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1. INTRODUCTION

In the recent work [4], we introduced a new algorithm for solving nonlinear functional
equations admitting a right-invertible linearization, but with an inverse losing deriva-
tives. These equations are of the form F(u) = v with F(0) = 0, v small and given,
u small and unknown. The main difference with the classical Nash—-Moser algorithm
[7, 12] was that, instead of using a regularized Newton scheme, we constructed a
sequence (uy), of solutions to Galerkin approximations of the “hard” problem and
proved the convergence of (u,), to a solution u of the exact equation. Each u, was
obtained thanks to a topological theorem on the surjectivity of maps between Banach
spaces, due to one of us in [3]. However, this topological theorem does not provide the
continuous dependence of u, as a function of v. As a consequence, nothing was said
in [4] on the existence of a continuous selection of solutions u(v). Theorem 8 of the
present work overcomes this limitation thanks to a variant of the topological argument,
stated in Theorem 2.

In the sequel, £(X, Y) is the space of bounded linear operators between Banach
spaces X and Y'; the operator norm on this space is denoted by || - ||x,y. We first restate
the result of [3] below for the reader’s convenience.

TueoreM 1 ([3]). Let X and Y be Banach spaces. Denote by B the open ball of radius
R > O around the originin X. Let f : B — Y be continuous and Gdteaux-differentiable,
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with f(0) = 0. Assume that the derivative Df(x) has a right-inverse L(x), uniformly
bounded on the ball Bg:

V(x,k) e BxY, Df(x)L(x)k =k,
sup{||L(x)||Y’X slxllx < R} <m.

Then, for every y € Y with ||y|ly < Rm™!, there is some x € B satisfying
fx)=y and |xlx =m|yly.

We recall that in the standard local inversion theorem, one assumes that f is of
class C!, with Df(0) invertible and y small. An explicit bound on ||y||y is provided
by the classical Newton—Kantorovich invertibility condition (see [1]) when f is of
class C2. The bound || y||ly < Rm~"! of Theorem | is much less restrictive than the
Newton—Kantorovich condition, at the price of losing uniqueness, even in the case when
L(x) is also a left inverse of Df(x). To illustrate this, we consider a finite-dimensional
example.

ExampLE A. We take X = Y = C viewed as a 2-dimensional real vector space and
f(z) = (2 4+ z)" — 2", for any complex number z in the open disc of center 0 and
radius R = 1 (here n is a positive integer). In that case, Df(z) is the multiplication
by n(2 + z)" ! and L(z) is the multiplication by n=1(2 + z)!™", so f satisfies the
assumptions of Theorem 1 for R = 1 and any real number m > n~!. Thus, Theorem 1
tells us that the equation f(z) = Z has a solution of modulus less than or equal
to m|Z|, provided Z has modulus less than m~!. However, uniqueness does not
hold. The solutions of the algebraic equation (2 + z)"” — 2" = Z are of the form
Zx = 4i et sin an 4+ O(27"), and for | Z| > 4 the three solutions zg, z1, z—1 lie in
the closed disc {|z| < n~!|Z|} when n is large enough. Yet, there is a unique continuous
function g such that g(0) = 0and f o g(Z) = Z for all complex numbers Z of modulus
less than 1/m. This continuous selection is g(Z) = zo = 2((1 + 2_”2)% — 1) with
(peityn = pl/neit/n Y (p, 1) € (0, 00) x (—7, 7).

This example raises the following question: in the general case, can we select a
solution x depending continuously on y, even in infinite dimension and when D f(x)
does not have a left inverse? The following theorem gives a positive response, under
mild additional assumptions.

THEOREM 2. Let X, Y be two Banach spaces. Denote by B the open ball of radius
R > 0 around the origin in X. Consider amap f : B — Y with f(0) = 0. We assume
the following:

(1)  f is Lipschitz-continuous and Gdteaux-differentiable on B.
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(ii) There are a function L : B — L(Y, X), a constant a < 1 and, for any (x,w) €
B x Y, a positive radius a(x, w) such that if |x’ — x||x < a(x,w), then x’ € B
and

|(Df(x") o L(x) — Iy)w|, < allw]y.
(iii) There is some m < oo such that

sup{”L(x)”Y’X 1X € B} < m.

