Rend. Lincei Mat. Appl. 35 (2024), 1–15 DOI 10.4171/RLM/1028

© 2024 Accademia Nazionale dei Lincei Published by EMS Press This work licensed under a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license

Functional Analysis. – *A local surjection theorem with continuous inverse in Banach spaces*, by Ivar Ekeland and Éric Séré, communicated on 8 March 2024.

Dedicated to the memory of our friend Antonio Ambrosetti.

Abstract. – In this paper, we prove a local surjection theorem with continuous right-inverse for maps between Banach spaces, and we apply it to a class of inversion problems with loss of derivatives.

Keywords. – Inverse function theorem, Nash–Moser, loss of derivatives, Ekeland's variational principle.

MATHEMATICS SUBJECT CLASSIFICATION 2020. - 47J07.

1. Introduction

In the recent work [\[4\]](#page-13-0), we introduced a new algorithm for solving nonlinear functional equations admitting a right-invertible linearization, but with an inverse losing derivatives. These equations are of the form $F(u) = v$ with $F(0) = 0$, v small and given, u small and unknown. The main difference with the classical Nash–Moser algorithm [\[7,](#page-13-1) [12\]](#page-13-2) was that, instead of using a regularized Newton scheme, we constructed a sequence $(u_n)_n$ of solutions to Galerkin approximations of the "hard" problem and proved the convergence of $(u_n)_n$ to a solution u of the exact equation. Each u_n was obtained thanks to a topological theorem on the surjectivity of maps between Banach spaces, due to one of us in [\[3\]](#page-13-3). However, this topological theorem does not provide the continuous dependence of u_n as a function of v. As a consequence, nothing was said in [\[4\]](#page-13-0) on the existence of a continuous selection of solutions $u(v)$. Theorem [8](#page-10-0) of the present work overcomes this limitation thanks to a variant of the topological argument, stated in Theorem [2.](#page-1-0)

In the sequel, $\mathcal{L}(X, Y)$ is the space of bounded linear operators between Banach spaces X and Y; the operator norm on this space is denoted by $\|\cdot\|_{X,Y}$. We first restate the result of [\[3\]](#page-13-3) below for the reader's convenience.

Theorem 1 ([\[3\]](#page-13-3)). *Let* X *and* Y *be Banach spaces. Denote by* B *the open ball of radius* $R > 0$ around the origin in X. Let $f : B \to Y$ be continuous and Gâteaux-differentiable, *with* $f(0) = 0$ *. Assume that the derivative* $Df(x)$ *has a right-inverse* $L(x)$ *, uniformly bounded on the ball* B_R :

$$
\forall (x, k) \in B \times Y, \quad Df(x)L(x)k = k,
$$

sup { $\Vert L(x) \Vert_{Y,X} : \Vert x \Vert_X < R} < m.$

Then, for every $y \in Y$ *with* $||y||_Y < Rm^{-1}$ *, there is some* $x \in B$ *satisfying*

$$
f(x) = y \quad and \quad ||x||_X \le m ||y||_Y.
$$

We recall that in the standard local inversion theorem, one assumes that f is of class C^1 , with $Df(0)$ invertible and y small. An explicit bound on $||y||_Y$ is provided by the classical Newton–Kantorovich invertibility condition (see [\[1\]](#page-13-4)) when f is of class C^2 . The bound $||y||_Y < Rm^{-1}$ $||y||_Y < Rm^{-1}$ $||y||_Y < Rm^{-1}$ of Theorem 1 is much less restrictive than the Newton–Kantorovich condition, at the price of losing uniqueness, even in the case when $L(x)$ is also a left inverse of $Df(x)$. To illustrate this, we consider a finite-dimensional example.

EXAMPLE A. We take $X = Y = \mathbb{C}$ viewed as a 2-dimensional real vector space and $f(z) = (2 + z)^n - 2^n$, for any complex number z in the open disc of center 0 and radius $R = 1$ (here *n* is a positive integer). In that case, $Df(z)$ is the multiplication by $n(2+z)^{n-1}$ and $L(z)$ is the multiplication by $n^{-1}(2+z)^{1-n}$, so f satisfies the assumptions of Theorem [1](#page-0-0) for $R = 1$ and any real number $m > n^{-1}$. Thus, Theorem 1 tells us that the equation $f(z) = Z$ has a solution of modulus less than or equal to $m|Z|$, provided Z has modulus less than m^{-1} . However, uniqueness does not hold. The solutions of the algebraic equation $(2 + z)^n - 2^n = Z$ are of the form $z_k = 4i e^{i\frac{k\pi}{n}} \sin \frac{k\pi}{n} + O(2^{-n})$, and for $|Z| > 4\pi$ the three solutions z_0, z_1, z_{-1} lie in the closed disc $\{|z| \leq n^{-1} |Z|\}$ when n is large enough. Yet, there is a unique continuous function g such that $g(0) = 0$ and $f \circ g(Z) = Z$ for all complex numbers Z of modulus less than $1/m$. This continuous selection is $g(Z) = z_0 = 2((1 + 2^{-n}Z)^{\frac{1}{n}} - 1)$ with $(\rho e^{it})^{\frac{1}{n}} = \rho^{1/n} e^{it/n}, \forall (\rho, t) \in (0, \infty) \times (-\pi, \pi).$

This example raises the following question: in the general case, can we select a solution x depending continuously on y, even in infinite dimension and when $Df(x)$ does not have a left inverse? The following theorem gives a positive response, under mild additional assumptions.

