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Abstract – Let C � P3 be a canonical curve of genus 4 over an algebraically closed field k
of characteristic 0. For a line l � P3, we consider the projection �l WC ! P1 with center l
and the extension of the function fields ��

l
W k.P1/ ,! k.C /. A line l is assumed to be cyclic

for C , if the extension k.C /=��
l
.k.P1// is cyclic. A line l is assumed to be non-skew, if

C \ l ¤ ;, i.e., deg�l < degC D 6. We investigate the number of non-skew cyclic lines
for C . As main results, we explicitly give the equation of C in the particular case in which C
has two cyclic trigonal morphisms; we prove that the number of cyclic lines with deg�l D 4
is at most 1, and the number of cyclic lines with deg�l D 5 is at most 1.
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1. Introduction

Let C � P3 be a nonsingular nondegenerate projective curve over an algebraically
closed field k. For a line l � P3, we consider the projection �l WC ! P1 with center
l , and the extension of the function fields ��

l
W k.P1/ ,! k.C /. We denote k.C / by K

and ��
l
.k.P1// by Kl .
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Definition 1.1 ([11]). We refer to l as a Galois line if the extensionK=Kl is Galois.
We denote ¹� 2 Aut.C / j �l ı � D �lº by Gl , which is isomorphic to Gal.K=Kl/,
and name it the Galois group for a Galois line l . If Gl is isomorphic to a cyclic group
Cm of order m (resp. a dihedral group Dm of order 2m, a symmetric group Sm on
m letters,. . .), then the Galois line l is referred to as a Cm-line or a cyclic line (resp.
Dm-line, Sm-line,. . .).

When l is not Galois, let Ll be the Galois closure of K=Kl . Yoshihara [11] proved
that if l is general in the Grassmannian G.1;P3/, then the Galois group Gal.Ll=Kl/ is
the full symmetric group. More generally, in the case that a curveC � P r is irreducible
and nondegenerate, Pirola and Schlesinger [10] proved the following: the locus of
projective linear subspacesM of dimension r � 2 such that the Galois groups given by
the projections �M WC Ü P1 with centerM are not isomorphic to the full symmetric
group, has codimension at least 2 in G.r � 2;P r/.

A line l is said to be skew if C \ l D ;, i.e., deg�l D degC . In [11], Yoshihara
investigated various properties of skew Galois lines. In particular, he proved that the
number of skew Galois lines for an irrational C is finite, and that the number of skew
Galois lines for C is at most one if degC is a prime greater than or equal to 5. He also
studied the skew Galois lines for curves of low degree. In [2,6,12], Yoshihara, Duyaguit,
and Kanazawa studied the number and arrangement of skew Galois lines for an elliptic
space curve, which is a .2; 2/-complete intersection in P3. In addition, Fukasawa and
Higashine [4], and Fukasawa [3] determined the arrangement of all Galois lines for the
Giulietti–Korchmáros curve and the Artin–Schreier–Mumford curve.

Our main theorem is as follows.

Theorem 1.2 (Corollary 3.3, Theorems 3.6, 3.9). Let C � P3 be a canonical
curve of genus 4 over an algebraically closed field k of characteristic zero.

(I) If C has two trigonal morphisms and both of them are cyclic, then C is projectively
equivalent to the curve defined by´

XW D YZ;

Z.W �Z/.W CZ/ D Y 3 C cXY 2 � 9X2Y � cX3
.c 2 k/;

where .X W Y W Z W W / are homogeneous coordinates on P3.

(II) The number of C4-lines equals 0 or 1.

(III) The number of C5-lines equals 0 or 1.

We note that in (I) of Theorem 1.2, there are only one or two trigonal morphisms of
C , and there are infinitely many lines such that the projections with these center lines
are same as each trigonal morphism (Propositions 2.3, 2.4 and 2.5).
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In this paper, we assume that k is algebraically closed and char.k/ D 0, and we
study the number of non-skew cyclic lines for a canonical curveC � P3 of genus 4. We
note that C is a .2; 3/-complete intersection, and that a cyclic line l for C is non-skew
if and only if l is a C3-; C4- or C5-line, in this setting. We provide a similar study on
skew cyclic lines in a subsequent work [9]. We give preliminary results in Section 2
and the detailed results of our main theorem in Section 3. We prove these results in
Section 4. We present concrete examples of non-skew cyclic lines in Section 5.

2. Preliminaries

For a point P 2 C , we denote by H.P / the Weierstrass semigroup of P , that is,

(1) H.P / D ¹n 2 Z>0 j there exists f 2 k.C / such that .f /1 D nP º;

where .f /1 is the divisor of the poles off . We denote by hn1;n2;n3; : : :i the numerical
semigroup generated by non-negative integers n1; n2; n3; : : :

Definition 2.1 ([7]). A Weierstrass point P 2 C is referred to as a weak Galois–
Weierstrass point, if there exists a Galois covering f WC ! P1 such that P is a total
ramification point of f . We denote by degGW.P / the set

¹n 2 Z>0 j there exists a Galois covering f WC ! P1 such that
P is a total ramification point of f and n D degf º:

We note that a Weierstrass point P is a weak Galois–Weierstrass point if and only
if degGW.P / ¤ ;. Theorem 2.2 is required in the proof of Theorem 3.9.

Theorem 2.2 ([8]). LetC be a nonsingular projective curve. Let a and b be coprime
integers such that 3 < aC 1 < b. Then, the number of weak Galois–Weierstrass points
P 2 C with H.P / D ha; bi and b 2 degGW.P / is equal to 0 or 1.

Hereafter, we assume that C � P3 is a canonical curve of genus 4. The following
are well-known facts, which play fundamental roles in this paper.

