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Groups of order p3 are mixed Tate

Tudor Pădurariu (*)

Abstract – Let G be a finite group. A natural place to study the Chow ring of the classifying
space BG is Voevodsky’s triangulated category of motives, inside which Morel–Voevodsky
and Totaro have defined motives M.BG/ and M c.BG/, respectively. We show that, for any
group G of order p3 over a field of characteristic not equal to p which contains a primitive
p3-th root of unity, the motive M.BG/ is a mixed Tate motive. We also show that, for a
finite group G over a field of characteristic zero, M.BG/ is a mixed Tate motive if and only
if M c.BG/ is a mixed Tate motive.
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1. Introduction

1.1 – Mixed Tate groups

The group cohomology of a group G can be computed as the cohomology (with
twisted coefficients) of the classifying space BG. One would like to understand what
part of the group cohomology ofG comes from algebraic geometry. Morel–Voevodsky
[17] and Totaro [20] defined the motive of a classifying space M.BG/ and the motive
of a classifying space with compact supports M c.BG/, respectively, as objects in
DM.kIR/, Voevodsky’s “big” triangulated category of motives over the field k with
coefficients in a commutative ring R [22]. One can recover the motivic (co)homology
groups ofBG as defined by Edidin–Graham [7] by computing the motivic (co)homology
groups of these motives.
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Inside DM.kIR/, one can define the subcategory of mixed Tate motives DMT.kIR/
as the smallest triangulated and closed under arbitrary direct sums subcategory which
contains all the objects R.j / with j 2 Z. We prove in Theorem 5.1 that for a finite
group G the motive M.BG/ is mixed Tate if and only if M c.BG/ is mixed Tate. We
will simply say that a finite group G is mixed Tate if M c.BG/ is in the category
DMT.kIR/. From now on, we will restrict the discussion in the introduction to finite
groups. Our main result the following.

Theorem 1.1. Let G be a group of order p3 and let k be a field of characteristic
not equal to p which contains a primitive p3-root of unity. Then M c.BG/ is mixed
Tate.

One is interested in understanding p-groups because one recovers important infor-
mation about a given finite group by studying its Sylow groups. The precise form of
this philosophy which is applicable in our case is [20, Lemma 9.3] which says that BG
is mixed Tate with Z=p or Z.p/ coefficients if BH is, whereH is a p-Sylow subgroup
of G.

1.2 – Other properties of finite groups

A group G is called stably rational if it has a faithful representation V such that
V == G is stably rational over C. A group G the weak Chow–Künneth property if
CH�.BG/� CH�.BGE / is surjective for every extension of fields E=k. If G is
mixed Tate, then BG is stably rational, satisfies the weak Chow–Kn̈neth property, and
has trivial unramified cohomology, see [20, Section 9] for definitions and references.
We do not know whether any of these properties of a finite group G are equivalent.

1.3 – Related results

In all the following examples, we assume that k is a field in which p is invertible
and which contains jGj-roots of unity, where G is the group studied.

The starting point for studying these properties of a group G are Bogomolov’s [2]
and Saltman’s [19] examples of groups of order p7 and p9, respectively, which are not
stably rational. Chu–Kang [4] and Chu et. al. [3] showed that for every p-group G of
order � p4 or 2-group of order � 25 and for every G-representation V , the quotient
V == G is rational. This property is stronger than saying that BG is stably rational.

Bogomolov [2] showed (with a further correction in [10]) that every p-group of
order � p4, for p an odd prime, or � 25 for p equal to 2, has trivial unramified
cohomology, and that these are the best possible bounds.
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Totaro [20, Section 10] showed that all 2-groups of order � 25 and all p-groups of
order� p4 have the weak Chow–Künneth property. He also showed [20, Corollary 9.10]
that all abelianp-groups are mixed Tate. There are groups of orderp5 forp odd which do
not have the weak Chow–Künneth property (see the discussion after [20, Corollary 3.1])
and thus which are not mixed Tate.

In view of these examples, it is worth investigating whether all p-groups of order
� p4 and all 2-groups of order � 25 are actually mixed Tate. Our methods only apply
to p-groups of order � p3 and to some groups of order p4 as explained in Section 4.

1.4 – Structure of the paper

In Section 2, we recall the definitions of linear schemes and of the motives M.X/
and M c.X/ for a quotient stack X in DM.kIR/. In Section 3, we reduce the proof
of Theorem 1.1 to Theorem 3.3 and we prove three technical preliminary lemmas.
Section 4 contains the proof of Theorem 3.3, which says that for a group G of order
p3 and V an irreducible G-representation of dimension p, the scheme V == G is a
linear scheme. The proof is inspired by a result of Chu–Kang [4] that says that V == G
is rational for G of order p3 and V a G-representation. In Section 5, we show that
M.BG/ is mixed Tate if and only if M c.BG/ is mixed Tate.

2. Definitions and notations

2.1 – Fix p a prime number. Unless otherwise stated, we will denote by k a field of
characteristic not equal to p which contains a primitive p2-root of unity. In Section 5,
we assume that the characteristic of k is zero.

All the schemes considered will be separated schemes of finite type over k. One
can define the Chow groups CHi .X/ as the group of i-dimensional algebraic cycles
modulo rational equivalence [8]. One can further define the higher Chow groups [1],
or the motivic (co)homology groups of such a scheme [22], see [20, Section 5] for a
brief overview of these topics.

Let A be an affine k-scheme with a linear action of a reductive group G. We denote
by A == G ´ Spec.OG

A / the quotient scheme and by A=G the corresponding quotient
stack.

For a finite group G, we denote by jGj the order of G. We denote by Œn� the set
¹1; : : : ; nº.

2.2 – We will work in the category DM.kIR/, the “big” triangulated category of
motives over the field k with coefficients in the commutative ring R [20, Section 5],
see also the general references [16, 22].
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The exponential characteristic of k is 1 if k has characteristic zero and p if k
has characteristic p > 0. We will assume throughout the paper that the exponential
characteristic of k is invertible in R. Voevodsky defined two natural functors from the
category of schemes to DM.kIR/, which we will write as M and M c [22], see also
[20, Section 5].

