Galois lines for a canonical curve of genus 4, II: Skew cyclic lines

Jiryo Komeda (*) – Takeshi Takahashi (**)

ABSTRACT – Let $C \subset \mathbb{P}^3$ be a canonical curve of genus 4 over an algebraically closed field k of characteristic zero. For a line l, we consider the projection $\pi_l: C \to \mathbb{P}^1$ with center l and the extension of the function fields π_l^* : $k(\mathbb{P}^1) \hookrightarrow k(C)$. A line l is referred to as a *cyclic line* if the extension $k(C)/\pi_l^*(k(\mathbb{P}^1))$ is cyclic. A line $l \subset \mathbb{P}^3$ is said to be *skew* if $C \cap l = \emptyset$. We prove that the number of skew cyclic lines is equal to $0, 1, 3$ or 9 . We determine curves that have nine skew cyclic lines.

Mathematics Subject Classification (2020) – Primary 14H50; Secondary 14H37, 14H45.

Keywords – Canonical curve of genus 4, cyclic line, projection, automorphism group.

1. Introduction and the main theorem

Yoshihara [\[10\]](#page-23-0) investigated various properties of skew Galois lines (for the definition, see below) for nondegenerate nonsingular curves C in \mathbb{P}^3 . He proved that the number of skew Galois lines for an irrational C is finite, and that the number of skew Galois lines for C is at most one if deg C is a prime and deg $C \geq 5$. He also studied the defining equations of curves C of low degrees that have skew Galois lines. In addition, Yoshihara et al. [\[2,](#page-23-1)[7,](#page-23-2)[11\]](#page-23-3), studied the number and arrangement of skew Galois lines for elliptic space curves. Fukasawa and Higashine [\[4\]](#page-23-4) and subsequent work by Fukasawa [\[3\]](#page-23-5) determined the arrangement of all the Galois lines for the Giulietti–Korchmáros

(*) *Indirizzo dell'A.*: Department of Mathematics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi 243-0292, Japan; komeda@gen.kanagawa-it.ac.jp

(**) *Indirizzo dell'A.*: Education Center for Engineering and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashininocho Nishi-ku, Niigata 950-2181, Japan; takeshi@eng.niigata-u.ac.jp

curve and for the Artin–Schreier–Mumford curve, respectively. More recently, in [\[8\]](#page-23-6), we studied the number of non-skew cyclic lines for canonical curves of genus 4. As a continuation of this work [\[8\]](#page-23-6), in this study, we investigate the number of skew cyclic lines for canonical curves of genus 4. We would like to note Kuribayashi et al. [\[9\]](#page-23-7), however we will not use it in the present paper. By giving generators with respect to linear representations in the vector space of holomorphic differentials, they presented a complete classification of automorphism groups for compact Riemann surfaces of genera 3 and 4.

Let $C \subset \mathbb{P}^3$ be a canonical curve of genus 4 over an algebraically closed field k of characteristic 0, which is a (2, 3)-complete intersection in \mathbb{P}^3 . A line $l \subset \mathbb{P}^3$ is said to be *skew* if $C \cap l = \emptyset$. For a line l, we consider the projection $\pi_l : C \to \mathbb{P}^1$ with center l and the extension of the function fields π_l^* $\chi_l^*: k(\mathbb{P}^1) \hookrightarrow k(C)$. Because deg $C = 6$, we have deg $\pi_l \leq 6$, and if l is skew, then we have deg $\pi_l = 6$. We refer to a line l as a *Galois line* if the extension is Galois. We refer to the Galois line l as a C_6 -line (resp. S_3 -line) if the Galois group is isomorphic to the cyclic group C_6 of order 6 (resp. the symmetric group S_3 on 3 letters). We note that l is a skew cyclic line if and only if l is a C_6 -line, in the setting of this paper. In [\[8\]](#page-23-6), we explicitly gave the equations of C in the particular case in which C has two cyclic trigonal morphisms; we prove that the number of cyclic lines with deg $\pi_l = 4$ is at most 1; and the number of cyclic lines with deg $\pi_l = 5$ is at most 1. Our main theorem of the present paper is as follows.

THEOREM. Let $C \subset \mathbb{P}^3$ be a canonical curve of genus 4 over an algebraically closed *field of characteristic* 0*. Then, the number of* C_6 -lines equals 0, 1, 3 *or* 9*. Moreover, if there exist nine* C_6 -lines for C , then C *is projectively equivalent to the curve defined by one of the following:*

(1)
$$
\begin{cases} XY - Z^2 = 0, \\ X^3 + Y^3 + W^3 = 0, \end{cases}
$$

or

(2)
$$
\begin{cases} X^2 + Y^2 + Z^2 = 0, \\ XYZ + W^3 = 0, \end{cases}
$$

where $(X:Y:Z:W)$ are homogeneous coordinates on \mathbb{P}^3 .

In Section [2,](#page-2-0) we present selected preliminary results. The proof of the theorem is provided in Section [3.](#page-7-0) In Sections [4](#page-13-0) and [5,](#page-17-0) we determine all the C_6 -lines for curves defined by equations [\(1\)](#page-1-0) and [\(2\)](#page-1-1). Section [6](#page-21-0) presents examples of curves that have only one or three C_6 -lines.

In the present paper, we assume that the base field k is algebraically closed and char(k) = 0. For a line l, "skew" means "skew with respect to C", and also C_6 -line means "with respect to C ", and the reference to C will always be tacitly assumed. For the Galois line l, we denote $\{\sigma \in Aut(C) \mid \pi_l \circ \sigma = \pi_l\}$ by G_l , which is isomorphic to the Galois group. We denote by C_m the cyclic group of order m; by D_m the dihedral group of order 2m; by A_m the alternating group on m letters; by S_m and the symmetric group on m letters.

2. Preliminaries

Let $C \subset \mathbb{P}^3$ be a canonical curve of genus 4. Let $(X : Y : Z : W)$ be homogeneous coordinates on \mathbb{P}^3 . The following are well-known facts.

PROPOSITION 2.1 ([\[1,](#page-23-8) page 118], [\[6,](#page-23-9) page 298]). *The curve C is a* (2, 3)-*complete intersection; that is, the homogeneous ideal* $I(C) \subset k[X, Y, Z, W]$ *of* C *is generated by a quadratic form Q and cubic form* F. The degree of C is 6. The surface $Q = 0$ is *a unique quadric surface that contains* C. The gonality $gon(C)$ of C is equal to 3. If rank $Q = 3$, then C has a unique trigonal morphism $C \to \mathbb{P}^1$, which is given by the *projection from the vertex of the surface* $Q = 0$ *. If* rank $Q = 4$ *, then* C *has exactly two trigonal morphisms* $C \to \mathbb{P}^1$ *.*

Let $l \subset \mathbb{P}^3$ be a line and $\pi_l: C \to \mathbb{P}^1$ the projection with center l. Because deg $C = 6$ and C is not hyperelliptic, we have $3 \le \deg \pi_l \le 6$. A line l is skew if and only if deg $\pi_l = 6$. If deg $\pi_l \geq 4$, then π_l uniquely determines the center l.

PROPOSITION 2.2 ([\[8\]](#page-23-6)). Assume deg $\pi_l \geq 4$. Then, $\pi_l = \pi_{l'}$ (up to an isomorphism *of the codomains* \mathbb{P}^1 *of* π_l *and* $\pi_{l'}$ *), if and only if* $l = l'$ *.*

We have a canonical representation $Aut(C) \hookrightarrow GL(\Gamma(C, \Omega^1)) \cong GL(4, k)$, where Ω^1 is the sheaf of regular 1-forms on C. As $C \subset \mathbb{P}^3$ is a canonical curve, we also have Aut $(C) \hookrightarrow$ Aut $(\mathbb{P}^3) \cong \text{PGL}(4, k)$. That is, for every $\sigma \in$ Aut (C) , there exists a unique projective transformation $T: \mathbb{P}^3 \to \mathbb{P}^3$ such that $T(C) = C$ and $T|_{C} = \sigma$. We express the elements in Aut(C) as the projective transformations of \mathbb{P}^3 .