Proposition 2.3 ([1, page 118], [5, page 298]). The curve C is a .2; 3/-complete
intersection, that is, the homogeneous ideal I.C / of C is generated by a quadratic
form Q and a cubic form F . The degree of C equals 6. The surface zero locus of Q
is a unique quadric surface that contains C . The gonality gon.C / of C equals 3. If
rankQ D 3, then C has a unique trigonal morphism C ! P1, which is given by the
projection from the vertex of the surface Q D 0. If rankQ D 4, then C has exactly
two trigonal morphisms C ! P1.
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Because C � P3 is a canonical curve, for every � 2 Aut.C /, there exists a unique
projective transformation T 2 Aut.P3/ such that T .C / D C and T jC D � . Namely,
we have Aut.C / ,! Aut.P3/ Š PGL.4; k/. Therefore, we represent automorphisms
of C by square matrices of 4 rows and columns.

Let l � P3 be a line. Considering that degC D 6 and C is not hyperelliptic, we
have 3 � deg�l � 6, where �l WC ! P1 is the projection with center l .

Proposition 2.4. If g13 WC ! P1 is a trigonal morphism, then there exists a line l
such that g13 D �l .

On trigonal morphisms g13 WC ! P1, we note that �l1 D �l2 does not imply that
l1 D l2, where �l1 D �l2 means an equal up to an isomorphism of codomains, that
is, there exists an isomorphism T WP1 ! P1 such that �l2 D T ı �l1 . We note that
by taking a suitable projective transformation, we may assume that the quadric that
contains C is expressed as XW � YZ D 0 or Y 2 �XW D 0. If the quadric is given
by XW � YZ D 0, then the projections with centers X D Y D 0 and X D Z D 0
give two different trigonal morphisms. If the quadric is given by Y 2 �XW D 0, then
the projection with centerX D Y D 0 gives a trigonal morphism. Hence, in both cases,
without loss of generality, we may assume that a trigonal morphism C is given by
the projection with center X D Y D 0. Proposition 2.5 makes clear which line gives
the trigonal morphism that coincides with �l , where l is expressed as X D Y D 0.
Proposition 2.5 is only used in Section 5 and not in the proofs of the results in Section 3.

Proposition 2.5. Let l 0 � P3 be a line.

(I) Assume that C is defined by the quadricXW � YZ D 0 and a cubic F D 0. Let the
line l be given byX D Y D 0, which gives a trigonal morphism �l . Then, �l D �l 0
if and only if l 0 is given by ˛X C ˇZ D ˛Y C ˇW D 0 for some .˛ W ˇ/ 2 P1.

(II) Assume that C is defined by the quadric Y 2 �XW D 0 and a cubic F D 0. Let the
line l be given byX D Y D 0, which gives a trigonal morphism �l . Then, �l D �l 0
if and only if l 0 is given by ˛X C ˇY D ˛Y C ˇW D 0 for some .˛ W ˇ/ 2 P1.

However, if deg�l � 4, then �l uniquely determines the center l .

Proposition 2.6. Assume deg�l � 4. Then, �l D �l 0 (up to an isomorphism of
the codomains P1 of �l and �l 0) if and only if l D l 0.
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3. Results

All throughout this section, we will assume C � P3 to be a canonical curve of
genus 4 over an algebraically closed field k of characteristic 0. We present some results
for C3-lines, C4-lines and C5-lines in each subsection.

3.1 – C3-lines

The function field of C that has a cyclic trigonal morphism is expressed as follows.
(Proposition 3.1 is required in the proof of Theorem 3.2.)

Proposition 3.1. Let �l WC ! P1 be a cyclic trigonal morphism. Then, one of
the following holds.

(I) There exist x; y 2 k.C / such that k.C / D k.x; y/ and

(2) y3 D

5Y
iD1

.x � ci /;

where c1; : : : ; c5 2 k are mutually distinct. In this case, C has a unique trigonal
morphism �l , which is given by the function x.

(II) There exist x; y 2 k.C / such that k.C / D k.x; y/ and

(3) y3 D

3Y
iD1

.x � ci / �

5Y
iD4

.x � ci /
2;

where c1; : : : ; c5 2 k are mutually distinct. In this case, C has exactly two trigonal
morphisms. One trigonal morphism is �l , which is given by the function x, and the
other one is the morphism given by the function y=..x � c4/.x � c5//.

Note that the number of trigonal morphisms ofC equals 1 or 2. (See Propositions 2.3,
2.4 and 2.5.) The function field ofC that has two cyclic trigonal morphisms is expressed
as follows. (Theorem 3.2 is proved using Proposition 3.1, and is required in the proof
of Corollary 3.3.)

Theorem 3.2. Let C � P3 be a canonical curve of genus 4. Assume that C has
two trigonal morphisms. Then, both of the trigonal morphisms are cyclic if and only if
there exist x; y 2 k.C / such that k.C / D k.x; y/ and

(4) y3 D .x3 C cx2 � 9x � c/.x � 1/2.x C 1/2;

where c 2 k, x3 C cx2 � 9x � c does not have multiple factor and does not have
common factor with .x � 1/.x C 1/.
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When C � P3 has two cyclic trigonal morphisms, the curve C and the C3-lines are
expressed as follows. (Corollary 3.3 is proved using Proposition 3.1 and Theorem 3.2.)

Corollary 3.3. Assume that C has two trigonal morphisms. Both of the trigonal
morphisms are cyclic if and only if by taking a suitable projective transformation of
P3, C can be expressed as

(5)

´
XW D YZ;

Z.W �Z/.W CZ/ D Y 3 C cXY 2 � 9X2Y � cX3;

where c 2 k validate Y 3 C cXY 2 � 9X2Y � cX3 not having multiple factors and
common factor with .Y �X/.Y CX/. Furthermore, if C is defined by equations (5),
then l1;.˛Wˇ/ W ˛X C ˇZ D ˛Y C ˇW D 0, where .˛ W ˇ/ 2 P1, and l2;. Wı/ W X C
ıY D Z C ıW D 0, where . W ı/ 2 P1, are all the C3-lines. The Galois groups of
lines l1;.˛Wˇ/ and l2;. Wı/ are generated by0BBB@

1 0 0 0

0 1 0 0

0 0 ! 0

0 0 0 !

1CCCA and

0BBB@
1 1 0 0

�3 1 0 0

0 0 1 1

0 0 �3 1

1CCCA ;
respectively.

3.2 – C4-lines

The function field of C that has a C4-line is expressed as follows. (Proposition 3.4
is required in the proof of Corollary 3.5.)