Theorem 2. *Let* X*,* Y *be two Banach spaces. Denote by* B *the open ball of radius* $R > 0$ around the origin in X. Consider a map $f : B \to Y$ with $f(0) = 0$. We assume *the following:*

(i) f *is Lipschitz-continuous and Gâteaux-differentiable on* B*.*

(ii) *There are a function* $L : B \to \mathcal{L}(Y, X)$, a constant $a < 1$ and, for any $(x, w) \in$ $B \times Y$, a positive radius $\alpha(x, w)$ such that if $||x' - x||_X < \alpha(x, w)$, then $x' \in B$ *and*

$$
\left\| \big(Df(x') \circ L(x) - I_Y\big)w \right\|_Y \le a \|w\|_Y.
$$

(iii) *There is some m* $\lt \infty$ *such that*

$$
\sup\left\{\left\|L(x)\right\|_{Y,X} : x \in B\right\} < m.
$$

Denote by $B' \subset Y$ *the open ball of radius* $R' := (1 - a)Rm^{-1}$ *and center* 0*. Then, there is a continuous map* $g : B' \to B$ such that

$$
\forall y \in B', \quad ||g(y)||_X \le \frac{m}{1-a} ||y||_Y \quad and \quad f \circ g(y) = y.
$$

- *If, in addition, one has the following:*
- (iv) f *is Fréchet differentiable on B, Df(x)* has a left-inverse for all $x \in B$ and *there is a non-decreasing function* ε : $(0, \infty) \rightarrow (0, \infty)$ with $\lim_{t\rightarrow 0} \varepsilon(t) = 0$, *such that for all* x_1 *,* x_2 *in B,*

$$
\left\|f(x_2)-f(x_1)-Df(x_1)(x_2-x_1)\right\|_Y\leq \varepsilon\big(\|x_2-x_1\|_X\big)\|x_2-x_1\|_X;
$$

then g *is the unique continuous right-inverse of* f *defined on* B ⁰ *and mapping* 0_Y *to* 0_X *.*

REMARK 3. If a function f satisfies the assumptions (i), (ii) and (iii), then, for every $x_0 \in B$, taking the radius $R_{x_0} = R - ||x_0||_X$, one can apply Theorem [1](#page-0-0) to the function

$$
z \in B_X(0, R_{x_0}) \mapsto f(x_0 + z) - f(x_0),
$$

and one concludes that the restriction of f to $B_X(x_0, R_{x_0})$ has a continuous rightinverse g_{x_0} defined on $B_Y(f(x_0), (1-a)R_{x_0}m^{-1})$ such that

$$
||g_{x_0}(y) - x_0||_X \le \frac{m}{1-a} ||y - f(x_0)||_Y
$$
 for all $y \in B_Y(f(x_0), (1-a)R_{x_0}m^{-1}).$

If, in addition, f satisfies (iv), then g_{x_0} is the unique continuous right-inverse of f defined on the ball $B_Y(f(x_0), (1-a)R_{x_0}m^{-1})$ and mapping $f(x_0)$ to x_0 .

REMARK 4. Assumption (ii) implies that $Df(x)$ has a right-inverse \hat{L} such that

$$
\|\hat{L}\|_{Y,X} \le (1-a)^{-1} \|L\|_{Y,X}.
$$

Indeed, taking $P = I_Y - Df(x) \circ L(x)$, one can choose $\hat{L} := L \circ (\sum_{k=0}^{\infty} P^k)$.

Conversely, Assumption (ii) is satisfied, for instance, if (i) and (ii') hold true, with the following:

 (ii') For each $x \in B$, $Df(x)$ has a right-inverse $L(x) \in \mathcal{L}(Y, X)$. Moreover, the map $x \to Df(x)$ is continuous for the strong topology of B and the strong operator topology of $\mathcal{L}(X, Y)$: in other words, if $||x_n - x||_X \to 0$, then, for any $v \in X$, $||(Df(x_n) - Df(x))v||_Y \to 0.$

The function f of Example [A](#page-1-1) satisfies the assumptions (i), (ii') and (iii). In that finite-dimensional case, f is of course differentiable in the classical sense of Fréchet. Let us give an example for which Fréchet differentiability does not hold.

EXAMPLE B. Let $\phi \in C^1(\mathbf{R}, \mathbf{R})$ with ϕ' bounded on **R** and $\inf_{\mathbf{R}} \phi' > 0$. The Nemitskii operator

$$
\Phi: u \in L^p(\mathbf{R}) \to \phi \circ u \in L^p(\mathbf{R}), \quad 1 \le p < \infty,
$$

is not Fréchet differentiable when ϕ' is not constant [\[9,](#page-13-5) [10\]](#page-13-6). However, Φ satisfies conditions (i), (ii') and (iii) for any $r > 0$ and $m > (\inf_{\mathbf{R}} \varphi')^{-1}$. Therefore, Theorem [2](#page-1-0) applies to Φ , but the inverse Ψ is easily found without the help of this theorem, as a Nemitskii operator: $\Psi(u) = \psi \circ u$ with $\psi = \phi^{-1}$.

It turns out that any function f satisfying (i) has the *Hadamard differentiability property* which is stronger than the Gâteaux differentiability and which we recall below.

DEFINITION 5. Let X and Y be normed spaces. A map $f: X \rightarrow Y$ is called Hadamard differentiable at x, with derivative $Df(x) \in \mathcal{L}(X, Y)$, if, for every sequence $v_n \to v$ in V and every sequence $h_n \to 0$ in R, we have

$$
\lim_{n} \frac{1}{h_n} \big(f(x + h_n v_n) - f(x) \big) = Df(x)v.
$$

This notion is weaker than Fréchet differentiability, but in finite dimension, Hadamard and Fréchet differentiability are equivalent. On the other hand, Hadamard differentiability is stronger than Gâteaux differentiability, but if a map f is Gâteaux-differentiable and Lipschitz, then it is Hadamard differentiable (see, e.g., [\[6\]](#page-13-7)). In particular, the functions f of Theorems [1,](#page-0-0) [2](#page-1-0) are Hadamard differentiable.

Note that the chain rule holds true for Hadamard differentiable functions, while this is not the case with Gâteaux differentiability (see [\[6\]](#page-13-7)). Hadamard differentiable functions are encountered, for instance, in statistics $[6, 13, 14]$ $[6, 13, 14]$ $[6, 13, 14]$ $[6, 13, 14]$ $[6, 13, 14]$ and in the bifurcation theory of nonlinear elliptic partial differential equations [\[5\]](#page-13-8).

The paper is organized as follows. In Section [2,](#page-4-0) we prove Theorem [2.](#page-1-0) In Section [3,](#page-9-0) we state the hard surjection theorem with continuous right-inverse (Theorem [8\)](#page-10-0) that can be proved using Theorem [2](#page-1-0) and proceeding as in [\[4\]](#page-13-0). Finally, under additional assumptions, we state and prove the uniqueness of the continuous right-inverse (Theorem [9\)](#page-12-0).

