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1. From complex to metric

Pick’s striking reformulation of the Schwarz lemma in [55] started a rich development
of metric methods in complex analysis. The Schwarz–Pick lemma states that every
holomorphic self-map of the unit disk D does not increase distances in the Poincaré
metric. Modifying a definition of Carathèodory, Kobayashi defined in the 1960s a
largest pseudo-distance kZ on each complex space Z so that every holomorphic map
is nonexpansive in these distances. A pseudo-distance is a metric except that there
may exist distinct points x and y such that d.x; y/ D 0. Indeed, kC � 0. On the other
hand, kD is the Poincaré metric and one sees that Liouville’s theorem that bounded
entire functions are constant immediately follows from these assertions. This is not a
shorter proof of this theorem but places it into a different framework that also explains
Picard’s little theorem. Complex spaces where the Kobayashi pseudo-distance is an
actual distance are called Kobayashi hyperbolic and this is via Lang’s conjectures from
the 1970s connected to the finiteness of the number of rational solutions to diophantine
equations [47, 48].

Metric methods are thus rather old in the subject of several complex variables, but
as seen for example in [6, 16, 18, 19, 31, 49, 59], the metric perspective has developed
strongly also in recent years. The present paper tries to outline a few further possible
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directions mostly to do with boundaries and intrinsic structures on them. One classic
topic in complex analysis is the question of the extension of holomorphic maps to the
boundary of the domain, a problem for which also the Bergman metric has been used.
In Riemannian geometry, boundary maps were considered in the 1960s by Mostow
for the proofs of his landmark rigidity theorems. At an early stage his ideas did not
attract much interest from the Lie group community; instead encouragement came from
Ahlfors, the famous complex analyst [54]. Nowadays, since the influence of Gromov
having Mostow’s and Margulis’ work as a starting point, boundaries at infinity and
extensions of maps between them are a staple of geometric group theory. In completing
the circle as it were, these metric ideas have since been applied to the above-mentioned
complex analytic question [8, 21].

In another direction, an important problem in complex geometry is to understand
when a given compact Kähler manifold admits a constant scalar curvature Kähler metric
in the same cohomology class. This study started in the 1950s by Calabi who for this
purpose introduced a flow on a certain space of metrics on the underlying manifold.
In response to a conjecture of Donaldson, Streets proposed to study a related weak
Calabi flow on the metric completion of Calabi’s space equipped with a certainL2-type
metric. This flow is nonexpansive in this metric and therefore metric versions of the
Denjoy–Wolff theorem could be relevant for this set of problems. This is discussed
more in Section 5 and we refer to [11, 20, 23] for references on this topic. We thus
see an example of an entirely different use of metric methods, more in the spirit of
Teichmüller theory, for problems in several variable complex geometry.

The present paper reviews the stars from [38]. Given a metric space X with a
compactification xX , we associate an extra structure of the boundary @X WD xX n X .
This boundary structure consists of subsets called stars, which are limits of generalized
halfspaces, and is an isometry invariant in case the isometries act naturally on the
boundary. Everything is defined in terms of distances, without any knowledge about
the existence of geodesics. The interest of these notions comes from that
• the stars measure the failure of Gromov hyperbolicity (e.g. Proposition 3.3), and

this is useful when extending the theory of Gromov hyperbolic spaces to more
general metric spaces (e.g. [38, section 4]);

• the stars provide a way of describing the asymptotic geometry in any given com-
pactification, and boundary estimates can sometimes be translated into qualitative
information (e.g. Theorem 3.6, [38, Sections 8 and 9], [28, 52]);

• the stars restrict the limit sets of nonexpansive maps (Theorem 4.3);
• a contraction lemma dictates the dynamics of isometries (Lemma 2.4);
• there are conceivable versions of boundary extensions of isometric maps (cf. Ques-

tion G).
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As I have argued in a paper originally entitled From linear to metric [40], the methods
discussed here are also useful in other mathematical and scientific subjects. And while
the metric ideas in the present paper are rather unified and focused, their consequences
belong to a diverse set of topics. Let me illustrate the latter by highlighting three such
results. The final section establishes the following.

Theorem (Theorem 6.1). LetRn D f1 ı f2 ı � � � ı fn be the composition of randomly
selected holomorphic self-maps of a bounded domain X in CN . Let d denote the
Kobayashi distance and assume X is a weak visibility domain in the sense of Bharali–
Zimmer. Then, almost surely it holds that unless

1

n
d.x;Rnx/! 0;

as n!1, there is a random point � 2 @X independent of x such that

Rnx ! �;

as n!1.

In Section 5 the following improvement of [58, Corollary 4.2] is obtained.

Corollary (Corollary 5.3). Let .Y; !/ be a compact Kähler manifold that is geodesi-
cally unstable. Let ˆt be the weak Calabi flow on the associated completed space E2

of Kähler metrics in the same class. Then ˆt .x/ lies on sublinear distance to a unique
geodesic ray  as t !1.

In particular,ˆt .x/ converges as t!1 to the point defined by  in the visual bound-
ary, which is a significantly weaker statement. This type of statement was established
and exploited in [24] for the purpose of partially confirming a conjecture of Tian.

Finally, recall the notion of extremal length initially studied by Grötzsch, Beurling
and Ahlfors. Let M be a closed surface with complex structure x and ˛ an isotopy
class of a simple closed curve on M , and define

Extx.˛/ D sup
�2Œx�

`�.˛/

Area.�/
;

where the supremum is taken over all metrics in the conformal class of x. We have the
following from Section 4.