Proposition 3.4. There exists a C4-line l if and only if there exist x; y 2 k.C /
such that k.C / D k.x; y/ and

(6) y4 D .x � c1/.x � c2/.x � c3/.x � c4/
2;

where c1; : : : ; c4 2 k are mutually distinct. The projection �l WC ! P1 is given by the
function x.

When C � P3 has a C4-line, the curve C and the C4-line are expressed as follows.
(Corollary 3.5 is proved using Propositions 2.3 and 3.4, and is required in the proof of
Theorem 3.6.)
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Corollary 3.5. There exists aC4-line l if and only if by taking a suitable projective
transformation of P3, C can be expressed as

(7)

´
Z2 D YW;

XW 2 D .Y � b1X/.Y � b2X/.Y � b3X/;

where b1;b2;b3 2 k are mutually distinct and not equal to 0, and l is given byX DY D 0.
Moreover, the Galois group Gl is generated by0BBB@

1 0 0 0

0 1 0 0

0 0 i 0

0 0 0 �1

1CCCA ;
where i is a primitive fourth root of unity.

From Corollary 3.5, we see that a C4-line meets C in one point. We conclude this
part by giving a bound on the number of C4-lines. In the proof of Theorem 3.6, we
observe the shifts of the ramification points ofC4-coverings by the actions of the Galois
groups. By using Weierstrass semigroups, we distinguish two types of the ramification
points. The Weierstrass semigroup is calculated from the defining equation of C in
Proposition 3.4 and Corollary 3.5. (Theorem 3.6 is proved using Propositions 2.3, 2.6,
3.4 and Corollary 3.5.)

Theorem 3.6. Let C � P3 be a canonical curve of genus 4. Then, the number of
C4-lines for C equals 0 or 1.

3.3 – C5-lines

The function field of C that has a C5-line is expressed as follows. (Proposition 3.7
is required in the proof of Corollary 3.8.)

Proposition 3.7. There exists a C5-line l if and only if there exist x; y 2 k.C /
such that k.C / D k.x; y/ and

(8) y5 D .x � c1/.x � c2/.x � c3/;

where c1; c2; c3 2 k are mutually distinct. The projection �l WC ! P1 is given by the
function x.

When C has a C5-line, the curve C and the C5-line are expressed as follows.
(Corollary 3.8 is proved using Propositions 2.3 and 3.7.)
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Corollary 3.8. There exists aC5-line l if and only if by taking a suitable projective
transformation of P3, C can be expressed as

(9)

´
Y 2 D XW;

YW 2 D .Z � c1X/.Z � c2X/.Z � c3X/;

where c1; c2; c3 2 k are mutually distinct, and l is given by X D Z D 0. Moreover,
the Galois group Gl is generated by0BBB@

1 0 0 0

0 � 0 0

0 0 1 0

0 0 0 �2

1CCCA ;
where � is a primitive fifth root of unity.

Regarding the number of C5-lines, we have the following theorem. (Theorem 3.9 is
proved using Theorem 2.2 and Proposition 3.7.)

Theorem 3.9. Let C � P3 be a canonical curve of genus 4. Then, the number of
C5-lines for C equals 0 or 1.

4. Proofs

We prove the theorems, propositions and corollaries that are stated in the above
sections.

4.1 – Proofs of propositions in Section 2

In this subsection, we prove propositions in Section 2.

Proof of Proposition 2.4. Let g13 WC ! P1 be a trigonal morphism. Then, there
exists an effective divisor D such that g13 D ˆjDj. According to the Riemann–Roch
theorem, we have dimk H

0.C;OC .KC �D// > 0, and thus jDj � jKC j. Because
C � P3 is a canonical curve, g13 is given by a projection from some line l .

Proof of Proposition 2.5. We prove the “if” part of (I). FromXW D YZ on C ,
we observe that .˛Y C ˇW /=.˛X C ˇZ/ D Y=X on C . Thus, �l D �l 0 holds.

We prove the “only if” part of (I). Let l 0 be a line such that l 0 ¤ l and �l 0 D �l up
to an isomorphism of P1. Take a hyperplane Hs of the form Y D sX , where s 2 k is
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general. Then l � Hs and C \Hs D .l \ C/ [ ¹R1; R2; R3º, where R1; R2; R3 are
three mutually distinct points inC n .l \C/. We have .XW � YZ D 0/\Hs D l [ ls ,
where ls is a line defined byW � sZ D Y � sX D 0. Because C � .XW � YZ D 0/,
we have that ¹R1; R2; R3º � ls . Because �l D �l 0 , there exists a hyperplane H 0s such
that ls [ l 0 � H 0s . Note that Hs ¤ H 0s , because l ¤ l 0 and s 2 k is general. Note that
C \ l \ l 0 D ;. Indeed, if C \ l \ l 0 ¤ ;, then C \ l \ l 0 � ls , so C \ ls consists of
four points, which contradicts the fact that C is not hyperelliptic. Because ls �H 0s ,H 0s
is defined byW � sZD u.Y � sX/ for someu 2 k. For t 2 k n ¹sº, we consider similar
hyperplanes, that is,Ht D¹Y D tXº andH 0t D¹W � tZD v.Y � tX/º for some v 2 k.
Then, l 0 DH 0s \H 0t . Note that l 0 is also non-skew. LetP 0 be a point in l 0 \C . Because
l W X D Y D 0 and C \ l \ l 0 ¤ ;, the point P 0 is expressed as .1 W y W z W yz/ or .x W
1 W xw W w/. Because P 0 2H 0s \H 0t , if P 0 D .1 W y W z W yz/, then yz � sz D u.y � s/
and yz � tz D v.y � t /. Because s; t are general, we may assume that y � s ¤ 0 and
y � t ¤ 0. Then, u D .yz � sz/=.y � s/ D z and v D .yz � tz/=.y � t / D z; thus,
uD vD z. IfP 0D .x W 1 W xw Ww/, then we also haveuD vDw, by the same argument.
Therefore, l 0 is defined asW � sZ � u.Y � sX/DW � tZ � u.Y � tX/D 0 (uD z
or w) for general s; t , that is, Z � uX D W � uY D 0. Including the case that l D l 0,
if �l D �l 0 , then l 0 W ˛X C ˇZ D ˛Y C ˇW D 0.

