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Galois lines for a canonical curve of genus 4,
II: Skew cyclic lines

Jiryo Komeda (*) – Takeshi Takahashi (**)

Abstract – Let C � P 3 be a canonical curve of genus 4 over an algebraically closed field k of
characteristic zero. For a line l , we consider the projection �l WC ! P 1 with center l and the
extension of the function fields ��

l
W k.P 1/ ,! k.C /. A line l is referred to as a cyclic line if

the extension k.C /=��
l
.k.P 1// is cyclic. A line l � P 3 is said to be skew if C \ l D ;. We

prove that the number of skew cyclic lines is equal to 0; 1; 3 or 9. We determine curves that
have nine skew cyclic lines.
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1. Introduction and the main theorem

Yoshihara [10] investigated various properties of skew Galois lines (for the definition,
see below) for nondegenerate nonsingular curves C in P3. He proved that the number
of skew Galois lines for an irrational C is finite, and that the number of skew Galois
lines for C is at most one if degC is a prime and degC � 5. He also studied the
defining equations of curves C of low degrees that have skew Galois lines. In addition,
Yoshihara et al. [2,7,11], studied the number and arrangement of skew Galois lines for
elliptic space curves. Fukasawa and Higashine [4] and subsequent work by Fukasawa
[3] determined the arrangement of all the Galois lines for the Giulietti–Korchmáros
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curve and for the Artin–Schreier–Mumford curve, respectively. More recently, in [8],
we studied the number of non-skew cyclic lines for canonical curves of genus 4. As a
continuation of this work [8], in this study, we investigate the number of skew cyclic
lines for canonical curves of genus 4. We would like to note Kuribayashi et al. [9],
however we will not use it in the present paper. By giving generators with respect to
linear representations in the vector space of holomorphic differentials, they presented
a complete classification of automorphism groups for compact Riemann surfaces of
genera 3 and 4.

Let C � P3 be a canonical curve of genus 4 over an algebraically closed field k of
characteristic 0, which is a .2; 3/-complete intersection in P3. A line l � P3 is said to
be skew if C \ l D ;. For a line l , we consider the projection �l WC ! P1 with center
l and the extension of the function fields ��

l
Wk.P1/ ,! k.C /. Because degC D 6, we

have deg�l � 6, and if l is skew, then we have deg�l D 6. We refer to a line l as a
Galois line if the extension is Galois. We refer to the Galois line l as a C6-line (resp.
S3-line) if the Galois group is isomorphic to the cyclic group C6 of order 6 (resp. the
symmetric group S3 on 3 letters). We note that l is a skew cyclic line if and only if
l is a C6-line, in the setting of this paper. In [8], we explicitly gave the equations of
C in the particular case in which C has two cyclic trigonal morphisms; we prove that
the number of cyclic lines with deg�l D 4 is at most 1; and the number of cyclic lines
with deg�l D 5 is at most 1. Our main theorem of the present paper is as follows.

Theorem. LetC � P3 be a canonical curve of genus 4 over an algebraically closed
field of characteristic 0. Then, the number of C6-lines equals 0; 1; 3 or 9. Moreover, if
there exist nine C6-lines for C , then C is projectively equivalent to the curve defined
by one of the following:

(1)

´
XY �Z2 D 0;

X3 C Y 3 CW 3 D 0;

or

(2)

´
X2 C Y 2 CZ2 D 0;

XYZ CW 3 D 0;

where .X W Y W Z W W / are homogeneous coordinates on P3.

In Section 2, we present selected preliminary results. The proof of the theorem is
provided in Section 3. In Sections 4 and 5, we determine all the C6-lines for curves
defined by equations (1) and (2). Section 6 presents examples of curves that have only
one or three C6-lines.
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In the present paper, we assume that the base field k is algebraically closed and
char.k/ D 0. For a line l , “skew” means “skew with respect to C ”, and also C6-line
means “with respect to C ”, and the reference to C will always be tacitly assumed. For
the Galois line l , we denote ¹� 2 Aut.C / j �l ı � D �lº by Gl , which is isomorphic
to the Galois group. We denote by Cm the cyclic group of orderm; byDm the dihedral
group of order 2m; by Am the alternating group onm letters; by Sm and the symmetric
group on m letters.

2. Preliminaries

Let C � P3 be a canonical curve of genus 4. Let .X W Y W Z WW / be homogeneous
coordinates on P3. The following are well-known facts.

Proposition 2.1 ([1, page 118], [6, page 298]). The curve C is a .2; 3/-complete
intersection; that is, the homogeneous ideal I.C / � kŒX; Y;Z;W � of C is generated
by a quadratic form Q and cubic form F . The degree of C is 6. The surface Q D 0 is
a unique quadric surface that contains C . The gonality gon.C / of C is equal to 3. If
rankQ D 3, then C has a unique trigonal morphism C ! P1, which is given by the
projection from the vertex of the surface Q D 0. If rankQ D 4, then C has exactly
two trigonal morphisms C ! P1.

Let l �P3 be a line and�l WC !P1 the projection with center l . Because degC D 6
and C is not hyperelliptic, we have 3 � deg �l � 6. A line l is skew if and only if
deg�l D 6. If deg�l � 4, then �l uniquely determines the center l .

Proposition 2.2 ([8]). Assume deg�l � 4. Then, �l D �l 0 (up to an isomorphism
of the codomains P1 of �l and �l 0), if and only if l D l 0.

We have a canonical representation Aut.C / ,! GL.�.C;�1// Š GL.4; k/, where
�1 is the sheaf of regular 1-forms on C . As C � P3 is a canonical curve, we also
have Aut.C / ,! Aut.P3/ Š PGL.4; k/. That is, for every � 2 Aut.C /, there exists a
unique projective transformation T WP3! P3 such that T .C / D C and T jC D � . We
express the elements in Aut.C / as the projective transformations of P3.