Denote by B’ C Y the open ball of radius R’ := (1 —a)Rm™" and center 0. Then,
there is a continuous map g : B’ — B such that

vyeB. ey = —lyly and fog()=y.

If, in addition, one has the following:

(iv) f is Fréchet differentiable on B, Df(x) has a left-inverse for all x € B and
there is a non-decreasing function ¢ : (0, 00) — (0, 00) with lim; ¢ &(t) = 0,
such that for all x1, x5 in B,

| f(x2) = f(x1) = Df(x1)(x2 — x1) |y < &(llx2 — x1llx) X2 — x1llx:

then g is the unique continuous right-inverse of f defined on B’ and mapping
Oy to Oyx.

Remark 3. If a function f satisfies the assumptions (i), (ii) and (iii), then, for every
Xo € B, taking the radius R, = R — ||x¢||x, one can apply Theorem I to the function

z € Bx(0, Ry)) = f(xo + z) — f(xo0).

and one concludes that the restriction of f to By (xo, Ry,) has a continuous right-
inverse gy, defined on By (f(x¢), (1 —a)Ryx,m™1) such that

5000 = %olly = 7=y = (o) forall y € By (f(xo). (1 —a)Rygm™").

If, in addition, f satisfies (iv), then gy, is the unique continuous right-inverse of f
defined on the ball By (f(xo), (1 — a)Rx,m™") and mapping f(x¢) to xo.

REMARK 4. Assumption (ii) implies that D f(x) has a right-inverse L such that

ILllyx < (1—a)7YL

ly,x.

Indeed, taking P = Iy — Df(x) o L(x), one can choose L:=Lo (Z,fozo PFk).
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Conversely, Assumption (ii) is satisfied, for instance, if (i) and (ii") hold true, with
the following:

(i) Foreach x € B, Df(x) has aright-inverse L(x) € £(Y, X). Moreover, the map
x — Df(x) is continuous for the strong topology of B and the strong operator
topology of £(X,Y): in other words, if ||x,, — x||x — O, then, for any v € X,
I(Df (xn) = Df (x))vlly — 0.

The function f of Example A satisfies the assumptions (i), (ii") and (iii). In that
finite-dimensional case, f is of course differentiable in the classical sense of Fréchet.
Let us give an example for which Fréchet differentiability does not hold.

ExampLE B. Let ¢ € C!(R,R) with ¢’ bounded on R and infg ¢’ > 0. The Nemitskii
operator

P:uel?R)—>poueclL?’(R), 1=<p<oo,
is not Fréchet differentiable when ¢’ is not constant [9, 10]. However, @ satisfies
conditions (i), (ii") and (iii) for any » > 0 and m > (infg ¢’ )~!. Therefore, Theorem 2
applies to @, but the inverse W is easily found without the help of this theorem, as a
Nemitskii operator: W(u) = v ou with ¢y = ¢~ L.

It turns out that any function f satisfying (i) has the Hadamard differentiability
property which is stronger than the Gateaux differentiability and which we recall below.

DerinTION 5. Let X and Y be normed spaces. Amap f : X — Y is called Hadamard
differentiable at x, with derivative Df(x) € £(X,Y), if, for every sequence v, — v
in V and every sequence 4, — 0 in R, we have

lim = (/5 + ) = £()) = DF .

This notion is weaker than Fréchet differentiability, but in finite dimension, Hadamard
and Fréchet differentiability are equivalent. On the other hand, Hadamard differentiabil-
ity is stronger than Gateaux differentiability, but if a map f is Gateaux-differentiable
and Lipschitz, then it is Hadamard differentiable (see, e.g., [6]). In particular, the
functions f of Theorems 1, 2 are Hadamard differentiable.

Note that the chain rule holds true for Hadamard differentiable functions, while
this is not the case with Géateaux differentiability (see [6]). Hadamard differentiable
functions are encountered, for instance, in statistics [6, 13, 14] and in the bifurcation
theory of nonlinear elliptic partial differential equations [5].