We can associate a motive to any quotient stackX D Y=G, with Y a quasi-projective
scheme over k and G an affine group scheme of finite type over k such that there
is a G-equivariant ample line bundle on Y , as follows [20, Section 8]. Choose G-
representations V1 ,! V2 ,! � � � of G such that codim.Si in Vi / increases to infinity,
where Si is the locus of Vi whereG does not act freely. Denote byMi .X/´M...Vi �

Si / � Y /=G/ and define

M.X/ D hocolim.� � � !M2.X/!M1.X//;

where the maps are induced by the inclusions Vi ,! ViC1. To define M c.X/, choose
G-representations � � �� V 2� V 1 with loci S i having the same property as above.
LetM c

i .X/´Mc...V
i � S i / � Y /=G/. Let ni be the rank of the bundle V i . Define

M c.X/ D holim.� � � !M c
2 .X/.�n2/Œ�2n2�!M c

1 .X/.�n1/Œ�2n1�/;

where the maps are induced by the projections V iC1� V i . The definitions ofM c.X/

andM.X/ are independent of the choices of Vi and V i , see [20, Theorem 8.4] and the
discussion in Section 8 therein.

2.3 – A linear scheme overk is defined inductively as follows [20, Section 5, pages 2099-
2100]: all the affine spaces are linear; if Z � X is closed, and X and Z are linear, then
X nZ is linear; further, if X nZ and Z are linear, then X is linear [20, page 2099].
There are examples of schemes with mixed Tate motive but which are not linear schemes
[9].

LetX be a linear scheme over k and letR be a ring whose exponential characteristic
is invertible in R. Then M c.X/ is a mixed Tate motive.

Let I be a finite set, letXi � X be locally closed irreducible subschemes ofX , and
let d D dim.X/. For e � d , let Ye be the union of Xi for i 2 I such that dim.Xi / D e.
We say thatX has a stratification .Xi /i2I if there is a partition of underlying topological
spaces

X D
G
i2I

Xi

and Ye is open in X n
F
f >e Yf D

F
g�e Yg for every e � d .
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3. The plan of the proof and preliminaries

3.1 – Theorem 1.1 is known for abelian groups [20, Corollary 9.10]. The two non-
abelian groups of order 8 are the dihedral and the quaternion group. Theorem 1.1 holds
for them by [20, Corollary 9.7]. It thus suffices to show the following.

Theorem 3.1. Let p be an odd prime, let k be a field of characteristic not equal to
p which contains a primitive p2-root of unity, and let G be a non-abelian group of
order p3. Then M c.BG/ is mixed Tate.

There are sufficient conditions onG which imply thatG is mixed Tate. For example,
by [20, Theorem 9.6] it is enough to show that every proper subgroup H � G is
mixed Tate and that there exists a faithful representation V of G such that the variety
.V � S/ == G is mixed Tate, where S is the closed subset of V where G does not act
freely.

ForK � G a subgroup, let NK ´ ¹g 2 G j gKg�1 D Kº be the normalizer ofK
and let N 0K ´ NK=K.

Lemma 3.2. Let G be a finite group such that N 0K is abelian for every subgroup
1 < K � G. Let V be a representation of G and let S � V be the locus of points with
non-trivial stabilizer. Then .V � S/ == G is a linear scheme if and only if V == G is a
linear scheme.

Proof. It suffices to check that S == G is a linear scheme. We use induction on jGj.
The statement is clear if jGj is a prime number, because then G is a cyclic group and
S is a subspace of V , and so S == G Š S is an affine space.

For K � G a subgroup, let V K � V be the subspace of points fixed by K and let

VK ´ V K �
[

K<L�G

V L:

If K 0 is a subgroup of G conjugate to K, the images of VK == N
0
K and VK0 == N 0K0 in

V == G are the same. Let I be a set of subgroups of G such that any subgroup K of
G is conjugate to a unique group in I . We have that S D

F
1<K�G VK and there is a

stratification
S == G D

G
I

VK == N
0
K :

It suffices to check that VK == N
0
K is a linear scheme for any 1 < K � G. The group

N 0K is abelian, so it satisfies the hypothesis of the lemma. We have that jN 0K j < jGj, so
by the induction hypothesis we know that VK == N

0
K is a linear scheme if and only if

V K == N 0K is a linear scheme. By Lemma 3.4, the quotient V K == N 0K is a linear scheme,
thus VK == N

0
K is a linear scheme.
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Any non-abelian group of order p3 has a faithful irreducible representation. Indeed,
a p-group has a faithful irreducible representation if and only if its center is cyclic
[11, page 29], and Z.G/ has order p for any non-abelian group of order p3. Moreover,
all irreducible representations of a group G of order � p4 have dimension 1 or p. Any
group of order p3 satisfies the hypothesis of Lemma 3.2 because for every subgroup
1 < K � G, the quotient NK=K has order 1; p; or p2, and thus it is abelian. It is thus
sufficient to prove the following.

Theorem 3.3. Let k be a field of characteristic not equal to p which contains a
primitive p2-root of unity. Let G be a non-abelian group of order p3 and let V be an
irreducible representation of degree p. Then V == G is a linear scheme.

3.2 – There are two non-abelian groups of order p3. For a classification of p-groups
of order � p4 and their representations, see [4].

3.2.1. The first group is G Š .Z=p � Z=p/ Ì Z=p, which can also be written as

G D h�; �; � j �p D �p D �p D 1; �� D ��; �� D ��; ����1 D ��i:

It has a faithful irreducible representation .�; V / which can be written explicitly on a
basis .ei /piD1 of V as follows:

�.�/ D diag.�; : : : ; �/;
�.�/ D diag.1; �; : : : ; �p�1/;
�.�/ D P;

where P is the matrix which permutes the basis e1 7! e2 7! � � � 7! ep 7! e1, and � is
a primitive p-th root of unity.