Proposition 2.3. There exist a quadratic form Q 2 kŒX; Y;Z;W � and a cubic
form F 2 kŒX; Y; Z;W � with I.C / D .Q; F / such that �.Q D 0/ D .Q D 0/ and
�.F D 0/ D .F D 0/ for any � 2 Aut.C / � Aut.P3/.
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Proof. There exists a unique quadricQD 0 that containsC . Clearly, �.QD 0/D
.Q D 0/. Let

I3´ ¹F 2 kŒX; Y;Z;W � j F is a cubic form,C � .F D 0/º [ ¹0º;
J ´ ¹.aX C bY C cZ C dW /Q j a; b; c; d 2 kº;

and let G � GL.4; k/ be a finite group isomorphic to Aut.C / via the natural quotient
map GL.4; k/� PGL.4; k/. Then, dimk I3 D 5, dimk J D 4, J ¨ I3, and G acts
linearly on I3 and J . Because char.k/ D 0, according to Maschke’s theorem, the
representation G ! GL.I3/ is completely reducible. Thus, there exists F 2 I3 n J
such that .A�F /=F 2 k n ¹0º for any A 2 G.

Proposition 2.4 ([10]). Assume that there exists a C6-line l . Then, by taking a
suitable projective transformation of P3, we may assume that l is defined byX D Y D 0,
and a generator � of Gl � Aut.P3/ is expressed by a diagonal matrix with diagonal
components 1; 1; ˛; ˇ (˛; ˇ 2 k n ¹0º), and .ord.˛/; ord.ˇ// D .3; 6/; .2; 3/, or .2; 6/.
That is, we may assume

� D

0BBB@
1 0 0 0

0 1 0 0

0 0 �2 0

0 0 0 �

1CCCA ;
0BBB@
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �2

1CCCA ; or

0BBB@
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �

1CCCA ;
where � is a primitive sixth root of the unity.

Proof. Most of the claims are proved in the proof of [10, Theorem 4.5] (see Claim 7
on pages 466-467 of [10]). We only have to verify the following: the diagonal matrix
with diagonal components 1; 1; �4; � is unsuitable for a generator � of Gl . Indeed, if �
is such an automorphism, then using Proposition 2.3, Q will be reducible.

In Proposition 2.4, we note that the position of the line l and the form of the generator
� are specified simultaneously. From the following argument we see that this is possible:
first, we fix the position of the line l to be X D Y D 0; next, from �l D �l ı � , we
find the conditions that the representation matrix of � must satisfy; finally by using a
projective transformation that does not change the position of l , we diagonalize the
representation matrix of � .

Definition 2.5. We say that a C6-line l is of type .3; 6/ (resp. of type .2; 3/, of type
.2; 6/) if a generator of Gl � Aut.P3/ can be represented as a matrix with eigenvalues
1; 1; ˛; ˇ with .ord.˛/; ord.ˇ// D .3; 6/ (resp. .2; 3/, .2; 6/).
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Corollary 2.6. We assume that there exists a C6-line l . Let Q 2 kŒX; Y;Z;W �
be a quadratic form such that the quadric surfaceQD 0 containsC . Then, rankQD 3.
Hence, there exists only one trigonal morphism g13 WC ! P1, which is given by the
projection from the vertex of Q D 0.

Proof. The quadric Q D 0 containing C satisfies �.Q D 0/ D .Q D 0/ for any
� 2 Gl . From Proposition 2.4, we see that rankQ D 3.

For � as stated in Proposition 2.4, we note that Fix.�/´ ¹P 2 P3 j �.P / D P º

consists of a line Z D W D 0 and two points .0 W 0 W 1 W 0/; .0 W 0 W 0 W 1/, and l W X D
Y D 0 passes through these two points. Hence, we can immediately see the following.

Proposition 2.7. Let l1 and l2 be distinct C6-lines for C . Then, Gl1 ¤ Gl2 as
subgroups of Aut.C /.

On S3-lines, we have the following proposition. Proposition 2.8 is not used in the
proof of our main theorem, but is required for the calculations in Sections 4 and 5.
In Sections 4 and 5, we will determine not only C6-lines but also S3-lines for curves
concretely defined by Equations (1) and (2).

Proposition 2.8 (Proof of [10, Theorem, 4.5]). Let l be an S3-line for C . Then,
by taking a suitable projective transformation, we may assume that l W X D Y D 0,
and Gl is generated by the following two elements:

� ´

0BBB@
1 0 0 0

0 1 0 0

0 0 ! 0

0 0 0 !2

1CCCA and � ´

0BBB@
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1CCCA ;
where ! is a primitive cubic root of the unity.

Since the proof of Proposition 2.8 is not stated in [10] as it is obvious, we present it
here.

Proof. Let � and � be automorphisms of C such that Gl D h�; �i, where �3 D
�2 D idC and ��� D �2. By taking a suitable projective transformation, we may
assume that l is defined by X D Y D 0. Because �l ı � D �l and �l ı � D �l , we
have that � and � are represented as0BBB@

1 0 0 0

0 1 0 0

� � � �

� � � �

1CCCA :
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Because �3 D idC , � is diagonalizable. We may assume that

� D

 
I O

O A

!
and � D

 
I O

L M

!
;

where L and M are some 2� 2 matrices,

I D

 
1 0

0 1

!
; O D

 
0 0

0 0

!
;

and

A D

 
1 0

0 !

!
;

 
! 0

0 !

!
; or

 
! 0

0 !2

!
:

By using �2D idC and ��� D �2, we infer thatLCMLDO ,M 2D I ,LCMALD
O and MAM D A2. We have

A D

 
! 0

0 !2

!
; L D O; and M D

 
0 c

1=c 0

!
for some c 2 k n ¹0º. By taking the projective transformation that is represented by
the diagonal matrix with diagonal elements 1, 1, c and 1, we have the representations
of � and � as stated in the proposition.

For � and � as stated as in Proposition 2.8, we note that Fix.�/´ ¹P 2 P3 j

�.P / D P º consists of a line Z D W D 0 and two points .0 W 0 W 1 W 0/; .0 W 0 W 0 W 1/,
and l passes through these two points. The set Fix.�/´¹P 2 P3 j �.P /DP º consists
of a hyperplaneZ �W D 0 and a point .0 W 0 W �1 W 1/, and l passes through the point.

Assume that rankQD 3, where the quadricQD 0 containsC . Because the trigonal
morphism g13 WC ! P1 is unique, for any � 2 Aut.C /, there existsA� 2 Aut.P1/ such
that g13 ı � D A� ı g

1
3 . Let G be a subgroup of Aut.C /. Let 'WG ! Aut.P1/ be the

map � 7! A� , which is a homomorphism between the groups. Let Ker' and Im' be
the kernel and image of ', respectively. We denote the inclusion Ker' ,! G as  . We
have a short exact sequence

(3) 1 �! Ker '
 
�! G

'
�! Im' �! 1:

The short exact sequence (3) and Proposition 2.9 play central roles in the proof of our
main theorem.
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Proposition 2.9. We have the following:

(I) The group Im' is isomorphic to one of the following groups: Cm (m 2 Z>0), Dm
(m 2 Z>0), A4, S4 or A5.