PROPOSITION 2.3. *There exist a quadratic form* $Q \in k[X, Y, Z, W]$ *and a cubic form* $F \in k[X, Y, Z, W]$ *with* $I(C) = (Q, F)$ *such that* $\sigma(Q = 0) = (Q = 0)$ *and* $\sigma(F = 0) = (F = 0)$ *for any* $\sigma \in \text{Aut}(C) \subset \text{Aut}(\mathbb{P}^3)$ *.*

PROOF. There exists a unique quadric $Q = 0$ that contains C. Clearly, $\sigma(Q = 0)$ = $(Q = 0)$. Let

$$
I_3 := \{ F \in k[X, Y, Z, W] \mid F \text{ is a cubic form, } C \subset (F = 0) \} \cup \{0\},
$$

$$
J := \{ (aX + bY + cZ + dW)Q \mid a, b, c, d \in k \},
$$

and let $G \subset GL(4, k)$ be a finite group isomorphic to Aut(C) via the natural quotient map GL $(4, k) \rightarrow PGL(4, k)$. Then, dim_k $I_3 = 5$, dim_k $J = 4$, $J \subsetneq I_3$, and G acts linearly on I_3 and J. Because char $(k) = 0$, according to Maschke's theorem, the representation $G \to GL(I_3)$ is completely reducible. Thus, there exists $F \in I_3 \setminus J$ such that $(A^*F)/F \in k \setminus \{0\}$ for any $A \in G$.

PROPOSITION 2.4 ([\[10\]](#page-23-0)). *Assume that there exists a* C_6 *-line l. Then, by taking a* suitable projective transformation of \mathbb{P}^3 , we may assume that l is defined by $X=Y=0$, and a generator σ of $G_l \subset \text{Aut}(\mathbb{P}^3)$ is expressed by a diagonal matrix with diagonal *components* $1, 1, \alpha, \beta$ ($\alpha, \beta \in k \setminus \{0\}$), and $(\text{ord}(\alpha), \text{ord}(\beta)) = (3, 6), (2, 3)$, or $(2, 6)$. *That is, we may assume*

$$
\sigma = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \zeta^2 & 0 \\ 0 & 0 & 0 & \zeta \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \zeta^2 \end{pmatrix}, \text{ or } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \zeta \end{pmatrix},
$$

where ζ *is a primitive sixth root of the unity.*

PROOF. Most of the claims are proved in the proof of $[10,$ Theorem 4.5] (see Claim 7 on pages 466-467 of [\[10\]](#page-23-0)). We only have to verify the following: the diagonal matrix with diagonal components 1, 1, ζ^4 , ζ is unsuitable for a generator σ of G_l . Indeed, if σ is such an automorphism, then using Proposition [2.3,](#page-2-1) Q will be reducible.

In Proposition [2.4,](#page-3-0) we note that the position of the line l and the form of the generator σ are specified simultaneously. From the following argument we see that this is possible: first, we fix the position of the line l to be $X = Y = 0$; next, from $\pi_l = \pi_l \circ \sigma$, we find the conditions that the representation matrix of σ must satisfy; finally by using a projective transformation that does not change the position of l , we diagonalize the representation matrix of σ .

DEFINITION 2.5. We say that a C_6 -line l is *of type* $(3, 6)$ (resp. *of type* $(2, 3)$ *, of type* (2, 6)) if a generator of $G_l \subset Aut(\mathbb{P}^3)$ can be represented as a matrix with eigenvalues $1, 1, \alpha, \beta$ with $(\text{ord}(\alpha), \text{ord}(\beta)) = (3, 6)$ (resp. $(2, 3), (2, 6)$).

COROLLARY 2.6. *We assume that there exists a C₆-line l. Let* $Q \in k[X, Y, Z, W]$ *be a quadratic form such that the quadric surface* $Q = 0$ *contains* C. Then, rank $Q = 3$. Hence, there exists only one trigonal morphism g_3^1 : $C \to \mathbb{P}^1$, which is given by the *projection from the vertex of* $Q = 0$ *.*

Proof. The quadric $Q = 0$ containing C satisfies $\sigma(Q = 0) = (Q = 0)$ for any $\sigma \in G_l$. From Proposition [2.4,](#page-3-0) we see that rank $Q = 3$.

For σ as stated in Proposition [2.4,](#page-3-0) we note that $Fix(\sigma) := \{ P \in \mathbb{P}^3 \mid \sigma(P) = P \}$ consists of a line $Z = W = 0$ and two points $(0:0:1:0)$, $(0:0:0:1)$, and $l : X =$ $Y = 0$ passes through these two points. Hence, we can immediately see the following.

PROPOSITION 2.7. Let l_1 and l_2 be distinct C_6 -lines for C. Then, $G_{l_1} \neq G_{l_2}$ as $subgroups of Aut(C).$

On S_3 -lines, we have the following proposition. Proposition [2.8](#page-4-0) is not used in the proof of our main theorem, but is required for the calculations in Sections [4](#page-13-0) and [5.](#page-17-0) In Sections [4](#page-13-0) and [5,](#page-17-0) we will determine not only C_6 -lines but also S_3 -lines for curves concretely defined by Equations [\(1\)](#page-1-0) and [\(2\)](#page-1-1).

PROPOSITION 2.8 (Proof of [\[10,](#page-23-0) Theorem, 4.5]). *Let l be an* S₃-line for C. Then, *by taking a suitable projective transformation, we may assume that* $l : X = Y = 0$ *,* and G_l is generated by the following two elements:

$$
\sigma := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \omega & 0 \\ 0 & 0 & 0 & \omega^2 \end{pmatrix} \quad and \quad \tau := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix},
$$

where ω *is a primitive cubic root of the unity.*

Since the proof of Proposition [2.8](#page-4-0) is not stated in [\[10\]](#page-23-0) as it is obvious, we present it here.

Proof. Let σ and τ be automorphisms of C such that $G_l = \langle \sigma, \tau \rangle$, where $\sigma^3 =$ $\tau^2 = id_C$ and $\tau \sigma \tau = \sigma^2$. By taking a suitable projective transformation, we may assume that l is defined by $X = Y = 0$. Because $\pi_l \circ \sigma = \pi_l$ and $\pi_l \circ \tau = \pi_l$, we have that σ and τ are represented as

$$
\begin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ * & * & * \ * & * & * \end{pmatrix}
$$

:

Because $\sigma^3 = id_C$, σ is diagonalizable. We may assume that

$$
\sigma = \begin{pmatrix} I & O \\ O & A \end{pmatrix} \quad \text{and} \quad \tau = \begin{pmatrix} I & O \\ L & M \end{pmatrix},
$$

where L and M are some 2×2 matrices,

$$
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},
$$

and

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & \omega \end{pmatrix}, \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix}, \text{ or } \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}
$$

:

By using $\tau^2 = id_C$ and $\tau \sigma \tau = \sigma^2$, we infer that $L + ML = O$, $M^2 = I$, $L + MAL =$ O and $MAM = A^2$. We have

$$
A = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \quad L = O, \text{ and } M = \begin{pmatrix} 0 & c \\ 1/c & 0 \end{pmatrix}
$$

for some $c \in k \setminus \{0\}$. By taking the projective transformation that is represented by the diagonal matrix with diagonal elements $1, 1, c$ and 1 , we have the representations of σ and τ as stated in the proposition.

For σ and τ as stated as in Proposition [2.8,](#page-4-0) we note that $Fix(\sigma) := \{P \in \mathbb{P}^3 \mid$ $\sigma(P) = P$ consists of a line $Z = W = 0$ and two points $(0:0:1:0)$, $(0:0:0:1)$, and l passes through these two points. The set $Fix(\tau) := \{P \in \mathbb{P}^3 \mid \tau(P) = P\}$ consists of a hyperplane $Z - W = 0$ and a point $(0:0:-1:1)$, and l passes through the point.

Assume that rank $Q = 3$, where the quadric $Q = 0$ contains C. Because the trigonal morphism g_3^1 : $C \to \mathbb{P}^1$ is unique, for any $\sigma \in Aut(C)$, there exists $A_{\sigma} \in Aut(\mathbb{P}^1)$ such that $g_3^1 \circ \sigma = A_\sigma \circ g_3^1$. Let G be a subgroup of Aut(C). Let $\varphi: G \to \text{Aut}(\mathbb{P}^1)$ be the map $\sigma \mapsto A_{\sigma}$, which is a homomorphism between the groups. Let Ker φ and Im φ be the kernel and image of φ , respectively. We denote the inclusion Ker $\varphi \hookrightarrow G$ as ψ . We have a short exact sequence

(3)
$$
1 \longrightarrow \operatorname{Ker} \varphi \stackrel{\psi}{\longrightarrow} G \stackrel{\varphi}{\longrightarrow} \operatorname{Im} \varphi \longrightarrow 1.
$$

The short exact sequence [\(3\)](#page-5-0) and Proposition [2.9](#page-6-0) play central roles in the proof of our main theorem.