Corollary (Corollary 4.2). Let f be a holomorphic self-map of the Teichmüller
space of M . Then there exists a simple closed curve ˇ such that

lim
n!1

Extf n.x/.ˇ/1=n D lim
n!1

�
sup
˛

Extf n.x/.˛/
Extx.˛/

�1=n
;

where the supremum is taken over all simple closed curves on M .
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2. Boundaries, halfspaces, and stars at infinity

Boundaries. Let .X; d/ denote a metric space, for example, a complex domain with
the Kobayashi metric assumed (Kobayashi) hyperbolic. Let xX be a compactification of
X with which we mean a compact Hausdorff space xX and a topological embedding
i W X ! xX such that xX D i.X/. Often we suppress the map i and consider X simply
as a subset of xX . In the best case scenario the isometries of X extend naturally to
homeomorphisms of xX ; in this case we speak of an Isom.X/-compactification. The
corresponding (ideal) boundary is

@X WD xX n i.X/:

There is also a weaker notion that only insists that i is continuous and injective, but
that X is not necessarily homeomorphic to i.X/; we will refer to this as a weak
compactification.

Example 2.1. In the case of bounded domains in complex vector spaces CN , we can
consider the closure which often is called the natural boundary; here I will call it the
natural extrinsic boundary. Complex automorphisms of the domain may not extend
to the boundary; the question of when they do is a classical topic as mentioned in the
introduction.

Example 2.2. For any metric space there is always an intrinsic method of a weak
Isom.X/-compactification, called the horofunction bordification or as I prefer, following
Rieffel, the metric compactification, which is increasingly seen as being of fundamental
importance. Given a base point x0 of the metric space X , let

ˆ W X ! RX

be defined via
x 7! hx.�/ WD d.�; x/ � d.x0; x/:

With the topology of pointwise convergence, this is a continuous injective map and
the closure ˆ.X/ is compact and Hausdorff. The elements of xXh WD ˆ.X/ are called
metric functionals. In the case X is a proper geodesic space this construction gives a
compactification in the stricter sense. If X is a proper metric space, the elements of
@X are called horofunctions; the typical example of such comes from geodesic rays
and are called Busemann functions (in the literature starting with Rieffel this word is
also used for limits along almost geodesics).

A major question is to investigate the exact relation between these two examples:
the metric compactification in the Kobayashi metric, which is the natural intrinsic
compactification, and the natural extrinsic boundary of bounded complex domains.
See for example [6]. Let me record it as follows.
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Question A. Let X be a bounded complex domain with the Kobayashi metric. How
and when can one relate the natural extrinsic boundary with the boundary from the
metric compactification?

Let .X; d/ denote a metric space and xX a compactification of X . For x 2 X and a
subset W � xX with W \X ¤ ;, we set

d.x;W / WD inf
w2W\X

d.x;w/:

Halfspaces. Let x02X . The (generalized) halfspace defined by W� xX with W\X¤;
and real number C is

H.W;C / WD Hx0.W;C / WD
®
z W d.z;W / � d.z; x0/C C

¯
:

We also use the notation H.W / WD H.W; 0/. These notions have the advantage that
they do not refer to geodesics which may or may not exist.

Stars at infinity. Let � 2 @X and denote by V� the collection of open neighborhoods
of � in xX . The star of � based at x0 is

Sx0.�/ D
\
V 2V�

H.V /;

where the closure is taken in xX , and the star of � is

S.�/ D
[
C�0

\
V 2V�

H.V;C /:

It is immediate that � 2 Sx0.�/ � S.�/. The second definition removes an a priori
dependence on x0. In all examples I can think of, the two definitions actually coincide,
which in other words means that the first definition is independent of the base point
chosen.

Question B. When is S.�/ D Sx0.�/?

The motivation for calling these sets stars is that they are subsets at infinity of
the space and they have a tendency to be star-shaped in appropriate senses or even to
coincide with the notion of star in the theory of simplicial complexes. In addition they
are closely related to visibility properties of the compactification (see Proposition 3.3)
so one could appeal to the light emitting property of physical stars.

A face is a non-empty intersection of stars. The following notion will be used below,
the dual star of �:

S_.�/ WD
®
� 2 @X W � 2 S.�/

¯
:
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It was observed in [38] that in all the examples considered there, S_.�/ D S.�/,
which could be called star-reflexivity, and raised the question whether or when it is
the case. In an insightful paper by Jones and Kelsey [36] examples of homogeneous
graphs, certain Diestel–Leader graphs, with their metric compactification were shown
not to have this property. Understanding this phenomenon better has some additional
interest in view of results like Theorem 4.3 or Proposition 3.2 below.

Question C. Which spaces and compactifications are star reflexive in the sense that
S_.�/ D S.�/ for all � 2 @X?

An obvious case of S_.�/ D S.�/ is when S.�/ D ¹�º. Such points are called
hyperbolic because for example for any Gromov hyperbolic space with its standard
Gromov boundary every point is hyperbolic. We call compactifications with this
property hyperbolic. Another classical example of a hyperbolic compactification is
the end compactification of any proper metric space. For bounded complex domains
with Kobayashi metric, every natural extrinsic boundary point that is C 2-smooth and
strictly pseudoconvex is hyperbolic as P. J. Thomas informed me; see also below and
[38, Corollary 35].

Question D. For convex or pseudoconvex domains with the usual boundary, what
are the Kobayashi stars?

Hilbert’s metric on convex domains has a very simple answer provided in [38,
Proposition 32]: the stars and faces coincide with the usual homonymous notions for
convex sets.

Teichmüller spaces of closed surfaces are of great importance and are biholomorphic
to bounded pseudoconvex domains. They have a natural metric, the Teichmüller metric,
which as Royden showed coincides with the Kobayashi metric. The recent papers by
Duchin and Fisher [28] as well as by Liu and Shi [52] make substantial progress toward
[38, Conjecture 46] determining the stars in the Teichmüller metric with the Thurston
compactification which is defined in terms of topology and hyperbolic geometry. It has
been observed for a long time that the complex analytic notions have a complicated
relationship with the concepts from the approach of hyperbolic geometry, but here
there is a hope of a clean tight connection. The very recent article [52] moreover
considers statements analogous to the conjecture in [38] but for other metrics and
compactifications of the Teichmüller spaces, and interestingly manages to prove these.
See also [57] in this context.