(II) The three conditions “Ker' ¤ 1”, “Ker' Š C3”, and “g13 is cyclic” are equivalent.

Proof. Because Im' � Aut.P1/ is finite, (I) is well known. As Ker' D ¹� 2 G j
g13 ı � D g

1
3º, we see that (II) holds.

On automorphism groups of a plane quadric curve, we have the following proposition.
Proposition 2.10 is required in the proof of our main theorem.

Proposition 2.10. Let V � P2 be the curve defined by XY D Z2, which is
isomorphic to P1.

(I) Let S4 � Aut.V /� Aut.P2/ be the symmetric group on four letters. Then, by taking
a suitable projective transformation, we can assume that S4 D h�; �i,

� D

0B@1 0 0

0 �1 0

0 0 i

1CA and � D

0B@1 1 2

1 1 �2

1 �1 0

1CA ;
where i is a primitive fourth root of the unity.

(II) Let Dm � Aut.V / � Aut.P2/ (m � 2) be the dihedral group of order 2m. Then,
by taking a suitable projective transformation, we can assume that Dm D h�; �i,

� D

0B@1 0 0

0 �2m 0

0 0 �m

1CA and � D

0B@0 1 0

1 0 0

0 0 1

1CA ;
where �m is a primitive mth root of the unity.

Proof. We may assume that the group S4 � Aut.P1/ (resp. Dm � Aut.P1/) is
generated by 

1 0

0 i

!
and

 
1 1

1 �1

!
.resp.

 
1 0

0 �m

!
and

 
0 1

1 0

!
/:

The form of the matrices in the proposition comes from the images of these generators
via the embedding P1 3 .x0 W x1/ 7! .x20 W x

2
1 W x0x1/ 2 P2.
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3. Proof of the main theorem

In this section, we prove the main theorem. Note that, if there exists a C6-line, then
C has a unique trigonal morphism g13 WC ! P1 by Corollary 2.6. Let us consider the
short exact sequence (3) for

G ´ h� 2 Aut.C / j � 2 Gl for some C6-line li:

The map ' defined just before the sequence (3) will be used many times with the group
G defined here.

We give an overview of the proof. We will assume that there exist at least two
C6-lines, and discuss the proof in the following two cases: there exists at least one
C6-line of type .3; 6/; there does not exist a C6-line of type .3; 6/. It will be important
that g13 is cyclic in both cases (Propositions 3.1 and 3.2). In the case that there exists a
C6-line of type .3;6/, we can determine the defining equations of the curveC concretely
(Lemma 3.4). Once the curve C is given by the concrete equations, it is possible to
find all the Galois lines completely (Section 4). In the case that there does not exist a
C6-line of type .3; 6/, we will consider the short exact sequence (3). The group Ker '
and homomorphisms ' and  are easy to understand, and it is known what groups can
be isomorphic to the group Im' (Proposition 2.9). We will discuss the proof for each
group that may be Im', and we will find Im' Š D2;D3 or S4 (Lemmas 3.6–3.10).
In the case that Im' Š S4, we can determine the defining equations of the curve C
concretely (Lemma 3.12), and find all the Galois lines completely (Section 5). In the
cases that Im' Š D2;D3, we can determine the defining equations of C roughly, and
we will see that the number of C6-lines is equal to 3 (Lemma 3.13).

The two propositions below provide sufficient conditions for g13 to be cyclic.

Proposition 3.1. Assume that there exists a C6-line l of type .2; 3/ or .2; 6/. Let
�l be a generator of Gl . Then, Ker' D h�2

l
i, and ord.'.�

l
// D 2. In particular, the

trigonal morphism g13 is cyclic.

Proof. By Proposition 2.4, using a suitable projective transformation, we may
assume that �l is expressed as the diagonal matrix with diagonal components 1;1;�1;�2

or 1; 1;�1; �, where � is a primitive sixth root of the unity. The quadric Q D 0 that
contains C has the vertex R´ .0 W 0 W 0 W 1/. The trigonal morphism g13 is given by
the projection �R with center R. Because �R ı �

2
l
D �R, we have �2

l
2 Ker '. Use

Proposition 2.9.

Proposition 3.2. Assume that there exist twoC6-lines. Then, the trigonal morphism
g13 is cyclic.
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Proof. Let l1 and l2 be two C6-lines for C . We assume that Ker ' D 1. Then,
G Š Im ' Š Cm; Dm; A4; S4, or A5. This contradicts the fact that G includes two
cyclic groups, Gl1 and Gl2 , of order 6. Therefore, Ker' ¤ 1. Use Proposition 2.9.

We assume that there exist twoC6-lines forC . LetP1; : : : ;P6 be all the ramification
points of the cyclic trigonal morphism g13 .

Lemma 3.3. There exists a hyperplane H � P3 such that ¹P1; : : : ; P6º � H .

Proof. By [8, Proposition 3.1], there exist x; y 2 k.C / such that k.C / D k.x; y/
and y3 D

Q5
jD1.x � cj /. We can assume that x.Pj /D cj (j D 1; : : : ; 5) and x.P6/D

1. Then, .x � cj / D 3Pj � 3P6 (j D 1; : : : ; 5) and .y/ D P1 C � � � C P5 � 5P6. By
using the Riemann–Roch theorem, it is clear thatKC � 6P6. Thus,KC � P1 C � � � C
P6. Because C � P3 is a canonical curve, this concludes the lemma.

Lemma 3.4. Assume that there exists a C6-line of type .3; 6/ and that the trigonal
morphism g13 is cyclic. Then, C is projectively equivalent to the curve defined by
equations (1).