The paper is organized as follows. In Section 2, we prove Theorem 2. In Section 3, we
state the hard surjection theorem with continuous right-inverse (Theorem 8) that can be
proved using Theorem 2 and proceeding as in [4]. Finally, under additional assumptions,
we state and prove the uniqueness of the continuous right-inverse (Theorem 9).
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2. Proor orF THEOREM 2

In [3], Theorem 1 was proved by applying Ekeland’s variational principle in the Banach
space X, to the map x +— | f(x) — y|ly. This principle provided the existence of
an approximate minimizer x. Assuming that || f(x) — y ||y > 0 and considering the
direction of descent L(x)(y — f(x)), a contradiction was found. Thus, f(x) — y was
necessarily equal to zero and x was the desired solution of the equation f(x) = y.
However, there was no continuous dependence of x as a function of y. In order to
obtain such a continuous dependence, it is more convenient to solve all the equations
f(x) = y for all possible values of y € B’ simultaneously, by applying the variational
principle in a functional space of continuous maps from B’ to X. The drawback is
that it is more difficult to construct a direction of descent, as this direction should be a
continuous function of y. In order to do so, we use an argument inspired of the classical
pseudo-gradient construction for C'! functionals in Banach spaces [8], which makes
use of the paracompactness property of metric spaces.

Consider the space € of continuous maps g : B’ — X such that ||y|~'g(y) is
bounded on B’, with the notation B’ := B’ \ {0}. Endowed with the norm

I

lgle = sup Iy~ |g(»)
B/

€ is a Banach space. Consider the function

0(9) = sup [y 7" fog() — | iflglhe < ——.

yeB’ l—a
¢(g) := 400 otherwise.

The function ¢ is lower semi-continuous on € and its restriction to the closed ball
{g €€ :|gle < 1%} is finite-valued. In addition, we have

9(0) = sup Iy~ £ —y| =1.
p(g) =0, Vget.
Choose some mg with
sup{HL(x)HY,X 1X € B} <mgy < m.
By Ekeland’s variational principle [2], there exists some go € € such that

(2.1 ®(go) < 1,

nmo
2.2) g0~ Olle < 5
—a

(2.3) Vg e, ¢(g)>o(go)—

IA

’

(1 —a)p(0)
—llg —golle.
mo
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Equation (2.2) implies that go maps B’ into the open ball of center Oy and radius
mo(1 —a)™'R’ = Rmem™' < R, and the last equation can be rewritten:

1—a
2.4) Vget€, o¢(g) > wp(go)— m—0||g —golle.

If p(go) = 0, then f(go(y)) —y = Oforall y € B’ and the existence proof is over.
If not, then ¢(go) > 0 and we shall derive a contradiction. In order to do so, we are
going to build a deformation g; of g¢ which contradicts the optimality property (2.3)
of go.

Leta < a’ < 1 be such that
1—d
l—a

sup{”L(x)HY’X :xeB} < my.

We define a continuous map w : B’ — Y by the formula

w(y):=y— fogo(y) €Y.

By the continuity of w, the set
. 1
vi={ye 8wy, < 0@0lyly|

is open in B’.

Now, Df is bounded since f is Lipschitz-continuous, and L is bounded on B by
Assumption (iii). Therefore, combining these bounds with the continuity of w, we see
that for each (x, y) € B x (B’ \ V), there exists a positive radius 8(x, y) such that if
(x',y') € Bx(x, B(x,y)) x By (y, B(x,)), then (x', y') € B x B’ and

(214C8]
which implies the inequality

23 afwmy + [(Df &) e L) = Iy)(w() —wM) [y =@’ [wG]y-

xy [L@ ]y x + 1+ ) [w0) vy = @ - o)y

Let y(x, y) := min(x(x, w(y)); B(x, y)) where a(x, w) is the radius introduced in
Assumption (ii). Then, this assumption combined with (2.5) implies that

(2.6) I(Df(x") o L(x) — Iy)w(y) |, < a'|wO)|y

for each (x,y) € B x (B’ \ V) and all (x’, y’) € Bx(x,y(x,y)) x By(y, B(x, y)).
Since the set

Q= U Bx (x.y(x,)) x By (y. B(x.))