2. Proof of Theorem [2](#page-1-0)

In [\[3\]](#page-13-3), Theorem [1](#page-0-0) was proved by applying Ekeland's variational principle in the Banach space X, to the map $x \mapsto ||f(x) - y||_Y$. This principle provided the existence of an approximate minimizer x. Assuming that $|| f(x) - y ||_Y > 0$ and considering the direction of descent $L(x)(y - f(x))$, a contradiction was found. Thus, $f(x) - y$ was necessarily equal to zero and x was the desired solution of the equation $f(x) = y$. However, there was no continuous dependence of x as a function of v . In order to obtain such a continuous dependence, it is more convenient to solve *all* the equations $f(x) = y$ for all possible values of $y \in B'$ simultaneously, by applying the variational principle in a functional space of continuous maps from B' to X. The drawback is that it is more difficult to construct a direction of descent, as this direction should be a continuous function of y . In order to do so, we use an argument inspired of the classical pseudo-gradient construction for C^1 functionals in Banach spaces [\[8\]](#page-13-9), which makes use of the paracompactness property of metric spaces.

Consider the space $\mathcal C$ of continuous maps $g : B' \to X$ such that $||y||^{-1}g(y)$ is bounded on \dot{B}' , with the notation $\dot{B}' := B' \setminus \{0\}$. Endowed with the norm

$$
\|g\|_{\mathcal{C}} = \sup_{\dot{B}'} \|y\|^{-1} \|g(y)\|,
$$

 $\mathcal C$ is a Banach space. Consider the function

$$
\varphi(g) := \sup_{y \in \mathring{B}'} ||y||^{-1} ||f \circ g(y) - y|| \quad \text{if } ||g||_{\mathcal{C}} \le \frac{m}{1 - a},
$$

$$
\varphi(g) := +\infty \quad \text{otherwise.}
$$

The function φ is lower semi-continuous on $\mathcal C$ and its restriction to the closed ball $\{g \in \mathcal{C} : ||g||_{\mathcal{C}} \leq \frac{m}{1-a}\}\$ is finite-valued. In addition, we have

$$
\varphi(0) = \sup_{\mathbf{B}'} ||y||^{-1} ||f(0) - y|| = 1,
$$

$$
\varphi(g) \ge 0, \quad \forall g \in \mathcal{C}.
$$

Choose some m_0 with

$$
\sup\left\{\left\|L(x)\right\|_{Y,X}:x\in B\right\}
$$

By Ekeland's variational principle [\[2\]](#page-13-10), there exists some $g_0 \in \mathcal{C}$ such that

$$
\varphi(g_0) \le 1,
$$

(2.2)
$$
||g_0 - 0||_{\mathcal{C}} \le \frac{m_0}{1 - a},
$$

(2.3)
$$
\forall g \in \mathcal{C}, \quad \varphi(g) \ge \varphi(g_0) - \frac{(1-a)\varphi(0)}{m_0} \|g - g_0\|_{\mathcal{C}}.
$$

Equation [\(2.2\)](#page-4-1) implies that g_0 maps B' into the open ball of center 0_X and radius $m_0(1-a)^{-1}R' = Rm_0m^{-1} < R$, and the last equation can be rewritten:

(2.4)
$$
\forall g \in \mathcal{C}, \quad \varphi(g) \ge \varphi(g_0) - \frac{1-a}{m_0} \|g - g_0\|_{\mathcal{C}}.
$$

If $\varphi(g_0) = 0$, then $f(g_0(y)) - y = 0$ for all $y \in B'$ and the existence proof is over. If not, then $\varphi(g_0) > 0$ and we shall derive a contradiction. In order to do so, we are going to build a deformation g_t of g_0 which contradicts the optimality property [\(2.3\)](#page-4-2) of g_0 .

Let $a < a' < 1$ be such that

$$
\sup\{\|L(x)\|_{Y,X} : x \in B\} < \frac{1-a'}{1-a}m_0.
$$

We define a continuous map $w : B' \to Y$ by the formula

$$
w(y) := y - f \circ g_0(y) \in Y.
$$

By the continuity of w , the set

$$
\mathcal{V} := \left\{ y \in \dot{B}' : \| w(y) \|_{Y} < \frac{1}{2} \varphi(g_0) \| y \|_{Y} \right\}
$$

is open in \dot{B}' .

Now, Df is bounded since f is Lipschitz-continuous, and L is bounded on B by Assumption (iii). Therefore, combining these bounds with the continuity of w , we see that for each $(x, y) \in B \times (\dot{B}' \setminus V)$, there exists a positive radius $\beta(x, y)$ such that if $(x', y') \in B_X(x, \beta(x, y)) \times B_Y(y, \beta(x, y))$, then $(x', y') \in B \times B'$ and

$$
\left(\left\| Df(x') \right\|_{X,Y} \left\| L(x) \right\|_{Y,X} + 1 + a' \right) \left\| w(y') - w(y) \right\|_{X} \leq (a' - a) \left\| w(y) \right\|_{X},
$$

which implies the inequality

$$
(2.5) \quad a \|w(y)\|_Y + \|(Df(x') \circ L(x) - I_Y)(w(y') - w(y))\|_Y \le a' \|w(y')\|_Y.
$$

Let $\gamma(x, y) := \min(\alpha(x, w(y)); \beta(x, y))$ where $\alpha(x, w)$ is the radius introduced in Assumption (ii). Then, this assumption combined with (2.5) implies that