The proof of (II) follows similarly.

Proof of Proposition 2.6. The “if” part is trivial. We prove the “only if” part.
Assume that �l D �l 0 , n´ deg�l � 4 and l ¤ l 0. Let H be a general hyperplane
containing l . Then, we may assume that l 0 6�H andC \H D .C \ l/[ ¹R1; : : : ;Rnº,
where R1; : : : ; Rn 62 l [ l 0, which are mutually distinct n points. Because �l D �l 0 up
to an isomorphism of P1, there exists a hyperplaneH 0 such that C \H 0 D .C \ l 0/[
¹R1; : : : ;Rnº. Hence,R1; : : : ;Rn 2H \H 0. Note thatH ¤H 0, because l ¤ l 0. Thus,
Ql ´ H \H 0 is a line, and R1; : : : ; Rn 2 Ql . Consider the projection �Ql WC ! P1. The
degree of �Ql equals 6� n � 2, which contradicts the fact that C is not hyperelliptic.

4.2 – Proofs of the results on C3-lines in Section 3

We prove the theorem, proposition and corollary stated in Subsection 3.1.

Proof of Proposition 3.1. Because �l is a triple cyclic covering, there exist
x; y 2 k.C / such that k.C / D k.x; y/ and

(10) y3 D

tY
iD1

.x � ci /
di ;

where c1; : : : ; ct 2 k are mutually distinct. The trigonal morphism �l is given by
the function x. If di � 3, then we replace y=.x � ci /j with a new y, where j is the
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maximum integer not greater than di=3. We may assume in this way that di D 1 or 2
(i D 1; 2; : : : ; t ). As a consequence, we split the factors with exponent 1 and the factors
with exponent 2. Namely,

(11) y3 D

sY
iD1

.x � ci / �

tY
iDsC1

.x � ci /
2:

We may assume that the point x D1 2 P1 is a branch point of �l . Then, the degree
of the right-hand side of equation (11) is not a multiple of 3. Because �l has 6 branch
points, we have t D 5. If s D 0; 1 or 2, then we replace

Q5
iD1.x � ci /=y with a new y.

We may assume that s D 3; 4 or 5. However, if s D 4, then the degree of the right-
hand side of equation (11) is equal to 6. Therefore, we have s D 3 or 5; that is, we
have equations (2) and (3). Let P1 2 C be the ramification point of �l that satisfies
x.P1/ D 1. If equation (2) holds, then H.P1/ D h3; 5i, because .x/1 D 3P1

and .y/1 D 5P1 (for the definition of H.P1/, see equation (1)). Thus, C has only
one trigonal pencil, which is j3P1j. Indeed, if C has two distinct trigonal pencils
jDj ´ j3P1j and jEj, where D 6� E, then D C E � KC by the Riemann–Roch
theorem. BecauseKC � 2D, we haveE �D, which is a contradiction. If equation (3)
holds, then C has two trigonal morphisms, which are given by the functions x and
y=..x � c4/.x � c5//.

Proof of Theorem 3.2. We prove the “only if” part. Based on Proposition 3.1,
there exist x; y 2 k.C / such that k.C / D k.x; y/ and equation (3) holds. C has
two trigonal morphisms �l , one is given by x and is cyclic, and the other is given
by z ´ y=..x � c4/.x � c5//. We denote the second trigonal morphism as h13. By
considering a suitable projective transformation of P1, we may assume that c4 D 1 and
c5 D �1. Then, we have that .x � 1/.x C 1/z3 D .x � c1/.x � c2/.x � c3/, that is,

(12) x3 � .c1C c2C c3C z3/x2C .c1c2C c2c3C c3c1/xC .�c1c2c3C z3/D 0:

Because every ramification point of the triple cyclic covering h13 is a total ramification
point, every multiple root of equation (12) is a triple root. Note that z D 1 2 P1 is
not a branch point of h13. Indeed, we can find the three points on C with z D1 from
equation (3). Considering that h13 has 6 total ramification points, equation (12) has
triple roots for 6 values of z. Let � 2 k be the triple root for a value z D z0 2 k. Then,
.x � �/3D x3 � .c1C c2C c3C z

3
0/x

2C .c1c2C c2c3C c3c1/xC .�c1c2c3C z
3
0/.

Hence,

(13)

8̂̂<̂
:̂
3� D c1 C c2 C c3 C z

3
0 ;

3�2 D c1c2 C c2c3 C c3c1;

�3 D c1c2c3 � z
3
0 :
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From equations (13), we have:

.c1c2 C c2c3 C c3c1 C 9/z
3
0 D 9c1c2c3 � .c1c2 C c2c3 C c3c1/.c1 C c2 C c3/:

This implies that if c1c2C c2c3C c3c1C 9¤ 0, then equation (12) has triple roots for
only three values of z, which is a contradiction. Hence, we have c1c2 C c2c3 C c3c1 D
�9. Using equations (13), we have � D ˙

p
3 i , where i is a primitive fourth root

of unity, and c1c2c3 D �.c1 C c2 C c3/. Let c ´ c1c2c3. Subsequently, we obtain
equation (4).

For the “if” part, assume that x and y satisfy equation (4). We have two trigonal
morphisms, which are given by the functions x and z´ y=..x � 1/.xC 1//. Evidently,
the triple extension k.x; y/=k.x/ is cyclic. On k.x; z/=k.z/, we have the minimal
equation

(14) x3 C .c � z3/x2 � 9x C .�c C z3/ D 0:

Let D be the discriminant of equation (14). Using computer calculations, we have

D D .2i.z6 � 2cz3 C c2 C 27//2:

In particular,
p
D 2 k.z/. We observe that the triple extension k.x; z/=k.z/ is cyclic.