One can define the star-distance d? as in [28,38] to be the induced path distance
on @X , in the extended sense that distances may be infinite, from defining

d?.�; �/ D 0” � D �
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and if � ¤ �
d?.�; �/ D 1” � 2 S.�/ or � 2 S.�/:

In the case of an Isom.X/-compactification the isometries obviously act by isometry
also on .@X;d?/. It is a trivial concept in caseX is Gromov hyperbolic with its standard
boundary. This is related to Tits incidence geometry at infinity in nonpositive curvature
and conjecturally [28, 38] the star distance restricted to the simple closed curves of the
Thurston boundary isometric to the curve complex defined in pure topological terms;
see [28] for more details and for a conjectural outline arriving at such a result.

Let me mention the following useful fact, the sequence criterion for star membership
of Duchin–Fisher extending a lemma in [36].

Lemma 2.3 ([28]). Let .X; d/ be a metric space and xX a compactification of X .
Assume that xX is first countable. Then � 2 S.�/ if and only if for every neighborhood
U of � in xX , there are sequences xn ! �, yn ! U and a constant C � 0 such that

d.yn; xn/ � d.yn; x0/C C:

In particular, if there are such sequences with yn ! �, then � 2 S.�/.

Isometries, when well-defined as maps of xX , preserve the star distance. This stands
in contrast to an opposite phenomenon namely that topologically isometries tend to have
strong contraction properties on xX as expressed by Lemma 2.4 below. Particularly this is
the case when there are many hyperbolic points but on the other hand it can reduce to no
contraction for example in case of the Euclidean spaces with the usual visual boundaries
(if one takes an `1 metric instead there is some contraction). The north-south dynamics
is one of the most important features in the theory of word hyperbolic group and states
that for any sequence of group elements gn which converges to �C when n!1 and
g�1n to ��, it holds that for any two neighborhoods V C of �C and V � of �� eventually
everything outside U� is mapped inside UC by gn. This is generalized without any
hyperbolicity assumption, and to any compactification, just adding an “H”.

Lemma 2.4 (The contraction lemma [38]). Let .X; d/ be a metric space and xX a
compactification of X . Let gn be a sequence of isometries such that gnx0 ! �C 2 @X

and g�1n x0 ! �� 2 @X as n n!1. Then for any neighborhoods V C of �C and V �

of ��, there exists N > 0 such that

gn
�
X nH.V �/

�
� H.V C/

for all n � 1.

In [38] a refinement in the case Isom.X/-compactifications is also formulated. In
words, gn eventually maps everything outside the star of �� into any neighborhood
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of the star of �C. Note that it is allowed that the two boundary points are the same,
such as is the case for iterates of a parabolic isometry in hyperbolic geometry. The
interplay between the invariance of the star distance and the contractive property of
Lemma 2.4 can sometimes be used to rule out non-compact automorphism groups;
see [38, Theorem 4] for an example. In a more classical direction it recovers Hopf’s
theorem on ends which states that any topological space X that is a regular covering
space of a nice compact space must have either 0, 1, 2 or a continuum, of ends. In
particular it applies to finitely generated groups and the ends of their Cayley graphs.
This generalizes in view of Lemma 2.4 to any hyperbolic compactification with stars
replacing ends.

Question E. Are there applications of the tension between the invariance of the star
distance and the contraction lemma also for groups of biholomorphisms of certain
complex domains?

To exemplify this idea, we establish the following proposition.

Proposition 2.5. Let .X;d/ be a proper metric space and xX an Isom.X/-compactifica-
tion of X . Assume that a noncompact group of isometries of X fixes a finite set F of
boundary points. Then F is contained in two stars.

Proof. By properness ofX , compactness of xX , and the noncompactness of the isome-
try group, we can find isometries gn such that gnx0! �C 2 @X and g�1n x0! �� 2 @X

as n!1. Since F is finite, by passing to a finite index subgroup, which does not
affect the noncompactness, we may assume that the group fixes the elements of F
pointwise. Any point outside the two stars associated with �˙ must be contracted to
these stars according to the contraction lemma. Such a point cannot be fixed; hence
F � S.�C/ [ S.��/.

3. Geodesics and boundary estimates

Let us begin by the following simple observation.

Proposition 3.1. Let X be a proper metric space with compactification xX . To any
geodesic ray  there is an associated face of @X being the non-empty intersection of
all the stars which contain limit points of .t/ as t !1. In particular, all limit points
of .t/ are contained in this face at infinity.

Proof. Since the space is proper, any geodesic ray only accumulates at the boundary.
Take any two limit points .ni /! � and .kj /! �. For any ni > kj we have

d
�
.ni /; .kj /

�
D ni � kj < d

�
.ni /; .0/

�
� d

�
.ni /; x0

�
C d

�
x0; .0/

�
:
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This implies that  2 S.�/ since .ni / stays closer to each neighborhood of � up to the
constant C D d.x0; .0//. Since the two limit points were arbitrary, this shows that
any limit point belongs to the star of any other limit point. Thus this intersection of
stars is non-empty and contains all limit points.

Recall that any geodesic ray defines a Busemann function and thus converges to a
boundary point in this compactification. In relation to Question A we have the following.

Question F. When do Kobayashi geodesic rays converge to a boundary point in
bounded complex domains?

Partial results follow from works such as [6, 18] and earlier papers that identify
the natural extrinsic boundary with the Gromov boundary since geodesic rays always
converge in the latter boundary. Note that drawing from the analogy with Hilbert’s
metric on convex domains (discussed by Vesentini in [56]) the paper [29] suggests that
it could be a more general phenomenon since it is shown there that Hilbert geodesic rays
always converge even for general convex domains that often are not Gromov hyperbolic.

