

Z
BC2R

v2 

D �
1

p C 1

Z
BC2R

jxjajujpC1.r � x/C
1

2

Z
BC2R

.r � x/v2

�

Z
BC2R

�
2v.ru � r /C 2vr2u.x;r /C v.ru � x/� 

�
: (5.2)

Proof. Let  2 C 2c .B
C

2R/, multiplying equation (1.1) by ru � x and integrating by parts,
we getZ
BC2R

jxjajujp�1u.ru � x/ 

D

Z
BC2R

�u�.ru � x /D

Z
BC2R

v
�
.r.v/ � x/ C2v C2r.ru � x/ � r C.ru � x/� 

�
:
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Direct calculation yields

r.ru � x/ � r D r2u.x;r /C .ru � r /

and Z
BC2R

v
�
.r.v/ � x/ C 2v 

�
D

Z
BC2R

r.v2/

2
� x C 2

Z
BC2R

v2 

D
4 � n

2

Z
BC2R

v2 �
1

2

Z
BC2R

v2.r � x/:

Moreover,Z
BC2R

jxjajujp�1u.ru � x/ D �
nC a

p C 1

Z
BC2R

jujpC1 �
1

p C 1

Z
BC2R

jxjajujpC1x � r :

Therefore, (5.2) follows by regrouping the above equalities.

We claim then the following lemma.

Lemma 5.2. Let u 2 C 4.RnC/ be a solution of (1.1) which is stable outside a compact set
of RnC. If p 2 .1; nC4C2a

n�4
/, then jxj

a
pC1u 2 LpC1.RnC/, v 2 L

2.RnC/, we have

n � 4

2

Z
Rn
C

v2 D
nC a

p C 1

Z
Rn
C

jxjajujpC1 (5.3)

and Z
Rn
C

v2 D

Z
Rn
C

jxjajujpC1: (5.4)

Proof. Using (2.8) and tending R!1, we obtain

jxj
a

pC1u 2 LpC1.RnC/ and v 2 L2.RnC/: (5.5)

By Hölder’s inequality, there holds that

R�4
Z
ACR

juj2 � CR
.n�

4.pC1/C2a
p�1 /

p�1
pC1

�Z
ACR

jxjajujpC1
� 2
pC1

:

On the other hand, by standard scaling argument, there exists C > 0 such that for any
R > 0, any u 2 C 4.ACR/ with ACR D B

C

2RnB
C

R ,

R�2
Z
ACR

jruj2 � C

Z
ACR

v2 C CR�4
Z
ACR

u2:

Therefore, as p is subcritical, we deduce that

CR�4
Z
ACR

u2 CR�2
Z
ACR

jruj2 ! 0 as R!1: (5.6)
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Now, we will estimate the integral Z
ACR

jr
2uj2:

Since u� D 0 on @RnC, by standard elliptic theory, there exists C > 0 such thatZ
ACR

jr
2.u�/j2 � C

Z
ACR

j�.u�/j2 � C

Z
ACR

�
u2j��j2 C jruj2jr�j2 C v2

�
: (5.7)

So, we getZ
ACR

jr
2uj2�2 � C

Z
ACR

jr
2.u�/j2 C C

Z
ACR

jruj2jr�j2 C C

Z
ACR

u2.jr�j4 C jr2�j2/

� C

Z
ACR

v2 C CR�4
Z
ACR

u2 CR�2
Z
ACR

jruj2: (5.8)

Using (5.5) and (5.6), there holds thatZ
Rn
C

jr
2uj2 <1: (5.9)

Now, to prove (5.3), we will show that any terms on the right-hand side of (5.2)
(denoted by IR) tends to 0 as R! C1. Remark that r ¤ 0 only in ACR D B

C

2RnB
C

R

and krk k1 � CkR�k , there holds that

jIRj � C

Z
ACR

�
jxjajujpC1 C v2

�
C
C

R

Z
ACR

jvjjruj C C

Z
ACR

jvjjr2uj:

Thanks to the estimates (5.5)-(5.9) and Hölder’s inequality, clearly, limR!1 IR D 0;
hence, we get (5.3).

On the other hand, using u as test function in (1.1), we haveZ
BC2R

v2 �

Z
BC2R

jxjajujpC1 � C

Z
BC2R

juvjj� j C C

Z
BC2R

jvjjrujjr jdx

�
C

R2

Z
ACR

juvj C
C

R

Z
ACR

jvjjruj:

Applying Hölder’s inequality, (5.5), (5.6) and tending R to infinity, so we obtain (5.4).
The proof is completed.

