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Differential Equations. – Shape optimization for a nonlinear elliptic problem related
to thermal insulation, by Rosa Barbato, communicated on 19 April 2024.

Abstract. – In this paper, we consider a minimization problem of a nonlinear functional
Iˇ;p.D; �/ related to a thermal insulation problem with a convection term, where � is a
bounded connected open set in Rn and D � x� is a compact set. The Euler–Lagrange equation
relative to Iˇ;p is a p-Laplace equation, 1 < p <1, with a Robin boundary condition with
parameter ˇ > 0. The main aim is to study extremum problems for Iˇ;p.D;�/, among domains
D with given geometrical constraints and � nD of fixed thickness. In the planar case, we show
that under perimeter constraint the disk maximizes Iˇ;p . In the n-dimensional case we restrict our
analysis to convex sets showing that the same is true for the ball but under different geometrical
constraints.
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1. Introduction

Insulation problems have interested many researchers and it is a very active field of
research as it is related to environmental improvement. In fact, thermal insulation may
be applied to save energy and even if it may seem counterintuitive, having too much
insulation can have a negative impact on the energy efficiency; furthermore, adding too
much insulation is expensive and unsustainable. On this topic, there are many papers,
as for instance [1–6,9–11].

In this paper we consider a problem of this type: let � be a bounded connected
open set of Rn, D � x� a compact set, ˇ > 0 a fixed constant. Let

Iˇ;p.DI�/

D inf
²Z

�

jD�jpdx C ˇ

Z
@�

j�jpdHn�1; � 2 W 1;p.�/; � � 1 in D
³
:

(1.1)

Our aim is to study maximization and minimization problems of Iˇ;p.D;�/, among
domains with given geometrical constraints. In Proposition 3.1 we prove that if � has
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Lipschitz boundary, then there exists a minimizer u of (1.1) that satisfies8̂̂<̂
:̂
�pu D 0 in � n xD
u D 1 in D
jDujp�2 @u

@�
C ˇjujp�2u D 0 on @�;

where
�pu D div

�
jDujp�2Du

�
is the p-Laplace operator, and the functional Iˇ;p.D;�/ assumes the following form:

Iˇ;p.D;�/ D ˇ

Z
@�

jujp�2udHn�1:

In this order of ideas, the casepD 2 has been treated in [8]. In this case, the minimization
problem arises from a thermal insulation problem; in fact, they consider a domain of
given temperature, thermally insulated by a thermal insulator of constant thickness,
and they ask for the best or worst choice in terms of heat dispersion.

In the present paper we consider the general case 1 < p < C1.
The plan of the paper is the following: after recalling some well-known facts on

convex domains in Section 2, we prove some basic properties of Iˇ;p.D;�/ in Section 3.
In Sections 4–6 we discuss our main results. First, we consider the domains of the

type � D D C ıB , with ı > 0 and B the unit ball in Rn. In particular, in the planar
case studied in Section 4, in Theorem 4.1 we prove that if D is an open, bounded,
connected set of Rn with piecewise C 1 boundary, the maximum of Iˇ;p.D;D C ıB/
is achieved at the disk having the same perimeter of D. Moreover, in Section 5 we
consider the n-dimensional case for convex sets and we obtain in Theorem 5.1 that
among the convex sets�DDC ıB , with fixed ı and of givenWn�1 quermassintegral
of D (see Section 2 for the precise definition), the maximum is attained when D is a
ball.

Finally in Section 6, we show a counterintuitive behavior of the functional Ǐ ;p.D;�/;
indeed we prove in Proposition 6.3 that for suitable values of ˇ, there exists a positive
constant ı0 such that for any bounded domain �, with D � � and j�j � jDj < ı0,
then

Iˇ;p.BR; �/ > Iˇ;p.BR; BR/:

2. Preliminaries

In this section, we list some basic facts on convex sets (see, for example, [7, 12]). Let
K be a nonempty, bounded, convex set in Rn and let ı > 0. Then the Steiner formula
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for the volume and the perimeter states that

jK C ıBj D

nX
jD0

�
n

j

�
Wj .K/ı

j

D jKj C nW1.K/ı C
n.n � 1/

2
W2.K/ı

2
C � � � C !nı

n;

P.K C ıB/ D n

n�1X
jD0

�
n � 1

j

�
WjC1.K/ı

j

D P.K/C n.n � 1/W2.K/ı C � � � C n!nı
n�1;

(2.1)

where B is the unit ball in Rn centered at the origin, !n is its measure, and K C ıB
stands for the Minkowski sum.