I think this is related to questions of extending biholomorphisms f W X ! Y to
the boundaries. Since Kobayashi geodesic rays are mapped to Kobayashi geodesic rays,
and if these, say emanating from x0, are in bĳective correspondence with boundary
points, then there could be a hope for such an extension. But as the referee pointed
out, a bĳection of rays is not sufficient, as can be seen from examples in one complex
variable using the Riemann mapping theorem and the Carathèodory prime ends theory.
In Mostow’s work in higher rank he obtained incidence preserving boundary maps.
So even when there are no well-defined boundary maps one could formulate a vague,
more general question in this direction.

Question G. Are there results of the type that biholomorphims or proper holomorphic
maps induce maps between the face lattices of the boundaries?

For some trivial examples and for more discussion of this in the metric setting,
see [38]. Obviously it will depend on the boundaries, and one optimistic possibility
could be that if one takes the metric compactification (see Example 2.2 above) of the
domain space, then it would map to the boundary (or its faces if the boundary is too
large) of the range space. Some interesting results and insightful discussions of related
type can be found in Bracci–Gaussier’s papers [16, 17].

Recall that for � 2 @X in the metric compactification, h is the horofunction that �
defines, and for each real number C there is an associated (closed) horoball defined as

H�;C D
®
x 2 X W h.x/ � C

¯
:
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(I emphasize that we are here primarily discussing horoballs in this sense, while there
are also the more general notions of Abate’s small and large horoballs defined in 1988
that have been of importance in complex geometry since then; see [1].) In view of the
above discussion, the following question arises.

Question H. What are the relations between stars and the intersection of horoballs
with the boundary?

The following is a simple relation.

Proposition 3.2. Let @X be the metric boundary of a proper metric space. Let H�;C

be a horoball centered at � 2 @X . Then

H�;C \ @X � S
_.�/:

Proof. Let xn! � in the metric compactification, which means that for the associated
horofunction h,

h.y/ D lim
n!1

d.y; xn/ � d.x0; xn/:

Suppose that a sequence yk belongs to the fixed horoball H�;C , which means that for
all k

C � h.yk/ D lim
n!1

d.yk; xn/ � d.x0; xn/:

This implies that for any C 0 > C and any k there is an N such that d.xn; yk/ �
d.xn; x0/C C

0 for all n > N . From the definitions we then have that for any limit
point � of the sequence yk , it holds that � 2 S.�/.

The visibility property of a compactification has its origin from Eberlein–O’Neill
in nonpositive curvature and has recently entered into complex analysis in significant
ways; see for example [13, 14, 19] for more discussion. One definition is as follows:
for any two boundary points � and � there are disjoint closed neighborhoods V� and
V� and a compact set K such that any geodesic segment connecting V� and V� must
also meetK; alternatively formulated, there is a bound on the distance from x0 to each
such geodesics. Real hyperbolic spaces have this property while Euclidean spaces do
not have it, in their standard visual (= metric) compactifications. In this context the
following is immediate.

Proposition 3.3. Assume that X is a geodesic space which means that every two
points can be connected by a geodesic segment. Suppose that for two distinct boundary
points, there are disjoint neighborhoods of them such that all geodesics connecting
these neighborhoods have bounded distance to x0. Then the two stars are disjoint.
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Proof. The assumption means that the distance between points near � and points near
� is up to a bounded amount the sum of the respective distance to x0. The conclusion
now follows from the definition of stars: points near one of the boundary point will
eventually all lie outside the halfspaces around the other.

If all stars are disjoint, then we must have that S.�/ D ¹�º for every � 2 @X , and I
call such compactifications hyperbolic as mentioned above.

Corollary 3.4. If a compactification of a geodesic space has the visibility property,
then it is a hyperbolic compactification.

Since it seems not clear when Kobayashi domains are geodesic spaces, Bharali and
Zimmer, see [13, 14], defined a weaker notion of visibility (see also these papers for a
wealth of examples). Let X be a bounded domain in CN with its associated Kobayashi
distance d . Fix some � > 0; by [14, Proposition 4.4] any two points in X can be joined
by a .1; �/-almost geodesic which means a path � W I ! X such that

jt � sj � � � d
�
�.t/; �.s/

�
� jt � sj C �

for all t; s 2 I . Let xX be the closure X above referred to as the natural extrinsic
compactification of X . We say that X is a visibility domain if for any two distinct
boundary points � and � and neighborhoods V and W in xX of these two points such
that xV \ xW D ;, there exists a compact set K in X such that for any x 2 V \X and
y 2 W \X and any .1; �/-almost geodesic � joining these two points, � intersectsK.

Theorem 3.5. Let X be a bounded domain in CN and xX its closure. Assume that it is
a visibility domain for the Kobayashi distance. Then

S.�/ D ¹�º

for every � 2 @X D xX nX .

The proof is a minor adaptation of Proposition 3.3 in view of [14, Proposition 4.4].
See also the proof of Theorem 6.1 below.

Question I. Are there in some cases precise relations between visibility and boundary
points being hyperbolic? Are hyperbolic compactifications a larger class than visibility
compactifications?

This is of interest in the Wolff–Denjoy context discussed below. Here is a way to
get visibility and hyperbolic points from estimates for the Kobayashi distances, taken
from [38].
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Theorem 3.6 ([38, Theorem 37]). Let X be a bounded C 2-smooth domain in CN

which is complete in the Kobayashi metric. Assume that for the infinitesimal Kobayashi
metric KX .zI v/ there are some constants � > 0 and c > 0 such that

KX .zI v/ � c
kvk

ı.z; @X/�

for all z 2 X and v 2 CN , where k � k and ı refer to the Euclidean norm and distance
respectively. Then S.�/ D ¹�º for every � 2 @X and the compactification has the
visibility property.

The estimate in the assumption of the theorem is established in [25] for smooth pseu-
doconvex bounded domains with boundary of finite type in the sense of D’Angelo. This
has subsequently been extended in important ways, in [45, Lemma 5], the Goldilocks
domain of Bharali–Zimmer in [14], and [13, Theorem 1.5].