PROPOSITION 2.9. We have the following:

- (I) The group Im φ is isomorphic to one of the following groups: C_m ($m \in \mathbb{Z}_{>0}$), D_m $(m \in \mathbb{Z}_{>0})$, A_4 , S_4 *or* A_5 .
- (II) *The three conditions* "Ker $\varphi \neq 1$ ", "Ker $\varphi \cong C_3$ ", and " g_3^1 is cyclic" are equivalent.

Proof. Because Im $\varphi \subset Aut(\mathbb{P}^1)$ is finite, (I) is well known. As Ker $\varphi = \{\sigma \in G \mid$ $g_3^1 \circ \sigma = g_3^1$, we see that (II) holds.

On automorphism groups of a plane quadric curve, we have the following proposition. Proposition [2.10](#page-6-1) is required in the proof of our main theorem.

PROPOSITION 2.10. Let $V \subset \mathbb{P}^2$ be the curve defined by $XY = Z^2$, which is *isomorphic to* \mathbb{P}^1 .

(I) Let $S_4 \subset \text{Aut}(V) \subset \text{Aut}(\mathbb{P}^2)$ be the symmetric group on four letters. Then, by taking *a suitable projective transformation, we can assume that* $S_4 = \langle \rho, \tau \rangle$,

$$
\rho = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & i \end{pmatrix} \quad \text{and} \quad \tau = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & -2 \\ 1 & -1 & 0 \end{pmatrix},
$$

where i *is a primitive fourth root of the unity.*

(II) Let $D_m \subset \text{Aut}(V) \subset \text{Aut}(\mathbb{P}^2)$ ($m \geq 2$) be the dihedral group of order 2m. Then, *by taking a suitable projective transformation, we can assume that* $D_m = \langle \rho, \tau \rangle$,

$$
\rho = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \zeta_m^2 & 0 \\ 0 & 0 & \zeta_m \end{pmatrix} \quad and \quad \tau = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},
$$

where ζ_m *is a primitive mth root of the unity.*

Proof. We may assume that the group $S_4 \subset \text{Aut}(\mathbb{P}^1)$ (resp. $D_m \subset \text{Aut}(\mathbb{P}^1)$) is generated by

$$
\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}
$$
 and $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ (resp. $\begin{pmatrix} 1 & 0 \\ 0 & \zeta_m \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$).

The form of the matrices in the proposition comes from the images of these generators via the embedding $\mathbb{P}^1 \ni (x_0 : x_1) \mapsto (x_0^2 : x_1^2 : x_0 x_1) \in \mathbb{P}^2$. \blacksquare

3. Proof of the main theorem

In this section, we prove the main theorem. Note that, if there exists a C_6 -line, then C has a unique trigonal morphism g_3^1 : $C \to \mathbb{P}^1$ by Corollary [2.6.](#page-4-1) Let us consider the short exact sequence [\(3\)](#page-5-0) for

$$
G := \{ \sigma \in Aut(C) \mid \sigma \in G_l \text{ for some } C_6\text{-line } l \}.
$$

The map φ defined just before the sequence [\(3\)](#page-5-0) will be used many times with the group G defined here.

We give an overview of the proof. We will assume that there exist at least two C_6 -lines, and discuss the proof in the following two cases: there exists at least one C_6 -line of type $(3, 6)$; there does not exist a C_6 -line of type $(3, 6)$. It will be important that g_3^1 is cyclic in both cases (Propositions [3.1](#page-7-1) and [3.2\)](#page-7-2). In the case that there exists a C_6 -line of type (3, 6), we can determine the defining equations of the curve C concretely (Lemma [3.4\)](#page-8-0). Once the curve C is given by the concrete equations, it is possible to find all the Galois lines completely (Section [4\)](#page-13-0). In the case that there does not exist a C_6 -line of type (3, 6), we will consider the short exact sequence [\(3\)](#page-5-0). The group Ker φ and homomorphisms φ and ψ are easy to understand, and it is known what groups can be isomorphic to the group Im φ (Proposition [2.9\)](#page-6-0). We will discuss the proof for each group that may be Im φ , and we will find Im $\varphi \cong D_2, D_3$ or S_4 (Lemmas [3.6–](#page-9-0)[3.10\)](#page-10-0). In the case that Im $\varphi \cong S_4$, we can determine the defining equations of the curve C concretely (Lemma [3.12\)](#page-11-0), and find all the Galois lines completely (Section [5\)](#page-17-0). In the cases that Im $\varphi \cong D_2, D_3$, we can determine the defining equations of C roughly, and we will see that the number of C_6 -lines is equal to 3 (Lemma [3.13\)](#page-12-0).

The two propositions below provide sufficient conditions for g_3^1 to be cyclic.

PROPOSITION 3.1. Assume that there exists a C_6 -line l of type $(2, 3)$ or $(2, 6)$ *. Let* σ_l be a generator of G_l . Then, $\text{Ker } \varphi = \langle \sigma_l^2 \rangle$, and $\text{ord}(\varphi(\sigma_l)) = 2$. In particular, the *trigonal morphism* g 1 3 *is cyclic.*

Proof. By Proposition [2.4,](#page-3-0) using a suitable projective transformation, we may assume that σ_l is expressed as the diagonal matrix with diagonal components 1, 1, -1 , ζ^2 or 1, 1, -1, ζ , where ζ is a primitive sixth root of the unity. The quadric $Q = 0$ that contains C has the vertex $R := (0:0:0:1)$. The trigonal morphism g_3^1 is given by the projection π_R with center R. Because $\pi_R \circ \sigma_l^2 = \pi_R$, we have $\sigma_l^2 \in \text{Ker } \varphi$. Use Proposition [2.9.](#page-6-0) \blacksquare

PROPOSITION 3.2. Assume that there exist two C₆-lines. Then, the trigonal morphism g_3^1 is cyclic.

Proof. Let l_1 and l_2 be two C_6 -lines for C. We assume that Ker $\varphi = 1$. Then, $G \cong \text{Im}\,\varphi \cong C_m$, D_m , A_4 , S_4 , or A_5 . This contradicts the fact that G includes two cyclic groups, G_{l_1} and G_{l_2} , of order 6. Therefore, Ker $\varphi \neq 1$. Use Proposition [2.9.](#page-6-0)

We assume that there exist two C_6 -lines for C. Let P_1,\ldots, P_6 be all the ramification points of the cyclic trigonal morphism g_3^1 .

LEMMA 3.3. *There exists a hyperplane* $H \subset \mathbb{P}^3$ such that $\{P_1, \ldots, P_6\} \subset H$.

PROOF. By [\[8,](#page-23-6) Proposition 3.1], there exist $x, y \in k(C)$ such that $k(C) = k(x, y)$. and $y^3 = \prod_{j=1}^5 (x - c_j)$. We can assume that $x(P_j) = c_j$ (j = 1, ..., 5) and $x(P_6)$ = ∞ . Then, $(x - c_i) = 3P_i - 3P_6$ $(j = 1, ..., 5)$ and $(y) = P_1 + \cdots + P_5 - 5P_6$. By using the Riemann–Roch theorem, it is clear that $K_C \sim 6P_6$. Thus, $K_C \sim P_1 + \cdots +$ P_6 . Because $C \subset \mathbb{P}^3$ is a canonical curve, this concludes the lemma.

LEMMA 3.4. Assume that there exists a C_6 -line of type $(3, 6)$ and that the trigonal *morphism* g 1 3 *is cyclic. Then,* C *is projectively equivalent to the curve defined by equations* [\(1\)](#page-1-0)*.*

PROOF. Let l be a C_6 -line of type (3, 6). We assume that $G_l = \langle \sigma_l \rangle$ and

$$
\sigma_l = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \xi^2 & 0 \\ 0 & 0 & 0 & \xi \end{pmatrix},
$$

where ζ denotes a primitive sixth root of the unity. By using Proposition [2.3](#page-2-1) and considering a suitable projective transformation, we can determine the defining equation of C as follows:

(4)
$$
\begin{cases} Q = b(X,Y)Z + W^2 = 0, \\ F = X^3 + Y^3 + Z^3 = 0, \end{cases}
$$

where $b(X, Y) = X - aY$ ($a \in k$) or Y. If $b(X, Y) = Y$, then C is projectively equivalent to the curve defined by equations [\(1\)](#page-1-0). Assume that $b(X, Y) = X - aY$. Let us show $a = 0$. The vertex of quadric $Q = 0$ is $R := (a : 1 : 0 : 0)$. The trigonal morphism g_3^1 : $C \to \mathbb{P}^1$ is given by the projection $\pi_R: (X : Y : Z : W) \mapsto (X - aY : Z : W)$. Let $P \in C$ be a ramification point of g_3^1 . Then, $Z(P) \neq 0$. Indeed, if $Z(P) = 0$, then $P = (\zeta^{2j+1} : 1 : 0 : 0)$, where $j = 0, 1$ or 2. However, $(\zeta^{2j+1} : 1 : 0 : 0)$ is not a ramification point of g_3^1 . Let $\pi_R(P) = (c : 1 : \sqrt{-c})$, where $c \in k$. A point in $C \cap \pi_R^{-1}(\pi_R(P))$ is $(ay + c : y : 1 : \sqrt{-c})$, where $y \in k$ satisfies

(5)
$$
(ay + c)3 + y3 + 1 = 0.
$$

Note that $a^3 + 1 \neq 0$, because C is nonsingular. As P is a total ramification point of g_3^1 , equation [\(5\)](#page-8-1) has a triple root. In other words, there exists $\beta \in k$ such that

$$
(a3 + 1)(y - \beta)3 = (a3 + 1)y3 + 3a2cy2 + 3ac2y + c3 + 1.
$$

Then, we have

(6)
$$
\begin{cases}\n-3\beta(1+a^3) = 3a^2c, \\
3\beta^2(1+a^3) = 3ac^2, \\
-\beta^3(1+a^3) = c^3 + 1.\n\end{cases}
$$

If $a \neq 0$, then equations [\(6\)](#page-9-1) do not have a root β . Hence, $a = 0$ and C is projectively equivalent to the curve defined by equations [\(1\)](#page-1-0).

We note that as in the proof of Lemma [3.4,](#page-8-0) for the curve defined by equations [\(1\)](#page-1-0), there exists a C_6 -line of type (3, 6) and g_3^1 is cyclic. The number of C_6 -lines of the curve defined by equations [\(1\)](#page-1-0) will be calculated later in Section [4.](#page-13-0) In the discussion of Section [4](#page-13-0) we do not use the results in Section [3.](#page-7-0) From Proposition [3.2,](#page-7-2) Lemma [3.4,](#page-8-0) and Section [4,](#page-13-0) we have the following result.

PROPOSITION 3.5. Assume that there exist two C_6 -lines and one of them is of type .3; 6/*. Then,* C *is projectively equivalent to the curve defined by equations*[\(1\)](#page-1-0)*. There are exactly nine* C_6 -lines and exactly one S_3 -line for C. We have that $Aut(C) \cong C_3 \times D_6$.

PROOF. From the assumption that there exist two C_6 -lines, by using Proposition [3.2,](#page-7-2) the trigonal morphism g_3^1 is cyclic. Combining this with the assumption that there exists a C_6 -line of type (3, 6), by using Lemma [3.4,](#page-8-0) we have that C is projective equivalent to the curve defined by equations [\(1\)](#page-1-0). By the results in Section [4,](#page-13-0) we have $Aut(C)$ and the number of skew Galois lines.

Hereafter, in this section, we continue to prove our main theorem, except in the case that C is projectively equivalent to the curve defined by equations [\(1\)](#page-1-0). That is, we assume that there exist at least two C_6 -lines for C, and every C_6 -line is not of type $(3, 6).$

LEMMA 3.6. *We have that* $\text{Im}\,\varphi \not\cong A_5$.

PROOF. Assume that Im $\varphi \cong A_5$. Then, $|G| = 180$. However, the Hurwitz theorem states $|G| = 84(g - 1), 48(g - 1), 40(g - 1), ... = 252, 144, 120, ...;$ thus, this is a contradiction.

LEMMA 3.7. *We have that* $\text{Im } \varphi \ncong A_4$ *or* C_m *.*

PROOF. From Proposition [3.1,](#page-7-1) Im φ is generated by some elements of order 2. However, A_4 and C_m ($m \ge 3$) are not generated by elements of order 2. If Im $\varphi \cong C_2$, then, G does not include two C_6 subgroups, because the order of G equals 6. \blacksquare

LEMMA 3.8. *If* $\text{Im }\varphi \cong D_m$, then $m \leq 6$.

PROOF. Let $Q = 0$ be the quadric that contains C, where the rank of the quadratic Q equals 3, and R be the vertex of the quadric $Q = 0$. Then, the cyclic trigonal morphism g_3^1 is given by the projection π_R with center R. All the ramification points P_1, \ldots, P_6 of g_3^1 are on a hyperplane $H = 0$. Because $g_3^1 = \Phi_{|3P_j|}$ ($j = 1, ..., 6$), for any $\sigma \in Aut(C)$, $\sigma({P_1}, \ldots, P_6) = {P_1, \ldots, P_6}$. Thus, $\sigma((Q = H = 0)) = (Q = H = 0)$, where $Q = H = 0$ is a plane quadric curve. We can regard that $g_3^1 = \pi_R |_{C} : C \to (Q =$ $H = 0$) $\cong \mathbb{P}^1$ and $\varphi: G \ni \sigma \mapsto \sigma|_{Q=H=0} \in \text{Im}\,\varphi \subset \text{Aut}(Q = H = 0)$. Because Im φ acts on the set $\{P_1, \ldots, P_6\} \subset (Q = H = 0)$ faithfully, we determine that the order of each element in Im φ is at most 6. This concludes that $m \leq 6$.

By Lemmas [3.6,](#page-9-0) [3.7,](#page-9-2) and [3.8,](#page-10-1) we have $\text{Im }\varphi \cong D_m$ ($2 \le m \le 6$) or S_4 .

LEMMA 3.9. *The maximum number of* C_6 -lines is nine. If there exist nine C_6 -lines, *then* $\text{Im}\,\varphi \cong S_4$ *.*

Proof. Let l_1, l_2, \ldots be all the C_6 -lines for C, which are of type $(2, 3)$ or $(2, 6)$. Let σ_j ($j = 1, 2, ...$) be a generator of G_{l_j} . By Propositions [2.7](#page-4-2) and [3.1,](#page-7-1) $\varphi(\sigma_1)$, $\varphi(\sigma_2)$,... are mutually distinct elements in Im φ and are of order 2. The number of elements of order 2 in S_4 (resp. D_6 , D_5 , D_4 , D_3 , D_2) equals 9 (resp. 7, 5, 5, 3, 3). This now concludes the lemma. \blacksquare

LEMMA 3.10. *We have that* $\text{Im}\,\varphi \not\cong D_4$, D_5 , D_6 .

PROOF. Assume that Im $\varphi \cong D_4$. Because the rank of the quadric $Q = 0$ that contains C equals 3, by taking a suitable projective transformation, we may assume that $Q = XY - Z^2$. From Lemma [3.3,](#page-8-2) all the ramification points P_1, \ldots, P_6 of the cyclic trigonal morphism g_3^1 are on some hyperplane $H = 0$. By taking a suitable projective transformation that does not change Q, we may assume $H = W$. Note that we can take such a projective transformation because $(0:0:0:1) \notin H$. By using Proposition [2.10](#page-6-1) and the same argument as in the proof of Lemma [3.8,](#page-10-1) we may assume that:

$$
G = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & \lambda_1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \lambda_2 \end{pmatrix} \right\},
$$

where ω (resp. *i*) is a primitive cubic (resp. fourth) root of the unity and $\lambda_1, \lambda_2 \in$ $k \setminus \{0\}$. By using Proposition [2.3,](#page-2-1) we find a cubic form $F \in k[X, Y, Z, W] \setminus \{0\}$, such that the cubic surface $F = 0$ contains C. By the condition $\sigma(F = 0) = (F = 0)$ for any $\sigma \in G$, we have $F = a(X^2 + Y^2)Z + W^3$, $F = a(X^2 - Y^2)Z + W^3$, or $F = aXYZ + bZ^3 + W^3$, where $a, b \in k$. The curves defined by $Q = XY - Z^2 = 0$ and $F = a(X^2 + Y^2)Z + W^3 = 0$ are projectively equivalent to the curve defined by equations [\(2\)](#page-1-1), and thus, Im $\varphi \cong S_4$. The curves defined by $Q = XY - Z^2 = 0$ and $F = a(X^2 - Y^2)Z + W^3 = 0$ are also projectively equivalent to the curve defined by equations [\(2\)](#page-1-1). The curves defined by $Q = XY - Z^2 = 0$ and $F = aXYZ + bZ^3 + C$ $W^3 = 0$ have singular points $(1 : 0 : 0 : 0)$ and $(0 : 1 : 0 : 0)$. Hence, we see that $\text{Im}\,\varphi \not\cong D_4.$

By using the same argument as above, we also see that Im $\varphi \not\cong D_5$.