3.2.2. The second group is G Š Z=p2 Ì Z=p, which can also be written as

G D h�; � j �p
2

D �p D 1; ����1 D �1Cpi:

It has a faithful irreducible representation .�; V / given by

�.�/ D diag .!; !1Cp; : : : ; !1Cp.p�1//;
�.�/ D P;

where ! is a primitive p2-root of unity and P is the permutation matrix defined above.

3.3 – The proof of Theorem 3.3 will be given in Section 4. In the rest of this section,
we include two lemmas used in its proof. The first one gives a proof of the already
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known fact that BG is mixed Tate for G abelian group [20, Corollary 9.10]. Recall
that the exponent of a group is defined as the least common multiple of the orders of
all elements of the group.

Lemma 3.4. Let N be an abelian p-group, and let V be an N -representation over
a field k of characteristic not equal to p which contains the pe-roots of unity, where
pe is the exponent of N . Then Spec kŒV �N is a linear scheme.

Proof. As char k ¤ p, the representation V decomposes as a sum of one-dimen-
sional representations, and thus we can choose a basis x1; : : : ; xd of V on which N
acts diagonally. We prove the statement by induction on jN j. The base case, when N
is the trivial group, is clear. In general, choose � 2 N such that N D h�i ˚M , where
h�i denotes the subgroup of N generated by � . Assume that � has order ps . We will
use the following stratification,

Spec kŒx1; : : : ; xd � D
G
J�Œd�

Spec kŒx˙1j j j 2 J �;

where the disjoint union is taken over all sets J � Œd �. This stratification is the partition
of the affine space Ad

k
into 2d schemes PJ with xj ¤ 0 for j 2 J and xj D 0 for

j 62 J . We obtain a stratification

(3.1) Spec kŒx1; : : : ; xd �h�i D
G
J�Œd�

Spec kŒx˙1j j j 2 J �h�i:

It is enough to show that

(3.2) Spec kŒx˙11 ; : : : ; x˙1d �h�i Š Spec kŒy˙1j �;

where the yj are monomials in xi . The analogous statement holds for any stratum on
the right hand side of (3.1). Once we show (3.2), we can reduce the problem from N

to M for various representations of M .
To find such a decomposition, let � � xi D �aixi , where � is a primitive ps-root of

unity chosen such that a1 D 1. Then

kŒx˙11 ; : : : ; x˙1d �� D k

�
x
ps

1 ; x2x
�a2

1 ; : : : ; x
d
x
�ad

1 ;
1

x
Q
1 x2 � � � xd

�
;

where Q´ ps � a2 � � � � � ad . The right hand side is included in the left hand side,
and kŒx˙11 ; : : : ; x˙1

d
� is a free kŒxp

s

1 ; x2x
�a2

1 ; : : : ; x
d
x
�ad

1 ; 1

x
Q
1
x

2
���x

d

�-module of rank
ps , so the two sides are indeed equal.
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Consider the torus .Gm/
p with coordinates w1; : : : ; wp and letW � .Gm/

p be the
subtorus with w1 � � �wp D 1. The action of the cyclic group Z=p of order p which
permutes the factors of .Gm/

p by wi 7! wiC1 for 1 � i � p, where wpC1 ´ w1,
extends to an action of Z=p on W .

Lemma 3.5. The schemes S ´ W == Z=p and T ´ ..Gm/
p �W / == Z=p are

linear schemes.

Proof. Let � be a generator of the cyclic group Z=p. Define

Wd D 1C �
dw1 C � � � C �

d.p�1/w1 � � �wp�1

for d D 0; : : : ; p � 1. The stratification we are going to use is

S D

p�1G
dD0

Sd ;

where the schemes Sd are defined as

Sd ´ Spec
�
k
h
w˙11 ; : : : ; w˙1p�1;

1

Wd

i.
.W0; : : : ; Wd�1/

��
:

We will show that every such piece is a linear scheme.

Step 1. We first explain the argument for S0 D Spec kŒw˙11 ; : : : ; w˙1p�1;
1
W0
�� . Define

si ´

Q
j�i wj

W0
;

for i 2 ¹0; : : : ; p � 1º, w0´ 1. Observe that s0 C � � � C sp�1 D 1 and that

k
h
w˙11 ; : : : ; w˙1p�1;

1

W0

i
Š kŒs˙10 ; : : : ; s˙1p�1�=.s0 C � � � C sp�1 � 1/:

Further, � acts via � W s0 7! s1 7! � � � 7! sp�1 7! s0. To show that

Spec.kŒs˙10 ; : : : ; s˙1p�1�=.s0 C � � � C sp�1 � 1//
�

is a linear scheme, we linearize the action by introducing the variables

v0 D 1; vi D s0 C �
is1 C � � � C �

i.p�1/sp�1:

Then �vi D ��ivi and

si D
v0 C �

�iv1 C � � � C �
�i.p�1/vp�1

p
:
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In this basis, S0 becomes

Spec
�
k
h
v0; : : : ; vp�1;

1Qp�1
iD0 �

i .l/

i.
.v0 � 1/

��
Š Spec k

h
v1; : : : ; vp�1;

1Qp�1
iD0 �

i .l/

i�
;

where l D 1C v1 C � � � C vp�1 is the equation of a hyperplane. Now, we can realize
S0 as the complement of a linear scheme inside an affine space. Indeed,

Spec kŒv1; : : : ; vp�1�

D Spec k
h
v1; : : : ; vp�1;

1Qp�1
iD0 �

i .l/

i
t Spec

�
kŒv1; : : : ; vp�1�

. p�1Y
iD0

� i .l/
�

and � acts on both terms on the bottom line.
Observe that Spec.kŒv1; : : : ; vp�1�=

Qp�1
iD0 �

i .l// is the union of the hyperplanes
l , �.l/; : : : ; �p�1.l/, which are cyclically permuted by � . Both Spec kŒv1; : : : ; vp�1��

and Spec.kŒv1; : : : ; vp�1�=
Qp�1
iD0 �

i .l//� are linear schemes, so S0 is indeed a linear
scheme.

