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Néron models of pseudo-Abelian varieties
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Abstract – We study Néron models of pseudo-Abelian varieties over excellent discrete valuation
rings of equal characteristic p > 0 and generalise the notions of good reduction and semi-
Abelian reduction to such algebraic groups. We prove that the well-known representation-
theoretic criteria for good and semi-Abelian reduction due to Néron–Ogg–Shafarevich and
Grothendieck carry over to the pseudo-Abelian case, and give examples to show that our
results are the best possible in most cases. Finally, we study the order of the group scheme
of connected components of the Néron model in the pseudo-Abelian case. Our method is
able to control the `-part (for ` 6D p) of this order completely, and we study the p-part in a
particular (but still reasonably general) situation.
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1. Introduction

Let k be a field and let G be a smooth connected commutative algebraic group over
k. If k is perfect, then G fits into an exact sequence

0! H ! G ! A! 0

over k such thatH is a smooth connected commutative affine algebraic group and A
is an Abelian variety over k. This is a consequence of Chevalley’s theorem (see [4] for
a proof of this fact in the language of schemes, and for more background). However, it
is well known that Chevalley’s theorem fails completely if k is imperfect; we shall see
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many such examples in this paper. To deal with this phenomenon, Totaro [19] recently
introduced the notion of pseudo-Abelian varieties and worked out much of their struc-
ture. A pseudo-Abelian variety over the field k is a smooth connected (commutative)
algebraic group which does not admit any smooth connected affine closed algebraic
subgroups. This notion works very well in the context of Chevalley’s theorem, even
over imperfect fields. Indeed, every smooth connected (not necessarily commutative)
algebraic group (over an arbitrary field) is an extension of a pseudo-Abelian variety by
a linear algebraic group in a unique way. Over a perfect field, all pseudo-Abelian vari-
eties are Abelian by Chevalley’s theorem, but over an imperfect field, pseudo-Abelian
varieties which are not Abelian are ubiquitous (examples include Weil restrictions
of non-trivial Abelian varieties along purely inseparable field extensions of positive
degree; see Section 3 and [19] for further examples and more details). Now let OK be
an excellent discrete valuation ring with field of fractions K and residue field �. The
field K is perfect if and only if it is of characteristic 0, so if p WD charK > 0, then
there are plenty of pseudo-Abelian varieties over K which are not Abelian varieties. In
this paper we shall study degenerations of pseudo-Abelian varieties, that is, smooth
separated models P0 ! SpecOK of P of finite type. Even if P is an Abelian variety,
it is not in general possible to predict the behaviour of a general model of this kind.
However, it has been known for a long time that Abelian varieties over discretely
valued fields admit Néron models, which are smooth separated models of finite type
that are characterised by a universal property. As it turns out, a classical criterion for
the existence of Néron models implies immediately that pseudo-Abelian varieties over
fields of fractions of excellent discrete valuation rings admit Néron models as well.
For some explicit examples, see the remark after the proof of Theorem 4.6. Since
it is almost impossible to exaggerate the role played by Néron models in the study
of Abelian varieties, it seems very natural to study Néron models of pseudo-Abelian
varieties in more detail in order to understand the behaviour of those objects under
degeneration. We shall seek to begin such a study in this paper.

In the world of Abelian varieties, one can use Néron models to distinguish between
good reduction, semi-Abelian reduction, and additive reduction. We shall introduce
analogous notions for pseudo-Abelian varieties; these are defined purely in terms of
numerical invariants of algebraic groups (such as toric and Abelian ranks) and are
straightforward generalisations of the corresponding notions in the case of Abelian
varieties. For Abelian varieties, it is well known that the various reduction types are
cohomological invariants, i.e., they only depend upon the first `-adic cohomology (or,
equivalently, the `-adic Tate module) of the Abelian variety; here we have to choose a
prime number ` invertible in OK .

Our first main result is that this still holds for pseudo-Abelian varieties (for the
terms used here, see Definitions 4.1 and 5.1):
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Theorem 1.1 (Theorems 4.6 and 5.4). Let P be a pseudo-Abelian variety over
K. Then P has good reduction (resp. pseudo-semi-Abelian reduction) if and only if
the Galois representation on T`.P / is unramified (resp. all elements of an inertia
subgroup act as unipotent operators).

Although Néron models generally behave badly with respect to base change, the
situation is somewhat better if the Abelian variety in question has good or semi-
Abelian reduction; in the first case, the Néron model commutes with any faithfully flat
base change of discrete valuation rings and in the second case, at least the identity
component of the Néron model will commute with general faithfully flat base change
(even though the Néron model itself will usually not have this property). This follows
from the fact that a semi-Abelian model of an Abelian variety is uniquely determined
up to unique isomorphism, and it implies that the property of having good (resp. semi-
Abelian) reduction is not affected by passing to a finite (possibly ramified) extension of
K. We shall give examples to show that the uniqueness properties just mentioned do
not hold for pseudo-Abelian varieties in general. However, the representation-theoretic
criteria will allow us to deduce that the property of having good (resp. pseudo-semi-
Abelian) reduction is not lost after passing to an arbitrary finite separable extension.
Another invariant attached to a pseudo-Abelian variety P over K by means of its
Néron model P! SpecOK is the order of the group scheme ˆ WD P�=P

0
� , which is

usually known as the group scheme of connected components of P� . We shall see that,
if ` is a prime number invertible on OK , the order of the `-part of ˆ is controlled
completely by the analogous invariant associated with the maximal Abelian subvariety
of P . These methods do not work if ` D p, and the p-part of ˆ remains largely
mysterious (see Question 4.16). However, we are able to show that it vanishes for a
particular class of pseudo-Abelian varieties with good reduction constructed in [19].

Throughout the paper, we shall use the following notation:

• OK is an excellent discrete valuation ring of equal characteristic p > 0. For example,
all complete discrete valuation rings are excellent (Lemma 2.4).

• K WD FracOK .

• h�i D m � OK is the maximal ideal of OK .

• � WD OK=m is the residue field of OK (which is not assumed to be perfect unless
stated otherwise).

• For morphisms of schemes X ! S and S 0 ! S , we let XS 0 WD X �S S
0. If

S D SpecOK and S 0 is the spectrum of an OK-algebra B , we let XB WD XS 0 .

• If OK is Henselian and X ! SpecOK is a quasi-finite separated morphism, we
let X D X f tX� be the decomposition of X into an OK-finite open subscheme
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X f and an OK-scheme X� with empty special fibre (see Proposition 4.3). This
decomposition is functorial in X .

• For a group scheme G locally of finite presentation over a field k, we denote by
G0 the component of the unit section of G.

• For a smooth group scheme G! SpecOK with connected generic fibre, we let G0

be the complement (in G) of the union of irreducible components of G� which do
not contain the unit section. This is the unique open subgroup scheme of G over
OK with connected special fibre.

• For a field k, we let ksep (resp. kalg) denote a separable (resp. algebraic) closure of
k. Moreover, we let kperf denote the perfect closure of k, i.e., the unique perfect
purely inseparable algebraic extension of k.