In the proof of Theorem 3.2, we have that if x and y satisfy equation (4), then
two triple extensions k.x/.y/=k.x/ and k.z/.x/=k.z/ are cyclic, where z´ y=..x �

1/.x C 1//. We note that the Galois group of k.x/.y/=k.x/ (resp. k.z/.x/=k.z/) is
generated by the automorphism given by y 7! !y (resp. x 7! .x � 3/=.x C 1/), where
! is a primitive third root of unity. Corollary 3.3 follows immediately from Theorem 3.2
and the lemma below. (Although (I) of Lemma 4.1 below is not necessary for the proof
of Corollary 3.3, we write it here because it is a similar claim to (II) and used in some
examples in Section 5.)

Lemma 4.1. We have the following:

(I) If C satisfies (I) in Proposition 3.1, then by considering a suitable projective
transformation of P3, we may assume that C is defined by

(15)

´
Y 2 D XW;

Z3 D YW 2 C a4XW
2 C a3XYW C a2X

2W C a1X
2Y C a0X

3;

where a0; : : : ; a4 2 k.
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(II) If C satisfies (II) in Proposition 3.1, then by considering a suitable projective
transformation of P3, we may assume that C is defined by

(16)

´
XW D YZ;

Z.W � c4Z/.W � c5Z/ D .Y � c1X/.Y � c2X/.Y � c3X/:

Proof. We prove (I). Assume that C satisfies (I) in Proposition 3.1. Let P1 2 C
be the total ramification point of the morphism given by x such that x.P1/D1. Then,
we have .x/1 D 3P1 and .y/1 D 5P1. According to the Riemann–Roch theorem,
KC � 6P1. The morphism C 3 P 7! .1 W x.P / W y.P / W x2.P // 2 P3 is a canonical
embedding. The image of this canonical embedding is expressed as equations (15) for
some a0; : : : ; a4 2 k.

We prove (II). Assume that C satisfies (II) in Proposition 3.1. Let P1 and Pi 2
C (i D 1; : : : ; 5) be the total ramification points of the morphism given by x such
that x.P1/ D 1 and x.Pi / D ci . Let z ´ y=..x � c4/.x � c5//. Then, we have
.x/1 D 3P1 and .z/1 D P1 C P4 C P5. According to the Riemann–Roch theorem,
KC � 4P1CP4CP5. The morphismC 3P 7! .1 W x.P / W z.P / W x.P /z.P // 2 P3

is a canonical embedding. The image of this canonical embedding is expressed as
equations (16).

4.3 – Proofs of the results on C4-lines in Section 3

We prove the theorem, proposition and corollary stated in Subsection 3.2.
Proposition 3.4 follows from an argument similar to that of Proposition 3.1. Corol-

lary 3.5 follows immediately from Proposition 3.4 and the following lemma.

Lemma 4.2. Assume that k.C / D k.x; y/ and x and y satisfy equation (6). Then,
by considering a suitable projective transformation of P3, we may assume thatC � P3

is defined by equations (7). In particular, C has only one trigonal morphism.

Proof. Let P1 be the ramification point of the morphism �l WC ! P1 given by x
such that x.P1/D1. Let z´ y2=.x � c4/. Then, .x � c4/1 D 4P1, .y/1 D 5P1,
and .z/1 D 6P1. According to the Riemann–Roch theorem, KC � 6P1. The mor-
phismC 3 P 7! .1 W x.P /� c4 W y.P / W z.P // 2 P3 provides a canonical embedding.
The image of the canonical embedding is given by equations (7), where bi D ci � c4
(i D 1; 2; 3). Based on Proposition 2.3, C has only one trigonal system.

In the proof of Theorem 3.6, we use the data on the Weierstrass semigroups.

Lemma 4.3. Assume that k.C / D k.x; y/ and x and y satisfy equation (6). Let Pi
(i D1; 1;2;3;40; 400) be all the ramification points of the morphism�l WC ! P1, which
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is given by x, such that x.P1/D1, x.Pi /D ci (i D 1;2; 3), and x.P40/D x.P400/D
c4. Then, H.P1/ D h4; 5; 6i, H.Pi / D h4; 6; 7; 9i (i D 1; 2; 3), and H.P40/ D
H.P400/ D h4; 5; 6i or h4; 6; 7; 9i.

Proof. We showed thatH.P1/D h4;5; 6i in the proof of Lemma 4.2. Let � be the
automorphism ofC that is induced by ��Wx 7! x, y 7! iy, where i is a primitive fourth
root of unity. We haveGl D h�i. The nonsingular projective curveC=h�2i is an elliptic
curve, and Pi (i D1; 1; 2; 3; 40; 400) are the ramification points of the double covering
C ! C=h�2i. Hence, we have 4; 6 2 H.Pi /; thus, H.Pi / D h4; 5; 6i or h4; 6; 7; 9i
(i D1; 1; 2; 3; 40; 400). Considering that .y=.x � ci /2/1 D 7Pi ,H.Pi /D h4; 6; 7; 9i
(i D 1; 2; 3).

Proof of Theorem 3.6. We assume by contradiction that two C4-lines l1 and l2
(l1 ¤ l2) exist for C . We will show that there exists a third C4-line, and that this gives
a contradiction.

Based on Corollary 3.5, we may assume that C is given by equation (7) and l1 W
X D Y D 0. Let Pi 2 C (i D1; 1; 2; 3; 40; 400) be the ramification points of �l1 , such
as those in Lemma 4.3. Note that l1 \ C D ¹P1º and H.P1/ D h4; 5; 6i. Moreover,
by Corollary 3.5 again, l2 \ C also consists of one point; we denote it as xP . We have
H. xP / D h4; 5; 6i. Because �l1 D ˆj4P1j and Proposition 2.6, we have P1 ¤ xP .

Claim 4.4. The number of C4-lines for C equals 3. Let l3 be the third C4-line.
We have l1 \ C D ¹P1º, l2 \ C D ¹P40º and l3 \ C D ¹P400º (or l2 \ C D ¹P400º,
l3 \ C D ¹P40º). In particular, H.P1/ D H.P40/ D H.P400/ D h4; 5; 6i.