Step 2. Fix 0 � d � p � 1. The proof that Sd is a linear scheme is similar to the one
in Step 1. Define

si D

Q
j�i wj

Wd
;

for i D 0; : : : ; p � 1, w0´ 1. Observe that s0 C � � � C �d.p�1/sp�1 D 1 and

k
h
w˙11 ; : : : ; w˙1p�1;

1

Wd

i
D kŒs˙10 ; : : : ; s˙1p�1�=.s0 C � � � C �

d.p�1/sp�1 � 1/:

Furthermore, we have that

We D
s0 C � � � C �

e.p�1/sp�1

s0

for e � d , so computations similar to those for S0 show that

Sd Š Spec.kŒs˙10 ; : : : ; s˙1p�1�=I /
� ;

where I is the ideal generated by s0 C �es1 C � � � C �e.p�1/sp�1 for all 0 � e � d � 1,
and by s0 C �d s1 C � � � C �d.p�1/sp�1 � 1. Changing the basis to vj defined as in
Step 1, we find out that

Sd Š Spec
�
k
h
vdC1; : : : ; vp�1;

1Qp�1
iD0 �

i .l/

i��
:

The end of the argument in Step 1 shows that Sd is a linear scheme.
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Step 3. The proof that T is a linear scheme is already contained in the above argument.
Indeed, introduce the basis

vj D s0 C �
j s1 C � � � C �

j.p�1/sp�1;

for j D 0; : : : ; p � 1. Then we need to show that

Spec
�
k
h
v0; : : : ; vp�1;

1Qp�1
iD0 �

i .l/

i��
is a linear scheme, where � acts on the vi by �.vi / D ��ivi and l D v0 C � � � C vp�1
is a hyperplane. The same argument as in Step 1 shows this is a linear scheme.

4. Proof of Theorem 3.3

4.1 – In the beginning, we will work in a little more general framework which also
covers some groups of order p4. Thus, assume for the moment that G has order � p4

and has an irreducible representation of dimension p. We may assume that V is faithful,
and let �WG ! GL.V /. As � is irreducible, it is induced from a one-dimensional
representation of a subgroup N � G, that is, � D IndGN with  WN ! GL.W / and
with W one-dimensional [14]. As V has dimension p, the subgroup N has index p in
G, and so N E G.

Choose representatives ¹1; t; : : : ; tp�1º for the cosets of G=N . The explicit form
of � is

�.g/ D . .t�igtj //0�i;j�p�1;

where  .g/ D 0 if g 62 N .
IfZ.G/ 6�N , we can choose t 2Z.G/. Then�.g/D . .gt i�j //, so�.g/D .g/I ,

for every g 2 N . As � is faithful, this implies that N � Z.G/, and further that G is
abelian, contradicting that G has an irreducible representation of dimension p.

We thus have that Z.G/ � N . In order for � to be faithful,  jZ.G/ needs to be
faithful, too, so Z.G/ is cyclic.

Using the explicit description of �, we have that �.G/� T �W;where T is the group
of diagonal matrices and W is the group of permutation matrices. By identifying G
with its image �.G/,G can be written as a semi-direct productN ÌM , withM ŠZ=p,
and N an abelian p-group with jN j � p3.

4.2 – The plan is to construct a decomposition of V == G into smaller linear schemes.
We isolate one open subset of V == G and decompose its complement in linear schemes.
After that, we show that the open subset is itself a linear scheme.
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Choose a basis x1; : : : ; xp of V on which N acts diagonally and which is cyclically
permuted by � , the generator of M . Observe that

V == G D Spec kŒx1; : : : ; xp�G D Spec.kŒx1; : : : ; xp�N /� :

As we have already discussed in the proof of Lemma 3.4, there is a stratification

Spec kŒx1; : : : ; xp� D
G
J�Œp�

Spec kŒx˙1j j j 2 J �;

where the disjoint union is taken over all sets J � Œp�. This stratification is the partition
of the affine space Ap

k
in the 2p schemes PJ with xj ¤ 0 for j 2 J and xj D 0 for

j 62 J . As N acts linearly on the functions xi for 1 � i � p, we have that

Spec kŒx1; : : : ; xp�N D Spec kŒx˙11 ; : : : ; x˙1p �N t
G
J<Œp�

Spec kŒx˙1j j j 2 J �N :

By Lemma 3.4, each Spec kŒx˙1j j j 2 J �N for J � Œp� is a linear scheme.
Let t W Œp�! Œp� be the function t .x/ D x C 1 for x � p � 1 and t .p/ D 1. For

J � Œp�, let t .J /´ ¹t .x/ j x 2 J º � Œp�. Observe that � permutes the schemes SJ D
Spec kŒx˙1j j j 2 J �N by sending SJ to St.J /. Consequently, there is a stratification

Spec kŒx1; : : : ; xp�G D Spec kŒx˙11 ; : : : ; x˙1p �G t
G
A

SpecSJ ;

where A is a set of representatives of the equivalence classes of the action of t on the
set of proper subsets of Œp�. This means that, in order to show that V == G is a linear
scheme, we have to prove that Spec kŒx˙11 ; : : : ; x˙1p �G is a linear scheme. We do this
in the next subsection.

4.3 – The study of the aforementioned open piece is inspired by [4]. We begin by
analyzing the Z.G/-invariants. If we can conveniently reduce the dimension of the
scheme SpeckŒx˙11 ; : : : ; x˙1p � on whichG acts from p to p � 1, for example by finding
a G-invariant element among the Z.G/-invariants, then the resulting ring will give a
natural ZŒ� �-representation on Zp�1. This representation was shown in [4, page 687]
to be generated by one element. By a theorem of Reiner [18], this representation is the
canonical representation of ZŒ� � on ZŒ��. This reduction can be done for the group
G Š .Z=p � Z=p/ Ì Z=p.