2. Some technical remarks

2.1 –Weil restriction

Let S 0 ! S be a finite and locally free morphism of schemes. Let X be a scheme
over S 0. Then the functor ResS 0=SX is defined to be the pushforward of the functor
of points of X along S 0 ! S . This is clearly still a sheaf in the fppf-topology (and
therefore, a fortiori, in the étale and Zariski topologies as well). However, in order to
ensure that this functor is representable, one must generally impose a condition on
the morphism X ! S concerning common affine neighbourhoods of finite sets of
points contained in the fibres of this map. The following proposition shows that this
condition can be dropped if S 0 ! S is a universal homeomorphism. This has already
been observed in [2, Corollary A.5] (and it is also implicit in many other places in
the literature). We give a more direct proof below. This technical point will turn out
to be important in this paper, since it will allow us to perform Weil restrictions along
finite locally free universal homeomorphisms without having to rely on Raynaud’s
deep results on the quasi-projectivity of group schemes.

Proposition 2.1. Let S 0 ! S be a morphism of schemes which is finite and
locally free. Furthermore assume that S 0 ! S is a universal homeomorphism (i.e., a
morphism such that for all S -schemes T , the map T �S S 0! T is a homeomorphism).
Let X be a scheme over S . Then ResS 0=SX is representable.

Proof. We may assume without loss of generality that S (and hence S 0) is affine.
Let .Xi /i2I be an open affine cover of X indexed by some set I . Then we have, for
each i 2 I , a canonical morphism of functors

ResS 0=SXi ! ResS 0=SX;
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which is representable by open immersions [3, Chapter 7.6, Proposition 2 (i)]. Further-
more, we know that the functors ResS 0=SXi are representable [3, Chapter 7.6, first
part of the proof of Theorem 4]. Hence, all that remains to be shown is that the set of
functors ¹ResS 0=SXi W i 2 I º covers ResS 0=SX . To see this, let T ! S be a morphism
of schemes, and let � 2 ResS 0=SX.T /. Then � is a morphism T �S S

0 ! X . Now let
i 2 I . Because S 0 ! S is a universal homeomorphism, we can find a unique open
subscheme Ti � T such that

Ti �S S
0
D ��1.Xi /:

If we let �i WD �jTi , we see that �i 2 ResS 0=SXi .Ti /. This concludes the proof.

The proposition allows us to prove a strong representability result in the world of
group schemes of finite type over fields:

Proposition 2.2. Let k be a field and let A be a finite k-algebra. Let G !
SpecA be a (not necessarily smooth) group scheme of finite type. Then ResA=kG is
representable by a quasi-projective group scheme over k.

Proof. Because Galois descent is effective for quasi-projective schemes [14,
Chapter 4.4, Corollary 4.4.6], we may assume without loss of generality that A
is local and remains so after base change to ksep. Indeed, over ksep, A splits into
finitely many finite local ksep-algebras, and we can simply replace k by a finite Galois
extension over which this decomposition is defined. Now observe that, if m � A

denotes the unique maximal ideal, the extension k � A=m is purely inseparable (since
Spec.A=m˝k ksep/ is a closed subscheme of the one-point scheme SpecA˝k ksep).
This allows us to deduce that the map SpecA! Speck is a universal homeomorphism,
which can be seen by considering the morphisms SpecA=m! SpecA! Speck, and
observing that the first morphism is a universal homeomorphism (as m is nilpotent) as
well as the composition (because A=m is a purely inseparable extension of k). Hence
the claim follows from Proposition 2.1, together with the fact that group schemes of
finite type over fields are always quasi-projective (see [6, Proposition A.3.5]).

Remark. A similar result has been proven in [6] (see [6, Proposition A.5.1]),
where the k-algebra A is assumed to be reduced. The proposition above shows that
this hypothesis is redundant.

Finally, we recall that the small étale site of a scheme is topologically invariant, as
made precise by the following result of Grothendieck:

Proposition 2.3. Let f WS 0! S be a universal homeomorphism of schemes. Then
the categories SKet and S 0Ket of schemes étale over S (resp. S 0) are identified via the
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functors f � D ��S S 0 and f� D ResS 0=S�, which are mutually inverse equivalences
of categories. Moreover, these equivalences are compatible with the étale topologies
on SKet and S 0Ket.

Proof. See [10, Théorème 1.1].

2.2 – Excellent discrete valuation rings

As mentioned in the introduction, we shall always suppose that the base ring OK

over which we work is an excellent discrete valuation ring of equal characteristic
p > 0. This restriction is crucial, because otherwise we would not be able to guar-
antee that pseudo-Abelian varieties over K admit Néron models over OK . Recall
that a Noetherian ring R ring is said to be excellent if it satisfies the following three
conditions:

(i) For each prime ideal p � R, the map Spec yRp ! SpecRp is flat and has geomet-
rically regular fibres, where yRp denotes the p-adic completion of Rp,

(ii) each integral scheme T finite over R contains a regular dense open subset, and

(iii) R is universally catenary.

In fact, there are various equivalent definitions; see [15] for more details. The
following lemma is well known, but its proof is spread across many sources, so we
recall a proof for the reader’s convenience:

Lemma 2.4. Let R be a discrete valuation ring with field of fractions K. Let yR
be the completion of R and let yK WD Frac yR. Then R is excellent if and only if the
K-algebra yK is geometrically reduced, i.e., if and only if the extension K � yK is
separable.

Proof. Since the map R ! yR induces an isomorphism on residue fields, our
assumption ensures that condition (i) is satisfied, and it is obvious that our condition is
necessary. Hence it suffices to show that conditions (ii) and (iii) are satisfied for all
discrete valuation rings. Condition (iii) is satisfied because all regular local rings are
universally catenary (see [13, Example 1.1.3]). For condition (ii) it suffices to show
that for all finite maps T ! SpecR with T integral, the set of regular points of T
contains a non-empty open subset. This can be reduced to the case where the base ring
is a field, in which case it is clear.

Excellent discrete valuation rings have the following important property:

Proposition 2.5. Let R be an excellent discrete valuation ring and let L be a
finite (not necessarily separable) extension of the field of fractions K of R. Then
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the integral closure of R in L is finitely generated as an R-module. In other words,
excellent discrete valuation rings are Japanese.

Proof. See [18, Tag 07QV].

Although non-excellent discrete valuation rings exist (see [15, Proposition 11.6]),
they are rather rare. For example, every discrete valuation ring which arises as the
local ring of a normal scheme of finite type over a field at a point of codimension one
is excellent [15, Théorème 5.1].

3. Pseudo-Abelian varieties and virtual ranks

Let k be a field and let G be a smooth connected commutative algebraic group
over k. If k is perfect, then G fits into an exact sequence 0! H ! G ! A! 0,
whereH and A are a smooth connected affine algebraic group and an Abelian variety,
respectively. Furthermore, there exist a unipotent group U and a torus T such that
H D U �k T . If k is imperfect, then neither of those two statements holds true in
general. This motivates the following definition:

Definition 3.1. Let P be a smooth connected commutative algebraic group over
a field k. Then P is pseudo-Abelian if the maximal smooth connected affine closed
k-subgroup of P is trivial.

Remark. This definition is due to Totaro [19, Definition 0.1]. In fact, our definition
is slightly different from that of [19], where P is not assumed to be commutative. The
two definitions are, however, equivalent by [19, Theorem 2.1].

If G is any smooth connected commutative algebraic group over a field k, then G
fits into an exact sequence

0! H ! G ! P ! 0

with H affine and P pseudo-Abelian in a unique way. Moreover, pseudo-Abelian
varieties which are not Abelian exist over any imperfect field ([19, p. 694]). On the
other hand, any pseudo-Abelian variety over a perfect field is Abelian by Chevalley’s
theorem.