Proof. Let l be a C6-line of type .3; 6/. We assume that Gl D h�li and

�l D

0BBB@
1 0 0 0

0 1 0 0

0 0 �2 0

0 0 0 �

1CCCA ;
where � denotes a primitive sixth root of the unity. By using Proposition 2.3 and
considering a suitable projective transformation, we can determine the defining equation
of C as follows:

(4)

´
Q D b.X; Y /Z CW 2 D 0;

F D X3 C Y 3 CZ3 D 0;

where b.X; Y / D X � aY (a 2 k) or Y . If b.X; Y / D Y , then C is projectively
equivalent to the curve defined by equations (1). Assume that b.X; Y / D X � aY . Let
us showaD 0. The vertex of quadricQD 0 isR´ .a W 1 W 0 W 0/. The trigonal morphism
g13 WC ! P1 is given by the projection �RW .X W Y W Z W W / 7! .X � aY W Z W W /.
Let P 2 C be a ramification point of g13 . Then, Z.P / ¤ 0. Indeed, if Z.P / D 0,
then P D .�2jC1 W 1 W 0 W 0/, where j D 0; 1 or 2. However, .�2jC1 W 1 W 0 W 0/ is
not a ramification point of g13 . Let �R.P / D .c W 1 W

p
�c/, where c 2 k. A point in

C \ ��1R .�R.P // is .ay C c W y W 1 W
p
�c/, where y 2 k satisfies

(5) .ay C c/3 C y3 C 1 D 0:
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Note that a3 C 1 ¤ 0, because C is nonsingular. As P is a total ramification point of
g13 , equation (5) has a triple root. In other words, there exists ˇ 2 k such that

.a3 C 1/.y � ˇ/3 D .a3 C 1/y3 C 3a2cy2 C 3ac2y C c3 C 1:

Then, we have

(6)

8̂̂<̂
:̂
�3ˇ.1C a3/ D 3a2c;

3ˇ2.1C a3/ D 3ac2;

�ˇ3.1C a3/ D c3 C 1:

If a ¤ 0, then equations (6) do not have a root ˇ. Hence, a D 0 and C is projectively
equivalent to the curve defined by equations (1).

We note that as in the proof of Lemma 3.4, for the curve defined by equations (1),
there exists a C6-line of type .3; 6/ and g13 is cyclic. The number of C6-lines of the
curve defined by equations (1) will be calculated later in Section 4. In the discussion
of Section 4 we do not use the results in Section 3. From Proposition 3.2, Lemma 3.4,
and Section 4, we have the following result.

Proposition 3.5. Assume that there exist two C6-lines and one of them is of type
.3; 6/. Then,C is projectively equivalent to the curve defined by equations (1). There are
exactly nine C6-lines and exactly one S3-line for C . We have that Aut.C / Š C3 �D6.

Proof. From the assumption that there exist twoC6-lines, by using Proposition 3.2,
the trigonal morphism g13 is cyclic. Combining this with the assumption that there exists
a C6-line of type .3; 6/, by using Lemma 3.4, we have that C is projective equivalent
to the curve defined by equations (1). By the results in Section 4, we have Aut.C / and
the number of skew Galois lines.

Hereafter, in this section, we continue to prove our main theorem, except in the
case that C is projectively equivalent to the curve defined by equations (1). That is,
we assume that there exist at least two C6-lines for C , and every C6-line is not of type
.3; 6/.

Lemma 3.6. We have that Im' 6Š A5.

Proof. Assume that Im' Š A5. Then, jGj D 180. However, the Hurwitz theorem
states jGj D 84.g � 1/; 48.g � 1/; 40.g � 1/; : : : D 252; 144; 120; : : :; thus, this is a
contradiction.

Lemma 3.7. We have that Im' 6Š A4 or Cm.
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Proof. From Proposition 3.1, Im ' is generated by some elements of order 2.
However, A4 and Cm (m � 3) are not generated by elements of order 2. If Im' Š C2,
then, G does not include two C6 subgroups, because the order of G equals 6.

Lemma 3.8. If Im' Š Dm, then m � 6.

Proof. LetQD 0 be the quadric that containsC , where the rank of the quadraticQ
equals 3, andR be the vertex of the quadricQ D 0. Then, the cyclic trigonal morphism
g13 is given by the projection�R with centerR. All the ramification pointsP1; : : : ;P6 of
g13 are on a hyperplaneH D 0. Becauseg13 Dˆj3Pj j

(j D 1; : : : ; 6), for any � 2Aut.C /,
�.¹P1; : : : ; P6º/ D ¹P1; : : : ; P6º. Thus, �..Q D H D 0// D .Q D H D 0/, where
Q D H D 0 is a plane quadric curve. We can regard that g13 D �RjC WC ! .Q D

H D 0/Š P1 and 'WG 3 � 7! � jQDHD0 2 Im' � Aut.Q DH D 0/. Because Im'
acts on the set ¹P1; : : : ; P6º � .Q D H D 0/ faithfully, we determine that the order
of each element in Im' is at most 6. This concludes that m � 6.

By Lemmas 3.6, 3.7, and 3.8, we have Im' Š Dm (2 � m � 6) or S4.

Lemma 3.9. The maximum number of C6-lines is nine. If there exist nine C6-lines,
then Im' Š S4.

Proof. Let l1; l2; : : : be all theC6-lines forC , which are of type .2; 3/ or .2; 6/. Let
�j (j D 1; 2; : : :) be a generator of Glj . By Propositions 2.7 and 3.1, '.�1/; '.�2/; : : :
are mutually distinct elements in Im ' and are of order 2. The number of elements
of order 2 in S4 (resp. D6; D5; D4; D3, D2) equals 9 (resp. 7; 5; 5; 3; 3). This now
concludes the lemma.

Lemma 3.10. We have that Im' 6Š D4, D5, D6.

Proof. Assume that Im ' Š D4. Because the rank of the quadric Q D 0 that
contains C equals 3, by taking a suitable projective transformation, we may assume
that Q D XY �Z2. From Lemma 3.3, all the ramification points P1; : : : ; P6 of the
cyclic trigonal morphism g13 are on some hyperplane H D 0. By taking a suitable
projective transformation that does not change Q, we may assume H D W . Note that
we can take such a projective transformation because .0 W 0 W 0 W 1/ 62 H . By using
Proposition 2.10 and the same argument as in the proof of Lemma 3.8, we may assume
that:

G D

"0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 !