(x,¥)EBx(B'\V)
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is a metric space, it is paracompact [11]. Thus, €2 has a locally finite open covering
(wi)ier where foreachi € I,

wi C Bx(xi,y(xi, yi)) x By (yi. B(xi. yi))

for some (x;, y;) € B X (B/ \ V). In the sequel, we take the norm max(||x||x; ||y]y)
on X x Y.For (x,y) € B x B’, we define

01 (x,y) = dist ((x. ). (B x B) \ ),
O(x,y) = — .Ziel i (x, )
dist(y, B'\ V) + > ;s 0i(x. )

Note that 0(x, y) = 1 when |[w(y)|y > ‘p(g()) y|ly,and 6(x,y) = 0when (x,y) ¢ Q.
We are now ready to define

€ [0,1].

L(r.y) = (disty. B\ V) + Y 0i(x.9) Y oite 0L ().

iel iel
One easily checks that Lis locally Lipschitz on B x B’. Moreover, it satisfies the same
uniform estimate as L:

1—a’
1—a

2.7) sup{“i(x,y)HY’X :xeB, yeB}< mo,

and due to (2.6), it is an approximate inverse of Df “in the direction w(y)”:

28) [(Df () 0 Lx.y) = 0x. ) Iy )w(0)
<d'0(x,y)|w®)|y. V(x.y)€BxB.

Now, to each y € B’ , we associate the vector field on B:
Xy (x) := L(x, p)w(y),

and we consider the Cauchy problem

d
d_); = Xy(x),
x(0) = go(y)-

The vector field X, is locally Lipschitz in the variable x € B, and from (2.7) we have
the uniform estimate
/ 4/

1—a 1—a
mo ¢(go) =< my.
1—a 1—

sup {l¥lI7" [ Xy(x) |y : x € B, y € B'} <
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Thus, recalling that || go () ||x < Rmom ™!, we see that our Cauchy problem has a unique

solution x(z) = g,(y) € B on the time interval [0, ] with T = (1”;{;1;?:0

we take g,(0) = 0. This gives us a one-parameter family of functions g, : B’ — B.

. In addition,

For 0 <t < 7, g; satisfies the estimate

_ . 1—d
(2.9) sup {Ily 17" :0") — 20y : v € B’} < T——mo o(o)t.
Since [|golle < 2% and ¢(go) < 1, inequality (2.9) implies that
_ m
(2.10) sup ||y||Y1||gz()’)HX <14 vt € [0, 7].
B/

We recall that Z(-, -) is locally Lipschitz on B x B’ and go, W are continuous. So, by
Gronwall’s inequality, for each ¢ € [0, ] the function g; is continuous on B’. We can
conclude that g; € €, and (2.10) implies that ¢(g;) < oo.

Now, to each (¢, y) € [0, 7] x B, we associate s;(y) := fot 0(gyu(y), y)du and we
consider the function

(t,y) €0, 7] x B" > h(t,y):= fog(y)—y+ (1 —s:(»)w(y) €Y.

Since f is Lipschitzian, its Gateaux-differential Df(x) at any x € B is also a
Hadamard differential, as mentioned in the introduction. This implies that for any
function y : (—1, 1) — B differentiable at 0 such that y(0) = x, the function f oy is
differentiable at 0 and the chain rule holds true: (f o )’ (0) = Df(y(0))y’(0).