(2.6)
$$
\| (Df(x') \circ L(x) - I_Y) w(y') \|_Y \le a' \| w(y') \|_Y
$$

for each $(x, y) \in B \times (\dot{B}' \setminus \mathcal{V})$ and all $(x', y') \in B_X(x, \gamma(x, y)) \times B_Y(y, \beta(x, y))$. Since the set

$$
\Omega := \bigcup_{(x,y)\in B\times(\dot{B}'\setminus V)} B_X(x,\gamma(x,y))\times B_Y(y,\beta(x,y))
$$

is a metric space, it is paracompact [\[11\]](#page-13-11). Thus, Ω has a locally finite open covering $(\omega_i)_{i \in I}$ where for each $i \in I$,

$$
\omega_i \subset B_X(x_i, \gamma(x_i, y_i)) \times B_Y(y_i, \beta(x_i, y_i))
$$

for some $(x_i, y_i) \in B \times (\dot{B}' \setminus \mathcal{V})$. In the sequel, we take the norm max $(\Vert x \Vert_X; \Vert y \Vert_Y)$ on $X \times Y$. For $(x, y) \in B \times B'$, we define

$$
\sigma_i(x, y) := \text{dist}((x, y), (B \times \dot{B}') \setminus \omega_i),
$$

$$
\theta(x, y) := \frac{\sum_{i \in I} \sigma_i(x, y)}{\text{dist}(y, \dot{B}' \setminus \mathcal{V}) + \sum_{i \in I} \sigma_i(x, y)} \in [0, 1].
$$

Note that $\theta(x, y) = 1$ when $||w(y)||_Y \ge \frac{\varphi(g_0)}{2} ||y||_Y$, and $\theta(x, y) = 0$ when $(x, y) \notin \Omega$. We are now ready to define

$$
\widetilde{L}(x, y) = \left(\mathrm{dist}(y, \dot{B}' \setminus \mathcal{V}) + \sum_{i \in I} \sigma_i(x, y)\right)^{-1} \sum_{i \in I} \sigma_i(x, y) L(x_i).
$$

One easily checks that \tilde{L} is locally Lipschitz on $B \times \dot{B}'$. Moreover, it satisfies the same uniform estimate as L :

(2.7)
$$
\sup \{ \| \tilde{L}(x, y) \|_{Y,X} : x \in B, y \in \dot{B}' \} < \frac{1 - a'}{1 - a} m_0,
$$

and due to [\(2.6\)](#page-5-1), it is an approximate inverse of Df "in the direction $w(y)$ ":

(2.8)
$$
\begin{aligned} \| (Df(x) \circ \widetilde{L}(x, y) - \theta(x, y) I_Y) w(y) \|_{Y} \\ \leq a' \theta(x, y) \| w(y) \|_{Y}, \quad \forall (x, y) \in B \times \dot{B}'. \end{aligned}
$$

Now, to each $y \in \dot{B}'$, we associate the vector field on B:

$$
X_{y}(x) := \widetilde{L}(x, y)w(y),
$$

and we consider the Cauchy problem

$$
\begin{cases}\n\frac{dx}{dt} = X_y(x), \\
x(0) = g_0(y).\n\end{cases}
$$

The vector field X_y is locally Lipschitz in the variable $x \in B$, and from [\(2.7\)](#page-6-0) we have the uniform estimate

$$
\sup\left\{\|y\|_{Y}^{-1}\|X_{y}(x)\|_{X}: x \in B, y \in \dot{B}'\right\} < \frac{1-a'}{1-a}m_{0}\,\varphi(g_{0}) \leq \frac{1-a'}{1-a}m_{0}.
$$

Thus, recalling that $||g_0(y)||_X < Rm_0m^{-1}$, we see that our Cauchy problem has a unique solution $x(t) = g_t(y) \in B$ on the time interval $[0, \tau]$ with $\tau = \frac{m - m_0}{(1 - a')m_0}$. In addition, we take $g_t(0) = 0$. This gives us a one-parameter family of functions $g_t : B' \to B$. For $0 < t \leq \tau$, g_t satisfies the estimate

(2.9)
$$
\sup \left\{ \|y\|_{Y}^{-1} \|g_t(y) - g_0(y)\|_{X} : y \in \dot{B}' \right\} < \frac{1 - a'}{1 - a} m_0 \, \varphi(g_0) t.
$$

Since $||g_0||_e \le \frac{m_0}{1-a}$ and $\varphi(g_0) \le 1$, inequality [\(2.9\)](#page-7-0) implies that

(2.10)
$$
\sup_{\dot{B}'} \|y\|_Y^{-1} \|g_t(y)\|_X < \frac{m}{1-a}, \quad \forall t \in [0, \tau].
$$

We recall that $\tilde{L}(\cdot, \cdot)$ is locally Lipschitz on $B \times \dot{B}'$ and g_0 , w are continuous. So, by Gronwall's inequality, for each $t \in [0, \tau]$ the function g_t is continuous on \dot{B}' . We can conclude that $g_t \in \mathcal{C}$, and [\(2.10\)](#page-7-1) implies that $\varphi(g_t) < \infty$.

Now, to each $(t, y) \in [0, \tau] \times \dot{B}'$, we associate $s_t(y) := \int_0^t \theta(g_u(y), y) du$ and we consider the function

$$
(t, y) \in [0, \tau] \times \dot{B}' \mapsto h(t, y) := f \circ g_t(y) - y + (1 - s_t(y))w(y) \in Y.
$$

Since f is Lipschitzian, its Gâteaux-differential $Df(x)$ at any $x \in B$ is also a Hadamard differential, as mentioned in the introduction. This implies that for any function γ : $(-1, 1) \rightarrow B$ differentiable at 0 such that $\gamma(0) = x$, the function $f \circ \gamma$ is differentiable at 0 and the chain rule holds true: $(f \circ \gamma)'(0) = Df(\gamma(0))\gamma'(0)$.

Therefore, using (2.8) , we get

$$
\left\| \frac{\partial}{\partial t} h(t, y) \right\|_{Y} = \left\| \left(Df(g_t(y)) \circ \widetilde{L}(g_t(y), y) - \theta(g_t(y), y) I_Y \right) w(y) \right\|_{Y} \leq a' \theta(g_t(y), y) \left\| w(y) \right\|_{Y}.
$$

In addition, $h(0, y) = 0$, so by the mean value theorem,

$$
||h(t, y)||_Y \leq a's_t(y)||w(y)||_Y.
$$

By the triangle inequality, this implies that

(2.11)
$$
\|f(g_t(y)) - y\|_Y \le (1 - (1 - a')s_t(y)) \|w(y)\|_Y.
$$

We are now ready to get a contradiction. The estimate (2.9) may be written as follows:

(2.12)
$$
\frac{1-a}{m_0} \|g_t - g_0\|_{\mathcal{C}} < (1-a')t \varphi(g_0), \quad \forall t \in (0, \tau].
$$