If all elements of N act by the same character of the Z.G/-invariants, then we
can make a change of variables to reduce to the case of Spec kŒw˙11 ; : : : ; w˙1p �� ;

where � cyclically permutes the basis elements wi . For example, this is the case for
G Š .Z=p2/ Ì Z=p. In both situations, the final ingredient will be Lemma 3.5.



T. Pădurariu 70

4.3.1. Assume thatG has order p3. ThenZ.G/ acts on V via multiples of the identity,
so

kŒx˙11 ; : : : ; x˙1p �Z.G/ D k
h
x
p
1 ; x

�p
1 ;

x2

x1
; : : : ;

x1

xp

i
D kŒy˙12 ; : : : ; y˙1p �Œy˙11 �;

fory1D x
p
1 ,yi D

xiC1

xi
, i D 2; : : : ;p. Assume that we can replacey1 with aG-invariant

monomial z1 such that

kŒy˙12 ; : : : ; y˙1p �Œy˙11 � D kŒy˙12 ; : : : ; y˙1p �Œz˙11 �:

This can be done when G Š .Z=p � Z=p/ Ì Z=p. Recall the notations from Sec-
tion 3.2.1. Indeed, in this case Z.G/ D h�i. For the representation .�; V / described in
Section 3.2.1, � acts on any yi , i D 2; : : : ; p, by multiplication with � and it fixes y1,
while

� Wy2 7�! � � � 7�! yp 7�!
1

y2 � � �yp

and �.y1/ D y1y
p
2 . If we replace y1 by z1 D y1y

p�1
2 � � � y2p�1yp, then z1 is indeed

G-invariant and

kŒy˙12 ; : : : ; y˙1p �Œy˙11 � D kŒy˙12 ; : : : ; y˙1p �Œz˙11 �:

Even more, the same argument works for a p-group of cardinality p4 with Z.G/ Š
Z=p2 and N different from Z=p3. Indeed, in this case, N Š Z.G/˚ h�i, and the
Z.G/-invariants of kŒx˙11 ; : : : ; x˙1p � are

k
h
x
p2

1 ; x
�p2

1 ;
x2

x1
; : : : ;

x1

xp

i
D kŒy˙12 ; : : : ; y˙1p �Œy˙11 �;

for y1 D x
p2

1 , yi D
xiC1

xi
for i D 2; : : : ; p. Observe that � acts trivially on y1 and by

a p-root of unity on the others yi , and that

� Wy2 7�! � � � 7�! yp 7�!
1

y2 � � �yp

and �.y1/ D y1y
p2

2 . In particular, this implies that y1y
p
2 � � � y

p.p�1/
p is G-invariant,

so the above argument works.

4.3.2. Assume G Š Z=p2 ÌZ=p. Recall the notations from Section 3.2.2. The center
is generated by �p . The element � acts on any yi , i D 1; : : : ; p, by multiplication with
�, while

� Wy2 7�! � � � 7�! yp 7�!
1

y2 : : : yp
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and �.y1/ D y1y
p
2 . Replace y1 with y1y

p�1
2 : : : y2p�1yp. Then �.y1/ D �y1, and

�.y1/ D y1. Taking � -invariants,

kŒy˙11 ; : : : ; y˙1p �� D k
h
y
p
1 ;
y2

y1
; : : : ;

yp

y1
; their inverses

i
;

which can be further written as kŒw˙11 ; : : : ; w˙1p � for w1 D y
p
1 , wi D

yi

y1
, for i D

2; : : : ; p. Observe that

� Ww2 7�! w3 7�! � � � 7�! wp 7�!
1

w1 � � �wp
;

and thus, by replacing w1 with 1
w1���wp

, we need to show that Spec kŒw˙11 ; : : : ; w˙1p �� ,
where � acts by � Ww1 7! � � � 7! wp 7! w1, is a linear scheme. This follows from
Lemma 3.5. The same argument shows that any group of the form Z=ps Ì Z=p is
mixed Tate. In particular, this means that any group G of order p4 and center of order
p2 is mixed Tate.

4.4 – Assume from now on that we are in the situation of Section 4.3.1, in which the
dimension of the scheme we want to prove is linear was reduced from p to p � 1.
We will explain how to obtain a ZŒ� �-representation on Zp�1. The argument works
for any p-group and V a p-dimensional representation, just in this case we will get a
representation of ZŒ� � on Zp . In order to compute the � -invariants of kŒy˙12 ; : : : ;y˙1p �N ,
write N D N1 ˚N2 with N1 cyclic. As in the proof of the Lemma 3.4, we have that

kŒy˙12 ; : : : ; y˙1p �N1 D kŒy
a2

2 ; y
a3

2 y3; : : : ; y
ap

2 yp; their inverses�:

If we repeat the computation for N2 instead of N1, we find that

kŒy˙12 ; : : : ; y˙1p �N D kŒy
b2

2 ; y
b3

2 y3; : : : ; y
bp

2 yp; their inverses�:

Let zi ´ y
bi

2 yi for 2 � i � p. Observe that � acts on zi in the following way:

�.z2/ D z
a2;2

2 z
a3;2

3 ;

�.z3/ D y
b2;3

2 z
b3;3

3 z4;

for some explicit integer exponents. For any N -invariant z, the element �.z/ is also
N -invariant because

n�z D � n0z D �z

for some n0 2 N . In particular, �.z2/ is N -invariant, so yb3;2

2 is an integer power of
z2. This implies that �.z3/ is a monomial in z2, z3, and z4, and a similar computation
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shows that this is true for any 2 � k � p, namely that there are integer exponents such
that

�.z
k
/ D z

a2;k

2 � � � z
akC1;k

kC1
:

Now, we can construct a ZŒZ=p� Š ZŒ� �-representation

W ´ Zp�1 D Z log.z2/˚ � � � ˚ Z log.z2/

by defining

�.log.zk// D a2;k log.z2/C � � � C akC1;k log.zkC1/:

By a theorem of Reiner [18], the representation W is isomorphic to an ideal of ZŒ��,
where � is a primitive p-root of unity. Chu–Kang have shown in [4, page 687] that all
such representations coming from groups of order � p3 are generated by one element,
so W Š ZŒ��. Then we can choose monomials wi in the zi on which � acts via

� Ww1 7�! w2 7�! � � � 7�! wp�1 7�!
1

w1 � � �wp�1

and such that
kŒz˙12 ; : : : ; z˙1p � D kŒw˙11 ; : : : ; w˙1p�1�:

We know that Spec kŒw˙11 ; : : : ; w˙1p�1�
� is a linear scheme by Lemma 3.5, so V == G is

indeed a linear scheme in our case.