The coefficients Wj .K/ are the so-called quermassintegrals of K. In particular W0
is the volume of K, W1 D P

n
and Wn D !n.

It follows that

(2.2) lim
ı!0C

P.K C ıB/ � P.K/

ı
D n.n � 1/W2.K/:

If K has C 2 boundary, with nonzero Gaussian curvature, the quermassintegrals
can be rewritten in terms of the principal curvatures of @K. Indeed, in such a case

(2.3) Wi .K/ D
1

n

Z
@K

Hi�1.x/dHn�1; i D 1; : : : ; n:

Meanwhile, Hj denotes the j -th normalized elementary symmetric function of the
principal curvatures of @K; that is, H0 D 1, and

Hj .x/ D

�
n � 1

j

��1 X
1�i1�����ij�n�1

ki1.x/ � � � kij .x/; j D 1; : : : ; n � 1;

where k1.x/ � � � kn�1.x/ are the principal curvatures at a point x 2 @K. In particular,
by (2.2) and (2.3) follows also that

lim
ı!0C

P.K C ıB/ � P.K/

ı
D .n � 1/

Z
@K

H1.x/dHn�1;

where H1.x/ is the mean curvature of @K at a point x.
The Alexandrov–Fenchel inequalities state that

(2.4)
�
Wj .K/

!n

� 1
n�j

�

�
Wi .K/

!n

� 1
n�i

; 0 � i < j � n � 1;

where the inequality becomes an equality if and only if K is a ball.
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In what follows, we will use the Alexandrov–Fenchel inequalities for particular
values of i and j . When i D 0 and j D 1, we have the classical isoperimetric inequality:

P.K/ � n!n
1
n jKj1�

1
n :

Moreover, if i D k � 1; and j D k, we have

Wk.K/ � !n
1

n�kC1Wk�1.K/
n�k
n�kC1 :

Now we denote by K� a ball such that Wn�1.K/ D Wn�1.K
�/ and then by the

Alexandrov–Fenchel inequalities (2.4), for 0 � i < n � 1 it holds that�
Wi .K

�/

!n

� 1
n�i

D
Wn�1.K

�/

!n
D
Wn�1.K/

!n
�

�
Wi .K/

!n

� 1
n�i

I

hence,

(2.5) Wi .K/ � Wi .K
�/; 0 � i � n � 1:

Now consider the two-dimensional case. Let D be an open, bounded, connected
set in R2; we denote byD� the disk having the same perimeter ofD. If� D D C ıB
and�� D D� C ı�B , where B is the disk centered at the origin, the Steiner formulae
become

j�j D jDj C P.D/ı C �ı2; P.�/ D P.D/C 2�ı;

j��j D jD
�
j C P.D�/ı� C �ı

2
�; P.��/ D P.D

�/C 2�ı�:

Let us observe that, in our context, if we ask that the area of the insulating material
� n xD remains constant, then

j�j � jDj D P.D/ı C �ı2 D j��j � jD
�
j D P.D�/ı� C �ı

2
�:

SinceP.D/DP.D�/, then ıD ı� and, as byproduct,P.�/DP.��/. On the contrary,
if ı D ı�, then j�j � jDj D j��j � jD�j.

If D is a general bounded domain, with piecewise C 1 boundary, it holds that

(2.6) j�j � jDj C P.D/ı C �ı2; P.�/ � P.D/C 2�ıI

hence ı D ı� implies
j�j � jDj � j��j � jD

�
j;

which means that if we fix the perimeter P.D/ and the thickness ı, the area of the
insulating material increases.
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3. The variational problem

Given a compact setD in Rn and a bounded connected open set� of Rn withD � x�,
we are interested in studying

Iˇ;p.DI�/

D inf
²Z

�

jD�jpdx C ˇ

Z
@��

j�jpdHn�1; � 2 W 1;p.�/; � � 1 in xD
³(3.1)

with ˇ > 0. The following result holds.