1CCCA ;
0BBB@
1 0 0 0

0 �1 0 0

0 0 i 0

0 0 0 �1

1CCCA ;
0BBB@
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 �2

1CCCA
#

;
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where ! (resp. i) is a primitive cubic (resp. fourth) root of the unity and �1; �2 2
k n ¹0º. By using Proposition 2.3, we find a cubic form F 2 kŒX; Y;Z;W � n ¹0º, such
that the cubic surface F D 0 contains C . By the condition �.F D 0/ D .F D 0/

for any � 2 G, we have F D a.X2 C Y 2/Z CW 3, F D a.X2 � Y 2/Z CW 3, or
F D aXYZC bZ3CW 3, where a;b 2 k. The curves defined byQDXY �Z2 D 0
and F D a.X2 C Y 2/Z CW 3 D 0 are projectively equivalent to the curve defined
by equations (2), and thus, Im' Š S4. The curves defined byQ D XY �Z2 D 0 and
F D a.X2 � Y 2/Z CW 3 D 0 are also projectively equivalent to the curve defined by
equations (2). The curves defined byQ D XY �Z2 D 0 and F D aXYZ C bZ3 C
W 3 D 0 have singular points .1 W 0 W 0 W 0/ and .0 W 1 W 0 W 0/. Hence, we see that
Im' 6Š D4.

By using the same argument as above, we also see that Im' 6Š D5.
Assume that Im' Š D6. From the same argument as above, we see that C must be

projectively equivalent to the curve defined by equations (1). Then, there exists aC6-line
for C of type .3; 6/. However, this is a contradiction. This concludes Im' 6Š D6.

Remark 3.11. To prove our main theorem, we have discussed the proof above
with the assumption that there is no C6-line of type .3; 6/, which is stated just after
Proposition 3.5. If we allow the existence of C6-lines of type .3; 6/, then by the same
argument as in the proof of Lemma 3.10, we see the following: if a canonical curve
C � P3 of genus 4 satisfies the conditions “there exists a unique trigonal morphism
g13”, “g13 is cyclic”, and “Im' Š D6”, then C is projectively equivalent to the curve
defined by equations (1).

Hence, Im' Š D2, D3, or S4.

Lemma 3.12. Assume that Im ' Š S4. Then, C is projectively equivalent to the
curve defined by equations (2). Hence, there exist nine C6-lines (see Section 5).

Proof. We may assume that the ramification points P1; : : : ; P6 of the trigonal
morphism g13 are on the hyperplane W D 0 and the quadric Q D 0 that contains C is
XY �Z2 D 0. By using Proposition 2.10, we can assume that

G D

"0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 !

1CCCA ;
0BBB@
1 0 0 0

0 �1 0 0

0 0 i 0

0 0 0 �1

1CCCA ;
0BBB@
1 1 2 0

1 1 �2 0

1 �1 0 0

0 0 0 �2

1CCCA
#

;
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where! (resp. i ) is a primitive cubic (resp. fourth) root of the unity and �1;�2 2 k n ¹0º.
By the same argument as in the proof of Lemma 3.10, C must be defined by´

XY �Z2 D 0;

c.X2 � Y 2/Z CW 3 D 0;

where c 2 k. Then,C is projectively equivalent to the curve defined by equations (2).

Note that we do not use the results in Section 3 in the discussion of Section 5.

Lemma 3.13. If Im' Š D2 or D3, then the number of C6-lines equals 3.

Proof. If Im' Š D2 orD3, then the number of C6-lines is at most three because
the group Im' contains only three elements of order 2.

Assume that Im' ŠD2. We may assume that all the ramification pointsP1; : : : ;P6
of the trigonal morphism g13 are on the hyperplaneW D 0 and the quadricQ D 0 that
contains C is XY �Z2 D 0. By using Proposition 2.10, we can assume that

G D

"0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 !

1CCCA ;
0BBB@
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1CCCA ;
0BBB@
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 �2

1CCCA
#

;

where ! is a primitive cubic root of the unity and �1; �2 2 k n ¹0º. By the same
argument as in the proof of Lemma 3.10, C must be projectively equivalent to the
curve defined by

(7)

´
XY �Z2 D 0;

.X3 C Y 3/C c.X C Y /Z2 CW 3 D 0;

or

(8)

´
XY �Z2 D 0;

.X2 C Y 2/Z C cZ3 CW 3 D 0;

where c 2 k. Then, the three lines X D Y D 0, X C Y D Z D 0, X � Y D Z D 0
are C6-lines. Indeed, if C is defined by equations (7) (resp. equations (8)), then we
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have automorphisms of order 6 as follows:0BBB@
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 !

1CCCA ;
0BBB@
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 !

1CCCA ;
0BBB@
0 1 0 0

1 0 0 0

0 0 �1 0

0 0 0 !

1CCCA

(resp.

0BBB@
�1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 !

1CCCA ;
0BBB@
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 !

1CCCA ;
0BBB@
0 �1 0 0

�1 0 0 0

0 0 1 0

0 0 0 !

1CCCA/:
Thus, the number of C6-lines is at least three.

Assume that Im' Š D3. According to the above argument, C must be projectively
equivalent to the curve defined by

(9)

´
XY �Z2 D 0;

.X3 C Y 3/C cZ3 CW 3 D 0;

where c 2 k. Then, the three linesX C Y D Z D 0,X C !Y D Z D 0,X C !2Y D
Z D 0 are C6-lines. Indeed, we have automorphisms of order 6 as follows:0BBB@

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 !

1CCCA ;
0BBB@
0 ! 0 0

!2 0 0 0

0 0 1 0

0 0 0 !

1CCCA ;
0BBB@
0 !2 0 0

! 0 0 0

0 0 1 0

0 0 0 !

1CCCA :
Thus, the number of C6-lines is at least three.

The proof of our main theorem is now complete.

4. Example: Galois lines for the curve defined by equations (1)

In this section, let C be the nonsingular projective curve such that k.C / D k.x; y/,
and

(10) x6 C y3 C 1 D 0:

The polynomial on the left-hand side of equation (10) is irreducible. Let g13 WC ! P1

be the trigonal morphism given by the function x. Then, g13 is a cyclic triple covering,
and there exist 6 branch points. By using the Riemann–Hurwitz formula, we have
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that the genus of C is equal to 4. Let .x/1 D D be the divisor of poles of x. Then,
.x2/1 D .y/1 D 2D. Therefore, dimkH

0.C;OC .2D// � 4. By using the Riemann–
Roch theorem, we have thatKC � 2D. The morphism C 3 P 7! .1 W x2.P / W x.P / W

y.P // 2 P3 is a canonical embedding. The image of this canonical embedding is
expressed as equations (1). We regardC as the canonical curve defined by equations (1).