The following numerical invariants will be of particular importance in this paper:

Definition 3.2. Let G be a smooth commutative group scheme over a field k.
Suppose first that G is connected. By Chevalley’s theorem [4, Theorem 1.1], there
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exists a unique exact sequence

0! H ! G �k Spec kperf ! A! 0

withH affine and A Abelian. Furthermore, we can writeH D U �kperf T , where U is
a smooth connected unipotent group and T is a torus over kperf (see [7, Exposé XVII,
Théorème 7.2.1 b]).

We define the virtual Abelian rank ˛.G/ of G to be the dimension of A, and the
virtual unipotent rank u.G/ to be the dimension of U . Furthermore, we define the
toric rank t .G/ of G to be the dimension of T .

Finally, if G is not necessarily connected, we let ˛.G/ WD ˛.G0/ and similarly for
u.G/, t .G/.

Remark. The toric rank of G is not “virtual” because by Grothendieck’s theorem
on tori [7, Exposé XIV, Théorème 1.1], there exists a unique closed subtorus T 0 of G
over k such that T D T 0 �k Spec kperf . One verifies easily that the invariants ˛.G/,
u.G/ and t .G/ are invariant under any extension of the base field.

If P is a pseudo-Abelian variety over a field k, then t .P /D 0 because the maximal
torus would descend to k as we have just seen. Moreover, ˛.P / and u.P / are both
strictly positive if P is not Abelian. Indeed, if ˛.P /D 0 then P is affine (hence trivial),
and if u.P / D 0 then P is Abelian.

For smooth group schemes G over a field k, the invariants ˛.G/ and t .G/ are
encoded in a strong way by the `-torsion subschemes:

Proposition 3.3. Let G1 and G2 be smooth (not necessarily connected) commut-
ative group schemes of finite type over a field k. Suppose there exists a morphism
of k-group schemes f WG1 ! G2 such that, for infinitely many prime numbers `
invertible in k, the induced morphism f Œ`�WG1Œ`�! G2Œ`� is an isomorphism. Then
˛.G1/ D ˛.G2/ and t .G1/ D t .G2/.

Proof. The invariants in question do not change when we replace k by a bigger
field, so we may assume without loss of generality that k is algebraically closed. We
can choose a prime number ` as in the proposition which does not divide the number of
irreducible components of eitherG1 orG2. In particular, the morphismG01 Œ`�!G02 Œ`�

is an isomorphism. Hence we may assume that G1 and G2 are connected. Then the Gi
fit into exact sequences

0! Ui � Ti ! Gi ! Ai ! 0

for i D 1;2, where Tj and Uj are algebraic tori and smooth connected unipotent groups
over k, respectively, and Aj are Abelian varieties. Using Lemma 3.4 below, we see
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that the induced map .G1=U1/Œ`�! .G2=U2/Œ`� is an isomorphism. In particular, we
may suppose that G1 and G2 are semi-Abelian. But then .ker f /red is a semi-Abelian
variety, which must be trivial as otherwise ker f would contain non-trivial `-torsion
points. Hence f is a finite morphism. Since taking the quotient by a finite subgroup
does not change either t .Gj / or ˛.Gj /, we may even suppose that f is a closed
immersion. Hence t .G1/ � t .G2/ and ˛.G1/ � ˛.G2/. But because

dimF` Gj Œ`�.k/ D t .Gj /C 2˛.Gj /

for j D 1; 2, the map f Œ`� can only be an isomorphism if both inequalities are, in fact,
equalities. Hence the claim follows.

Remark. Clearly, the corresponding statement for u.�/ does not hold, as is shown
by the map Ga ! G2a ; x 7! .x; x/.

The preceding proposition will have several important applications in this paper.

Lemma 3.4. Let OK be a discrete valuation ring with field of fractions K. Let
U! SpecOK be a flat separated commutative group scheme such that U WD UK is
annihilated by a power of p D charK > 0 (which is the case, for example, if U is
unipotent). Let ` be a prime number invertible in OK . Then the map Œ`�WU! U is an
isomorphism.

Proof. Choose N 2 N such that ŒpN � D 0 on U . Choose a natural number m
such that m` � 1 mod pN . Then Œm� ı Œ`� D Œ`� ı Œm� D IdU on U . Hence the same
holds for U because U! SpecOK is flat and separated.

Remark. IfG is a smooth and connected group scheme over k, thenG is unipotent
if and only if it is annihilated by a power of p.

Proposition 3.5. Let OK be an excellent discrete valuation ring with field of
fractions K and residue field �. Assume charK > 0. Let P0 ! SpecOK be a smooth
separated group scheme whose generic fibre P is a pseudo-Abelian variety over K.
Then

(i) ˛.P0�/ � ˛.P / and

(ii) t .P0�/ � ˛.P / � ˛.P0�/.

Proof. Because ˛.�/ and t .�/ are invariant under extensions of the base field,
we may assume without loss of generality that OK is Henselian (the Henselisation of
an excellent discrete valuation ring is again excellent [15, Théorème 8.1 (iv)]). Let
L be a finite, purely inseparable extension of K such that P0L is an extension of an
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Abelian variety by a smooth connected unipotent group U . Since OK is excellent and
Henselian, the integral closure of OK in L is a discrete valuation ring. We may replace
OK by this integral closure and assume that U is already defined overK. Furthermore,
we may replace P0 by its identity component P00 and hence assume that P0! SpecOK

is of finite type. Indeed, the identity component P00
k
is open and closed in P0

k
[18, Tag

0B7R]. Hence Z WD P0
k
nP00

k
is closed in P0, and we have P00 D P0nZ. Since both

fibres of P00 ! SpecOK are quasi-compact [18, Tag 0B7R], so is P00 ! SpecOK .
Let U be the Zariski closure of U in P0. Then U is a flat and separated model of U .
Consider the exact sequence of fppf-sheaves

0! U! P0 ! P0=U! 0:

The sheaf P0=U which appears in this sequence is representable by [1, Chapitre IV,
Théorème 4.C]. Since the morphism U ! Spec OK is fppf by construction, so is
the morphism P0 ! P0=U. This shows that the group scheme P0=U is flat and of
finite presentation over OK . The fibres of the quotient scheme are clearly smooth
over the corresponding residue fields (since they are geometrically reduced), so the
morphism P0=U! SpecOK is smooth. Now the snake lemma tells us, together with
Lemma 3.4, that the maps P0Œ`�! P0=UŒ`� are isomorphisms for all prime numbers
` invertible in OK . Hence Proposition 3.3 implies that ˛.P0K/ D ˛..P0=U/K/ and
˛.P0�/ D ˛..P

0=U/�/, which reduces our claim to the case where the generic fibre of
P0 is an Abelian variety. However, in this case, the assertion is clear for dimension
reasons. This proves (i); assertion (ii) follows from an entirely analogous argument.

This proposition shows that the virtual Abelian rank is relatively well behaved in
the situation which interests us. Note that the toric rank can jump both up and down,
even when the base scheme is the spectrum of a complete discrete valuation ring and
the generic fibre is semi-Abelian.