5. More on mixed Tate motives of a classifying space

In this section, we assume that the base field k has characteristic zero.

5.1 – Define the triangulated category of geometrical motives

DMgm.kIR/ � DM.kIR/

as the smallest thick subcategory which contains all the motives M.X/.a/ for X a
separated scheme of finite type over k and a an integer [22], [20, Section 5]. In general,
the motive of a quotient stack is not a geometric motive. For example, for a finite non-
trivial group G, the Chow groups (with Z-coefficients) CH i .BG/ are non-trivial for
infinitely many values of i [23, Theorem 3.1], and thus the motiveM.BG/ 2DM.k;Z/
is not geometric. For an explicit computation of the motive of a quotient stack, let k.1/
be the one-dimensional representation on which Gm acts with weight one. Observe
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that .k.1/˚.nC1/ � 0/=Gm Š Pn “approximate” the motives associated to Gm. We
thus have that

M.BGm/ D
M
j�0

R.j /Œ2j �; M c.BGm/ D
Y
j��1

R.j /Œ2j �:

None of these motives are geometric.
Even if the motives associated to a quotient stack are not geometric motives, they

exhibit some properties which resemble geometric motives. Indeed, recall that for X a
proper scheme, M c.X/ ŠM.X/, and for X a smooth scheme of pure dimension n
over k, M c.X/ ŠM.X/�.n/Œ2n� [20, Section 5].

Let X D Y=G be a smooth quotient stack for which we can define motives M.X/
and M c.X/, see Section 2.2. There is an isomorphism

(5.1) M.X/� ŠM c.X/.� dim.X//Œ�2 dim.X/�:

The isomorphism in (5.1) follows from the fact that the dual of a direct sum in DM.k;R/
is a product, so the dual of a homotopy colimit is a homotopy limit.

Furthermore, the dual of a mixed Tate motive in DM.kIR/ is not necessarily
mixed Tate. For example, if k is algebraically closed, M ´

L
i2N Z is an element of

DMT.kIZ/, but its dual in DM.k;Z/ is M � D
Q
i2N Z, which is not an element of

DMT.kIZ/ [21, Corollary 4.2].
However, DMTgm.kIR/ WDDMT.kIR/\DMgm.kIR/ is closed under taking duals

[15, Section 5.1]. The main result of this section is the following.

Theorem 5.1. Let G be a finite group, let k be a field of characteristic zero, and
let R be an arbitrary ring. Then M c.BG/ 2 DMT.kIR/ is mixed Tate if and only if
M.BG/ 2 DMT.kIR/ is mixed Tate.

In light of the above counterexample of a mixed Tate motive whose dual is not mixed
Tate, we see that mixed Tate motives of finite groups exhibit finiteness properties. A
related result [21, Theorem 3.1] says that any schemeX of finite type over a field k with
M c.X/ mixed Tate has finitely generated Chow groups CH �.X IR/ as R-modules.
This implies that CH �.BGIR/ are finitely generated over R, when G is a finite group
with BG mixed Tate.

5.2 – We reduce the proof of Theorem 5.1 to the following.

Theorem 5.2. Let X be a smooth quotient stack and let E be a Gm-bundle over
X . Then M.X/ is mixed Tate if and only if M.E/ is mixed Tate.

Totaro has shown in [20, Corollary 8.13] that for a finite group G, M c.BG/ is
mixed Tate if and only if M c.GL.n/=G/ is mixed Tate for a faithful representation
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G ! GL.n/. One knows that the category of geometric Tate motives DMTgm.kIR/ is
closed under taking duals, as mentioned above. Recall that for any geometric motiveX 2
DMgm.kIR/, the map X ��! X�� is an isomorphism [20, Lemma 5.5]. As GL.n/=G
is a smooth scheme, and for any smooth scheme S one has

M.S/� ŠM c.S/.� dim.S//Œ�2 dim.S/�;

we see that it is enough to prove thatM.BG/ is mixed Tate if and only ifM.GL.n/=G/
is mixed Tate for a faithful representation G ! GL.n/. The strategy is to show the
more general result, that for X a quotient stack and E a principal GL.n/-bundle over
X , M.X/ is mixed Tate if and only if M.E/ is mixed Tate. The next lemma inspired
by [20, Lemma 7.13], shows that Theorem 5.1 follows from Theorem 5.2.

Lemma 5.3. Assume that for any smooth quotient stack X and any principal Gm-
bundle F over X , M.X/ 2 DMT.kIR/ if and only if M.F / 2 DMT.kIR/. Then, for
any smooth quotient stack X and any principal GL.n/-bundle E over X , M.X/ 2
DMT.kIR/ if and only if M.E/ 2 DMT.kIR/.

Proof. Denote by B the subgroup of upper triangular matrices in GL.n/. Then
E=B is an iterated projective bundle over X . Recall that GL.n/-bundles are Zariski
locally trivial. We obtain the following Leray–Hirsch decomposition for motives,

M.E=B/ Š
M

M.X/.aj /Œ2aj �;

where aj are the dimensions of the nŠ Bruhat cells of the flag manifold GL.n/=B , see
also the proof of [20, Lemma 7.13].

Now, since DMT.kIR/ is closed under arbitrary direct sums,M.X/ 2 DMT.kIR/
implies M.E=B/ 2 DMT.kIR/. Conversely, DMT.kIR/ is thick (see the discussion
after [20, Lemma 5.4]), so M.E=B/ 2 DMT.kIR/ implies M.X/ 2 DMT.kIR/.