Therefore, using (2.8), we get

H%h(h y)HY = |(Df (&) 0 L(g:(»). ) — 6(&:(»). ¥) Iy )w(»)]
<d'0(g:(). ) |[w |-
In addition, 7(0, y) = 0, so by the mean value theorem,
|h@. |y < d'sc)|w)|y-
By the triangle inequality, this implies that
(2.11) 1/ (g:) =]y = (1= =a)s: () |w»)]y-

We are now ready to get a contradiction. The estimate (2.9) may be written as
follows:

1—a
2.12) —llgt —golle < (1= a1 p(go). V1 € (0.7].
0
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As a consequence of (2.11), if ||y (|| f(g:(») = ylly = @ then

»(go)
2

hence, s;(y) = t. Thus, the estimate (2.11) implies that for all (¢, y) € [0, 7] x B’,

107 |7 (g0 )) =y < max {‘”;’(’); (1-a —a’)z)||y||;1||w(y)||y}.

lwy = Iyly:

However, we always have ||y || |w(»)lly < ¢(go), so, with 7/ := min{z, %}, we get

IyI7 £ (g:()) = ¥]y = (1 =1 —a')t)p(go)

forall0 <tz <t'and y € B’. This means that
(2.13) 9(g) < (11— —d)r)e(go). Vtel0.7].

Combining (2.12) with (2.13), we find the following, for 0 < ¢ < 7’:

1—
Plg0) < p(g0) — (1 a1 plg0) < p(g0) == = g — golle.

which contradicts (2.4). This ends the proof of the existence statement in Theorem 2.
The uniqueness statement is proved by more standard arguments: if g; and g, are
two continuous right-inverses of f such that g1 (0) = g,(0) = 0, then the set

Z = {y €eB'|g1(y) = gz()’)}

is nonempty and closed. On the other hand, if Df(x) is left and right invertible, it is
an isomorphism. By Remark 4, its inverse Z(x) is bounded independently of x. We
fix an arbitrary yg in Z and we consider a small radius p > 0 (to be chosen later)
such that By (yo, p) C B’. By continuity of g; — g2 at yo, there is n(p) > 0 such that
lim,—0 n(p) = 0, and, for each y in the ball By (yo, p),

lg2(») — g1 ¢ < n(p).

However, we also have f(g2(y)) — f(g1(y)) = y — y = 0. Thus, using (iv), we find
that

1Df (g1(1))(g20) — g1) |y < (eom(P)|g2(») — g1(») | y-

Then, multiplying Df(g1(y))(g2(y) — g1(»)) on the left by Z(gl (y)) and using the
uniform bound on L, we get a bound of the form

lg200) — g1 |x < £ g200) — &1 |«

with lim,_,¢ £(p) = 0. As a consequence, for p small enough, one has g»(y) — g1(»)
= 0,s0 y € Z. This proves that Z is open. By connectedness of B’, we conclude that
Z = B’, so0 g1 and g, are equal. This ends the proof of Theorem 2.
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3. A HARD SURJECTION THEOREM WITH CONTINUOUS RIGHT-INVERSE

In this section, we state our hard surjection theorem with continuous right-inverse,
and we shortly explain its proof which is a variant of the arguments of [4] in which
Theorem 1 is replaced by Theorem 2.

Let (Vs, | - ls)o<s<s be a scale of Banach spaces; namely,

Oss1=s2=8 = [Vi, CVyand |- s, = |- s ]-

We shall assume that to each A € [1, 00) is associated a continuous linear projection
IT(A) on Vp, with a range E(A) C Vs. We shall also assume that the spaces E(A)
form a nondecreasing family of sets indexed by [1, o), while the spaces Ker IT(A)
form a nonincreasing family. In other words,

1<A<A = IA)I(A) = II(A)TI(A) = TI(A).

Finally, we assume that the projections IT(A) are “smoothing operators” satisfying
the following estimates.

POLYNOMIAL GROWTH AND APPROXIMATION. There are constants Ay, A» > 1 such
that, for all numbers 0 < s < S, all A € [1,00) and all u € Vs, we have

3.1) Vielo, Sl |mul, < A AT ull,,
(3.2) Vi elos], (11— TIA))u|, < A2A~C |Juls.
When the above properties are met, we shall say that (Vs, | - ||s)o<s<s, endowed

with the family of projectors {I1(A), A € [1, 00)}, is a tame Banach scale.

Let (Ws., || - |I5)o<s<s be another tame scale of Banach spaces. We shall denote by
IT'(A) the corresponding projections defined on Wy with ranges E’/(A) C Wgs, and by
Aj (i = 1,2,3) the corresponding constants in (3.1), (3.2).