Assume that Im $\varphi \cong D_6$. From the same argument as above, we see that C must be projectively equivalent to the curve defined by equations [\(1\)](#page-1-0). Then, there exists a C_6 -line for C of type (3, 6). However, this is a contradiction. This concludes Im $\varphi \not\cong D_6$.

Remark 3.11. To prove our main theorem, we have discussed the proof above with the assumption that there is no C_6 -line of type $(3, 6)$, which is stated just after Proposition [3.5.](#page-9-3) If we allow the existence of C_6 -lines of type (3, 6), then by the same argument as in the proof of Lemma [3.10,](#page-10-0) we see the following: if a canonical curve $C \subset \mathbb{P}^3$ of genus 4 satisfies the conditions "there exists a unique trigonal morphism g_3^1 ", " g_3^1 is cyclic", and "Im $\varphi \cong D_6$ ", then C is projectively equivalent to the curve defined by equations [\(1\)](#page-1-0).

Hence, $\text{Im}\,\varphi \cong D_2$, D_3 , or S_4 .

LEMMA 3.12. Assume that $\text{Im }\varphi \cong S_4$. Then, C is projectively equivalent to the *curve defined by equations* [\(2\)](#page-1-1). Hence, there exist nine C_6 -lines (see Section [5](#page-17-0)).

Proof. We may assume that the ramification points P_1, \ldots, P_6 of the trigonal morphism g_3^1 are on the hyperplane $W = 0$ and the quadric $Q = 0$ that contains C is $XY - Z^2 = 0$. By using Proposition [2.10,](#page-6-1) we can assume that

$$
G = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & \lambda_1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 2 & 0 \\ 1 & 1 & -2 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & \lambda_2 \end{pmatrix} \right\},
$$

where ω (resp. *i*) is a primitive cubic (resp. fourth) root of the unity and $\lambda_1, \lambda_2 \in k \setminus \{0\}$. By the same argument as in the proof of Lemma 3.10 , C must be defined by

$$
\begin{cases} XY - Z^2 = 0, \\ c(X^2 - Y^2)Z + W^3 = 0, \end{cases}
$$

where $c \in k$. Then, C is projectively equivalent to the curve defined by equations [\(2\)](#page-1-1).

Note that we do not use the results in Section [3](#page-7-0) in the discussion of Section [5.](#page-17-0)

LEMMA 3.13. *If* Im $\varphi \cong D_2$ *or* D_3 *, then the number of* C_6 *-lines equals* 3*.*

PROOF. If Im $\varphi \cong D_2$ or D_3 , then the number of C_6 -lines is at most three because the group Im φ contains only three elements of order 2.

Assume that Im $\varphi \cong D_2$. We may assume that all the ramification points P_1, \ldots, P_6 of the trigonal morphism g_3^1 are on the hyperplane $W = 0$ and the quadric $Q = 0$ that contains C is $XY - Z^2 = 0$. By using Proposition [2.10,](#page-6-1) we can assume that

$$
G = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \lambda_1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \lambda_2 \end{pmatrix} \right\},\
$$

where ω is a primitive cubic root of the unity and $\lambda_1, \lambda_2 \in k \setminus \{0\}$. By the same argument as in the proof of Lemma 3.10 , C must be projectively equivalent to the curve defined by

(7)
$$
\begin{cases} XY - Z^2 = 0, \\ (X^3 + Y^3) + c(X + Y)Z^2 + W^3 = 0, \end{cases}
$$

or

(8)
$$
\begin{cases} XY - Z^2 = 0, \\ (X^2 + Y^2)Z + cZ^3 + W^3 = 0, \end{cases}
$$

where $c \in k$. Then, the three lines $X = Y = 0, X + Y = Z = 0, X - Y = Z = 0$ are C_6 -lines. Indeed, if C is defined by equations [\(7\)](#page-12-1) (resp. equations [\(8\)](#page-12-2)), then we have automorphisms of order 6 as follows:

$$
\begin{pmatrix}\n1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & \omega\n\end{pmatrix}, \begin{pmatrix}\n0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \omega\n\end{pmatrix}, \begin{pmatrix}\n0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & \omega\n\end{pmatrix}
$$
\n
\n(resp.
$$
\begin{pmatrix}\n-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \omega\n\end{pmatrix}, \begin{pmatrix}\n0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \omega\n\end{pmatrix}, \begin{pmatrix}\n0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \omega\n\end{pmatrix}.
$$

Thus, the number of C_6 -lines is at least three.

Assume that Im $\varphi \cong D_3$. According to the above argument, C must be projectively equivalent to the curve defined by

(9)
$$
\begin{cases} XY - Z^2 = 0, \\ (X^3 + Y^3) + cZ^3 + W^3 = 0, \end{cases}
$$

where $c \in k$. Then, the three lines $X + Y = Z = 0, X + \omega Y = Z = 0, X + \omega^2 Y =$ $Z = 0$ are C_6 -lines. Indeed, we have automorphisms of order 6 as follows:

$$
\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix}, \begin{pmatrix} 0 & \omega & 0 & 0 \\ \omega^2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix}, \begin{pmatrix} 0 & \omega^2 & 0 & 0 \\ \omega & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix}.
$$

Thus, the number of C_6 -lines is at least three.

The proof of our main theorem is now complete.

4. Example: Galois lines for the curve defined by equations [\(1\)](#page-1-0)

In this section, let C be the nonsingular projective curve such that $k(C) = k(x, y)$, and

(10)
$$
x^6 + y^3 + 1 = 0.
$$

The polynomial on the left-hand side of equation [\(10\)](#page-13-1) is irreducible. Let g_3^1 : $C \to \mathbb{P}^1$ be the trigonal morphism given by the function x. Then, g_3^1 is a cyclic triple covering, and there exist 6 branch points. By using the Riemann–Hurwitz formula, we have

 \blacksquare

that the genus of C is equal to 4. Let $(x)_{\infty} = D$ be the divisor of poles of x. Then, $(x^2)_{\infty} = (y)_{\infty} = 2D$. Therefore, dim_k $H^0(C, \mathcal{O}_C(2D)) \geq 4$. By using the Riemann– Roch theorem, we have that $K_C \sim 2D$. The morphism $C \ni P \mapsto (1 : x^2(P) : x(P)$: $y(P)$) $\in \mathbb{P}^3$ is a canonical embedding. The image of this canonical embedding is expressed as equations [\(1\)](#page-1-0). We regard C as the canonical curve defined by equations (1).

We can identify nine C_6 -lines and one S_3 -line, as indicated in Tables [1](#page-15-0) and [2.](#page-16-0) Because deg $\pi_{l_j} = 6, \sigma_j \in Aut(C)$, $ord(\sigma_j) = 6$, and $\pi_{l_j} \circ \sigma_j = \pi_{l_j}$ $(j = 1, ..., 9)$, it is clear that the lines l_1, \ldots, l_9 are C_6 -lines. As deg $\pi_{l_{10}} = 6, \sigma_{10}, \tau_{10} \in Aut(C)$, $\langle \sigma_{10}, \tau_{10} \rangle \cong S_3$, $\pi_{l_{10}} \circ \sigma_{10} = \pi_{l_{10}}$, and $\pi_{l_{10}} \circ \tau_{10} = \pi_{l_{10}}$, the line l_{10} is clearly an S_3 -line.

Let $R := (0 : 0 : 0 : 1)$, which is the vertex of the quadric $XY - Z^2 = 0$. The projection π_R : $C \to (XY - Z^2 = W = 0) \cong \mathbb{P}^1 \subset (W = 0) \cong \mathbb{P}^2$ yields the unique trigonal morphism g_3^1 . We have that g_3^1 is cyclic,

$$
\rho := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix} \in \text{Aut}(C), \text{ ord}(\rho) = 3 = \text{deg } g_3^1, \text{ and } \pi_R \circ \rho = \pi_R.
$$

The ramification points of g_3^1 are

$$
P_1 := (1:-1:i:0), \t P_2 := (1:-1:-i:0),
$$

\n
$$
P_3 := (1:-\omega:i\omega^2:0), \t P_4 := (1:-\omega:-i\omega^2:0),
$$

\n
$$
P_5 := (1:-\omega^2:i\omega:0), \t P_6 := (1:-\omega^2:-i\omega:0),
$$

where ω (resp. *i*) is a primitive cubic (resp. fourth) root of the unity. Because $g_3^1 = \Phi_{|3P_j|}$ $(j = 1, ..., 6)$, we have Aut(C) acts on $\{P_1, ..., P_6\}$. Thus, $\sigma(W = 0) = (W = 0)$ for any $\sigma \in \text{Aut}(C) \subset \text{Aut}(\mathbb{P}^3)$.