4. Wolff–Denjoy type theorems

An early application of the Schwarz–Pick lemma was found in 1926 seemingly as a
conversation via Comptes Rendus of the French Academy of Sciences between Wolff
and Denjoy. It states that any holomorphic self-map of the unit disk either has a fixed
point, or its orbits converge to a single point in the boundary circle and every horodisk at
that point is an invariant set. Extensions of this have generated a vast literature, starting
with Valiron, Heins, H. Cartan, Hervé, Vesentini, Abate, Beardon, and many others; see
[34] for references. Most extensions assume something like Gromov hyperbolicity or
weaker property (like visibility or strict convexity). The stars will be used for a weaker
conclusion but in a much more general setting.

I will mention two purely metric versions, one in terms of the metric compactification
and the other one in terms of the stars at infinity for any given compactfication of
interest.

Let X be a metric space and consider maps f between metric spaces that are
nonexpansive in the sense that

d
�
f .x/; f .y/

�
� d.x; y/

for allx;y 2X . Isometries are important examples and the composition of nonexpansive
maps remains nonexpansive.

As was remarked in the very beginning Kobayashi provided a functor from complex
spaces and holomorphic maps into psuedo-metric spaces and nonexpansive maps,
thereby constituting a very significant class of examples.
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One defines the minimal displacement d.f / D infx d.x; f .x// and the translation
number �.f / D limn!1 d.x; f

n.x//=n, which exists by a well-known subadditivity
argument. These numbers are analogs of the operator norm and spectral radius, respec-
tively; in particular note that �.f / � d.f /. They have been studied to some extent in
the complex analytic literature, by Arosio, Bracci, Fiacchi, and Zimmer in particular;
see [5–7].

The following, which I think of as a kind of weak spectral theorem in the metric
category [40, 41], can be viewed as a partial extension of the theorem of Wolff and
Denjoy.

Theorem 4.1 ([37]). Let f W X ! X be a nonexpansive map of a metric space X .
Then there is a metric functional h such that

h.f kx0/ � ��.f /k

for all k � 1, and

lim
n!1

�
1

n
h.f nx/ D �.f /:

The theorem implies as very special cases, with geometric input specific in each
case, extensions of the Wolff–Denjoy theorem for holomorphic maps [37, 38], von
Neumann’s mean ergodic theorem [40,41], and Thurston’s spectral theorem for surface
homeomorphisms [33,39]. Moreover, it has been applied in non-linear analysis, see
e.g. [50], and gave the classification of isometries of Gromov hyperbolic spaces even
when non-locally compact and non-geodesic. It also provided new information for
isometries of Riemannian manifolds. Its proof has subsequently been used several
times in the setting of Denjoy–Wolff extensions in several complex variables; see [34].
Maybe it can also be useful for pseudo-holomorphic self-maps; see [15].

To illustrate how a metric generalization of the Wolff–Denjoy theorem can give
back to complex geometry in a different way, we show the following. Extremal length
was defined in the introduction.

Corollary 4.2. Let f be a holomorphic self-map of the Teichmüller space of M .
Then there exists a simple closed curve ˇ such that

lim
n!1

Extf n.x/.ˇ/1=n D lim
n!1

�
sup
˛

Extf n.x/.˛/
Extx.˛/

�1=n
;

where the supremum is taken over all simple closed curves on M .

Proof. For more information and bibliographic details, see [39]. Holomorphic maps
do not expand Teichmüller distance since it coincides with the Kobayashi metric d .
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Kerckhoff showed the following formula (in particular implying that this expression is
symmetric):

d.x; y/ D
1

2
log sup

˛

Extx.˛/
Exty.˛/

;

where the supremum is taken of isotopy classes of simple closed curves onM . Denote
by � the translation length �.f / defined above. Liu and Su showed that the metric
compactification coincides with the Gardiner–Masur compactification, and thanks also
to Miyachi there is a description of the metric functionals. From Theorem 4.1 we then
have

�� n � h
�
f n.x/

�
D log sup

˛

EP .˛/

Extf n.x/.˛/1=2
� C � log

D

Extf n.x/.ˇ/1=2
� C;

for some curve ˇ (with D D EP .ˇ/ > 0 which must exist) for all n > 1. This gives

Extf n.x/.ˇ/ � D2e2C e2�n:

The other inequality, for any � > 0 and all sufficiently largen, follows from the supremum
in Kerckhoff’s formula:

Extf n.x/.ˇ/ � C1e2.�C�/n:

The result now follows.

Here is a result that applies to any compactification, in particular to holomorphic
self-maps of bounded domains with the standard boundary as a subset of CN .

Theorem 4.3 ([38, Theorem 11]). Let f W X ! X be a nonexpansive map of a proper
metric space. Assume that xX is a sequentially compact compactification of X . Then
either the orbit is bounded or there is a boundary point � 2 @X such that for any x 2 X ,
every limit point of f n.x/ as n!1 in @X is contained in S_.�/.

In the usual settings where one assumes something that implies S_.�/ D ¹�º, we
of course may conclude that the orbits converge to this boundary point, as in the usual
Denjoy–Wolff theorem. In view of [28], a corollary, which no doubt is only a partial
result, can be formulated.

Corollary 4.4. Let f be a holomorphic self-map of the Teichmüller space of a closed
surface. If the orbit is unbounded and has an accumulation point � that is a uniquely
ergodic foliation in the Thurston boundary, then f n.x/! � as n!1 and any x.

A conceivable strengthening of the theorem could be that the limit set in the
unbounded case has to be contained in a single face; compare with Proposition 3.1 for
an analogy. In order to be less vague, while more risky, let us formulate the following
conjecture.
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Conjecture 4.5. Let X be a bounded domain in CN equipped with Kobayashi metric
and assume it is a proper metric space. Let xX � CN be the standard closure. Let
f W X ! X be holomorphic. Then either the orbits stay away from the boundary or
there is a closed face F � @X in the above metric sense such that for any x 2 X every
accumulation point of f n.x/ as n!1 belongs to F .