Proof of Claim 4.4. Let G ´ h� 2 Aut.C / j ord � D 4i. Let g13 WC ! P1 be
the trigonal morphism. Because C has only one trigonal system, we have a group
homomorphism 'WAut.C /! Aut.P1/ such that g13 ı � D '.�/ ı g

1
3 for every � 2

Aut.C /. Let Ker and Im be the kernel and the image of 'jG , respectively. We have
the exact sequence 1! Ker! G ! Im! 1. Because for � 2 G, � 2 Ker if and
only if g13 ı � D g

1
3 , we observe that Ker Š 1 or C3. BecauseGli Š C4, 'jGli WGli !

Im (i D 1; 2) is injective. Moreover, '.Gl1/ ¤ '.Gl2/. Indeed, if '.Gl1/ D '.Gl2/,
then we have the exact sequence 1 ! C3 ! hGl1 ; Gl2i

'
! C4 ! 1. The order of

hGl1 ; Gl2i equals 12. Hence, hGl1 ; Gl2i Š C12, C2 � C6, D6, C3 � C4 or A4, where
D6 and A4 are the dihedral group of order 12 and the alternating group on 4 letters,
respectively. This contradicts the fact that hGl1 ; Gl2i contains two C4 subgroups,
namely, Gl1 and Gl2 . Because Im � Aut.P1/ is a finite group and Im contains two C4
subgroups, we have ImŠ S4, where S4 is the symmetric group on 4 letters. Considering
that S4 contains three C4 subgroups, the number of C4-lines is at most 3. Note that
l2 \ C D h xP i and H. xP / D h4; 5; 6i. Let �1 be a generator of Gl1 . If xP is not a
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ramification point of�l1 , then the points xP ;�1. xP /;�
2
1 .
xP /;�31 .

xP / are mutually distinct,
and lines l2; �1.l2/; �

2
1 .l2/; �

3
1 .l2/ are also mutually distinct. These four lines are C4-

lines, which is a contradiction. Hence, xP is a ramification point of �l1 . Based on
H. xP / D h4; 5; 6i and Lemma 4.3, we may assume that xP D P40 . Let l3 ´ �1.l2/.
Based on the intersection with C , it is clear that l3 is different from l1 and l2. We have
that l3 is a C4-line, l3 \ C D ¹P400º andH.P400/ D h4; 5; 6i. This concludes the proof
of Claim 4.4. �

Let Si (i D 1; 2; 3) be the set

¹P 2 C j P is a total ramification point of �li and H.P / D h4; 6; 7; 9iº:

Let P be a point in S2. Then, because �l1 D ˆj4Pi j (i D 1; 2; 3), �l1 ¤ �l2 and �l2 D
ˆj4P j,P is not a ramification point of �l1 . Hence, S1 \ S2 D ;. We also have that S2 \
S3 D ; and S3 \ S1 D ;. The number of elements in S1 [ S2 [ S3 is nine. However,
because P is not a ramification point of �l1 , we observe that P; �1.P /; �

2
1 .P /; �

3
1 .P /

are mutually distinct. For � 2Aut.C /, �.P / is a total ramification point of��.l2/, �.l2/
is a C4-line, and H.�.P // D h4; 6; 7; 9i. Based on Claim 4.4, �.P / 2 S1 [ S2 [ S3.
Hence, by considering the placement in the cyclic covering �l1 , we see that the number
of elements in S1 [ S2 [ S3 must be expressed as 4r C 3 for some r . This is a
contradiction. This concludes Theorem 3.6.

4.4 – Proofs of the results on C5-lines in Section 3

We prove the theorem, proposition and corollary stated in Subsection 3.3.
Proposition 3.7 follows from an argument similar to that of Proposition 3.1. Corol-

lary 3.8 follows immediately from Proposition 3.7 and the following lemma.

Lemma 4.5. Assume that k.C / D k.x; y/, and x and y satisfy equation (8). Then,
according to a suitable projective transformation of P3, we may assume that C � P3

is defined by equations (9). In particular, C has only one trigonal morphism.

Proof. Let P1 be the ramification point of the morphism �l WC ! P1, which is
given by x, such that x.P1/ D1. Then, .x/1 D 5P1, .y/1 D 3P1. Based on the
Riemann–Roch theorem, KC � 6P1. The morphism C 3 P 7! .1 W y.P / W x.P / W

y2.P // 2 P3 provides a canonical embedding. The image of the canonical embedding
is given by equations (9). The rank of Y 2 �XW is equal to 3. Based on Proposition 2.3,
C has only one trigonal system.

It should be noted that if there exists aC5-line l , thenC \ l D ¹P1º andH.P1/D
h3; 5i, where P1 is the point stated in the proof of Lemma 4.5.
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Proof of Theorem 3.9. We assume by contradiction that there exist two C5-lines
for C . Let l1 and l2 be the two C5-lines, and P1 and P2 be the points such that
C \ li D ¹Piº (i D 1; 2). Then, P1 and P2 are weak Galois–Weierstrass points with
H.Pi / D h3; 5i and 5 2 degGW.Pi / (i D 1; 2). Based on Theorem 2.2, we have
P1 D P2 (µ P ). LetG´ hGl1 ;Gl2i � Aut.C /. Then, for every � 2 G, we have that
�.P / D P . Hence, G is a cyclic group. Considering that l1 ¤ l2, we have Gl1 ¤ Gl2 .
Thus, G contains two C5 subgroups, which contradicts the fact that G is cyclic.

5. Examples

We present some examples of the case in which deg�l D 3. We note that C has
only one or two trigonal morphisms. The following is an example in which both of the
trigonal morphisms are cyclic.

Example 5.1. Let C be a nonsingular projective curve such that k.C / D k.x; y/
and

(17) y3 � x.x � 3/.x C 3/.x � 1/2.x C 1/2 D 0:

The polynomial stated on the left-hand side of equation (17) is irreducible. Let z´
y=..x � 1/.x C 1//. Two trigonal morphisms are given by functions x and z. We
denote these as g13 and h13, respectively. Using the Riemann–Hurwitz formula, the
genus of C equals 4. Because we have an automorphism of order 3,

Aut k.C / 3 ��1 W x 7�! x; y 7�! !y; z 7�! !z;

where ! is a primitive cubic root of unity, the trigonal morphism g13 is cyclic. Consid-
ering that we have an automorphism of order 3,

Aut k.C / 3 ��2 W x 7�!
x � 3

x C 1
; y 7�!