Combining (5.3) and (5.4), there holds that�n � 4
2
�
nC a

p C 1

� Z
ACR

jujpC1 D 0:

We are done since n < 4.pC1/C2a
p�1

implies that

n � 4

2
�
nC a

p C 1
< 0:
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Case 2. The critical p D nC4C2a
n�4

.
We can proceed as in the proof of equality (5.4) to derive thatZ

Rn
C

v2 D

Z
Rn
C

jxjajujpC1 < C1:

Case 3. The supercritical nC4C2a
n�4

< p < pJL2.n; 0/.
To classify finite Morse index solutions in the supercritical case, applying the doubling

lemma in [24], we get the following crucial lemma.

Lemma 5.3. Let n � 1; 1 < p < pJL2.n; 0/ and � 2 .0; 1�. Let c 2 C � .BC1 / satisfies

kck
C � .BC1 /

� C1andc.x/ � C2; x 2 BC1 (5.10)

for some constants C1; C2 > 0. There exists a constant C , depending on ˛; C1; C2; p; n
such that for any stable solution u of

�2u D c.x/jujp�1u in BC1 and u D
@u

@xn
D 0 on @BC1 ; (5.11)

u satisfies
ju.x/j

p�1
4 � C.1C dist�1.x; @BC1 //:

Proof. Arguing by contradiction, we suppose that there exist sequences ck ; uk verifying
(5.10)–(5.11) and points yk such that the functions

Mk D jukj
p�1
4

satisfy
Mk.yk/ > 2k.1C dist�1.yk ; @BC1 // � 2k.dist�1.yk ; @BC1 //:

By the doubling lemma in [24], there exists xk such that

Mk.xk/ �Mk.yk/;Mk.xk/ � 2k.dist�1.xk ; @BC1 //

and
Mk.z/ � 2Mk.xk/ 8z 2 B

C
1 such that jz � xkj � kM�1k .xk/: (5.12)

We have
�k DM

�1
k .xk/! 0 as k !1 (5.13)

due to Mk.xk/ �Mk.yk/ > 2k.
Next, we let

vk.y/D �
4
p�1

k
uk.xk C �ky/ and Qck.y/D ck.xk C �ky/ for y 2 Bk ; yn > �

yk;n

�k
;
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where yk D .yk;1; : : : ; yk;n/. Then, vk.y/ is the solution of´
�2vk.y/ D Qck.y/jvk.y/j

p�1vk.y/; jyj < k; yn > �
yk;n
�k
;

vk.y/ D
@vk.y/
@yn

D 0; jyj < k; yn D �
yk;n
�k
;

with
jvk.0/j D 1 and jvk.y/j � 2

4
p�1 ; jyj < k; yn > �

yk;n

�k
:

Two cases may occur as k !1, either case (1)

yk;n

�k
!C1

for a subsequence still denoted as before, or case (2)

yk;n

�k
! c � 0:

In case (1), after extracting a subsequence, Qck ! C in Cloc.Rn/ with C > 0 a constant
and we may also assume that vk ! v in C 4loc.R

n/, and v is a stable solution of

�2v D C jvjp�1v in Rn and jv.0/j D 1:

By the Liouville-type theorems in [7] for stable solutions, we derive that v � 0. This is a
contradiction.

In case (2) we can prove that c > 0, thus we get a stable solution of (1.1) in RnC and
jv.c/j D 1, which contradict Theorem 1.2 for 1 < p < p0.n; 4/.

Proposition 5.1. Let u be a (positive or sign changing) solution to (1.1) which is stable
outside a compact set of RnC. There exist constants C and R0 such that

ju.x/j � C jxj
�
4Ca
p�1 8x 2 BCR0.0/

c ; (5.14)X
k�3

jxj
4Ca
p�1Ckjr

ku.x/j � C 8x 2 BC3R0.0/
c : (5.15)

Proof. Assume that u is stable outside BCR0 and jx0j > 2R0. We denote

R D
1

2
jx0j

and observe that, for all y 2 BC1 ;
jx0j
2
< jx0 C Ryj <

3jx0j
2

, so that x0 C Ry 2 BCR0.0/
c .