We can identify nine C6-lines and one S3-line, as indicated in Tables 1 and 2.
Because deg�lj D 6, �j 2 Aut.C /, ord.�j / D 6, and �lj ı �j D �lj (j D 1; : : : ; 9),
it is clear that the lines l1; : : : ; l9 are C6-lines. As deg�l10

D 6, �10; �10 2 Aut.C /,
h�10; �10i Š S3, �l10

ı �10 D �l10
, and �l10

ı �10 D �l10
, the line l10 is clearly an

S3-line.
Let R´ .0 W 0 W 0 W 1/, which is the vertex of the quadric XY � Z2 D 0. The

projection �RWC ! .XY �Z2 DW D 0/Š P1 � .W D 0/Š P2 yields the unique
trigonal morphism g13 . We have that g13 is cyclic,

�´

0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 !

1CCCA 2 Aut.C /; ord.�/ D 3 D degg13 , and �R ı � D �R:

The ramification points of g13 are

P1´ .1 W �1 W i W 0/;

P3´ .1 W �! W i!2 W 0/;

P5´ .1 W �!2 W i! W 0/;

P2´ .1 W �1 W �i W 0/;

P4´ .1 W �! W �i!2 W 0/;

P6´ .1 W �!2 W �i! W 0/;

where! (resp. i ) is a primitive cubic (resp. fourth) root of the unity. Becauseg13 Dˆj3Pj j

(j D 1; : : : ; 6), we have Aut.C / acts on ¹P1; : : : ; P6º. Thus, �.W D 0/ D .W D 0/
for any � 2 Aut.C / � Aut.P3/.

Because g13 is a unique trigonal morphism, a unique A� 2 Aut.P1/ exists for any
� 2 Aut.C / such that g13 ı � D A� ı g

1
3 . We denote the map � 7! A� as 'WAut.C /!

Aut.P1/, which is a homomorphism between the groups. Note that �.W D 0/D .W D
0/, and g13 is obtained by using the projection �RW .X W Y W Z WW / 7! .X W Y W Z/. By
considering '.�/ D A� as an automorphism of the quadric plane curve .XY �Z2 D
W D 0/ � .W D 0/ Š P2, we see that ' is expressed as follows:

� D

0BBB@
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

1CCCA 7�! � 0 D

0B@a11 a12 a13

a21 a22 a23

a31 a32 a33

1CA ;
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Line l Defining equation of l Gl Generators of Gl

l1 X D Y D 0 C6 �1 D

0BBB@
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 !

1CCCA
l2 X C Y D Z D 0 C6 �2 D

0BBB@
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 !

1CCCA
l3 X C !Y D Z D 0 C6 �3 D

0BBB@
0 ! 0 0

!2 0 0 0

0 0 1 0

0 0 0 !

1CCCA
l4 X C !2Y D Z D 0 C6 �4 D

0BBB@
0 !2 0 0

! 0 0 0

0 0 1 0

0 0 0 !

1CCCA
l5 X � Y D Z D 0 C6 �5 D

0BBB@
0 �1 0 0

�1 0 0 0

0 0 1 0

0 0 0 �!

1CCCA
l6 X � !Y D Z D 0 C6 �6 D

0BBB@
0 �! 0 0

�!2 0 0 0

0 0 1 0

0 0 0 �!

1CCCA
l7 X � !2Y D Z D 0 C6 �7 D

0BBB@
0 �!2 0 0

�! 0 0 0

0 0 1 0

0 0 0 �!

1CCCA
l8 X D W D 0 C6 �8 D

0BBB@
1 0 0 0

0 ! 0 0

0 0 �!2 0

0 0 0 1

1CCCA
l9 Y D W D 0 C6 �9 D

0BBB@
! 0 0 0

0 1 0 0

0 0 �!2 0

0 0 0 1

1CCCA
! is a primitive cubic root of the unity.

Table 1. C6-lines for the curve defined by Equations (1)
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Line l Defining equation of l Gl Generators of Gl

l10 Z D W D 0 S3 �10 D

0BBB@
! 0 0 0

0 !2 0 0

0 0 1 0

0 0 0 1

1CCCA ;

�10 D

0BBB@
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1CCCA
! is a primitive cubic root of the unity.

Table 2. S3-lines for the curve defined by equations (1)

where � 0 is regarded as an element of Aut.XY �Z2 DW D 0/� Aut.P2/. Let Ker'
and Im' be the kernel and image of ', respectively. We have the short exact sequence
(3) for Aut.C /, and Ker ' D h�i.

Claim 4.1. We have that Im' Š D6, which is the dihedral group of order 12.

Proof. From Proposition 2.9, Im' is isomorphic to Cm, Dm, A4, S4, or A5. Let
�j (j D 1; : : : ; 10) be the automorphism provided in Tables 1 and 2. Because the order
of '.�8/ is equal to 6, we see that Im ' Š Cm or Dm, where m is a multiple of 6.
Because '.�1/ ¤ '.�2/, and the orders of both '.�1/ and '.�2/ are equal to 2, we
have Im' Š Dm. Note that Aut.C / acts on the set ¹P1; : : : ; P6º. Let � 2 Aut.C /. If
�.Pj / D Pj for every Pj (j D 1; : : : ; 6), then '.�/ is the identity. Thus, the order of
'.�/ is at most 6. This concludes that Im' Š D6.

We have an exact sequence 1! C3
 
! Aut.C /

'
! D6 ! 1. The order of Aut.C /

is 36. Let G ´ h�; �2; �8i.

Claim 4.2. We have that Aut.C / D G Š C3 �D6.

Proof. Because of the exact sequence 1!C3
 
! G

'
! D6! 1,GDAut.C /. We

show that there is a left-inverse of . For � 2G, we have a unique matrix representation
M� such that M �� .XY �Z2/ D XY �Z2 and the .4; 4/-component of M� is 1; !,
or !2. We denote the .4; 4/-component of M� as �� . Let  0WG ! Ker ' Š C3 be as
follows:

� DM� 7�!

0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ��

1CCCA :
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Because  0 is a homomorphism between groups, and  0 ı  D id, this concludes that
G Š C3 �D6.