We also denote by B; the unit ball in V and by B/ (0, r) the ball of center 0 and
positive radius r in Wj:

By ={ueVs|lluls <1} and B0,r) ={veW||vl;<r}.

In the sequel, we fix nonnegative constants sg, 7, £ and £'. We will assume that S
is large enough.

We first recall the definition of Géateaux differentiability, in a form adapted to our
framework.

DEerINITION 6. We shall say that a function F : B, 1, — Wy, is Gdteaux-differentiable
(henceforth G-differentiable) if for every u € By, 4, there exists a linear map

DF(M) . VS()+m — WSO
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such that for every s € [so, S —m)], if u € Bgy4ym N Vys4m, then DF (u) maps continu-
ously Vs, into Wy, and

Vh € Vesm, lim ”;[F(u +th) — Fu)] - DF(u)hH; =0,

Note that, even in finite dimension, a G-differentiable map need not be C 1 or even
continuous. However, if DF : Bsyym N Vigm = L (Vs4m. W) is locally bounded,
then F : Bgy4m N Vs4m — Wi is locally Lipschitz, hence continuous. In the present
paper, we are in such a situation.

We now define the notion of S-tame differentiability.

DEFINITION 7.

We shall say that the map F : Bg,+m — Wy, is S-tame differentiable if it is G-
differentiable in the sense of Definition 6, and, for some positive constant a and
all s € [so, S —m),ifu € Bgyym N Vspm and h € Vi yp, then DF (u)h € W with
the tame direct estimate

IDF@)R|, < a(hlls+m + lttllssm | llsrm)-

Then, we shall say that DF is tame right-invertible if there are » > 0 and £, ¢’ > 0
such that for all u € By, max{m,¢}» there is a linear map L(u) : Wy 4o — Vi,
satisfying

Vk € Wyyro. DFu)L(u)k = k.

and for all so <s < S —max{{, €'}, if u € Bsytmax{m,ey N Vs4¢ and k € Wiy,
then L(u)k € Vj, with the tame inverse estimate

(3.3) | Lkl < (kN + IKI5 el llste)-

In the above definition, the numbers m, £, £’ represent the loss of derivatives for
DF and its right-inverse.
The main result of this section is the following theorem.

THEOREM 8. Assume that the map F : Bgyym — Wy, is S-tame differentiable between
the tame scales (Vs)o<s<s and (Ws)o<s<s with F(0) = 0 and that DF is tame right-
invertible. Let so, m, {, {' be the associated parameters.

Assume in addition that for each A, A" € [1, S], the map

U € By ymax(m,ey N E(A) — Iy, DF (u) } g, € L(E(A), E'(A)))

is continuous for the norms | - ||s, and || - ||5, -
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Let 51 > so + max{m,{} and § > s1 + {'. Then, for S large enough, there exist a
radius r > 0 and a continuous map G : Bé (0,7) — By, such that

G(O) =0 and FoG = IBé(O,r)’
[6w),, < MIvlly. Vo e Bjo.r).

As mentioned in the introduction, compared with the results of [4], the novelty
in Theorem 8 is the continuity of G. To prove this theorem, one repeats with some
modifications the arguments of [4] in the case e = 1 (in that paper, a singularly perturbed
problem depending on a parameter ¢ was dealt with, but for simplicity, we do not
consider such a dependence here). With the notation of that paper, let us explain briefly
the necessary changes.

We recall that in [4] a vector v was given in By (0, r) and the goal was to solve the
equation F(u) = v. The solution u was the limit of a sequence u,, of approximate
solutions constructed inductively. Each u, was a solution of the projected equation

I, F(uy) = I,_,v, u, € E,.

It was found as u, = u,—; + z,, z, being a small solution in E; of an equation of
the form f,,(z) = Ayv + ey, with f,(2) 1= I1,,(F (Un—1 + 2) — F(Up—1)), Ayv 1=
I, _,(1 —=1II),_,)v and e, := —I1, (1 — T, _,) F(4n—1). The existence of z, was
proved by applying Theorem 1 to the function f, in a ball By, (0, R,,) (see [4, Sec-
tion 3.3.2] for precise definitions of E,, IT},, f, and N,).