Because g_3^1 is a unique trigonal morphism, a unique $A_{\sigma} \in Aut(\mathbb{P}^1)$ exists for any $\sigma \in \text{Aut}(C)$ such that $g_3^1 \circ \sigma = A_\sigma \circ g_3^1$. We denote the map $\sigma \mapsto A_\sigma$ as $\varphi: \text{Aut}(C) \to$ Aut(\mathbb{P}^1), which is a homomorphism between the groups. Note that $\sigma(W = 0) = (W = 0)$ 0), and g_3^1 is obtained by using the projection $\pi_R: (X:Y:Z:W) \mapsto (X:Y:Z)$. By considering $\varphi(\sigma) = A_{\sigma}$ as an automorphism of the quadric plane curve $(XY - Z^2)$ $W = 0$ $\subset (W = 0) \cong \mathbb{P}^2$, we see that φ is expressed as follows:

$$
\sigma = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \longmapsto \sigma' = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},
$$

Line l	Defining equation of l	G_l	Generators of G_l		
l_1	$X = Y = 0$		$\boldsymbol{0}$ 0		
l ₂	$X + Y = Z = 0$		<i>C₆</i> $σ_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & ω & 0 \\ 0 & 0 & 0 & ω & 0 \\ 0 & 0 & 0 & ω & 0 \\ 0 & 0 & 0 & ω & 0 \end{pmatrix}$ <i>C₆</i> $σ_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & ω & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0$		
l_3	$X + \omega Y = Z = 0$				
l_4	$X + \omega^2 Y = Z = 0$				
l_5	$X - Y = Z = 0$		$\overline{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$ $-\omega$		
l ₆	$X - \omega Y = Z = 0$		$\boldsymbol{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$ ω		
l ₇	$X - \omega^2 Y = Z = 0$		$\overline{0}$ $\boldsymbol{0}$ $\overline{0}$		
l_8	$X = W = 0$		$\boldsymbol{0}$ C_6 $\sigma_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & -\omega^2 \\ 0 & 0 & 0 \end{pmatrix}$ C_6 $\sigma_9 = \begin{pmatrix} \omega & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\omega^2 \\ 0 & 0 & 0 \end{pmatrix}$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\mathbf{1}$		
l_{9}	$Y = W = 0$		$\overline{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\overline{0}$ $\mathbf{1}$		
ω is a primitive cubic root of the unity.					

TABLE 1. C_6 -lines for the curve defined by Equations [\(1\)](#page-1-0)

Line l	Defining equation of l	G ₁	Generators of G_I	
l_{10}	$Z = W = 0$	S_3	$\sigma_{10} = \begin{pmatrix} \omega & 0 & 0 & 0 \ 0 & \omega^2 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix},$	
			$\tau_{10} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	
ω is a primitive cubic root of the unity.				

TABLE 2. S_3 -lines for the curve defined by equations [\(1\)](#page-1-0)

where σ' is regarded as an element of Aut $(XY - Z^2 = W = 0) \subset$ Aut (\mathbb{P}^2) . Let Ker φ and Im φ be the kernel and image of φ , respectively. We have the short exact sequence [\(3\)](#page-5-0) for Aut(C), and Ker $\varphi = \langle \rho \rangle$.

CLAIM 4.1. We have that Im $\varphi \cong D_6$, which is the dihedral group of order 12.

PROOF. From Proposition [2.9,](#page-6-0) Im φ is isomorphic to C_m , D_m , A_4 , S_4 , or A_5 . Let σ_i ($j = 1, \ldots, 10$ $j = 1, \ldots, 10$ $j = 1, \ldots, 10$) be the automorphism provided in Tables 1 and [2.](#page-16-0) Because the order of $\varphi(\sigma_8)$ is equal to 6, we see that Im $\varphi \cong C_m$ or D_m , where m is a multiple of 6. Because $\varphi(\sigma_1) \neq \varphi(\sigma_2)$, and the orders of both $\varphi(\sigma_1)$ and $\varphi(\sigma_2)$ are equal to 2, we have Im $\varphi \cong D_m$. Note that Aut(C) acts on the set $\{P_1, \ldots, P_6\}$. Let $\sigma \in Aut(C)$. If $\sigma(P_i) = P_i$ for every P_i ($j = 1, ..., 6$), then $\varphi(\sigma)$ is the identity. Thus, the order of $\varphi(\sigma)$ is at most 6. This concludes that Im $\varphi \cong D_6$. \blacksquare

We have an exact sequence $1 \to C_3 \stackrel{\psi}{\to} \text{Aut}(C) \stackrel{\varphi}{\to} D_6 \to 1$. The order of Aut(C) is 36. Let $G := \langle \rho, \sigma_2, \sigma_8 \rangle$.

CLAIM 4.2. We have that $Aut(C) = G \cong C_3 \times D_6$.

Proof. Because of the exact sequence $1 \to C_3 \stackrel{\psi}{\to} G \stackrel{\varphi}{\to} D_6 \to 1, G = \text{Aut}(C)$. We show that there is a left-inverse of ψ . For $\sigma \in G$, we have a unique matrix representation M_{σ} such that $M_{\sigma}^{*}(XY - Z^{2}) = XY - Z^{2}$ and the (4, 4)-component of M_{σ} is 1, ω , or ω^2 . We denote the (4, 4)-component of M_{σ} as λ_{σ} . Let ψ' : $G \to \text{Ker } \varphi \cong C_3$ be as follows:

$$
\sigma = M_{\sigma} \longmapsto \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \lambda_{\sigma} \end{pmatrix}.
$$

Because ψ' is a homomorphism between groups, and $\psi' \circ \psi = id$, this concludes that $G \cong C_3 \times D_6.$ \blacksquare

The group Aut(C) $\cong C_3 \times D_6$ has only ten C_6 subgroups:

$$
\langle \sigma_1 \rangle, \ldots, \langle \sigma_9 \rangle, \left\langle \overline{\sigma} := \begin{pmatrix} \omega & 0 & 0 & 0 \\ 0 & \omega^2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\rangle.
$$

As $\bar{\sigma}$ has no multiple eigenvalues, $\langle \bar{\sigma} \rangle$ is not a Galois group associated with a Galois line. Therefore, the number of C_6 -lines is equal to 9. The group $Aut(C) \cong C_3 \times D_6$ has only six S_3 subgroups: $\langle \sigma_m, \tau_n \rangle$ for $(m, n) = (0, 0), (0, 1), (1, 0), (1, 1), (2, 0)$ and $(2, 1)$, where

$$
\sigma_m = \begin{pmatrix}\n\omega & 0 & 0 & 0 \\
0 & \omega^2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \omega^m\n\end{pmatrix} \quad \text{and} \quad \tau_n = \begin{pmatrix}\n0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & (-1)^n & 0 \\
0 & 0 & 0 & 1\n\end{pmatrix}.
$$

By Proposition [2.8,](#page-4-0) the lines that might be S_3 -lines are $l_8 : X = W = 0, l_9 : Y = W = 0$, and l_{10} : $Z = W = 0$. However, l_8 and l_9 are C_6 -lines. The line l_{10} is the only one S_3 -line.

REMARK 4.3. Let $P' := (1:0:0:0)$, which is the point at which lines l_9 and l_{10} intersect. By the projection $\pi_{P'}: (X : Y : Z : W) \mapsto (Y : Z : W)$ with center P', we have a singular plane curve T_6 : $Y^6 + Z^6 + Y^3 W^3 = 0$ as the image $\pi_{P'}(C)$. The points $(0:1:0) = \pi_{P}(l_9)$ and $(1:0:0) = \pi_{P}(l_{10})$ are outer Galois points for T_6 with Galois groups C_6 and S_3 , respectively. The plane curves T_{2m} : $Y^{2m} + Z^{2m} + Y^m W^m = 0$ are examples of curves that are known to have two outer Galois points with Galois groups C_{2m} and D_m (See [\[5\]](#page-23-10)).