The group Aut.C / Š C3 �D6 has only ten C6 subgroups:

h�1i; : : : ; h�9i;

"

x� ´

0BBB@
! 0 0 0

0 !2 0 0

0 0 �1 0

0 0 0 1

1CCCA
#

:

As x� has no multiple eigenvalues, hx�i is not a Galois group associated with a Galois
line. Therefore, the number of C6-lines is equal to 9. The group Aut.C / Š C3 �D6
has only six S3 subgroups: h�m; �ni for .m; n/ D .0; 0/; .0; 1/; .1; 0/; .1; 1/; .2; 0/ and
.2; 1/, where

�m D

0BBB@
! 0 0 0

0 !2 0 0

0 0 1 0

0 0 0 !m

1CCCA and �n D

0BBB@
0 1 0 0

1 0 0 0

0 0 .�1/n 0

0 0 0 1

1CCCA :
By Proposition 2.8, the lines that might beS3-lines are l8 WX DW D 0, l9 W Y DW D 0,
and l10 W Z D W D 0. However, l8 and l9 are C6-lines. The line l10 is the only one
S3-line.

Remark 4.3. Let P 0´ .1 W 0 W 0 W 0/, which is the point at which lines l9 and l10
intersect. By the projection�P 0 W .X W Y WZ WW / 7! .Y WZ WW /with centerP 0, we have
a singular plane curve T6 W Y 6 CZ6 C Y 3W 3 D 0 as the image �P 0.C /. The points
.0 W 1 W 0/D �P 0.l9/ and .1 W 0 W 0/D �P 0.l10/ are outer Galois points for T6 with Galois
groups C6 and S3, respectively. The plane curves T2m W Y 2m CZ2m C Y mW m D 0

are examples of curves that are known to have two outer Galois points with Galois
groups C2m and Dm (See [5]).

5. Example: Galois lines for the curve defined by equations (2)

In this section, let C be the nonsingular projective curve such that k.C / D k.x; y/,
and

(11) y6 C x2.x2 C 1/ D 0:

The polynomial on the left-hand side of equation (11) is irreducible. Let g16 WC ! P1

be the cyclic morphism of degree 6 given by the function x. By using the Riemann–
Hurwitz formula, we have that the genus of C is equal to 4. Let P1, P10 , P0, P00 ,
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Pi , P�i be six points on C such that x.P1/ D x.P10/ D1, x.P0/ D x.P00/ D 0,
x.Pi / D i , and x.P�i / D �i , where i is a primitive fourth root of the unity. Because
.x/D 3P0C 3P00 � 3P1 � 3P10 , .y/D P0CP00 CPi CP�i � 2P1 � 2P10 , and
.x � i/ D 6Pi � 3P1 � 3P10 , we have� y3

x.x � i/

�
1
D 3Pi and

� y

x � i

�
1
D 5Pi :

Hence, the Weierstrass semigroup of Pi isH.Pi / D h3; 5i (for the definition of Weier-
strass semigroup, see [8, Equation (1)]). Thus, C is not hyperelliptic andKC � 6Pi �
3P1 C 3P10 . Because 1; y3=.x.x � i//; y=.x � i/; 1=.x � i/ are linearly indepen-
dent over k, the morphism C 3 P 7! .x2.P / W y3.P / W x.P / W �x.P /y.P // 2 P3

is a canonical embedding. The image of this embedding is expressed as equations (2).
We regard C as the canonical curve defined by equations (2).

We can find nineC6-lines and four S3-lines, as in Tables 3 and 4. Because deg�lj D
6, �j 2 Aut.C /, ord.�j / D 6 and �lj ı �j D �lj (j D 1; : : : ; 9), we see that the lines
l1; : : : ; l9 areC6-lines. As deg�lj D 6, �j ; �j 2 Aut.C /, h�j ; �j i Š S3, �lj ı �j D �lj
and �lj ı �j D �lj (j D 10; : : : ; 13), we see that the lines l10; : : : ; l13 are S3-lines.

Claim 5.1. We have that Aut.C / Š C3 � S4.

Proof. We have the following automorphisms of C :0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 !

1CCCA ;
0BBB@
�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

1CCCA ;
0BBB@
0 �1 0 0

1 0 0 0

0 0 1 0

0 0 0 �1

1CCCA ;
0BBB@
0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

1CCCA ;
where ! is a primitive cubic root of the unity. The group generated by these four
elements, which is a subgroup of Aut.C /, is isomorphic toC3 � S4. By considering the
short exact sequence (3) forGDAut.C /, we have that 1!C3!Aut.C /

'
! Im'! 1

and Im ' Š Cm; Dm; A4; S4, or A5. By using the same argument as in the proof of
Lemma 3.8 or Claim 4.1, if Im' ŠCm orDm, thenm� 6. BecauseC3 � S4 �Aut.C /,
we see that Im' Š S4 and Aut.C / Š C3 � S4.

Because the group C3 � S4 contains exactly nine C6 subgroups and exactly four
S3 subgroups, this concludes that the lines in Tables 3 and 4 are all the C6-lines and
all the S3-lines, respectively.
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Line l Defining equation of l Gl Generators of Gl

l1 X D Y D 0 C6 �1 D

0BBB@
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �!

1CCCA
l2 Y D Z D 0 C6 �2 D

0BBB@
�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �!

1CCCA
l3 X D Z D 0 C6 �3 D

0BBB@
1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �!

1CCCA
l4 X C Y D Z D 0 C6 �4 D

0BBB@
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 !

1CCCA
l5 X � Y D Z D 0 C6 �5 D

0BBB@
0 �1 0 0

�1 0 0 0

0 0 1 0

0 0 0 !

1CCCA
l6 X CZ D Y D 0 C6 �6 D

0BBB@
0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 !

1CCCA
l7 X �Z D Y D 0 C6 �7 D

0BBB@
0 0 �1 0

0 1 0 0

�1 0 0 0

0 0 0 !

1CCCA
l8 X D Y CZ D 0 C6 �8 D

0BBB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 !

1CCCA
l9 X D Y �Z D 0 C6 �9 D

0BBB@
1 0 0 0

0 0 �1 0

0 �1 0 0

0 0 0 !

1CCCA
! is a primitive cubic root of the unity.