As a consequence of [\(2.11\)](#page-7-2), if $||y||_Y^{-1}||f(g_t(y)) - y||_Y \ge \frac{\varphi(g_0)}{2}$ then

$$
||w(y)||_Y \ge \frac{\varphi(g_0)}{2} ||y||_Y;
$$

hence, $s_t(y) = t$. Thus, the estimate [\(2.11\)](#page-7-2) implies that for all $(t, y) \in [0, \tau] \times \dot{B}'$,

$$
||y||_Y^{-1}|| f(g_t(y)) - y||_Y \le \max\left\{\frac{\varphi(g_0)}{2}; (1 - (1 - a')t) ||y||_Y^{-1} ||w(y)||_Y\right\}.
$$

However, we always have $||y||_Y^{-1}||w(y)||_Y \le \varphi(g_0)$, so, with $\tau' := \min\{\tau, \frac{1}{2}\}\)$, we get

$$
||y||_Y^{-1} || f(g_t(y)) - y ||_Y \le (1 - (1 - a')t) \varphi(g_0)
$$

for all $0 \le t \le \tau'$ and $y \in \dot{B}'$. This means that

(2.13)
$$
\varphi(g_t) \le (1 - (1 - a')t)\varphi(g_0), \quad \forall t \in [0, \tau'].
$$

Combining [\(2.12\)](#page-7-3) with [\(2.13\)](#page-8-0), we find the following, for $0 < t \leq \tau'$:

$$
\varphi(g_t) \leq \varphi(g_0) - (1 - a')t \varphi(g_0) < \varphi(g_0) - \frac{1 - a}{m_0} \|g_t - g_0\|_{\mathcal{C}},
$$

which contradicts [\(2.4\)](#page-5-2). This ends the proof of the existence statement in Theorem [2.](#page-1-0)

The uniqueness statement is proved by more standard arguments: if g_1 and g_2 are two continuous right-inverses of f such that $g_1(0) = g_2(0) = 0$, then the set

$$
Z := \{ y \in B' \mid g_1(y) = g_2(y) \}
$$

is nonempty and closed. On the other hand, if $Df(x)$ is left and right invertible, it is an isomorphism. By Remark [4,](#page-2-0) its inverse $\hat{L}(x)$ is bounded independently of x. We fix an arbitrary y_0 in Z and we consider a small radius $\rho > 0$ (to be chosen later) such that $B_Y(y_0, \rho) \subset B'$. By continuity of $g_1 - g_2$ at y_0 , there is $\eta(\rho) > 0$ such that $\lim_{\rho \to 0} \eta(\rho) = 0$, and, for each y in the ball $B_Y(y_0, \rho)$,

$$
||g_2(y) - g_1(y)||_X \leq \eta(\rho).
$$

However, we also have $f(g_2(y)) - f(g_1(y)) = y - y = 0$. Thus, using (iv), we find that

$$
||Df(g_1(y))(g_2(y) - g_1(y))||_Y \le (\varepsilon \circ \eta)(\rho) ||g_2(y) - g_1(y)||_Y.
$$

Then, multiplying $Df(g_1(y))(g_2(y) - g_1(y))$ on the left by $\hat{L}(g_1(y))$ and using the uniform bound on \hat{L} , we get a bound of the form

$$
\|g_2(y) - g_1(y)\|_X \le \xi(\rho) \|g_2(y) - g_1(y)\|_X
$$

with $\lim_{\rho \to 0} \xi(\rho) = 0$. As a consequence, for ρ small enough, one has $g_2(y) - g_1(y)$. $= 0$, so $y \in Z$. This proves that Z is open. By connectedness of B', we conclude that $Z = B'$, so g_1 and g_2 are equal. This ends the proof of Theorem [2.](#page-1-0)

3. A hard surjection theorem with continuous right-inverse

In this section, we state our hard surjection theorem with continuous right-inverse, and we shortly explain its proof which is a variant of the arguments of [\[4\]](#page-13-0) in which Theorem [1](#page-0-0) is replaced by Theorem [2.](#page-1-0)

Let $(V_s, \|\cdot\|_s)_{0 \leq s \leq S}$ be a scale of Banach spaces; namely,

$$
0 \leq s_1 \leq s_2 \leq S \implies [V_{s_2} \subset V_{s_1} \text{ and } || \cdot ||_{s_1} \leq || \cdot ||_{s_2}].
$$

We shall assume that to each $\Lambda \in [1,\infty)$ is associated a continuous linear projection $\Pi(\Lambda)$ on V_0 , with a range $E(\Lambda) \subset V_S$. We shall also assume that the spaces $E(\Lambda)$ form a nondecreasing family of sets indexed by [1, ∞), while the spaces Ker $\Pi(\Lambda)$ form a nonincreasing family. In other words,

$$
1 \leq \Lambda \leq \Lambda' \implies \Pi(\Lambda)\Pi(\Lambda') = \Pi(\Lambda')\Pi(\Lambda) = \Pi(\Lambda).
$$

Finally, we assume that the projections $\Pi(\Lambda)$ are "smoothing operators" satisfying the following estimates.

POLYNOMIAL GROWTH AND APPROXIMATION. *There are constants* $A_1, A_2 \geq 1$ *such that, for all numbers* $0 \le s \le S$ *, all* $\Lambda \in [1,\infty)$ *and all* $u \in V_s$ *, we have*

(3.1)
$$
\forall t \in [0, S], \quad \|\Pi(\Lambda)u\|_{t} \leq A_1 \Lambda^{(t-s)^{+}} \|u\|_{s},
$$

(3.2)
$$
\forall t \in [0, s], \quad ||(1 - \Pi(\Lambda))u||_t \leq A_2 \Lambda^{-(s-t)} ||u||_s.
$$

When the above properties are met, we shall say that $(V_s, \|\cdot\|_s)_{0\leq s\leq S}$, endowed with the family of projectors $\{\Pi(\Lambda), \Lambda \in [1,\infty)\}\)$, is a *tame* Banach scale.