Next, let U be the subgroup of strictly upper triangular matrices in GL.n/. Since
B=U Š Gn

m, E=U is a principal Gn
m-bundle over E=B . Using the assumption on Gm-

bundles, we deduce that M.E=U / 2 DMT.kIR/ if and only if M.X/ 2 DMT.kIR/.
Finally, U is an extension of copies of the additive group Ga, so M.E/ ŠM.E=U /,
which means that M.E/ 2 DMT.kIR/ if and only if M.X/ 2 DMT.kIR/.

5.3 – We will also need the following vanishing result.

Lemma 5.4. If Y is a smooth quasi-projective scheme, then

Hom.R.i/Œj �;M.Y // D 0;

for j � i � 2.
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Proof. Choose a smooth compactification Z of Y such that the complement
W ´ Z n Y is a divisor with simple normal crossings, which can be done since k
has characteristic zero [13, Theorem 3.35]. Then, the Gysin distinguished triangle
[22, page 10] gives, for c D codimW ,

M.W / �!M.Z/ �!M.Y /.c/Œ2c� �!M.W /Œ1�:

Taking the dual of this triangle we obtain, for n D dim.Y /,

M c.W /�.n/Œ2n � 1� �!M.Y / �!M.Z/ �!M c.W /�.n/Œ2n�:

Both Hom.R.i/Œj �;M.Z/Œ�1�/ and Hom.R.i/Œj �;M.Z// are zero because Z is pro-
jective. Indeed, in our case M.Z/ Š M c.Z/ and j � i � 2, and it is known that
Hom.R.i/Œj �;M c.Z//D 0 for any schemeZ and any integers i and j with j � i � 1
[20, page 16]. Thus, the Hom-long exact sequence obtained from this distinguished
triangle gives that

Hom.R.i/Œj �;M c.W /�.n/Œ2n � 1�/ Š Hom.R.i/Œj �;M.Y //:

Observe that W is proper, so M.W / ŠM c.W /. Further,

Hom.R.i/Œj �;M c.W /�.n/Œ2n � 1�/ Š Hom.M c.W /;R.n � i/Œ2n � 1 � j �/:

Thus, it is enough to prove

Hom.M c.W /;R.a/Œb�/ D 0;

for b � a � n C 1. Further, dim.W / < n and W is a divisor with simple normal
crossings, so there are at most n divisor through any point of W . To show this, we
will use induction on n, the maximal number of divisors which pass through a given
point, and then on the number of connected components of W . If n D 1 or if W
has only one component, then W is smooth; in this case, M.W / Š M c.W / and
M.W /� ŠM.W /.dim.W //Œ�2 dim.W /�. We need to show that

Hom.R.i C dim.W / � n/Œj C 1C 2.dim.W / � n/�;M c.W // D 0;

for j � i � 2, where i D n � a and j D 2n � 1 � b. This follows from the vanishing
property of motivic homology

Hom.R.i/Œj �;M c.Z// D 0

for any scheme Z and any integers i and j with j � i � 1 [20, page 16]. In our
case, b � a � nC 1 is equivalent to j � i � 2, and we know that dimW < n, thus
i C dimW � n � j C 1C 2.dimW � n/C 1.
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For the general case, let U be a smooth connected component of W and let V
be the closure of W n U inside W . Then V will be also be a divisor with simple
normal crossings such that there are at most n divisors passing through a given
point, but it will have less components than W . Further, T ´ U \ V will be a
divisor with simple normal crossings, with at most n � 1 divisors passing through
any point. By the induction hypothesis, Hom.M.T /Œ1�; R.a/Œb�/ D 0 for b � a � n,
and Hom.M.V /Œ1�; R.a/Œb�/ D 0 for b � a � nC 1. Recall that we want to show
Hom.M.W /Œ1�; R.a/Œb�/ D 0 for b � a � n C 1. For this, use the following two
distinguished triangles

M c.U / �!M c.W / �!M c.W � U/ �!M c.U /Œ1�;

M c.T / �!M c.V / �!M c.W � U/ �!M c.T /Œ1�:

From the second triangle, we get

Hom.M c.T /Œ1�; R.a/Œb�/ �! Hom.M c.W � U/;R.a/Œb�/ �� � �

� � �! Hom.M c.V /; R.a/Œb�/ �! Hom.M c.T /; R.a/Œb�/:

We deduce that Hom.M c.W �U/;R.a/Œb�/D 0 for b � a � nC 1. Similarly, we can
use the first triangle to deduce that Hom.M c.W /;R.a/Œb�/D 0 for b � a � nC 1.

5.4 – In this subsection, we prove Theorem 5.2. We split its proof in a sequence of
steps.

5.4.1. Let T be the total space of a line bundle over X such that T �X Š E; where
X ,! T is embedded as the zero section. We claim that there is a Gysin distinguished
triangle

(5.2) M.T �X/ �!M.T / �!M.X/.1/Œ2� �!M.T �X/Œ1�:

Indeed, let X D Y=G and T D W=G with Y smooth and W an A1-bundle over Y .
Consider the (smooth) approximations

Xi D ..Vi � Si / � Y /=G;

Ti D ..Vi � Si / �W /=G:

Then we have the Gysin distinguished triangles [22, Theorem 3.5.4]

M.Ti �Xi / �!M.Ti / �!M.Xi /.1/Œ2� �!M.Ti �Xi /Œ1�:

The category DM.kIR/ is a model category with arbitrary direct sums and products
[20, Subsection 5], so it has an underlying triangulated derivator [5, Theorem 6.11],
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[12, Appendix 2, page 1075] Thus, the homotopy colimit of distinguished triangles is
a distinguished triangle [12, Corollary 11.4], and we thus obtain the Gysin triangle
(5.2). Using M.X/ ŠM.T /, the distinguished triangle (5.2) becomes

(5.3) M.E/ �!M.X/ �!M.X/.1/Œ2� �!M.E/Œ1�:

5.4.2. The inclusion
DMT.kIR/ ,�! DM.kIR/

has a right adjoint
C WDM.kIR/ �! DMT.kIR/:

We will sometimes write C.Z/ instead of C.M.Z// for Z a quotient stack. Let U
be the cone of C.E/!M.E/ and let W be the cone of C.X/!M.X/. There is a
distinguished triangle

U �! W �! W.1/Œ2� �! U Œ1�:

Indeed, this triangle is induced from the triangle (5.3), the diagram

C.E/ //

��

C.X/ //

��

C.E/.1/Œ2� //

��

C.E/Œ1�

��

M.E/ //

��

M.X/ //

��

M.E/.1/Œ2� //

��

M.E/Œ1�

��

U // W // W.1/Œ2� // U Œ1�

and the 3� 3 lemma.