�8y

.x C 1/3
; z 7�! z;

the trigonal morphism h13 is cyclic. Based on the same canonical embedding in the
proof of (II) of Lemma 4.1, C � P3 is defined as follows:

(18)

´
XW D YZ;

Z.W �Z/.W CZ/ D Y.Y � 3X/.Y C 3X/:

(I) The trigonal morphism g13 is given by the projection �l1 , where l1WX D Y D 0.
Hence, l1 is a C3-line. Based on Proposition 2.5, lines l1;.˛Wˇ/ W ˛X C ˇZ D
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˛Y C ˇW D 0, where .˛ W ˇ/ 2 P1, are all the lines that hold �l1 D �l1;.˛Wˇ/ . Thus,
these are also C3-lines. Let

�1´

0BBB@
1 0 0 0

0 1 0 0

0 0 ! 0

0 0 0 !

1CCCA :
We have �1 2 Aut.C /, ord.�1/ D 3, and �l1 ı �1 D �l1 .

(II) The trigonal morphism h13 is given by the projection �l2 , where l2 W X D Z D 0.
Hence, l2 is a C3-lines. Based on Proposition 2.5, lines l2;.˛Wˇ/ W ˛X C ˇY D
˛ZC ˇW D 0, where .˛ W ˇ/ 2 P1, are all the lines that hold �l2 D �l2;.˛Wˇ/ . Thus,
these are also C3-lines. Let

�2´

0BBB@
1 1 0 0

�3 1 0 0

0 0 1 1

0 0 �3 1

1CCCA :
We have �2 2 Aut.C /, ord.�2/ D 3, and �l2 ı �2 D �l2 .

The following is an example that shows that one of two trigonal morphisms is cyclic
and the other is not Galois.

Example 5.2. Let C be a nonsingular projective curve such that k.C / D k.x; y/
and

(19) y3 � .x3 � 1/x2.x C 1/2 D 0:

The polynomial stated on the left-hand side of equation (19) is irreducible. Let z´
y=.x.x C 1//. Two trigonal morphisms are given by functions x and z. We denote
these as g13 and h13, respectively. Using the Riemann–Hurwitz formula, the genus of
C equals 4. Using the same canonical embedding in the proof of (II) of Lemma 4.1,
C � P3 is defined as follows:

(20)

´
XW D YZ;

ZW.W CZ/ D Y 3 �X3:

(I) Based on the same argument in Example 5.1 (I), we have l1 W X D Y D 0 as C3-
line and lines l1;.˛Wˇ/ W ˛X C ˇZ D ˛Y C ˇW D 0, where .˛ W ˇ/ 2 P1 are also
C3-lines.
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(II) The trigonal morphism h13 is given by the projection �l2 , where l2 W X D Z D 0.
The line l2 is not a Galois line. Indeed, the minimal equation of k.x; z/=k.z/ is

(21) x3 � z3x2 � z3x � 1 D 0:

For z D z0 2 k such that z30 D
p
9C 6

p
3, from computer calculations, we can

observe that equation (21) on x has a double root and a simple root. Because every
ramification point of C3 covering is totally ramified, h13 is not Galois.

The following is an example in which C has a unique trigonal morphism that is
cyclic.

Example 5.3. Let C be a nonsingular projective curve such that k.C / D k.x; y/
and

(22) y3 � x5 C 1 D 0:

The polynomial stated on the left-hand side of equation (22) is irreducible. Using the
Riemann–Hurwitz formula, the genus of C equals 4. We have a trigonal morphism g13
given by the function x. Because we have an automorphism of order 3

Aut k.C / 3 ��W x 7�! x; y 7�! !y;

where ! is a primitive cubic root of unity, the trigonal morphism g13 is cyclic. Based
on the same canonical embedding in the proof of (I) of Lemma 4.1, C � P3 is defined
as follows: ´

Y 2 D XW;

Z3 D YW 2 �X3:

Because rank.Y 2 �XW / D 3, C has only one trigonal morphism. The trigonal mor-
phism g13 is given by the projection �l , where l W X D Y D 0. Thus, l is a C3-line.
Based on Proposition 2.5, l.˛Wˇ/ W ˛X C ˇY D ˛Y C ˇW D 0, where .˛ W ˇ/ 2 P1,
are all the lines that hold �l D �l.˛Wˇ/ . Thus, these are also C3-lines. Let

� ´

0BBB@
1 0 0 0

0 1 0 0

0 0 ! 0

0 0 0 1

1CCCA :
We have � 2 Aut.C /, ord.�/ D 3, and �l ı � D �l .

The following is an example of a curve C which has a C4-line.
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Example 5.4. Let C be a nonsingular projective curve such that k.C / D k.x; y/
and

(23) y4 � .x3 � 1/x2 D 0:

The polynomial stated on the left-hand side of equation (23) is irreducible. Let g14 WC !
P1 be the morphism that is given by x. Using the Riemann–Hurwitz formula, the genus
of C equals 4. Considering that we have an automorphism of order 4,

Aut k.C / 3 ��W x 7�! x; y 7�! iy;

where i is a primitive fourth root of unity, the morphism g14 is cyclic. Based on the
same canonical embedding as that in the proof of Lemma 4.2, C � P3 is defined as
follows:

(24)

´
Z2 D YW;

XW 2 D Y 3 �X3:

The morphism g14 is given by the projection �l , where l W X D Y D 0. The line l is a
C4-line. Let

� ´

0BBB@
1 0 0 0

0 1 0 0

0 0 i 0

0 0 0 �1

1CCCA :
We have � 2 Aut.C /, ord.�/ D 4, and �l ı � D �l .

The following is an example that C has a C5-line.