Let $(W_s, \|\cdot\|_s')_{0 \le s \le S}$ be another tame scale of Banach spaces. We shall denote by $\Pi'(\Lambda)$ the corresponding projections defined on W_0 with ranges $E'(\Lambda) \subset W_S$, and by A_i' i_i (*i* = 1, 2, 3) the corresponding constants in [\(3.1\)](#page-9-1), [\(3.2\)](#page-9-2).

We also denote by B_s the unit ball in V_s and by B'_s $s'(0, r)$ the ball of center 0 and positive radius r in W_s :

 $B_s = \{u \in V_s \mid ||u||_s < 1\}$ and B'_s $s'_s(0,r) = \{v \in W_s \mid ||v||'_s < r\}.$

In the sequel, we fix nonnegative constants s_0 , m, ℓ and ℓ' . We will assume that S is large enough.

We first recall the definition of Gâteaux differentiability, in a form adapted to our framework.

DEFINITION 6. We shall say that a function $F : B_{s_0+m} \to W_{s_0}$ is *Gâteaux-differentiable* (henceforth G-differentiable) if for every $u \in B_{s_0+m}$, there exists a linear map

$$
DF(u): V_{s_0+m} \to W_{s_0}
$$

such that for every $s \in [s_0, S - m]$, if $u \in B_{s_0+m} \cap V_{s+m}$, then $DF(u)$ maps continuously V_{s+m} into W_s , and

$$
\forall h \in V_{s+m}
$$
, $\lim_{t \to 0} \left\| \frac{1}{t} \left[F(u+th) - F(u) \right] - DF(u)h \right\|_{s}^{\prime} = 0$.

Note that, even in finite dimension, a G-differentiable map need not be C^1 , or even continuous. However, if $DF : B_{s_0+m} \cap V_{s+m} \to \mathcal{L}(V_{s+m}, W_s)$ is locally bounded, then $F : B_{s_0+m} \cap V_{s+m} \to W_s$ is locally Lipschitz, hence continuous. In the present paper, we are in such a situation.

We now define the notion of S-tame differentiability.

DEFINITION 7.

• We shall say that the map $F: B_{s_0+m} \to W_{s_0}$ is S-tame differentiable if it is Gdifferentiable in the sense of Definition 6 , and, for some positive constant a and all $s \in [s_0, S - m]$, if $u \in B_{s_0+m} \cap V_{s+m}$ and $h \in V_{s+m}$, then $DF(u)h \in W_s$ with the tame direct estimate

$$
||DF(u)h||'_{s} \leq a(||h||_{s+m} + ||u||_{s+m}||h||_{s_0+m}).
$$

• Then, we shall say that DF is tame right-invertible if there are $b > 0$ and $\ell, \ell' \ge 0$ such that for all $u \in B_{s_0+\max\{m,\ell\}}$, there is a linear map $L(u): W_{s_0+\ell'} \to V_{s_0}$ satisfying

$$
\forall k \in W_{s_0+\ell'}, \quad DF(u)L(u)k = k,
$$

and for all $s_0 \leq s \leq S - \max\{\ell, \ell'\}, \text{ if } u \in B_{s_0+\max\{m,\ell\}} \cap V_{s+\ell} \text{ and } k \in W_{s+\ell'},$ then $L(u)k \in V_s$, with the tame inverse estimate

(3.3)
$$
\|L(u)k\|_{s} \leq b(\|k\|'_{s+\ell'} + \|k\|'_{s_0+\ell'}\|u\|_{s+\ell}).
$$

In the above definition, the numbers m, ℓ, ℓ' represent the loss of derivatives for DF and its right-inverse.

The main result of this section is the following theorem.

THEOREM 8. Assume that the map $F : B_{s_0+m} \to W_{s_0}$ is S-tame differentiable between *the tame scales* $(V_s)_{0 \leq s \leq S}$ *and* $(W_s)_{0 \leq s \leq S}$ *with* $F(0) = 0$ *and that* DF *is tame rightinvertible. Let* s_0 , m , ℓ , ℓ' *be the associated parameters.*

Assume in addition that for each Λ , $\Lambda' \in [1, S]$, the map

$$
u \in B_{s_0+\max\{m,\ell\}} \cap E(\Lambda) \mapsto \Pi'_{\Lambda'} DF(u) \upharpoonright_{E_{\Lambda}} \in \mathcal{L}\big(E(\Lambda), E'(\Lambda')\big)
$$

is continuous for the norms $\|\cdot\|_{s_0}$ *and* $\|\cdot\|'_{s_0}$ *.*

Let $s_1 \geq s_0 + \max\{m, \ell\}$ and $\delta > s_1 + \ell'$. Then, for S large enough, there exist a *radius* $r > 0$ *and a continuous map* $G : B'_{\delta}$ $\chi'_\delta(0,r) \to B_{s_1}$ such that

$$
G(0) = 0 \quad and \quad F \circ G = I_{B'_\delta(0,r)},
$$

$$
||G(v)||_{s_1} \le r^{-1} ||v||'_\delta, \quad \forall v \in B'_\delta(0,r).
$$

As mentioned in the introduction, compared with the results of [\[4\]](#page-13-0), the novelty in Theorem [8](#page-10-0) is the continuity of G . To prove this theorem, one repeats with some modifications the arguments of [\[4\]](#page-13-0) in the case $\varepsilon = 1$ (in that paper, a singularly perturbed problem depending on a parameter ε was dealt with, but for simplicity, we do not consider such a dependence here). With the notation of that paper, let us explain briefly the necessary changes.

We recall that in [\[4\]](#page-13-0) a vector v was given in B'_{δ} $\chi'_\delta(0,r)$ and the goal was to solve the equation $F(u) = v$. The solution u was the limit of a sequence u_n of approximate solutions constructed inductively. Each u_n was a solution of the projected equation

$$
\Pi'_n F(u_n) = \Pi'_{n-1} v, \quad u_n \in E_n.
$$

It was found as $u_n = u_{n-1} + z_n$, z_n being a small solution in E_n of an equation of the form $f_n(z) = \Delta_n v + e_n$, with $f_n(z) := \prod'_n (F(u_{n-1} + z) - F(u_{n-1}))$, $\Delta_n v :=$ $\Pi'_{n-1}(1-\Pi'_{n-2})v$ and $e_n := -\Pi'_{n}(1-\Pi'_{n-1})F(u_{n-1})$. The existence of z_n was proved by applying Theorem [1](#page-0-0) to the function f_n in a ball $B_{\mathcal{N}_n}(0, R_n)$ (see [\[4,](#page-13-0) Section 3.3.2] for precise definitions of E_n , Π'_n , f_n and \mathcal{N}_n).