3.1 – The Tate module

Let ` be a prime number invertible in k, and let P be a pseudo-Abelian variety
over k. As usual, we define the Tate module of P as

T`.P / WD lim
 �

P Œ`n�.ksep/:

This is a Z`-module with a natural action of Gal.ksep=k/. In order to understand the
structure of T`.P /, we need the following lemma:

Lemma 3.6. Let P be a pseudo-Abelian variety over a field k. Then there exists a
finite, purely inseparable extension L=k, together with an exact sequence

0! H ! PL ! A! 0;
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whereH and A are a smooth connected commutative unipotent algebraic group over
L and an Abelian variety over L, respectively. Furthermore, given such an L, the exact
sequence is uniquely determined by P .

Proof. Let kperf be the perfect closure of k. Since kperf is perfect, we may apply
Chevalley’s theorem to P �k Spec kperf , so we obtain an exact sequence 0! H 0 !

P �k Spec kperf ! A0 ! 0, whereH 0 and A0 are a commutative smooth connected
affine algebraic group and an Abelian variety over kperf , respectively. Since all schemes
appearing in this sequence are of finite presentation over kperf , the sequence descends
to a finite subextension L of k � kperf , which must be purely inseparable. Now
suppose that, over a field L as in the lemma, we have another such exact sequence
0!H 00! PL! A00! 0. ThenH 00 maps intoH 0 and the same argument in reverse
shows thatH 0 D H 00.

This lemma allows us to give a precise description of the structure of T`.P /:

Proposition 3.7. Let P be a pseudo-Abelian variety over a field k, and let ` be
a prime number invertible in k. Then T`.P / is a finitely generated free Z`-module
whose rank equals 2˛.P /.

Proof. Choose a finite purely inseparable extension L=k and an exact sequence
0! H ! PL ! A! 0 as in Lemma 3.6. Since the map Œ`n�WH ! H is an iso-
morphism (asH is unipotent, smooth, and connected), the snake lemma tells us that
the morphism PLŒ`

n�! AŒ`n� is an isomorphism. Hence we find

T`.PL/ D T`.A/:

However, by topological invariance of the étale site (see Proposition 2.3), the Galois
modules T`.P / and T`.PL/ are canonically identified, so we obtain our claim.

3.2 – Néron models

Let R be a discrete valuation ring with field of fractions K. Suppose further that
G! SpecR is a smooth separated group scheme. Recall that G! SpecR is a Néron
model1 of its generic fibre if it satisfies the following universal property: for each

(1) What we define here is called a Néron lft-model in [3]; in [3], Néron models are of finite
type over R by definition. The term Néron lft-model is still used sometimes to emphasise that
general smooth separated models are allowed.
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smooth morphism T ! SpecR and each K-map 'WTK ! GK , there exists a unique
R-map T ! G which extends '.

Now let OK be an excellent discrete valuation ring with residue field �, maximal
ideal m D h�i and field of fractions K, as before. We shall always assume that the
characteristic p of K is positive. In this case, the field K is never perfect (since no
uniformiser of OK is contained in the image of the Frobenius), so there will be plenty
of pseudo-Abelian varieties over K which are not Abelian varieties. Whenever L is a
finite extension of K (separable or not), we shall denote the integral closure of OK in
L by OL; this is a finite extension of OK since OK is excellent.

Proposition 3.8. Let P be a pseudo-Abelian variety over K. Then P admits a
Néron model P over OK . Moreover, P is of finite type over OK .

Proof. Let Ksh be the field of fractions of a strict Henselisation of OK . Then
the extension K � Ksh is separable (because the strict Henselisation is the colimit
of a filtered system of étale OK-algebras by construction), so PKsh is pseudo-Abelian
[19, Lemma 2.3]. In particular, PKsh does not contain any closed subgroups isomorphic
to Gm or Ga. Therefore the claim follows from [3, Chapter 10.2, Theorem 1 (b0)].

Definition 3.9. Let P be a pseudo-Abelian variety over K with Néron model P
over OK . Let P0 ! SpecOK be another smooth separated model of finite type of P .
We define the defect ı.P0/ of the model P0 to be

ı.P0/ WD ˛.P / � ˛.P0�/:

Moreover, we define the defect ı.P / of P to be the defect of the Néron model ı.P/.

By Proposition 3.5, ı.P0/ � 0 for all smooth group schemes P0 ! SpecOK with
pseudo-Abelian generic fibre. In particular, ı.P / � 0 for all pseudo-Abelian varieties
P over K.

4. The Néron–Ogg–Shafarevich criterion for pseudo-Abelian varieties

Fix an excellent discrete valuation ring OK with residue field � and field of fractions
K. Assume p WD charK > 0. A fundamental result about Néron models of Abelian
varieties is that the information about whether the Abelian variety has good reduction is
completely encoded in the Galois representation on the Abelian variety’s Tate module.
In this paragraph, we shall prove an analogous result for pseudo-Abelian varieties. First
of all, we must define what good reduction should mean for pseudo-Abelian varieties
which are not Abelian.
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Definition 4.1. Let P be a pseudo-Abelian variety over K. Then P has good
reduction if and only if ı.P /D 0, i.e., if and only if the virtual Abelian rank is constant
in the family P! SpecOK , where P! SpecOK is the Néron model of P .

This definition coincides with the usual one if P is Abelian. Before we state our
main result, we need one more technical preparation.

Lemma 4.2. The following hold:

(i) Let R � S be a finite extension of (not necessarily excellent) discrete valuation
rings with the property that the induced extension of fields of fractions is purely
inseparable. Then the morphism SpecS ! SpecR is a universal homeomorphism.

(ii) Suppose that R is excellent and let S be the integral closure of R in a finite purely
inseparable extension of the field of fractions of R. Then S is a discrete valuation
ring and the extension R � S is finite.

Proof. (i) The statement is clear if the field of fractions of R has characteristic
zero, so we shall assume that the characteristic p of this field is positive. A morphism
between affine schemes is a universal homeomorphism if and only if it is bijective,
induces purely inseparable extensions on residue fields, and the corresponding map
on rings is integral (see [9, Proposition 2.4.5]). Integrality and bijectivity are clear.
Hence all that remains to be shown is that the induced extensions of residue fields
at the special points are purely inseparable. Let x be an element of the residue field
of S . Choose an element y of S lifting x. By our assumption on fields of fractions,
there exists some n 2 N such that ypn 2 R. If we choose such an n, we see that xpn is
contained in the residue field of R. Hence the claim follows.

(ii) The claim that S is finite overR follows becauseR is excellent and hence Japanese
(see Proposition 2.5). Therefore we know already that S is a Dedekind domain, all of
whose prime ideals are principal. Hence all that remains to be shown is that S is local.
Let p, q be two non-zero prime ideals in S . Then p \R and q \R are both equal to
the maximal ideal of R. In particular, each element of p has a power which lies in q,
and vice versa. This forces p D q.

Remark. Because we do not assume that R is Henselian, the statement in part (ii)
that S is a discrete valuation ring is not obvious.

For later use, recall the following structure theorem for quasi-finite separated
schemes over Henselian local rings:

Proposition 4.3. Let X ! SpecR be a quasi-finite separated morphism of
schemes, where R is a Noetherian Henselian local ring. Then X admits a unique



O. Overkamp 96

decomposition X D X f t X� into disjoint open (and closed) subschemes such that
X f ! SpecR is finite and such that the special fibre of X� ! SpecR is empty. This
decomposition is functorial in X .