Proposition 3.1. If� is a bounded, connected, open set of Rn with Lipschitz boundary,
and D is a compact set with D � �, then there exists a unique positive minimizer
u 2 W 1;p.�/ of (3.1) which satisfies

(3.2)

8̂̂<̂
:̂
�pu D 0 in � n xD;
u D 1 in D;
jDujp�2 @u

@�
C ˇjujp�2u D 0 on @�:

Moreover the functional can be written as

(3.3) Iˇ;p.D;�/ D ˇ

Z
@�

up�1 dHn�1;

where u is the solution to (3.2).

Proof. The proof follows by a standard application of a calculus of variation’s argument.
We sketch the proof for completeness.

Let un be a minimizing sequence for Iˇ;p.�;D/. Then un is bounded in W 1;p,
9unk ! u weakly in W 1;p.�/, strongly in Lp and a.e in �. Then by semicontinuity,
u is a minimizer of Iˇ;p.�;D/. Moreover, juj still being a minimizer, we can assume
u � 0. By Harnack inequality, u > 0 in �. Furthermore, by convexity, u is the unique
minimizer and it satisfies8̂̂<̂

:̂
�pu D 0 in �;
u D 1 in xD;
jDujp�2 @u

@�
C ˇup�1 D 0 on @�:

LetW 1;p
xD
.�/ be the closure inW 1;p.�/ of ¹�j� W � 2C1.Rn/ with xD \ supp�D;º.

Hence, the minimizer u is such that u � 1 2 W 1;p
xD
.�/ and it is a solution to (3.2). In

particular, Z
�n xD

jDujp�2DuD� dxCˇ

Z
@�

up�1� dHn�1
D0

for any � 2 W 1;p
xD
.�/.
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So, if we take � D u � 1 2 W 1;p
xD
.�/,Z

�

jDujp�2Du.Du/ dx C ˇ

Z
@�

up�1u.u � 1/ dHn�1
D 0I

that is, Z
�

jDujp dx C ˇ

Z
@�

.up � up�1/ dHn�1
D 0;

and this implies (3.3).

4. The planar case

In this section we consider the case where � is the Minkowski sum

� D D C ıB;

B is the unit ball centered at the origin, and ı is a positive constant, representing the
thickness of � nD. Then we set

Iˇ;p;ı.D/ D Iˇ;p.D;D C ıB/:

Theorem 4.1. Let D be an open, bounded, connected set of R2 with piecewise C 1

boundary. Then
Iˇ;p;ı.D/ � Iˇ;p;ı.D

�/;

where D� is the disk having the same perimeter of D.

Proof. Let v be the radial minimizer of Iˇ;p;ı.D�/ and�� DD�C ıB . GivenR > 0
the radius of D�, we denote

vm D v.RC ı/ D min
��

v

and
max
��

v D v.R/ D 1:

As v is radial, the modulus of the gradient of v is constant on the level lines of v.
So we can consider the function

g.t/ D jDvjvDt ; vm < t � 1

and

w.x/ D G
�
RC d.x/

�
; x 2 �; where G�1.t/ D RC

Z 1

t

1

g.s/
ds
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and d.x/ is the distance of a point x from D. In particular, v is decreasing and the
function g can be zero only for v D 1. This means that G�1 is decreasing; therefore so
is G and then w 2 W 1;p.�/. So we get

max
�
w D wj@D D 1 D G.R/;

wm D min
�
w D wj@� D G.RC ı/ D vm;

jDwjwDt D jDvjvDt D g.t/; wm � t � 1:

Hence, w is a test function. Then

Iˇ;p;ı.D/ �

Z
�nD

jDwjp dx C ˇ

Z
@�

jwjp dH1:

Let

Et D
®
x 2 � W w.x/ > t

¯
D
®
x 2 � W d.x/ < G�1.t/

¯
D D CG�1.t/B

and let
Bt D

®
x 2 �� W v.x/ > t

¯
:

By Steiner formula (2.6) we get

P.�/ � P.D/C 2�ı;

so

P.Et / � P.D/C 2�G
�1.t/ D P.D�/C 2�G�1.t/ D 2�

�
RCG�1.t/

�
D P.Bt /

for every t 2 �wm; 1�. Hence,Z
wDt

jDwjdH1
D

Z
wDt

g.t/dH1
D g.t/P.Et / � g.t/P.Bt /

D

Z
vDt

jDvjdH1; wm < t � 1:

Then, using the co-area formula,Z
�n xD

jDwjpdx D

Z 1

wm

dt

Z
wDt

jDwjp�1dH1

D

Z 1

wm

�
g.t/

�p�1
P.Et /dt �

Z 1

wm

�
g.t/

�p�1
P.Bt /dt

D

Z
�n xD�

jDvjpdx:

(4.1)
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Since by construction w D wm D vm on @� and P.�/ D P.��/, we have

(4.2)
Z
@�

jwjpdH1
D jwmj

pP.�/ D jvmj
pP.��/ D

Z
@��

jvjpdH1:

Hence, by (4.1) and (4.2) it holds that

Iˇ;p;ı.D/ �

Z
�nD

jDwjpdx C ˇ

Z
@�

jwjpdH1

�

Z
��nD�

jDvjpdx C ˇ

Z
@��

jvjpdH1
D Iˇ;p;ı.D

�/:

5. The n-dimensional case

Now we prove that in higher dimension (n � 3) balls still maximize Iˇ;p;ı , but our
result finds its natural generalization in the class of convex domains D.

Theorem 5.1. Let D be an open, bounded, convex set of Rn. Then

Iˇ;p;ı.D/ � Iˇ;p;ı.D
�/;

whereD� is the ball having the sameWn�1 quermassintegral ofD; that is,Wn�1.D/D
Wn�1.D

�/.

Proof. Let v be the radial minimizer of Iˇ;p;ı.D�/ and let �� D D� C ıB . Since
� D D C ıB , the Steiner formula for the perimeter (2.1) and Alexandrov–Fenchel
inequalities (2.5) imply P.�/ � P.��/.

Let us denote vm D v.RC ı/Dmin�� v and max�� v D v.R/D 1. As v is radial,
the modulus of the gradient of v is constant on the level lines of v.

Now we consider the function

g.t/ D jDvjvDt ; vm < t � 1

and

w.x/ D G
�
RC d.x/

�
; x 2 �; where G�1.t/ D RC

Z 1

t

1

g.s/
ds;

and d.x/ is the distance of a point x from D.
By construction w 2 W 1;p.�/ and with G decreasing one has

max
�
w D wj@D D 1 D G.R/;

wm D min
�
w D wj@� D G.RC ı/ D vm;

jDwjwDt D jDvjvDt D g.t/; wm � t � 1:
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Then
Iˇ;p;ı.D/ �

Z
�nD

jDwjp dx C ˇ

Z
@�

jwjp dHn�1:

Let

Et D
®
x 2 � W w.x/ > t

¯
D
®
x 2 � W d.x/ < G�1.t/

¯
D D CG�1.t/B

and
Bt D

®
x 2 �� W v.x/ > t

¯
:

WithWn�1.D/DWn�1.D�/, using the Steiner formula and (2.5), we get for t 2 �wm; 1�
and � D G�1.t/ that

P.Et / D P.D C �B/ D n

n�1X
nD0

�
n � 1

k

�
WkC1.D/�

k

�

n�1X
nD0

�
n � 1

k

�
WkC1.D

�/�k D P.D� C �B/ D P.Bt /:

Hence, Z
wDt

jDwjdHn�1
D g.t/P.Et / � g.t/P.Bt /

D

Z
vDt

jDvjdHn�1; wm < t � 1I

then, using co-area formula,Z
�nD

jDwjpdx D

Z 1

wm

dt

Z
wDt

jDwjp�1dHn�1

D

Z 1

wm

�
g.t/

�p�1
P.Et /dt �

Z 1

wm

�
g.t/

�p�1
P.Bt /dt

D

Z
�nD�

jDvjpdx:

Since by construction w D wm D vm on @� and P.�/ � P.��/, we haveZ
@�

jwjpdHn�1
D jwmj

pP.�/ D jvmj
pP.��/ D

Z
@��

jvjpdHn�1:

So,

Iˇ;p;ı.D/ �

Z
�nD

jDwjpdx C ˇ

Z
@�

jwjpdHn�1

�

Z
��nD�

jDvjpdx C ˇ

Z
@��

jvjpdHn�1
D Iˇ;p;ı.D

�/:
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6. Remarks

There is a counterintuitive behavior of the functional Iˇ;p;ı.D;�/ when � and D are
concentric balls, which can be seen in the next two propositions.