5. Example: Galois lines for the curve defined by equations [\(2\)](#page-1-1)

In this section, let C be the nonsingular projective curve such that $k(C) = k(x, y)$, and

(11)
$$
y^6 + x^2(x^2 + 1) = 0.
$$

The polynomial on the left-hand side of equation [\(11\)](#page-17-1) is irreducible. Let g_6^1 : $C \to \mathbb{P}^1$ be the cyclic morphism of degree 6 given by the function x . By using the Riemann– Hurwitz formula, we have that the genus of C is equal to 4. Let P_{∞} , P_{∞} , P_0 , P_0 ,

 P_i , P_{-i} be six points on C such that $x(P_{\infty}) = x(P_{\infty'}) = \infty$, $x(P_0) = x(P_0') = 0$, $x(P_i) = i$, and $x(P_{-i}) = -i$, where i is a primitive fourth root of the unity. Because $(x) = 3P_0 + 3P_{0'} - 3P_{\infty} - 3P_{\infty'}$, $(y) = P_0 + P_{0'} + P_i + P_{-i} - 2P_{\infty} - 2P_{\infty'}$, and $(x - i) = 6P_i - 3P_{\infty} - 3P_{\infty}$, we have

$$
\left(\frac{y^3}{x(x-i)}\right)_{\infty} = 3P_i
$$
 and $\left(\frac{y}{x-i}\right)_{\infty} = 5P_i$.

Hence, the Weierstrass semigroup of P_i is $H(P_i) = \langle 3, 5 \rangle$ (for the definition of Weier-strass semigroup, see [\[8,](#page-23-6) Equation (1)]). Thus, C is not hyperelliptic and $K_C \sim 6P_i \sim$ $3P_{\infty}$ + $3P_{\infty'}$. Because 1, $y^3/(x(x - i))$, $y/(x - i)$, $1/(x - i)$ are linearly independent over k, the morphism $C \ni P \mapsto (x^2(P) : y^3(P) : x(P) : -x(P)y(P)) \in \mathbb{P}^3$ is a canonical embedding. The image of this embedding is expressed as equations [\(2\)](#page-1-1). We regard C as the canonical curve defined by equations [\(2\)](#page-1-1).

We can find nine C_6 -lines and four S_3 S_3 -lines, as in Tables 3 and [4.](#page-20-0) Because deg π_{l_i} = $6, \sigma_j \in \text{Aut}(C)$, $\text{ord}(\sigma_j) = 6$ and $\pi_{l_j} \circ \sigma_j = \pi_{l_j}$ $(j = 1, ..., 9)$, we see that the lines l_1, \ldots, l_9 are C_6 -lines. As deg $\pi_{l_j} = 6, \sigma_j, \tau_j \in Aut(C), \langle \sigma_j, \tau_j \rangle \cong S_3, \pi_{l_j} \circ \sigma_j = \pi_{l_j}$ and $\pi_{l_j} \circ \tau_j = \pi_{l_j}$ $(j = 10, \ldots, 13)$, we see that the lines l_{10}, \ldots, l_{13} are S_3 -lines.

CLAIM 5.1. We have that $Aut(C) \cong C_3 \times S_4$.

PROOF. We have the following automorphisms of C :

$$
\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},
$$

where ω is a primitive cubic root of the unity. The group generated by these four elements, which is a subgroup of Aut(C), is isomorphic to $C_3 \times S_4$. By considering the short exact sequence [\(3\)](#page-5-0) for $G = Aut(C)$, we have that $1 \to C_3 \to Aut(C) \stackrel{\varphi}{\to} \text{Im}\,\varphi \to 1$ and Im $\varphi \cong C_m$, D_m , A_4 , S_4 , or A_5 . By using the same argument as in the proof of Lemma [3.8](#page-10-1) or Claim [4.1,](#page-16-1) if Im $\varphi \cong C_m$ or D_m , then $m \leq 6$. Because $C_3 \times S_4 \subset \text{Aut}(C)$, we see that $\text{Im}\,\varphi \cong S_4$ and $\text{Aut}(C) \cong C_3 \times S_4$. \blacksquare

Because the group $C_3 \times S_4$ contains exactly nine C_6 subgroups and exactly four S_3 S_3 subgroups, this concludes that the lines in Tables 3 and [4](#page-20-0) are all the C_6 -lines and all the S_3 -lines, respectively.

Line l	Defining equation of l	G_l	Generators of G_l		
l ₁	$X = Y = 0$		θ $\boldsymbol{0}$		
l ₂	$Y = Z = 0$				
l_3	$X = Z = 0$		7 ₁ Generators of G_I 7 ₆ $\sigma_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -\omega \end{pmatrix}$ C_6 $\sigma_2 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -\omega \end{pmatrix}$ C_6 $\sigma_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1$		
l_4	$X + Y = Z = 0$				
l_5	$X - Y = Z = 0$				
l ₆	$X + Z = Y = 0$				
l ₇	$X - Z = Y = 0$				
l_8	$X = Y + Z = 0$				
l_{9}	$X = Y - Z = 0$				
ω is a primitive cubic root of the unity.					

TABLE 3. C_6 -lines for the curve defined by equations [\(2\)](#page-1-1)

TABLE 4. S_3 -lines for the curve defined by equations [\(2\)](#page-1-1)

6. Other examples

In this section, we present two examples of canonical curves of genus 4, which have exactly one C_6 -line and exactly three C_6 -lines, respectively.

EXAMPLE 6.1. Let $C \subset \mathbb{P}^3$ be the curve defined by

$$
\begin{cases} Q := YZ - W^2 = 0, \\ F := X^3 - X^2Y - XY^2 + Z^3 = 0. \end{cases}
$$

Then, C is a canonical curve of genus 4. The line $l : X = Y = 0$ is a C_6 -line. Indeed,

$$
\sigma := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \omega & 0 \\ 0 & 0 & 0 & -\omega^2 \end{pmatrix}
$$

(where ω is a primitive cubic root of the unity) satisfies $\sigma \in Aut(C)$, $\pi_l \circ \sigma = \pi_l$, and ord $(\sigma) = 6 = \deg \pi_l$. Because rank $Q = 3$, the trigonal morphism g_3^1 is unique, and g_3^1 is obtained by the projection π_R with center $R := (1 : 0 : 0 : 0)$, which is the vertex of $Q = 0$. Because $\pi_R^{-1}((1:1:1))$ consists of only two points $(1:1:1:1)$ and $(-1:1:1:1)$, we see that g_3^1 is not Galois. From Proposition [3.2,](#page-7-2) the number of C_6 -lines equals one.

EXAMPLE 6.2. Let $C \subset \mathbb{P}^3$ be the curve defined by

$$
\begin{cases} Q := XY - Z^2 = 0, \\ F := X^3 + Y^3 + Z^3 + W^3 = 0. \end{cases}
$$

Then, C is a canonical curve of genus 4. The lines $l_1: X + Y = Z = 0, l_2: X + \omega Y =$ $Z = 0$, and $l_3 : X + \omega^2 Y = Z = 0$ are C_6 -lines of type (2, 3). Indeed,

$$
\sigma_1 := \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix}, \ \sigma_2 := \begin{pmatrix} 0 & \omega & 0 & 0 \\ \omega^2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix}, \text{ and } \sigma_3 := \begin{pmatrix} 0 & \omega^2 & 0 & 0 \\ \omega & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix}
$$

(where ω is a primitive cubic root of the unity) satisfy $\sigma_j \in Aut(C)$, $\pi_{l_j} \circ \sigma_j = \pi_{l_j}$ and ord $(\sigma_j) = 6 = \deg \pi_{l_j}$ $(j = 1, 2, 3)$.

We show that all the C_6 -lines for C of types $(2, 3)$ or $(2, 6)$ are the three lines l_1 , l_2 and l_3 . Here, we explain how to find the C_6 -lines of types $(2, 3)$ or $(2, 6)$. Let

$$
P_1 := (1 : \zeta^2 : \zeta : 0), \qquad P_2 := (1 : \zeta^4 : \zeta^2 : 0),
$$

\n
$$
P_3 := (1 : \zeta^8 : \zeta^4 : 0), \qquad P_4 := (1 : \zeta : \zeta^5 : 0),
$$