Proof. See [5, Theorem 4.10]. In fact, this is an immediate consequence of
Zariski’s main theorem [18, Tag 05K0] together with [18, Tag 04GG (1), (10)].

Now we let OK be as at the beginning of this paragraph (i.e., any excellent discrete
valuation ring of equal positive characteristic p), and let P be a pseudo-Abelian variety
over K. Choose a finite, purely inseparable extension L of K such that there is an
exact sequence

0! U ! PL ! A! 0;

where U and A are a smooth connected commutative unipotent group over L and an
Abelian variety over L, respectively.

Proposition 4.4. Let OK and P be as above. Further let P! SpecOK be the
Néron model of P . Denote by OL the integral closure of OK in L and by A the Néron
model of A over OL. Let n 2 N and let ` be a prime number invertible in OK . Then
the morphisms

.POL/Œ`
n�! AŒ`n�

and
PŒ`n�! .ResOL=OKA/Œ`

n�

induced by POL ! A and P! ResOL=OKA, respectively, are isomorphisms.

Proof. We have a canonical morphism POL ! A by the universal property of the
Néron model, and hence a corresponding morphism P! ResOL=OKA by the universal
property of the Weil restriction. Let us now show that the induced map .POL/Œ`

n�!

AŒ`n� is an isomorphism. Since AŒ`n� is étale over OL and SpecOL ! SpecOK is a
universal homeomorphism by Lemma 4.2, there exists a unique étale group scheme I
over OK together with an isomorphism

I �OK SpecOL ! AŒ`n�

(see Proposition 2.3). Now observe that the generic fibre of I is canonically isomorphic
to P Œ`n�, so the universal property of the Néron model gives us a morphism I! P

extending this isomorphism. This map, in turn, induces a morphism

AŒ`n� D I �OK SpecOL ! .POL/Œ`
n�;
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which is an inverse to the morphism from the proposition. The second isomorphism
can be constructed from the first by applying the functor ResOL=OK� and noting that
the map ResOL=OK .AŒ`

n�/! .ResOL=OKA/Œ`
n� is an isomorphism.

Corollary 4.5. Keep the notation from the previous proposition and let �0 be the
residue field of OL. Then we have

(i) ˛.P / D ˛.ResL=KA/,

(ii) ˛.P�/ D ˛..ResOL=OKA/�/ D ˛.P�0/ D ˛.A�0/,

(iii) t .P�/ D t ..ResOL=OKA/�/ D t .P�0/ D t .A�0/.

Proof. This follows from Proposition 4.4 together with Proposition 3.3.

Now fix a separable closure Ksep of K. Let Osh
K be a strict Henselisation of OK

given by the choice of a separable closure �sep of � and let OK ! Osh
K be the cor-

responding embedding. Let OK;0 be the localisation of the integral closure xOK of
OK in Ksep at a maximal ideal n lying over the maximal ideal of OK . Then OK;0=n

is an algebraically closed field [18, Tag 0BSP], so we may choose a �-embedding
�sep ! OK;0=n. Such a choice gives us an embedding Osh

K ! OK;0 (since OK;0 is
strictly Henselian local; see [18, Tags 0BSQ and 08HR]) and hence an embedding
Ksh!Ksep, whereKsh WD FracOsh

K . We let the inertia group IK ofK be the subgroup
Gal.Ksep=Ksh/ of Gal.Ksep=K/. Of course, IK depends upon the choice of a maximal
ideal and an embedding as above, but this ambiguity is harmless for our purposes.

Now suppose that L is a finite purely inseparable extension of K, such as the one
chosen at the beginning of this paragraph. Then Lsep WD L˝K K

sep is a separable
closure ofL, and the absolute Galois groups Gal.Lsep=L/ and Gal.Ksep=K/ are canon-
ically isomorphic as profinite groups via the morphism Gal.Lsep=L/! Gal.Ksep=K/,
� 7! � jKsep .

Denoting the residue field of OL by �0, we observe that OL ˝OK Osh
K is the strict

Henselisation of OL with respect to the separable closure �0 ˝� �sep of �0 [18, Tag
08HV]. The morphism Spec xOL ! Spec xOK (where xOL is the integral closure of OL

in L˝K Ksep) is bijective, so there is a unique maximal ideal n0 � xOL corresponding
to n. Let OL;0 be the localisation of xOL at n0. We obtain a unique embedding

OL ˝OK Osh
K ! OL;0

compatible with the unique map �0 ˝� �sep ! OL;0=n
0 extending �sep ! OK;0=n D

OL;0=n
0, and hence an embeddingL˝KKsh!L˝KK

sep. The subgroups Gal.L˝K
Ksep=L˝K K

sh/ and Gal.Ksep=Ksh/ are canonically identified under the isomorphism
Gal.Lsep=L/! Gal.Ksep=K/ constructed above.
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We are now ready to state and prove our first main result. The proof of the main
new implications is self-contained, insofar as it does not use the well-known analogous
result for Abelian varieties. We follow the usual proof for Abelian varieties (see, for
example, [3, Chapter 7.4, proof of Theorem 5]) quite closely.

Theorem 4.6. Using the same notation as before, the following are equivalent:

(i) The pseudo-Abelian variety P has good reduction over OK ,

(ii) the pseudo-Abelian variety ResL=KA has good reduction over OK ,

(iii) the Abelian variety A has good reduction over OL,

(iv) there exists a prime number ` 2 O�K such that the Galois representation on T`.P /
is unramified, and

(v) for all prime numbers ` 2 O�K , the Galois representation on T`.P / is unramified.

Proof. Note that, for all claims made in the proposition, the truth value does not
change when replacing OK by a strict Henselisation of OK [3, Chapter 7.2, Corollary
2]. Hence we shall assume that OK is strictly Henselian (so that, as a consequence, �
is separably closed). In particular, we have IK D Gal.Ksep=K/. Let P be the Néron
model of P over OK . Then there is a finite étale group scheme ˆ over � together with
an exact sequence

0! P0� ! P� ! ˆ! 0:

Furthermore, we can find a torus T , a smooth connected unipotent group U , and an
Abelian variety B over �alg, together with an exact sequence

0! T ��alg U ! P0
�alg ! B ! 0

(see Definition 3.2).

(i)) (v). Let ` be a prime number invertible in OK and n 2 N. By Proposition 4.3,
PŒ`n� can be written as a disjoint union

PŒ`n� D .PŒ`n�/f t .PŒ`n�/�;

where .PŒ`n�/f is finite over OK and .PŒ`n�/� has empty special fibre. This follows
because OK is Henselian and PŒ`n� is quasi-finite étale over OK . Because P has good
reduction in the sense of Definition 4.1, we must have

ordPŒ`n�K D `2n˛.P / D `2n˛.P�/ � ordPŒ`n�� I

the other inequality follows anyway because PŒ`n� is quasi-finite étale over OK . This
forces .PŒ`n�/� to be empty, which implies that PŒ`n� is finite over OK . Since OK is
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strictly Henselian, PŒ`n� must (as a scheme) be a finite disjoint union of copies of
SpecOK , so the Galois action on P Œ`n�.Ksep/ is trivial. This triviality carries over to
the limit.

(v)) (iv) is obvious.