Theorem 4.3 provides a partial result. Note that one could also ask the same instead
using the notion of face as the a priori non-metric sense of being an intersection of @X
with a hyperplane. This relates to [1,3] which imply partial results on the conjecture in
cases that the domain is convex or has a simple boundary.

Here is another partial result.

Proposition 4.6. LetX be a bounded domain in CN equipped with Kobayashi metric.
Let xX � CN be the standard closure. Let f W X ! X be holomorphic. Assume that
d.z; f n.z//%1 monotonically for some z 2 X . Then there is a closed face F � @X
in the above metric sense such that for any x 2 X every accumulation point of f n.x/
as n!1 belongs to F .

Proof. Given two subsequences

f ni .z/! � 2 @X and f kj .z/! �

as i; j !1. For any ni > kj we have

d
�
f ni .z/; f kj .z/

�
� d

�
z; f ni�kj .z/

�
< d

�
z; f ni .z/

�
� d

�
f ni .z/; x0

�
C d.x0; z/:

For any neighborhood V of � we can find a large enough j so that f kj .z/ 2 V , and
the above inequality means that

f ni .z/ 2 H.V;C /

for all i large enough and where C D d.x0; z/. Hence � 2 S.�/. Since this was for
two arbitrary sequences we must also have � 2 S.�/ and can conclude that F being
the intersection of all the stars of all accumulation points contains all accumulation
points (even when changing z to x since the respective orbits stay on bounded distance
and this does not influence the stars).

The same argument would work if one merely knew that for some a > 0,

d
�
z; f an.z/

�
%1:

This is presumably most often the case, but it may not be so easy to guarantee.
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5. The Calabi flow

Given a Kähler manifold with a fixed Kähler class, a natural question is to determine
whether there exists a canonical choice of Kähler metric in this class. One potential
such choice, generalizing Riemann surface theory and Kähler–Einstein metrics, is to
look for metrics of constant scalar curvature.

Let .Y; J;!/ be a compact connected Kähler manifold and consider the space H of
smooth Kähler metrics in the cohomology class Œ!�, introduced by Calabi in the 1950s.
This space can be equipped with a Riemannian metric (Mabuchi–Semmes–Donaldson)
of Weil–Petersson or Ebin type with nonpositive sectional curvatures and such that
the metric completion E2 is a CAT.0/-space admitting a concrete description in terms
of plurisubharmonic functions (due to Darvas). The Calabi flow on H in the space of
metrics does not expand distances as long as it exists. It is believed to exist for all times.
Moreover it is expected that either the flow converges to a constant scalar curvature
metric or it diverges and should asymptotically contain some information about the
Kähler structure (made precise in a conjecture of Donaldson in terms of geodesic rays).
Streets suggested to study a weak Calabi flow ˆt , which is nonexpansive being the
gradient flow of a convex function M , the K-energy of Mabuchi, and exists for all
time and coincides with the Calabi flow when it exists. I refer to [11, 20, 58] for more
information and appropriate references. The works of Mayer and Bacak in pure metric
geometry play an important role here, and let me add another good reference [22] on
gradient flows of convex functions on CAT.0/-spaces generally.

From a flow ˆt we can define the time-one map f .x/ D ˆ1.x/, and we have that
f n.x/ D ˆn.x/. From what has been said we have that f is a nonexpansive self-map
of a complete CAT.0/-space.

Motivated by this it should be useful to see what can be said about the iteration of
nonexpansive maps in the setting of CAT.0/-spaces (note by the way that since the
Kobayashi metric is a supremum-type metric it is almost never CAT.0/ apart from the
well-known exceptional cases). Some results and arguments for locally compact spaces
are contained in Beardon [9].

For general complete CAT.0/-spaces, in the case that the orbits of f are bounded,
several authors have observed the existence of a fixed point, notably Kirk in [46]. I
gave the following argument in my doctoral thesis.

Proposition 5.1. Let f be a nonexpansive map of a complete CAT.0/-space. If the
orbits are bounded, then f has a fixed point.

Proof. It follows from CAT.0/, in fact the uniform convexity, that bounded subset
possesses a unique circumcenter, which is a point that is the center of a closed ball
of minimal radius containing the set. The uniform convexity also leads to that the
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intersection of any nested sequence of decreasing closed convex sets is nonempty
because the circumcenters form a Cauchy sequence and the limit is a point in the
intersection.

Given an orbit xn WD f nn .x/ we can construct an invariant, bounded, closed convex
set in the following way. For each k > 1we let Ck be the intersection of the closed balls
with centers at xn and radius the diameter of the orbit. These are non-empty, bounded,
and convex. Moreover f W Ck ! CkC1, so the closure of the union of all Ck is the
desired invariant set. Such sets are ordered by inclusion and every linearly ordered
chain has a lower bound via the intersection; thus Zorn’s lemma provides a minimal
element. The circumcenter of this minimal element must be a fixed point of f .

CAT.0/-spaces have the so-called visual bordification consisting of equivalence
classes of geodesic rays (this is not related to the visibility property above). For proper
spaces it coincides with the metric compactification.

Theorem 5.2. Let f be a nonexpansive map of a complete CAT.0/-space X . If the
orbits are bounded, then f has a fixed point. If df WD infx d.x; f .x// > 0, then there
exists a unique geodesic ray  from x such that

1

n
d
�
f n.x/; .df t /

�
! 0;

as n!1, and b.f .x//�b.x/� df for all x where b denotes the Busemann function
associated with  . In particular, f .x/ converges to the class of  in the visual bordifica-
tion. If df D 0, then there is a metric functional h such that h.f .x//� h.x/ for all x.