Proposition 6.1. Let BR be the ball of radius R > 0 centered at the origin. If ˇ �
Œ n�1
R.p�1/

�p�1, then Ǐ ;p;ı.BR/ is decreasing in ı. Whenˇ<Œ n�1
R.p�1/

�p�1, then Ǐ ;p;ı.BR/
is increasing for ı < . n�1

p�1
/ 1

ˇ
1
p�1

�R and decreasing for ı > . n�1
p�1

/ 1

ˇ
1
p�1

�R.

Proof. If D D BR is the ball of radius R > 0 centered at the origin, then obviously
� D BR C ıB D BRCı and the minimum of (3.1) is the radial function

(6.1) u.r/ D

´
1 � 1

1
p�1

�
p�1
p�n

�
R
p�n
p�1

��
r
R

�p�n
p�1 � 1

�
p 6D n

1 � 1
1
n�1 log r

R
p D n

for a suitable constant 1. This follows from the fact that

rn�1�pu D
d

dr

�
rn�1ju0.r/jp�2u0.r/

�
D 0;

but u is decreasing and positive, so

u0.r/ D �
1

1
p�1

r
n�1
p�1

; r 2 ŒR;RC ı�:

If p 6D n, then integrating by parts and keeping in mind that u.R/ D 1 it holds that

u.r/ D �1
1
p�1

�
p � 1

p � n

��
r
p�n
p�1 �R

p�n
p�1

�
C 1:

If p D n,
u.r/ D �1

1
n�1 log

r

R
C 1:

Now, we can find 1 using the boundary conditions.
If p 6D n, then using Robin condition on @� it holds that

�
�
� u0.RC ı/

�p�1
C ˇ

�
u.RC ı/

�p�1
D 0:

By using the explicit expression of u,

1
1
p�1 .RC ı/�

n�1
p�1 D ˇ

1
p�1

 
�1

1
p�1

�
p � 1

p � n

�
R
p�n
p�1

 
1 �

�
RC ı

R

�p�n
p�1

!
C 1

!
and we have that

1 D
ˇh

.RC ı/�
n�1
p�1 C

�
p�1
p�n

�
ˇ

1
p�1R

p�n
p�1

��
RCı
R
� 1

�p�n
p�1

�ip�1 :
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In particular, Z
@.�nD/

�
jDujp�2Du � �

�
dHn�1

D 0;

and using the divergence theorem,

�

Z
�nD

jDujp C

Z
@.�nD/

u
�
jDujp�2Du � �

�
D 0;

�

Z
�nD

jDujp �

Z
@�

ˇup C

Z
@D

u
�
jDujp�2Du � �

�
D 0:

This implies that

Iˇ;p;ı.BR/ D

Z
@BR

jDujp�2
@u

@�
dHn�1:

Let us observe that
Iˇ;p;ı.BR/ D n!n1

and we have
@ı
�
Iˇ;p;ı.BR/

�
< 0

if

@ı

�
.RC ı/

1�n
p�1 C ˇ

1
p�1

�
p � 1

p � n

�
R
p�n
p�1

��
RC ı

R

�p�n
p�1

� 1

��
> 0

and this is true if
ı >

�
n � 1

p � 1

�
1

ˇ
1
p�1

�R:

On the other hand, when p D n we have

1 D
ˇh

1
.RCı/

C ˇ
1
n�1 log RCı

R

in�1
and

Iˇ;n;ı.BR/ D
n!nˇh

1
.RCı/

C ˇ
1
n�1 log RCı

R

in�1 :
So

@ı
�
Iˇ;n;ı.BR/

�
< 0

if
@ı

�
1

.RC ı/
C ˇ

1
n�1 log

�
1C

ı

R

��
> 0
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and this is true if and only if

ı >
1

ˇ
1
n�1

�R;

and the proposition is proved.