Example 5.5. Let C be a nonsingular projective curve such that k.C / D k.x; y/
and

(25) y5 � x3 C 1 D 0:

The polynomial stated on the left-hand side of equation (25) is irreducible. Let g15 WC !
P1 be the morphism that is given by x. Using the Riemann–Hurwitz formula, the genus
of C equals 4. Considering that we have the automorphism of order 5,

Aut k.C / 3 ��W x 7�! x; y 7�! �y;

where � is a primitive fifth root of unity, the morphism g15 is cyclic. Based on the same
canonical embedding in the proof of Lemma 4.5, C � P3 is defined as follows:

(26)

´
Y 2 D XW;

YW 2 D Z3 �X3:
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The morphism g15 is given by the projection �l , where l W X D Z D 0. The line l is a
C5-line. Let

� WD

0BBB@
1 0 0 0

0 � 0 0

0 0 1 0

0 0 0 �2

1CCCA :
We have � 2 Aut.C /, ord.�/ D 5, and �l ı � D �l .

Acknowledgments – The authors thank the reviewer for their helpful comments
to improve the readability of this paper. The authors would like to thank Editage
(www.editage.com) for English language editing.

Funding – This work was supported by JSPS KAKENHI Grant Numbers
JP18K03228 and JP19K03441.

References

[1] E. Arbarello – M. Cornalba – P. A. Griffiths – J. Harris, Geometry of algebraic
curves. Vol. I. Grundlehren Math. Wiss. 267, Springer, New York, 1985.
Zbl 0559.14017 MR 770932

[2] M. C. L. Duyaguit – H. Yoshihara, Galois lines for normal elliptic space curves. Algebra
Colloq. 12 (2005), no. 2, 205–212. Zbl 1076.14036 MR 2127245

[3] S. Fukasawa, Galois lines for the Artin–Schreier–Mumford curve. Finite Fields Appl. 75
(2021), article no. 101894. Zbl 1470.14061 MR 4281893

[4] S. Fukasawa – K. Higashine, Galois lines for the Giulietti–Korchmáros curve. Finite
Fields Appl. 57 (2019), 268–275. Zbl 1420.14067 MR 3921290

[5] P. Griffiths – J. Harris, Principles of algebraic geometry. Wiley Classics Lib., John
Wiley & Sons, Inc., New York, 1994. Zbl 0836.14001 MR 1288523

[6] M. Kanazawa – H. Yoshihara, Galois lines for space elliptic curve with j D 123. Beitr.
Algebra Geom. 59 (2018), no. 3, 431–444. Zbl 1396.14027 MR 3844636

[7] J. Komeda – T. Takahashi, Relating Galois points to weak Galois Weierstrass points
through double coverings of curves. J. Korean Math. Soc. 54 (2017), no. 1, 69–86.
Zbl 1365.14048 MR 3598043

[8] J. Komeda – T. Takahashi, Number of weak Galois–Weierstrass points with Weierstrass
semigroups generated by two elements. J. Korean Math. Soc. 56 (2019), no. 6, 1463–1474.
Zbl 1428.14055 MR 4015980

[9] J. Komeda – T. Takahashi, Galois lines for a canonical curve of genus 4, II: skew cyclic
lines. Rend. Semin. Mat. Univ. Padova, to appear.

https://doi.org/10.1007/978-1-4757-5323-3
https://doi.org/10.1007/978-1-4757-5323-3
https://zbmath.org/?q=an:0559.14017
https://mathscinet.ams.org/mathscinet-getitem?mr=770932
https://doi.org/10.1142/S1005386705000192
https://zbmath.org/?q=an:1076.14036
https://mathscinet.ams.org/mathscinet-getitem?mr=2127245
https://doi.org/10.1016/j.ffa.2021.101894
https://zbmath.org/?q=an:1470.14061
https://mathscinet.ams.org/mathscinet-getitem?mr=4281893
https://doi.org/10.1016/j.ffa.2019.02.009
https://zbmath.org/?q=an:1420.14067
https://mathscinet.ams.org/mathscinet-getitem?mr=3921290
https://doi.org/10.1002/9781118032527
https://zbmath.org/?q=an:0836.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=1288523
https://doi.org/10.1007/s13366-018-0380-z
https://zbmath.org/?q=an:1396.14027
https://mathscinet.ams.org/mathscinet-getitem?mr=3844636
https://doi.org/10.4134/JKMS.j150593
https://doi.org/10.4134/JKMS.j150593
https://zbmath.org/?q=an:1365.14048
https://mathscinet.ams.org/mathscinet-getitem?mr=3598043
https://doi.org/10.4134/JKMS.j180740
https://doi.org/10.4134/JKMS.j180740
https://zbmath.org/?q=an:1428.14055
https://mathscinet.ams.org/mathscinet-getitem?mr=4015980


J. Komeda – T. Takahashi 20

[10] G. P. Pirola – E. Schlesinger, Monodromy of projective curves. J. Algebraic Geom. 14
(2005), no. 4, 623–642. Zbl 1084.14011 MR 2147355

[11] H. Yoshihara, Galois lines for space curves. Algebra Colloq. 13 (2006), no. 3, 455–469.
Zbl 1095.14030 MR 2233104

[12] H. Yoshihara, Galois lines for normal elliptic space curves, II. Algebra Colloq. 19 (2012),
Special Issue no. 1, 867–876. Zbl 1294.14014 MR 2999240

Manoscritto pervenuto in redazione il 10 novembre 2021.

https://doi.org/10.1090/S1056-3911-05-00408-X
https://zbmath.org/?q=an:1084.14011
https://mathscinet.ams.org/mathscinet-getitem?mr=2147355
https://doi.org/10.1142/S100538670600040X
https://zbmath.org/?q=an:1095.14030
https://mathscinet.ams.org/mathscinet-getitem?mr=2233104
https://doi.org/10.1142/S1005386712000739
https://zbmath.org/?q=an:1294.14014
https://mathscinet.ams.org/mathscinet-getitem?mr=2999240

	1. Introduction
	2. Preliminaries
	3. Results
	3.1. C3-lines
	3.2. C4-lines
	3.3. C5-lines

	4. Proofs
	4.1. Proofs of propositions in Section 2
	4.2. Proofs of the results on C3-lines in Section 3
	4.3. Proofs of the results on C4-lines in Section 3
	4.4. Proofs of the results on C5-lines in Section 3

	5. Examples
	References