Instead, we construct inductively a sequence of continuous functions

Gy : B5(0,r) - B, NE,

such that
I, F o Gu(v) =TI,_;v

for all v in Bé (0, r). Each Gy, is of the form G,—; + H, with
Hy(v) = gn(Anv - H;;(l - H;;—l)F ° Gn—l(v)),

where g, is a continuous right-inverse of f, such that g, (0) = 0, obtained thanks to
Theorem 2.

Moreover, under the same conditions on the parameters as in [4], we find that the
sequence of continuous functions (G, ), converges uniformly on B (0, r) for the norm
|| - I, » and this implies the continuity of their limit G : Bg(0,r) — Bg,. This limit is
the desired continuous right-inverse of F'. We insist on the fact that the conditions on r
are exactly the same as in [4]. Indeed, in order to apply Theorem 2 to f;, we just have
to check assumptions (i), (ii’) and (iii). This is done with exactly the same constraints
on the parameters as in [4]. [ ]
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We end the paper with a uniqueness result, which requires additional conditions.

THEOREM 9. Suppose that we are under the assumptions of Theorem 8 and that the
following two additional conditions hold true:

For each u € B4 max(m,0),
(3.4) Vh € Vioymie, Lu)DFu)h = h.
For each s € [sg, S —m] and ¢ > 0, there is a non-decreasing function
&s.c : (0,00) = (0, 00)
such thatlim;_,q €5,c(t) =0 and, for alluy,uz in Bgy4m N Esqm with [uq||s+m <c,
(3.5) | F(uz) = F(uy) — DF (uy)(uz —uy) |
=< 8s,c(||”2 — U ||s+m)||uz —uy||so+m-

Let 51 > so + max{2m + {',m + £}. Then, for any S > s1, § € [s¢, S] and r > 0,
there is at most one map G Bé (0,7) = Bgg+max(m,) N Ws, continuous for the
norms || - |5 and || - ||s,, such that

(3.6) G0)=0 and FoG =lIp .

RemARK 10. The tame estimate (3.5) is satisfied, in particular, when F is of class C?
with a classical tame estimate on its second derivative as in [12, (2.11)]. In that special
case, for s and c fixed, one has the bound &; . (¥) = O(t);—o.

In order to prove Theorem 9, we assume that G, G, both satisfy (3.6), and we
introduce the set

Z :={v e B5(0,r) | G1(v) = G2(v)}.

This set is nonempty since it contains 0, and it is closed in Bj(0, r) for the norm || - |
by continuity of G; — G». It remains to prove that it is open.

For that purpose, we fix an arbitrary vy in Z and we consider a small radius p > 0
(to be chosen later) such that Bg(vo, p) C Bg(0, 7). By continuity of G, G2 at vo,
there is n(p) > 0 such that lim,—.¢ 7(p) = 0, and, for each v in the ball Bj(vo, p),

1G], = [G1o)],, +1(p) and [G2(v) = Gi(w),, =< n(p).

However, we also have F(G,(v)) — F(G1(v)) = v — v = 0. Thus, imposing n(p) <1
and applying (3.5) with s = 51 —m, ¢ = ||G1(vo)lls;, + land u; = G;(v),i = 1,2,
we find that

| DF(G1())(G2(v) = G1()) 5, —m = (e51-m,c © M(P) | G2(v) = G1(W)| 1,
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Then, multiplying DF (G1(v))(G2(v) — G1(v)) on the left by L(G1(v)) and using
(3.4) and the tame estimate (3.3), we get a bound of the form

[620) = G1@) s = €@ G20 = G1),

with lim, ¢ £(p) = 0. Since s; —max(m + ', £) > so + m, we conclude that for p
small enough, one has G,(v) — G1(v) = 0, so v € Z. The set Z is thus nonempty,
closed and open in Bj(0,r), so we conclude that Z = Bg(0, r) and Theorem 9 is
proved. |
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