Proof. The bounded orbit case is treated in Proposition 5.1. It is known from [30] that
for any nonexpansive self-map f of a CAT.0/-space, since it is a star-shaped hemi-
metric space, the minimal displacement df equals the translation length �f . Therefore
�f > 0, and a special case of the main result in [44] then shows that there is a unique
unit-speed geodesic ray  from x such that

1

n
d
�
f n.x/; .df n/

�
! 0:

In particular, f n.x/ converges to the visual boundary point Œ� for any x 2 X , which
is strictly weaker. Let b be the Busemann function associated with the geodesic ray
emanating from x0 representing the class of  . This is the unique Busemann function
such that (cf. [43])

�
1

n
b.f nx/! df :

Theorem 4.1 now implies moreover that b.f .x// � b.x/ � df which holds for all x
in view of [30]. And in the remaining case that df D 0 and the infimum is not attained,
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Theorem 4.1 gives a metric functional h such that h.f n.x0// � 0 for all n > 0. When
the space is CAT.0/ this can be improved; see [37] or [30], to give the remaining
assertion for any x.

Anyone from complex dynamics, or the attentive reader of the previous sections,
will notice that this too is a Wolff–Denjoy type theorem in a purely metric setting,
but now with implications for complex geometry. It is known, see [11], that either the
trajectories of the weak Calabi flow converge to a constant scalar curvature metric, or
they diverge, d.x;ˆt .x//!1 for any x. In the latter case one would like to know
some directional behavior, for example the notion of weakly asymptotic geodesic ray
introduced by Darvas–He and studied in [11], which is a notion much weaker (for
example not necessarily unique) than the one in Theorem 5.2. In a special case there is
more precise asymptotic convergence to a geodesic ray known [24, Theorem 6.3] used
to prove the main result concerning uniqueness properties of constant scalar curvature
metrics in that same paper. We will compare the above with Xia’s paper [58]. Having
as a starting point an inequality and conjecture of Donaldson in [27], Xia proved an
analog of the conjecture when enlarging the space from H to E2; namely,

C WD inf
x2E2

ˇ̌
.@M/.x/

ˇ̌
D max

�M.`/
k`k

;

where the maximum on the right is taken over boundary points/geodesic rays in E2.
The expression j.@M/.x/j is the local upper gradient of the Mabuchi energy. If its
infimum is strictly positive, .Y; !/ is called geodesically unstable (and in particular
admitting no constant scalar curvature metric in its class). Recent results on geodesic
stability and the existence of constant scalar curvature Kähler metrics can be found
in [23].

Let me formulate the following that improves and reproves parts of [58, Corollary 1.2,
Corollary 4.2].

Corollary 5.3. Let .Y; !/ be a compact connected Kähler manifold that is geodesi-
cally unstable. Let ˆt .x/ be the weak Calabi flow on the associated space E2 starting
from x. Then there exists a unique geodesic ray  from x on sublinear distance to
ˆt .x0/; that is,

1

t
d
�
ˆt .x/; .Cn/

�
! 0;

where C is defined above. In particular ˆt .x/! Œ� 2 @E2 as t !1, for any x.

Proof. The geodesic instability asserts that the infimum of the gradient is strictly
positive, C > 0, which implies that the escape rate of the weak Calabi flow is linear;
see [22]. The corollary is now a consequence of Theorem 5.2.
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There are many studies on the geodesics in spaces like H and Ep; see [4, 12] for
two recent papers in the complex setting and references therein. It might therefore be
of interest that the argument I suggest here (from [44]) constructs the geodesic from
the flow in a way that does not use any compactness argument. From my point of view,
related to Theorem 4.1 above, it should also be fruitful to study the dual notion to
geodesics, the metric functionals of E1 and E2.

Apart from the constant scalar curvature problem, automorphisms of the underlying
Kähler manifold act by isometry on the Calabi space and also fall under Theorem 5.2.

Corollary 5.4. Let f be a complex automorphism of a compact Kähler manifold. If

d WD inf
x
d
�
x; f .x/

�
> 0

for the action on E2, then there is a unique geodesic ray  from x such that

1

n
d
�
f n.x/; .dn/

�
! 0;

and f fixes the corresponding boundary point in the visual bordification of M .

Proof. For CAT.0/-spaces any boundary limit point of the orbit is fixed by f as is
well known, see for example [42], since two sequences of bounded distance from each
other converge to the same equivalence class of geodesic ray when they converge.

Even in the case d D 0, it holds that f fixes a metric functional of Ep ([42]). A
condition like infx d.x; f .x// D 0 where f is a diffeomorphism of an underlying
compact manifold acting instead by isometry on a space of metrics was proposed by
D’Ambra and Gromov in [26] as (quasi-) unipotency of f .

Question J. How can we describe or understand the metric functionals for the Calabi–
Mabuchi space and what do the relevant results discussed in this paper imply concretely
for the Calabi flow, Donaldson’s conjecture, and automorphisms of the Kähler manifold?

A final remark is that in the standard visual bordification, the stars are identified in
[38, Proposition 25] as

S.�/ D Sx0.�/ D
®
� W †.�; �/ � �=2

¯
D S_.�/;

where † denotes the Tits angle between two geodesic rays and is symmetric in its
arguments.

Example. The stars for Euclidean spaces are half-spheres (the Tits angle coincides
with the usual notion of angle) and for hyperbolic spaces they are points (since any
two boundary points can be joined by a geodesic line giving the angle �).
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6. Random iteration

The above discussion has involved iterations f n of a holomorphic self-map f . In
some contexts one meets the generalization to the composition of several different
holomorphic maps. When looking at the asymptotics one can compose them in two
ways, forward or backward. The latter, i.e.,

Rn D f1 ı f2 ı � � � ı fn;

behaves best when studying individual orbits and appears for example in the theory
of continued fractions. Indeed, a continued fraction expansion of a number is exactly
such an expression where fi .z/ D ai=.bi C z/ are certain Möbius maps, and letting
n!1. Other examples considered by Ramanujan and Polya-Szegö are infinite radicals
(fi .z/D

p
aiz C bi ) and iterated exponentials (fi .z/D azi ); see [53] for more details.

In these contexts one considers the limit of the corresponding Rn.0/ as n!1. There
is also a connection to Nevanlinna–Pick interpolation.