\n
$$
P_5 := (1 : \zeta^5 : \zeta^7 : 0), \qquad P_6 := (1 : \zeta^7 : \zeta^8 : 0),
$$

where ζ is a primitive ninth root of the unity. Because rank $\zeta = 3$, from Proposi-tion [2.1,](#page-2-2) there exists a unique trigonal morphism g_3^1 : $C \to \mathbb{P}^1$. From Proposition [3.1](#page-7-1) (or [3.2\)](#page-7-2), g_3^1 is cyclic. Points P_1, \ldots, P_6 are all the ramification points of g_3^1 . Let $H(3P_m + 3P_n) \subset \mathbb{P}^3$ (resp. $H(6P_m) \subset \mathbb{P}^3$) $(P_m, P_n \in \{P_1, \ldots, P_6\})$ be the hyperplane that defines the divisor $3P_m + 3P_n$ (resp. $6P_m$) on C. Let l be a C_6 -line of type (2, 3) or (2, 6). From Proposition [3.1,](#page-7-1) the projection π_l : $C \to \mathbb{P}^1$ is the composition of g_3^1 : $C \to \mathbb{P}^1$ and some morphism $\mathbb{P}^1 \to \mathbb{P}^1$ of degree 2. Thus, P_1, \ldots, P_6 are ramification points of π_l . At least two fibers of π_l are formed as $3P_m + 3P_n$, where $P_m \neq P_n$ and P_m , $P_n \in \{P_1, \ldots, P_6\}$. In other words, there exist four mutually distinct points $P_{m_1}, P_{m_2}, P_{m_3}, P_{m_4} \in \{P_1, \ldots, P_6\}$ such that $H(3P_{m_1} + 3P_{m_2}) \cap H(3P_{m_3} +$ $3P_{m_4}$) = l. Moreover, we have $l \subset H(3P_{m_5} + 3P_{m_6})$ or $l \subset H(6P_{m_5}) \cap H(6P_{m_6})$, where $\{P_{m_1}, \ldots, P_{m_6}\} = \{P_1, \ldots, P_6\}$. By using this fact, we search for lines that might be C_6 -lines of types $(2, 3)$ or $(2, 6)$.

For example, let $l_{1234} \subset \mathbb{P}^3$ be the line $H(3P_1 + 3P_2) \cap H(3P_3 + 3P_4)$. Because $H(3P_1 + 3P_2)$ and $H(3P_3 + 3P_4)$ are defined by $\zeta^3 X + Y - (\zeta + \zeta^2)Z = 0$ and $X + Y - (\zeta^4 + \zeta^5)Z = 0$, respectively, we have

$$
R_{1234} := (-\zeta(1+\zeta) : \zeta(1+\zeta)(1+\zeta^3) : 1 : 0) \in l_{1234}.
$$

The hyperplanes $H(3P_5 + 3P_6)$, $H(6P_5)$, and $H(6P_6)$ are defined by $\zeta^6 X + Y (\zeta^7 + \zeta^8)Z = 0$, $\zeta^5 X + Y - 2\zeta^7 Z = 0$, and $\zeta^7 X + Y - 2\zeta^8 Z = 0$, respectively. We see that $R_{1234} \notin H(3P_5 + 3P_6)$, $R_{1234} \notin H(6P_5)$, and $R_{1234} \notin H(6P_6)$. Thus, $l_{1234} \not\subset H(3P_5 + 3P_6), l_{1234} \not\subset H(6P_5)$, and $l_{1234} \not\subset H(6P_6)$. This concludes that l_{1234} is not a C_6 -line of type (2, 3) or (2, 6). By using the same argument as above and computer calculations, we check whether $l_{m_1m_2m_3m_4}$ can be a C_6 -line of type (2, 3) or (2, 6) for every line $l_{m_1 m_2 m_3 m_4} := H(3P_{m_1} + 3P_{m_2}) \cap H(3P_{m_3} + 3P_{m_4})$. Then, we see that only three lines l_{1236} , l_{1423} , l_{1625} might be C_6 -lines of types $(2, 3)$ or $(2, 6)$, which are C_6 -lines l_3 , l_2 , l_1 , respectively.

According to Sections [4](#page-13-0) and [5,](#page-17-0) seven C_6 -lines of types $(2, 3)$ or $(2, 6)$ exist for the curve defined by equations [\(1\)](#page-1-0), and nine C_6 -lines of types (2, 3) or (2, 6) exist for the curve defined by equations (2) . Thus, C is not projectively equivalent to the curves defined by equations [\(1\)](#page-1-0) or [\(2\)](#page-1-1). From our main theorem, we see that all the C_6 -lines for C are the three lines l_1 , l_2 , and l_3 .

ACKNOWLEDGMENTS – The authors wish to thank Professor Akira Ohbuchi for his valuable advice and wish to express their gratitude to Professor Satoru Fukasawa for his contribution in the form of Remark [4.3.](#page-17-2) The authors thank the reviewer for their helpful comments to improve the readability of this paper. The authors would like to thank Editage (www.editage.com) for English language editing.

Funding – This work was supported by JSPS KAKENHI Grant Numbers JP18K03228 and JP19K03441.

REFERENCES

- [1] E. Arbarello – M. Cornalba – P. A. Griffiths – J. Harris, *[Geometry of algebraic](https://doi.org/10.1007/978-1-4757-5323-3) [curves. Vol. I](https://doi.org/10.1007/978-1-4757-5323-3)*. Grundlehren Math. Wiss. 267, Springer, New York, 1985. Zbl [0559.14017](https://zbmath.org/?q=an:0559.14017) MR [770932](https://mathscinet.ams.org/mathscinet-getitem?mr=770932)
- [2] M. C. L. Duyaguit – H. Yoshihara, [Galois lines for normal elliptic space curves.](https://doi.org/10.1142/S1005386705000192) *Algebra Colloq.* **12** (2005), no. 2, 205–212. Zbl [1076.14036](https://zbmath.org/?q=an:1076.14036) MR [2127245](https://mathscinet.ams.org/mathscinet-getitem?mr=2127245)
- [3] S. Fukasawa, [Galois lines for the Artin–Schreier–Mumford curve.](https://doi.org/10.1016/j.ffa.2021.101894) *Finite Fields Appl.* **75** (2021), article no. 101894. Zbl [1470.14061](https://zbmath.org/?q=an:1470.14061) MR [4281893](https://mathscinet.ams.org/mathscinet-getitem?mr=4281893)
- [4] S. Fukasawa – K. Higashine, [Galois lines for the Giulietti–Korchmáros curve.](https://doi.org/10.1016/j.ffa.2019.02.009) *Finite Fields Appl.* **57** (2019), 268–275. Zbl [1420.14067](https://zbmath.org/?q=an:1420.14067) MR [3921290](https://mathscinet.ams.org/mathscinet-getitem?mr=3921290)
- [5] S. Fukasawa – P. Speziali, Plane curves possessing two outer Galois points. 2018, arXiv[:1801.03198.](https://arxiv.org/abs/1801.03198)
- [6] P. Griffiths – J. Harris, *[Principles of algebraic geometry](https://doi.org/10.1002/9781118032527)*. Wiley Classics Lib., John Wiley & Sons, Inc., New York, 1994. Zbl [0836.14001](https://zbmath.org/?q=an:0836.14001) MR [1288523](https://mathscinet.ams.org/mathscinet-getitem?mr=1288523)
- [7] M. KANAZAWA – H. YOSHIHARA, [Galois lines for space elliptic curve with](https://doi.org/10.1007/s13366-018-0380-z) $j = 12³$. *Beitr. Algebra Geom.* **59** (2018), no. 3, 431–444. Zbl [1396.14027](https://zbmath.org/?q=an:1396.14027) MR [3844636](https://mathscinet.ams.org/mathscinet-getitem?mr=3844636)
- [8] J. KOMEDA – T. TAKAHASHI, Galois lines for a canonical curve of genus 4, I: non-skew cyclic lines. *Rend. Semin. Mat. Univ. Padova*, to appear.
- [9] I. Kuribayashi – A. Kuribayashi, [Automorphism groups of compact Riemann surfaces](https://doi.org/10.1016/0022-4049(90)90107-S) [of genera three and four.](https://doi.org/10.1016/0022-4049(90)90107-S) *J. Pure Appl. Algebra* **65** (1990), no. 3, 277–292. Zbl [0709.30036](https://zbmath.org/?q=an:0709.30036) MR [1072285](https://mathscinet.ams.org/mathscinet-getitem?mr=1072285)
- [10] H. Yoshihara, [Galois lines for space curves.](https://doi.org/10.1142/S100538670600040X) *Algebra Colloq.* **13** (2006), no. 3, 455–469. Zbl [1095.14030](https://zbmath.org/?q=an:1095.14030) MR [2233104](https://mathscinet.ams.org/mathscinet-getitem?mr=2233104)
- [11] H. Yoshihara, [Galois lines for normal elliptic space curves, II.](https://doi.org/10.1142/S1005386712000739) *Algebra Colloq.* **19** (2012), Special Issue no. 1, 867–876. Zbl [1294.14014](https://zbmath.org/?q=an:1294.14014) MR [2999240](https://mathscinet.ams.org/mathscinet-getitem?mr=2999240)

Manoscritto pervenuto in redazione il 2 febbraio 2022.