Let us thus define
U.y/ D R

4Ca
p�1u.x0 CRy/:

Then, U is a solution of

�2U D c.y/jU jp�1U in BC1 and U D
@U

@yn
D 0 on @BC1 with c.y/D

ˇ̌̌
yC

x0

R

ˇ̌̌a
:
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Notice that jy C x0
R
j 2 Œ1; 3� for all y 2 BC1 . Moreover,

kck
C 1.BC1 /

� C.a/:

Then, applying Lemma 5.3, we have jU.0/j � C ; hence,

ju.x0/j � CR
�
4Ca
p�1 ;

which yields the inequality (5.14).
Next, we prove the inequality (5.15). For any x0 with jx0j > 3R0, take � D jx0j

2
and

define
Nu.x/ D �

4Ca
p�1u.x0 C �x/:

From (5.14), j Nuj � C0 in BC1 .0/. Then, standard elliptic estimates giveX
k�5

jr
k
Nu.0/j � C:

Lemma 5.4. There exists a constant C2, such that forall r > 3R0; E.u; r/ � C2.

Proof. From the monotonicity formula, combining the derivative estimates (5.15), we
have

E.u; r/ � Cr
4.pC1/C2a

p�1 �n

�Z
BCr

v2 C jxjajujpC1
�

C Cr
8C2a
p�1 C1�n

Z
@BCr

u2 C Cr
8C2a
p�1 C2�n

Z
@BCr

jujjruj

C Cr
8C2a
p�1 C3�n

Z
@BCr

jruj2

C Cr
8C2a
p�1 C3�n

Z
@BCr

jujjr2uj

C Cr
8C2a
p�1 C4�n

Z
@BCr

jujjr2uj � C;

where C depends on the constant that appeared in (5.15).

We claim then the following corollary.

Corollary 5.1. We haveZ
.BC3R0

.0//c

.4Ca
p�1
jxj�1u.x/C @u

@r
.x//2

jxj
n�2� 8C2ap�1

< C1:

As before, we define a blowing down sequence

u�.x/ D �
4Ca
p�1u.�x/:
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By Proposition 5.1, u� are uniformly bounded inC 5.BCr .0/nB
C

1=r
.0// for any fixed r > 1.

u� is stable outside BC
R0=�

.0/. There exists a function u1 2 C 6.Rnn¹0º/, such that up to
a subsequence of �!C1, u� converges to u1 2 C 4loc.R

n
Cn¹0º/. u

1 is a stable solution
of (1.1) in RnCn¹0º.

Using Corollary 5.1, we obtain, for any r > 1,Z
BCr nB

C

1=r

.4Ca
p�1
jxj�1u1.x/C @u1

@r
.x//2

jxj
n�2� 8C2ap�1

D lim
�!C1

Z
BCr nB

C

1=r

.4Ca
p�1
jxj�1u�.x/C @u�

@r
.x//2

jxj
n�2� 8C2ap�1

D lim
�!C1

Z
BCr nB

C

1=r

.4Ca
p�1
jxj�1u.x/C @u

@r
.x//2

jxj
n�2� 8C2ap�1

D 0:

Hence, u1 is homogeneous, and from Theorem 1.1, u1 � 0. This holds for every limit
of u� as �!C1; thus, we get

lim
jxj!C1

jxj
4Ca
p�1 ju.x/j D 0:

From (5.15), we derive

lim
jxj!C1

X
k�4

jxj
4Ca
p�1Ckjr

ku.x/j D 0:

For " > 0, take an R such that for jxj > R,X
k�4

jxj
4Ca
p�1Ckjr

ku.x/j � ":

Then, for r � R,

E.u; r/ � Cr
4.pC1/C2a

p�1 �n

�Z
BCR .0/

v2 C jxjajujpC1
�

C C"r
8C2a
p�1 C4�n

Z
BCr .0/nB

C
R .0/

jxj
�
8C2a
p�1 �4

C C"r
8C2a
p�1 C5�n

Z
@BCr .0/

jxj
�
8C2a
p�1 �4 � C.R/

�
r
4.pC1/C2a

p�1 �n
C "

�
:

Since 4.pC1/C2a
p�1

� n < 0 and " can be arbitrarily small, we derive limr!C1E.u; r/D 0.
Because limr!0 E.r; u/ D 0 (by the smoothness of u), the same argument for stable
solutions implies that u � 0.
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