(iv)) (i). Let ` be a prime number satisfying the condition of (iv). By Proposition 3.5,
we only have to exclude the case ı.P / > 0. Using the fact that the map P� Œ`

n�.�/!

P� Œ`
n�.�alg/ is an isomorphism, we can use the two exact sequences mentioned at the

beginning of this proof to show that

`n�2˛.P / � ordP� Œ`n�.�/ � ordˆ � `n.t.P�/C2˛.P�//:

The first inequality follows from the fact that the Galois representation on P Œ`n�.Ksep/

is trivial by our assumption in (iv), which means that P Œ`n� is a constant group scheme
overK. Therefore it has a finite étale model over OK , which admits a closed embedding
into P by the universal property of the Néron model. The inequality above can be
rearranged as

1 � ordˆ � `n.t.P�/�2ı.P //:

In order for this to be valid for all n, we must have t .P�/ � 2ı.P /. Since we also have
t .P�/ � ı.P / by Proposition 3.5, this forces ı.P / D 0.

Because the Galois representations T`.P /, T`.A/ and T`.ResL=KA/ are canonic-
ally identified, we can use the same arguments to show the implications (ii)) (v))
(iv)) (ii) and (iii)) (v)) (iv)) (iii). This concludes the proof.

Remark. In analogy with the case of Abelian varieties, one might have guessed
that the correct definition for good reduction of pseudo-Abelian varieties should be
the requirement that the identity component of the special fibre of the Néron model
be itself pseudo-Abelian. There are two reasons why this is not the case. Firstly, with
this definition, the analogue of the Néron–Ogg–Shafarevich criterion we proved above
would not hold, and secondly, this alternative definition would not be equivalent to the
usual definition for Abelian varieties. We shall now give an example exhibiting both of
those phenomena: Let R be an excellent strictly Henselian discrete valuation ring with
imperfect residue field � and uniformiser � . Let a 2 R be an element whose image Na
in the residue field � ofR is not a pth power, where p D char� D charR. LetK be the
field of fractions of R and let L WD KŒX�=hXp C �X � ai. Then the extension L=K
is separable. However, if we let S be the integral closure of R in L (which is a discrete
valuation ring because R is Henselian), then the induced extension � � �0 of residue
fields is purely inseparable. Indeed, we must have Œ�0 W �� � ŒL WK�D p, but the image
of X in �0 has degree p over �, so this inequality is an equality and �0 D �. Na1=p/. In
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particular, S ˝R � D �0. Now let E! SpecS be an Abelian scheme over S . Then E
is the Néron model of its generic fibre, and hence so is E0 WD ResS=RE (at this point we
use that E! SpecS is projective; see [3, Chapter 6.4, Theorem 1]). Because L=K is
separable, the generic fibre of E0 is proper. However, since the residue field extension is
inseparable, the special fibre of E0 is not proper (see [6, Example A.5.6]). The special
fibre is still a pseudo-Abelian variety since it is clearly smooth and connected (for the
latter claim, see [6, Corollary A.5.9]), and if G is a smooth connected affine algebraic
group over �, a morphism G ! E0� is the same as a morphism G�0 ! E�0 , and clearly
all such morphisms vanish.

If P is a pseudo-Abelian variety over K, there exists a unique exact sequence

0! E ! P ! V ! 0;

where E and V denote an Abelian variety and a smooth connected unipotent group
over K, respectively. This follows from [19, Theorem 2.1]. We have the following
proposition:

Proposition 4.7. With the notation above, the dimension of E is equal to the
virtual Abelian rank of P . Furthermore, P has good reduction over OK if and only if
so does E.

Proof. Replace K by a finite purely inseparable extension such that there exists
an exact sequence 0! U ! P ! A! 0 with A an Abelian variety and U a smooth
connected unipotent group over K. Choose a prime number ` invertible in K. Then
the maps T`.E/! T`.P /! T`.A/ are isomorphisms of Galois representations, so
both claims follow from Theorem 4.6.

4.1 – Properties of pseudo-Abelian varieties with good reduction

We shall see that the Néron model of a pseudo-Abelian variety P behaves like the
Néron model of an Abelian variety with good reduction in some important ways, but
the behaviour can be very different in some other respects. As before, we let OK be
an excellent discrete valuation ring with residue field � and field of fractions K, both
assumed to be of characteristic p > 0. Further, we let P be a pseudo-Abelian variety
over K.

Proposition 4.8. Let P be a pseudo-Abelian variety over K with good reduction.
Let F=K be a finite separable extension. Let S be the localisation of the integral
closure of OK in F at a non-zero prime ideal. Then PF has good reduction over S .
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Proof. We may assume without loss of generality that OK is strictly Henselian
[3, Chapter 7.2, Corollary 2]. Then the Galois representation on T`.P / is trivial for
all prime numbers ` 2 O�K . The Galois representation T`.PF / arises from that of
T`.P / by restricting the action of Gal.Ksep=K/ to the subgroup Gal.Ksep=F /, which
is therefore trivial as well. Hence the claim follows from Theorem 4.6, (v)) (i).

Remark. It is not true in general that Néron models of pseudo-Abelian varieties
with good reduction commute with faithfully flat base change (although this is always
the case for Abelian varieties). An example can be constructed as follows: Let OK be
a complete discrete valuation ring with algebraically closed residue field. Let L=K
be a finite non-trivial purely inseparable extension, and let F be a finite non-trivial
separable extension. Let E! SpecOK be an elliptic curve with generic fibre E. We
can choose an isomorphism

 WOK ! LieE

(see [12, paragraph 1] for an introduction to Lie algebras). Let P WD ResL=KEL. Then
the Néron model P of P is isomorphic to ResOL=OKEOL in a canonical way. Hence
the Lie algebra of P is equal to .LieE/˝OK OL (viewed as a module over OK). The
Lie algebra of the Néron model PF of PF is equal to .LieE/˝OK OF˝KL (viewed
as a module over OF ) by the same argument. We obtain a commutative diagram

.LieP/˝OK OF

��

// LiePF

��

.LieE/˝OK OL ˝OK OF

 �1˝Id
��

// .LieE/˝OK OL˝KF

 �1˝Id
��

OL ˝OK OF // OL˝KF :

The vertical maps are all isomorphisms. However, the bottom horizontal map is not
an isomorphism (indeed, choose uniformisers �F and �L˝KF of OF and OL˝KF ,
respectively, and " 2 O�L˝KF such that �F D "� ŒLWK�L˝KF

. Then

OL ˝OK OF D OLŒ�F � D OL
�
"�

ŒLWK�
L˝KF

�
¨ OLŒ"�L˝KF � D OL˝KF I

see [17, Chapitre 1, Proposition 18]).

If A is an Abelian variety over K, then a smooth separated model A! SpecOK

with the property that ı.A/ D 0 is unique up to unique isomorphism, if it exists. This
follows because the condition stated above implies that A! SpecOK is proper, and
hence the Néron model of its generic fibre. The remark above shows that this fails for
pseudo-Abelian varieties. However, something only marginally weaker is true:
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Proposition 4.9. Let OK be an excellent discrete valuation ring with field of
fractions K. Let P be a pseudo-Abelian variety over K. Suppose that there exists a
smooth separated model P0 over OK of P of finite type such that ı.P0/ D 0. Then P
has good reduction.