Instead, we construct inductively a sequence of continuous functions

$$
G_n:B'_\delta(0,r)\to B_{s_1}\cap E_n
$$

such that

$$
\Pi'_n F \circ G_n(v) = \Pi'_{n-1} v
$$

for all v in B'_{δ} $\int_{\delta}^{\prime}(0,r)$. Each G_n is of the form $G_{n-1} + H_n$ with

$$
H_n(v) = g_n(\Delta_n v - \Pi'_n(1 - \Pi'_{n-1})F \circ G_{n-1}(v)),
$$

where g_n is a continuous right-inverse of f_n such that $g_n(0) = 0$, obtained thanks to Theorem [2.](#page-1-0)

Moreover, under the same conditions on the parameters as in [\[4\]](#page-13-0), we find that the sequence of continuous functions $(G_n)_n$ converges uniformly on B'_δ $\chi'_\delta(0,r)$ for the norm $\|\cdot\|_{s_1}$, and this implies the continuity of their limit $G : B'_\delta$ $\chi'_\delta(0,r) \to B_{s_1}$. This limit is the desired continuous right-inverse of F . We insist on the fact that the conditions on r are exactly the same as in [\[4\]](#page-13-0). Indeed, in order to apply Theorem [2](#page-1-0) to f_n , we just have to check assumptions (i), (ii') and (iii). This is done with exactly the same constraints on the parameters as in [\[4\]](#page-13-0).Г

We end the paper with a uniqueness result, which requires additional conditions.

Theorem 9. *Suppose that we are under the assumptions of Theorem* [8](#page-10-0) *and that the following two additional conditions hold true:*

For each $u \in B_{s_0+\max(m,\ell)},$

(3.4)
$$
\forall h \in V_{s_0+m+\ell'}, \quad L(u)DF(u)h = h.
$$

• *For each* $s \in [s_0, S - m]$ and $c > 0$, there is a non-decreasing function

$$
\varepsilon_{s,c}:(0,\infty)\to(0,\infty)
$$

such that $\lim_{t\to 0} \varepsilon_{s,c}(t) = 0$ *and, for all* u_1, u_2 *in* $B_{s_0+m} \cap E_{s+m}$ *with* $||u_1||_{s+m} \leq c$ *,*

(3.5)
$$
\begin{aligned} \|F(u_2) - F(u_1) - DF(u_1)(u_2 - u_1)\|_{s} \\ &\leq \varepsilon_{s,c} (\|u_2 - u_1\|_{s+m}) \|u_2 - u_1\|_{s_0+m}. \end{aligned}
$$

Let $s_1 \geq s_0 + \max\{2m + \ell', m + \ell\}$. Then, for any $S \geq s_1$, $\delta \in [s_0, S]$ and $r > 0$, *there is at most one map* $G : B'_{\delta}$ $u'_\delta(0,r) \to B_{s_0+\max(m,\ell)} \cap W_{s_1}$ continuous for the *norms* $\|\cdot\|_{\delta}^{\prime}$ and $\|\cdot\|_{s_1}$, such that

(3.6)
$$
G(0) = 0 \quad and \quad F \circ G = I_{B'_\delta(0,r)}.
$$

REMARK 10. The tame estimate [\(3.5\)](#page-12-1) is satisfied, in particular, when F is of class C^2 with a classical tame estimate on its second derivative as in $[12, (2.11)]$ $[12, (2.11)]$. In that special case, for s and c fixed, one has the bound $\varepsilon_{s,c}(t) = O(t)_{t\to 0}$.

In order to prove Theorem [9,](#page-12-0) we assume that G_1 , G_2 both satisfy [\(3.6\)](#page-12-2), and we introduce the set

$$
Z := \{ v \in B'_{\delta}(0, r) \mid G_1(v) = G_2(v) \}.
$$

This set is nonempty since it contains 0, and it is closed in B'_{δ} $\int_{\delta}^{1}(0,r)$ for the norm $\|\cdot\|_{\delta}^{1}$ by continuity of $G_1 - G_2$. It remains to prove that it is open.

For that purpose, we fix an arbitrary v_0 in Z and we consider a small radius $\rho > 0$ (to be chosen later) such that B'_{δ} $\zeta'(v_0,\rho)\subset B'_\delta$ $\chi'_\delta(0,r)$. By continuity of G_1 , G_2 at v_0 , there is $\eta(\rho) > 0$ such that $\lim_{\rho \to 0} \eta(\rho) = 0$, and, for each v in the ball B'_δ $\zeta(v_0,\rho),$

$$
||G_1(v)||_{s_1} \le ||G_1(v_0)||_{s_1} + \eta(\rho)
$$
 and $||G_2(v) - G_1(v)||_{s_1} \le \eta(\rho)$.

However, we also have $F(G_2(v)) - F(G_1(v)) = v - v = 0$. Thus, imposing $\eta(\rho) \le 1$ and applying [\(3.5\)](#page-12-1) with $s = s_1 - m$, $c = ||G_1(v_0)||_{s_1} + 1$ and $u_i = G_i(v), i = 1, 2$, we find that

$$
||DF(G_1(v))(G_2(v) - G_1(v))||'_{s_1-m} \leq (\varepsilon_{s_1-m,c} \circ \eta)(\rho)||G_2(v) - G_1(v)||_{s_0+m}.
$$

Then, multiplying $DF(G_1(v))(G_2(v) - G_1(v))$ on the left by $L(G_1(v))$ and using [\(3.4\)](#page-12-3) and the tame estimate [\(3.3\)](#page-10-1), we get a bound of the form

$$
\|G_2(v) - G_1(v)\|_{s_1 - \max(m + \ell', \ell)} \leq \xi(\rho) \|G_2(v) - G_1(v)\|_{s_0 + m}
$$

with $\lim_{\rho \to 0} \xi(\rho) = 0$. Since $s_1 - \max(m + \ell', \ell) \ge s_0 + m$, we conclude that for ρ small enough, one has $G_2(v) - G_1(v) = 0$, so $v \in Z$. The set Z is thus nonempty, closed and open in B'_δ $\chi'_\delta(0,r)$, so we conclude that $Z = B'_\delta$ $\chi'_\delta(0,r)$ and Theorem [9](#page-12-0) is proved.