Some papers on this topic, see for example [2, 10, 35], take arbitrary sequences of
maps (like in iterated function systems and the theory of fractals) and sometimes call
them random iteration. Here we will only discuss Rn for actually randomly selected
holomorphic maps fi .

We formalize the setting as follows, more general than the usual random assumption
of independently, identically distributed selected maps. Let .T;�;�/ be an ergodic mea-
sure preserving system with�.�/D 1. Given a measurable map f W�!G into a semi-
group, we define the following ergodic cocycle:R.n;!/D f .!/f .T!/ � � �f .T n�1!/
or in probabilistic notation leaving out the measure space: Rn D f1f2 � � � fn. It is
integrable if Z

�

d
�
x; f .!/x

�
d� <1

for some x 2 X . Then by a well-known consequence of Kingman’s subadditive ergodic
theorem, the limit has

� WD inf
n

1

n

Z
d
�
x;R.n; !/x

�
d� D lim

n!1

1

n
d
�
x;R.n; !/x

�
for almost every ! and by ergodicity � is independent of !.

Recall the notion of visibility domain from Section 3.

Theorem 6.1. Let Rn D f1f2 � � �fn be an integrable ergodic cocycle of holomorphic
self-maps of a bounded domainX in CN that is a visibility domain with the Kobayashi
distance d . Then almost surely it holds that unless

1

n
d.x;Rnx/! 0
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as n!1, there is a random point � 2 @X such that

Rnx ! �

n!1, for any x 2 X .

Proof. Fix x 2 X . Assume that for a.e. !

1

n
d
�
x;R.n; !/x

�
! � > 0:

Take 0 < � < � . By [44, Proposition 4.2], for a.e. !, there is a sequence of ni !1
and K such that

d
�
x;R.ni ; !/x

�
� d

�
x;R.ni � k; T

k!/x
�
� .� � �/k

for all K < k < ni . Note that d.R.ni ; !/x;R.k; !/x/ � d.x;R.ni � k; T k!/x/ by
the nonexpansive property. This implies that

d
�
x;R.ni ; !/x

�
C d

�
x;R.k; !/x

�
� d

�
R.ni ; !/x;R.k; !/x

�
� .� � �/k

for allK < k < ni (for large k we could even insert a 2 on the right-hand side). Hence
the left-hand side tends to infinity as k < ni !1. By compactness we may assume
that R.ni ; !/x ! � for some point � D �.!/ 2 @X .

Now suppose that for some subsequencekj ,R.kj ;!/x! � for some other boundary
point �. Fix two disjoint closed neighborhoods V and W of � and � respectively.
Consider all large enough j such that R.kj ; !/x 2 W and take a corresponding ij
such that kj < nij and R.nij ; !/x 2 V , and take an almost geodesic �j joining these
two orbit points. By the visibility assumption there is a C independent of j such that
there exists tj for which

d
�
x; �j .tj /

�
< C;

for all large j . Since �j is an almost geodesic we have

d
�
R.kj ; !/x; �j .tj /

�
C d

�
�j .tj /; R.nij ; !/x

�
� d

�
R.nij ; !

�
x;R.kj ; !/x

�
C 3�:

Therefore by the triangle inequality

d
�
R.nij ; !/x;R.kj ; !/x

�
> d

�
x;R.nij ; !/x

�
C d

�
x;R.kj ; !/x

�
� 2C � 3�:

So for an infinitude of ni and ks we have

d
�
x;R.ni ; !/x

�
C d

�
x;R.k; !/x

�
� d

�
R.ni ; !/x;R.k; !/x

�
< 2C C 3�;

but this contradicts the previous estimate. The conclusion follows.
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Without the visibility assumption, a more general result (in view of Theorem 3.5)
holds corresponding to Theorem 4.3.

Theorem 6.2 ([38, Theorem 18]). Let .X; d/ be a proper metric space, xX a compact-
ification, and Rn D R.n; !/ an integrable ergodic cocycle. Assume that � > 0. Then
for a.e. ! there is a boundary point � D �.!/ such that

Rnx ! S_.�/

as n!1.

The proof is similar to the previously stated theorem. It is not so easy in general to
determine when the linear rate of escape � is 0 or strictly positive. The difference in
escape rate can be exemplified by Brownian motion in Euclidean spaces (� D 0 and no
directional convergence) and hyperbolic spaces (� > 0 and asymptotic convergence).
Another result that ultimately might prove to be yet more general is the following
random version of Theorem 4.1 above.

Theorem 6.3 (Ergodic theorem for noncommuting random operations, [32, 43]). Let
Rn DR.n;!/ be an integrable ergodic cocycle of nonexpansive maps of a metric space
.X; d/ assuming everything is measurable. Then there exists a.s. a metric functional
h D h! of X such that

lim
n!1

�
1

n
h.Rnx/ D �:

The proof in the isometry case uses the extension of the maps to the metric com-
pactification, while the general case instead uses intricate subadditive ergodic theory.
How to deduce results like Theorem 6.1 from this latter result is explained in the proof
of [32, Corollary 5.2]. This reference also contains a result on the behavior of the
Ahlfors–Beurling extremal length under the random iteration of holomorphic maps of
Teichmüller spaces.

Example. Let X be the Teichmüller space associated with a higher genus closed ori-
entable surface. Let Rn be a non-degenerate random walk on the group of its complex
automorphisms (which by a theorem of Royden coincides with the mapping class group
in topology). The Teichmüller metric coincides with the Kobayashi metric (again by
Royden). The metric compactification coincides with the Gardiner–Masur compactifi-
cation of Teichmüller space [51]. The group in question acts properly on this space that
has at most exponential growth and is a non-amenable group; it then follows from a the-
orem by Guivarch that the escape rate is � > 0. Therefore every random walk converges
to a dual star at infinity of Teichmüller space. See [39] for more details and references.
Note that [28] investigated the stars in the Thurston compactification, while for this
other complex analytic boundary there has so far not appeared any study of its stars.
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