Table 3. C6-lines for the curve defined by equations (2)
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Line l Defining equation of l Gl Generators of Gl

l10 X C Y CZ D W D 0 S3 �10 D

0BBB@
0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

1CCCA ;

�10 D

0BBB@
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1CCCA
l11 X � Y CZ D W D 0 S3 �11 D

0BBB@
0 �1 0 0

0 0 �1 0

1 0 0 0

0 0 0 1

1CCCA ;

�11 D

0BBB@
0 �1 0 0

�1 0 0 0

0 0 1 0

0 0 0 1

1CCCA
l12 �X C Y CZ D W D 0 S3 �12 D

0BBB@
0 �1 0 0

0 0 1 0

�1 0 0 0

0 0 0 1

1CCCA ;

�12 D

0BBB@
0 �1 0 0

�1 0 0 0

0 0 1 0

0 0 0 1

1CCCA
l13 X C Y �Z D W D 0 S3 �13 D

0BBB@
0 1 0 0

0 0 �1 0

�1 0 0 0

0 0 0 1

1CCCA ;

�13 D

0BBB@
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1CCCA
Table 4. S3-lines for the curve defined by equations (2)
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6. Other examples

In this section, we present two examples of canonical curves of genus 4, which have
exactly one C6-line and exactly three C6-lines, respectively.

Example 6.1. Let C � P3 be the curve defined by´
Q WD YZ �W 2 D 0;

F WD X3 �X2Y �XY 2 CZ3 D 0:

Then, C is a canonical curve of genus 4. The line l W X D Y D 0 is a C6-line. Indeed,

� ´

0BBB@
1 0 0 0

0 1 0 0

0 0 ! 0

0 0 0 �!2

1CCCA
(where ! is a primitive cubic root of the unity) satisfies � 2 Aut.C /, �l ı � D �l ,
and ord.�/ D 6 D deg�l . Because rankQ D 3, the trigonal morphism g13 is unique,
and g13 is obtained by the projection �R with center R´ .1 W 0 W 0 W 0/, which is the
vertex of Q D 0. Because ��1R ..1 W 1 W 1// consists of only two points .1 W 1 W 1 W 1/
and .�1 W 1 W 1 W 1/, we see that g13 is not Galois. From Proposition 3.2, the number of
C6-lines equals one.

Example 6.2. Let C � P3 be the curve defined by´
Q WD XY �Z2 D 0;

F WD X3 C Y 3 CZ3 CW 3 D 0:

Then,C is a canonical curve of genus 4. The lines l1 WX C Y DZ D 0, l2 WX C!Y D
Z D 0, and l3 W X C !2Y D Z D 0 are C6-lines of type .2; 3/. Indeed,

�1´

0BBB@
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 !

1CCCA ; �2´
0BBB@
0 ! 0 0

!2 0 0 0

0 0 1 0

0 0 0 !

1CCCA ; and �3´

0BBB@
0 !2 0 0

! 0 0 0

0 0 1 0

0 0 0 !

1CCCA
(where ! is a primitive cubic root of the unity) satisfy �j 2 Aut.C /, �lj ı �j D �lj
and ord.�j / D 6 D deg�lj (j D 1; 2; 3).
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We show that all the C6-lines for C of types .2; 3/ or .2; 6/ are the three lines l1,
l2 and l3. Here, we explain how to find the C6-lines of types .2; 3/ or .2; 6/. Let

P1´ .1 W �2 W � W 0/;

P3´ .1 W �8 W �4 W 0/;

P5´ .1 W �5 W �7 W 0/;

P2´ .1 W �4 W �2 W 0/;

P4´ .1 W � W �5 W 0/;

P6´ .1 W �7 W �8 W 0/;

where � is a primitive ninth root of the unity. Because rankQ D 3, from Proposi-
tion 2.1, there exists a unique trigonal morphism g13 WC ! P1. From Proposition 3.1
(or 3.2), g13 is cyclic. Points P1; : : : ; P6 are all the ramification points of g13 . Let
H.3Pm C 3Pn/ � P3 (resp. H.6Pm/ � P3) (Pm; Pn 2 ¹P1; : : : ; P6º) be the hyper-
plane that defines the divisor 3Pm C 3Pn (resp. 6Pm) on C . Let l be a C6-line of type
.2; 3/ or .2; 6/. From Proposition 3.1, the projection �l WC ! P1 is the composition
of g13 WC ! P1 and some morphism P1 ! P1 of degree 2. Thus, P1; : : : ; P6 are
ramification points of �l . At least two fibers of �l are formed as 3Pm C 3Pn, where
Pm ¤ Pn and Pm;Pn 2 ¹P1; : : : ;P6º. In other words, there exist four mutually distinct
pointsPm1

;Pm2
;Pm3

;Pm4
2 ¹P1; : : : ;P6º such thatH.3Pm1

C 3Pm2
/\H.3Pm3

C

3Pm4
/ D l . Moreover, we have l � H.3Pm5

C 3Pm6
/ or l � H.6Pm5

/ \H.6Pm6
/,

where ¹Pm1
; : : : ; Pm6

º D ¹P1; : : : ; P6º. By using this fact, we search for lines that
might be C6-lines of types .2; 3/ or .2; 6/.

For example, let l1234 � P3 be the lineH.3P1C 3P2/\H.3P3C 3P4/. Because
H.3P1 C 3P2/ and H.3P3 C 3P4/ are defined by �3X C Y � .� C �2/Z D 0 and
X C Y � .�4 C �5/Z D 0, respectively, we have

R1234´ .��.1C �/ W �.1C �/.1C �3/ W 1 W 0/ 2 l1234:

The hyperplanes H.3P5 C 3P6/, H.6P5/, and H.6P6/ are defined by �6X C Y �
.�7 C �8/Z D 0, �5X C Y � 2�7Z D 0, and �7X C Y � 2�8Z D 0, respectively.
We see that R1234 62 H.3P5 C 3P6/, R1234 62 H.6P5/, and R1234 62 H.6P6/. Thus,
l1234 6� H.3P5 C 3P6/, l1234 6� H.6P5/, and l1234 6� H.6P6/. This concludes that
l1234 is not a C6-line of type .2; 3/ or .2; 6/. By using the same argument as above and
computer calculations, we check whether lm1m2m3m4

can be a C6-line of type .2; 3/ or
.2; 6/ for every line lm1m2m3m4

´H.3Pm1
C 3Pm2

/\H.3Pm3
C 3Pm4

/. Then, we
see that only three lines l1236, l1423, l1625 might be C6-lines of types .2; 3/ or .2; 6/,
which are C6-lines l3, l2, l1, respectively.

According to Sections 4 and 5, seven C6-lines of types .2; 3/ or .2; 6/ exist for the
curve defined by equations (1), and nine C6-lines of types .2; 3/ or .2; 6/ exist for the
curve defined by equations (2). Thus, C is not projectively equivalent to the curves
defined by equations (1) or (2). From our main theorem, we see that all the C6-lines
for C are the three lines l1, l2, and l3.
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