REFERENCES

- [1] P. G. Ciarlet, *Linear and nonlinear functional analysis with applications*. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013. Zbl [1293.46001](https://zbmath.org/?q=an:1293.46001) MR [3136903](https://mathscinet.ams.org/mathscinet-getitem?mr=3136903)
- [2] I. Ekeland, [On the variational principle.](https://doi.org/10.1016/0022-247X(74)90025-0) *J. Math. Anal. Appl.* **47** (1974), 324–353. Zbl [0286.49015](https://zbmath.org/?q=an:0286.49015) MR [346619](https://mathscinet.ams.org/mathscinet-getitem?mr=346619)
- [3] I. Ekeland, [An inverse function theorem in Fréchet spaces.](https://doi.org/10.1016/j.anihpc.2010.11.001) *Ann. Inst. H. Poincaré C Anal. Non Linéaire* **28** (2011), no. 1, 91–105. Zbl [1256.47037](https://zbmath.org/?q=an:1256.47037) MR [2765512](https://mathscinet.ams.org/mathscinet-getitem?mr=2765512)
- [4] I. EKELAND – E. SÉRÉ, [A surjection theorem for maps with singular perturbation and loss](https://doi.org/10.4171/jems/1086) [of derivatives.](https://doi.org/10.4171/jems/1086) *J. Eur. Math. Soc. (JEMS)* **23** (2021), no. 10, 3323–3349. Zbl [07367691](https://zbmath.org/?q=an:07367691) MR [4275475](https://mathscinet.ams.org/mathscinet-getitem?mr=4275475)
- [5] G. Evéquoz – C. A. Stuart, [Hadamard differentiability and bifurcation.](https://doi.org/10.1017/S0308210506000424) *Proc. Roy. Soc. Edinburgh Sect. A* **137** (2007), no. 6, 1249–1285. Zbl [1134.35014](https://zbmath.org/?q=an:1134.35014) MR [2376879](https://mathscinet.ams.org/mathscinet-getitem?mr=2376879)
- [6] L. T. Fernholz, *[von Mises calculus for statistical functionals](https://doi.org/10.1007/978-1-4612-5604-5)*. Lect. Notes Stat. 19, Springer, New York, 1983. Zbl [0525.62031](https://zbmath.org/?q=an:0525.62031) MR [713611](https://mathscinet.ams.org/mathscinet-getitem?mr=713611)
- [7] L. Hörmander, [The boundary problems of physical geodesy.](https://doi.org/10.1007/BF00251855) *Arch. Rational Mech. Anal.* **62** (1976), no. 1, 1–52. Zbl [0331.35020](https://zbmath.org/?q=an:0331.35020) MR [602181](https://mathscinet.ams.org/mathscinet-getitem?mr=602181)
- [8] R. S. Palais, Critical point theory and the minimax principle. In *Global Analysis*, pp. 185–212, Proc. Sympos. Pure Math. 15, American Mathematical Society, Providence, RI, 1970. Zbl [0212.28902](https://zbmath.org/?q=an:0212.28902) MR [264712](https://mathscinet.ams.org/mathscinet-getitem?mr=264712)
- [9] I. V. Skripnik, On the application of Morse's method to nonlinear elliptic equations. *Soviet Math. Dokl.* **13** (1972), 202–205. Zbl [0244.58002](https://zbmath.org/?q=an:0244.58002) MR [292119](https://mathscinet.ams.org/mathscinet-getitem?mr=292119)
- [10] I. V. Skripnik, The differentiability of integral functionals (in Ukrainian). *Dopovidi Akad. Nauk Ukrain. RSR Ser. A* **1972** (1972), 1086–1089. Zbl [0257.46039](https://zbmath.org/?q=an:0257.46039) MR [324397](https://mathscinet.ams.org/mathscinet-getitem?mr=324397)
- [11] A. H. Stone, [Paracompactness and product spaces.](https://doi.org/10.1090/S0002-9904-1948-09118-2) *Bull. Amer. Math. Soc.* **54** (1948), 977–982. Zbl [0032.31403](https://zbmath.org/?q=an:0032.31403) MR [26802](https://mathscinet.ams.org/mathscinet-getitem?mr=26802)
- [12] B. Texier – K. Zumbrun, [Nash–Moser iteration and singular perturbations.](https://doi.org/10.1016/j.anihpc.2011.05.001) *Ann. Inst. H. Poincaré C Anal. Non Linéaire* **28** (2011), no. 4, 499–527. Zbl [1237.47066](https://zbmath.org/?q=an:1237.47066) MR [2823882](https://mathscinet.ams.org/mathscinet-getitem?mr=2823882)
- [13] A. W. van der Vaart, *[Asymptotic statistics](https://doi.org/10.1017/CBO9780511802256)*. Camb. Ser. Stat. Probab. Math. 3, Cambridge University Press, Cambridge, 1998. Zbl [0910.62001](https://zbmath.org/?q=an:0910.62001) MR [1652247](https://mathscinet.ams.org/mathscinet-getitem?mr=1652247)
- [14] R. von Mises, [On the asymptotic distribution of differentiable statistical functions.](https://doi.org/10.1214/aoms/1177730385) *Ann. Math. Statistics* **18** (1947), 309–348. Zbl [0037.08401](https://zbmath.org/?q=an:0037.08401) MR [22330](https://mathscinet.ams.org/mathscinet-getitem?mr=22330)

Received 24 January 2024, and in revised form 1 March 2024

Ivar Ekeland

Centre de Recherche en Mathématiques de la Décision, Université Paris Dauphine-PSL Place du Maréchal de Lattre de Tassigny, 75016 Paris, France ekeland@ceremade.dauphine.fr

Éric Séré

Centre de Recherche en Mathématiques de la Décision, Université Paris Dauphine-PSL Place du Maréchal de Lattre de Tassigny, 75016 Paris, France sere@ceremade.dauphine.fr