Proof. We may assume without loss of generality that OK is strictly Henselian
([3, Chapter 7.2, Corollary 2]). It suffices to show that, for some prime number `
invertible in OK , the finite étale K-group schemes P Œ`n� admit finite étale models
over OK . Indeed, this will imply that the group schemes P Œ`n� are constant, so the
Galois action on T`.P / is trivial, which implies our result by Theorem 4.6. Hence it is
enough to prove that the OK-group schemes P0Œ`n� are finite over OK for all n � 0.
The schemes P0Œ`n� are clearly quasi-finite étale over OK , so we have a decomposition

P0Œ`n� D P0Œ`n�f t P0Œ`n��;

where P0Œ`n�� has empty special fibre and P0Œ`n�f is finite over OK (see Proposition
4.3). Our assumption on the virtual Abelian ranks implies that P0Œ`n�� D ;, so that
our claim follows.

4.2 – The group of connected components

For an Abelian variety A over a discretely valued field K with separably closed
residue field �, Grothendieck [11, Paragraph 11] proved the formula

ˆ.`/.�/ D H 1.I; T`.A//tors;

where I denotes an inertia group of K and ` a prime number invertible in �. The
cohomology refers to continuous Galois cohomology. We shall briefly recall the
argument in order to show that it holds for pseudo-Abelian varieties P ! SpecK.
First note that we may assume without loss of generality that OK is strictly Henselian,
so that I WD IK D Gal.Ksep=K/. Suppose P denotes the Néron model of P over OK .
We have

T`.P /
I
D lim
 �

P0Œ`n�.OK/:

For each n > 0, we have an exact sequence

0! P0Œ`n�.OK/! PŒ`n�.OK/! ˆŒ`n�.�/! 0;

which is the same as an exact sequence 0 ! T`.P /
I ˝Z` Z=`nZ ! .T`.P / ˝Z`

Z=`nZ/I ! ˆŒ`n�.�/! 0. Taking inductive limits, we obtain an exact sequence

0! T`.P /
I
˝Z` Q`=Z` ! .T`.P /˝Z` Q`=Z`/

I
! ˆ.`/.�/! 0:
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Now consider the exact sequence of I -representations

0! T`.P /! T`.P /˝Z` Q` ! T`.P /˝Z` Q`=Z` ! 0:

By considering the long exact cohomology sequence, we can construct a canonical
exact sequence

0! �.`/.�/! H 1.I; T`.P //! H 1.I; T`.P /˝Z` Q`/ D H
1.I; T`.P //˝Z` Q`;

which implies Grothendieck’s formula.
Now suppose only that OK is excellent (without assuming that � is separably

closed). By [19, Theorem 2.1], there is a unique exact sequence

0! E ! P ! V ! 0;

where E is an Abelian variety and V a smooth connected commutative unipotent
algebraic group overK, respectively. Because V Œ`n�D 0 for all n � 0, we see immedi-
ately that the induced morphism T`.E/! T`.P / is an isomorphism. Hence we obtain
the following proposition:

Proposition 4.10. Let P be a pseudo-Abelian variety over K and let E be the
maximal Abelian subvariety of P as above. Let ˆE and ˆP be the group schemes of
connected components of the Néron models of E and P , respectively. Then, for any
prime number ` invertible in OK , the canonical map

ˆE .`/! ˆP .`/

is an isomorphism.

Proof. First assume that OK is strictly Henselian. Then we have a commutative
diagram

ˆE .`/.�/

��

// ˆP .`/.�/

��

H 1.I; T`.E//tors // H 1.I; T`.P //tors;

where the horizontal maps are the obvious ones and the vertical maps are those con-
structed in the discussion above. The vertical arrows are isomorphisms by construction
and the bottom horizontal arrow is an isomorphism because so is T`.E/! T`.P /.
Hence the top horizontal arrow is an isomorphism. If OK is not necessarily strictly
Henselian, we still obtain an isomorphism ˆE .�

sep/.`/! ˆP .�
sep/.`/ as above, and

the naturality of the Néron model shows that this morphism is Galois equivariant. This
means that the isomorphism constructed above descends to an isomorphism of étale
�-group schemes ˆE .`/! ˆP .`/.
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As a consequence, we obtain the following corollary:

Corollary 4.11. Let P be a pseudo-Abelian variety over K with good reduction.
Then ordˆP is a power of p D char � D charK.

Proof. Write P as an extension of a smooth connected commutative unipotent
group U by an Abelian variety E as above. Since the map T`.E/! T`.P / is an
isomorphism, Theorem 4.6 implies that E has good reduction. Since E is an Abelian
variety, this means thatˆE D 0. By the proposition above,ˆP .`/D 0 for all ` 6Dp.

It is not known whether there exist pseudo-Abelian varieties P over K with good
reduction such that ˆP 6D 0. We shall consider some examples of pseudo-Abelian
varieties below; in each case, we shall see that the component group is trivial. Let us
begin with the following proposition:

Proposition 4.12. Let P be a pseudo-Abelian variety over the field K which is
isomorphic to ResL=KA for some Abelian variety A over a finite purely inseparable
extension L of K which has good reduction over the integral closure OL of OK in L.
Then ˆP D 0.

Proof. Let A be the Néron model of A over OL Then ResOL=OKA (which is
representable by Proposition 2.1 and Lemma 4.2) is the Néron model of P over OK ,
as can be seen easily by considering the universal property. Hence the special fibre
of the Néron model of P is isomorphic to ResOL˝OK

�=� .A �OL SpecOL ˝OK �/,
which is connected by [6, Proposition A.5.9].

Now recall the construction of another class of pseudo-Abelian varieties over K
given in [19, Lemma 8.1]: Let L be a purely inseparable extension of K of degree
p with ring of integers OL, let U WD ResL=KGm=Gm (which is a smooth connected
commutative algebraic group overK of exponent p), and letE be an elliptic curve with
the property that EŒp� Š �p � Z=pZ and such that E can be defined over Kp . Note
that R WD ResL=KGm is pseudo-reductive, hence [19, Lemma 8.1] applies. If Gm and
R denote the Néron lft-models ofGm and R, respectively, one convinces oneself easily
that N WD ResOL=OKGm=Gm is the Néron model of U over OK (indeed, N is clearly
smooth and of finite type, so the claim follows from Hilbert’s theorem 90, together with
[3, ,Chapter 7.1, Theorem 1]). We also see that ˆU Š Z=eL=KZ as a group scheme,
where eL=K denotes the ramification index of the extension L=K. This number is an
element of the set ¹1; pº. Recall that the extension 0! Gm ! R! U ! 0 comes
from an extension 0!�p!H ! U ! 0 in a unique way, and the push-out P of the
maps �p!H and �p! E is a pseudo-Abelian variety overK (see [19, Lemma 8.1]
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for both those claims). The remainder of this paragraph will be dedicated to proving
the following proposition:

Proposition 4.13. Suppose P arises from the construction recalled above. Sup-
pose further that E has good reduction over OK , and that the Néron model E of E has
the property that there exists an isomorphism

EŒp� Š �p � Z=pZ

over OK . Then the Néron model P of P over OK has the following properties:

(i) The canonical map E! P is a closed immersion, and

(ii) the morphism P! N factors through N0 and the induced map P=E! N0 is an
isomorphism. In particular, we have ˆP D 0.

Proof. Let us begin by showing (i). Observe that the sequence 0! Gm ! R!