5.4.3. Observe that C.W / D 0. Indeed,

M.X/ �! C.X/ �! W �!M.X/Œ1�

and, for any i and j integers,

Hom.R.i/Œj �;M.X// Š��! Hom.R.i/Œj �; C.X//:

This implies that W has trivial motivic homology groups.
Then the Tate motiveC.W / has trivial homology groups and soC.W /D 0. Indeed,

because Hom.R.a/Œb�;C.X//D 0 andR.a/Œb� generate the category DMT.kIR/, we
get that Hom.M; C.X// D 0 for any mixed Tate motive M , and, in particular, that
Hom.C.X/; C.X// D 0, so C.X/ D 0.
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5.4.4. We need to show thatU D 0 if and only ifW D 0. IfW D 0, then it is immediate
that U D 0. Conversely, suppose U D 0. In this case,

(5.4) W Š W.1/Œ2�:

In [6, Proposition 7.10], Dugger and Isaksen have shown that one can compute, via
a spectral sequence, the motivic homology of X ˝M from the motivic homology
of M and X , for any motive X and any mixed Tate motive M . A related result [20,
Theorem 7.2] says that if

C.W /˝ C.M.Z//
Š
��! C.W ˝M.Z//;

for any Z a smooth projective scheme, then W is mixed Tate. We will use both these
results in our argument below.

The plan is the following: it is enough to show that

C.W /˝ C.M.Z//
Š
��! C.W ˝M.Z//;

for Z a smooth projective scheme. Taking into account that C.W / Š 0, we will need
to show that the motivic homology groups of any product W ˝M.Z/ are trivial.

We show that the motive W has a vanishing property similar to the one of M c of a
geometrical motive, namely that Hom.R.i/Œj �;W / D 0 for j � i � 2. Even more, we
will be able to show that Hom.R.i/Œj �;W ˝M.Z// D 0 for j � i � 2 and for Z a
smooth projective scheme. This will imply that all the motivic homology groups of
W ˝M.Z/ are trivial, because W Š W.1/Œ2�. Consequently, we only need to show

(5.5) Hom.R.i/Œj �;W ˝M.Z// D 0

for j � i � 2, where Z is a smooth projective scheme.

5.4.5. First, by Lemma 5.4, we have that Hom.R.i/Œj �;M.Y // D 0 for j � i � 2 for
a quasi-projective scheme Y . There is a distinguished triangle:

(5.6) M.X �Z/ �! C.M.X//˝M.Z/ �! W ˝M.Z/ �!M.X �Z/Œ1�:

It is enough to show

Hom.R.i/Œj �;M.X �Z// D 0;
Hom.R.i/Œj �; C.M.X//˝M.Z// D 0

for j � i � 2. To show that Hom.R.i/Œj �; M.X � Z// D 0 for j � i � 2, write
M.X �Z/ as the cone of a morphismM

l2I

M.Sl/ �!
M
l2I

M.Sl/ �!M.X �Z/ �!
�M
l2I

M.Sl/
�
Œ1�;
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where Sl are quasi-projective schemes for l in a set I . Because R.i/Œj � is a compact
object inside DM.kIR/, we have that

Hom
�
R.i/Œj �;

M
l2I

M.Sl/
�
D

M
l2I

Hom.R.i/Œj �;M.Sl// D 0

for j � i � 2. Finally,

Hom
�
R.i/Œj �;

M
l2I

M.Sl/
�
�! Hom.R.i/Œj �;M.X �Z// �� � �

� � �! Hom
�
R.i/Œj �;

�M
l2I

M.Sl/
�
Œ1�
�
;

which immediately implies Hom.R.i/Œj �;M.X �Z// D 0 for j � i � 2.

5.4.6. To show Hom.R.i/Œj �;C.M.X//˝M.Z//D 0 for i � j � 2, use the motivic
Künneth spectral sequence [20, Theorem 6.1],

E
pq
2 D TorH:.k;R.�//

�p;�q;i .H:.C.X/;R.�//;H:.Z;R.�/// H) H�p�q.C.X/˝Z;R.i//;

where Tor�p;�q;i denotes the .�q; i/-bigraded piece of Tor�p . The vanishing properties
for the motivic homology of C.M.X// and M.Z/ imply the desired result. Indeed,
assume i < 0. On the sheet Epq2 , all non-trivialH:.k;R.�//-modules are concentrated
in the lower left corner j � i � 2, p � 0. Every page Epqn will be concentrated in the
same lower left square, which implies the vanishing of motivic homology groups for
C.M.X//˝M.Z/ for j � i � 2. In particular, Hom.R.i/Œj �;C.M.X//˝M.Z//D
0 for j � i � 2. Using the triangle (5.6) and the discussion in Section 5.4.5, we see
that (5.5) holds.

5.4.7. Finally, let i and j be arbitrary integers, and choose a � i � j � 2. By (5.4)
and (5.5), we have that

Hom.R.i/Œj �;W ˝M.Z// Š Hom.R.i C a/Œj C 2a�;W ˝M.Z// Š 0:

Thus, the motivic homology ofW ˝M.Z/ is trivial for every smooth projective scheme
Y . As discussed in Section 5.4.4, this implies thatW Š 0, and thus Theorem 5.2 follows.
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