To show the next result, we first need the following lemma, using the following
notation.

Let D D BR � �, and denote

P D P.BR/ D n!nR
n�1; V D jBRj D !nR

n;

�P D P.�/ � P.BR/; �V D j�j � jBRj:

Lemma 6.2. Let D D BR be the ball of radius R > 0 centered at the origin such that
D � �. For any ı0 > 0, there exists a constant

C D
n!nR

n�1

ı0

��
1C

ı0

!nRn

�1� 1n
� 1

�
such that if �V � ı0, it holds that

�P � C�V:

We refer to [8] for the proof.
Now, we want to prove that, in the regime ˇ “small”, if the thickness ı is below a

certain threshold value, Iˇ;p.BR; �/ is greater than Iˇ;p.BR; BR/.

Proposition 6.3. Let D D BR be the ball of radius R > 0 centered at the origin and
ˇ < Œ n�1

R.p�1/
�p�1. Then there exists a positive constant ı0 such that for any bounded

domain �, with D � � and j�j � jDj < ı0, then

Iˇ;p.BR; �/ > Iˇ;p.BR; BR/:

Proof. Let u be the minimizer of Iˇ;p.BR; �/. Consider

† D � n BR; �m D @� n @BR; �t D @¹u > tº n @BR; �1 D @BR \�

and
p.t/ D P

�
¹u > tº \†

�
; for a.e. t > 0:

Our aim is to prove that

Iˇ;p.BRIBR/ D ˇP.BR/ < Iˇ;p.BRI�/ D

Z
�

jDujpdx C ˇ

Z
@�

jujpdHn�1
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or equivalently

Hn�1.�1/ <
1

ˇ

Z
�

jDujpdx C

Z
�0

jujpdHn�1:

Indeed by the co-area formula and Fubini theorem, we haveZ 1

0

tp�1p.t/dt

D

Z 1

0

tp�1P
�
¹u > tº \†

�
dt D

Z 1

0

�Z
�1

tp�1dHn�1

�
dt

C

Z 1

0

�Z
�t\�

tp�1dHn�1

�
dt C

Z 1

0

�Z
�t\@�

tp�1dHn�1

�
dt

D
Hn�1.�1/

p
C
1

p

Z
�0

updHn�1
C

Z
�

up�1jDujdx:

(6.2)

From Lemma 6.2 we know that for j†j < ı0, with ı0 fixed,

p.t/ � 2Hn�1.�1/ � C�.t/

and then Z 1

0

tp�1p.t/dt � 2

Z 1

0

tp�1Hn�1.�1/dt C C

Z 1

0

tp�1�.t/dt

D
2

p
Hn�1.�1/C

C

p

Z
�

updx;

where C is the constant of Lemma 6.2. Combining this with (6.2), we have

2

p
Hn�1.�1/C

C

p

Z
�

updx �
Hn�1.�1/

p
C
1

p

Z
�0

updHn�1
C

Z
�

up�1jDujdx:

On the other hand, by the Young inequality,Z
�

up�1jDujdx �
p � 1

p"
1
p�1

Z
�

updx C
"

p

Z
�

jDujpdx;

we get the following estimate:

Hn�1.�1/C C

Z
�

updx �

Z
�0

updHn�1
C
p � 1

"
1
p�1

Z
�

updx C "

Z
�

jDujpdx

D

Z
�0

updHn�1
C

p

"
1
p�1

Z
�

updx �
1

"
1
p�1

Z
�

updx

C "

Z
�

jDujpdx;
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and choosing " D 1
ˇ

it holds that

Hn�1.�1/C
�
C � ˇ

1
p�1 .p � 1/

� Z
�

updx �

Z
�0

updHn�1
C
1

ˇ

Z
�

jDujpdx:

Therefore, as R < n�1

.p�1/ˇ
1
p�1

, for ı0 sufficiently small, the constant C is larger than

ˇ
1
p�1 .p � 1/ and the thesis follows.
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