U ! 0 splits over L. Hence the same is true for the extension 0! E! P ! U ! 0.
Therefore, the morphism E! P acquires a retraction after base change to OL (this
follows from the universal property of the Néron model becauseE has good reduction).
Hence E! P becomes a closed immersion after an fppf-cover and is therefore a closed
immersion itself.

Now we shall prove that the extension 0!�p!H !U ! 0 extends canonically
to an extension 0! �p ! H! N0 ! 0. Consider the element Œ0! Gm ! R0 !

N0 ! 0� 2 Ext1.N0;Gm/. We have an exact sequence

0 D Hom.N0;Gm/! Ext1.N0;�p/! Ext1.N0;Gm/
�p
! Ext1.N0;Gm/I

the Ext-groups are taken in the category of fppf-sheaves. The last map in this sequence
is equal to zero since N0 is killed by p. Hence Ext1.N0;�p/! Ext1.N0;Gm/ is an
isomorphism and the element Œ0! Gm ! R0 ! N0 ! 0� of Ext1.N0;Gm/ comes
uniquely from an element of Ext1.N0;�p/. This element is represented by an exact
sequence 0! �p ! F ! N0 ! 0 for some fppf-sheaf F. This sheaf is clearly a
separated algebraic space2 of finite presentation over OK with a group structure, so it
is representable by [1, Chapitre IV, Théorème 4.B]. This also shows that the extension
0! E ! P ! U ! 0 extends uniquely to an exact sequence

0! E! yP! N0 ! 0:

(2) This is because fppf-descent of algebraic spaces is always effective; see, for example, the
Stacks Project [18, Tag 0ADV].
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Our goal is to show that the canonical map yP! P is an isomorphism, which will
clearly imply claim (ii) from the proposition. Because E! P is a closed immersion,
there exists a canonical map P=E! N, and the map yP! P induces a morphism
N0 D yP=E! P=E. We shall need the following lemma:

Lemma 4.14. The map P=E! N is an open immersion.

Proof. First observe that the map above is étale. Using the fibre-wise criterion of
flatness, we can check this at the two fibres separately. The claim for the generic fibre is
obvious. Since the compositionN0! P=E! N is the canonical open immersion, the
induced map on special fibres is étale as well, so the claim follows. Hence the kernel
of P=E! N is quasi-finite étale, and we already know that it is trivial generically.
By looking at the base change of this kernel to Osh

K , we see that it must be finite
over OK , and hence trivial. Putting things together, we see that P=E! N is an étale
monomorphism of schemes, and hence an open immersion.

We must now distinguish two cases. Assume first that eL=K D 1. Then N D N0,
and the lemma above shows that the sequence 0! E! P! N! 0 is exact. Hence
yP D P in this case.

Now suppose that eL=K D p. Then the map P=E!N is either surjective or induces
an isomorphism P=E! N0. Hence we only have to exclude the first case. Suppose
therefore, in order to derive a contradiction, that the sequence

(4.1) 0! E! P! N! 0

is exact. Considering the exact sequence 0! �p ! E! E=�p ! 0, we obtain an
exact sequence

0 D Hom.N;E=�p/! Ext1.N;�p/! Ext1.N;E/! Ext1.N;E=�p/:

We claim that the image of (4.1) in Ext1.N;E=�p/ vanishes. This is equivalent to the
claim that the sequence

0! E=�p ! P=�p ! N! 0

splits. However, the second and fourth terms of this sequence are Néron models (of
finite type) of their respective generic fibres, which implies that so is the middle term
(see [3, Chapter 7.5, proof of Proposition 1 (b)]). It follows from the construction of P
that the sequence 0! E=�p ! P=�p ! U ! 0 splits, and this splitting induces
one at the level of Néron models. Hence the exact sequence of Ext-groups above shows
that (4.1) comes from a unique exact sequence

0! �p ! S! N! 0;
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whose generic fibre must, by uniqueness, coincide with the extension of the same kind
we used to construct P . Taking the push-out of this sequence along �p ! Gm gives
us an exact sequence

0! Gm ! OS! N! 0:

However, this contradicts the following lemma:

Lemma 4.15. The following hold:

(i) The canonical morphism OS! R is an isomorphism.

(ii) The sequence 0! Gm ! R! N! 0 does not come from an exact sequence
0! �p ! S! N! 0.

Proof. For part (i), all we have to show is that for all discrete valuation rings T
of ramification index 1 over OK , the canonical map OS.T /! OS.Frac T / is bijective
[3, Chapter 10.1, Proposition 2]. The same argument as in the proof of [3, Chapter
7.5, Proposition 1] reduces this claim to the assertion that the map OS.T /! N.T /

is surjective. This will follow if we can show thatH 1.SpecT;Gm/ D 0. However, if
j denotes the inclusion of the special point of Spec T , we have an exact sequence
0!Gm! Gm! j�Z! 0, which gives rise to an exact sequenceH 1.SpecT;Gm/!
H 1.Spec T;Gm/! H 1.Spec T; j�Z/. Clearly, H 1.Spec T;Gm/ D Pic Spec T D 0,
and the last term of the sequence is equal to the Galois cohomology of the residue field
of T with coefficients in Z, which is trivial as well.

For part (ii), note that if 0! Gm ! R! N! 0 came from an exact sequence
0! �p ! S! N! 0, then the sequence 0! Gm=�p ! R=�p ! N! 0 would
have to split, which is not the case because the component group ofR=�p is isomorphic
to Z, whereas the component group of N is isomorphic to Z=pZ since we assume
eL=K D p.

This lemma finishes the proof of Proposition 4.13

Both examples treated above seem to suggest that, for a pseudo-Abelian variety P
over K with good reduction over OK , it should be reasonable to expect that ˆP D 0.
There is some further evidence that, for a pseudo-Abelian variety P over K (not
necessarily with good reduction), the component group scheme ˆP should vanish
almost always in the following sense: Suppose S is an excellent Dedekind scheme
with field of fractions K, and let P be a pseudo-Abelian variety over K. If P admits a
Néron model P! S , then the component groups will vanish at all but finitely many
closed points of T (see [3, Chapter 10.1, Corollary 10]). Although it is not known
whether pseudo-Abelian varieties admit Néron models over general excellent Dedekind
schemes, this would follow from resolution of singularities in characteristic p. Indeed,
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one sees easily that the maximal unirational subgroup uniK.P / of P over K is trivial
(since such groups are always smooth, connected, and affine), so the existence of
Néron models over general Dedekind schemes would follow from the existence of
regular compactifications of pseudo-Abelian varieties (see [3, Chapter 10.3, Theorem
5 (a)]). Since this is widely believed to hold, our observations can be viewed as further
evidence that almost all pseudo-Abelian varieties over discretely valued fields should
have trivial component group. This motivates the following question:

Question 4.16. Let OK be an excellent discrete valuation ring with field of
fractions K and let P be a pseudo-Abelian variety over K. Is it true that, if P has
good reduction, then ˆP D 0?

5. Pseudo-semi-Abelian reduction

In this paragraph we shall define an analogue of semi-Abelian reduction for pseudo-
Abelian varieties. The set-up will be the same as in the last paragraph: We let OK be an
excellent discrete valuation ring with residue field � and field of fractions K, assumed
to be of characteristic p > 0. Let P be a pseudo-Abelian variety over K. Classically,
an Abelian variety A over K is said to have semi-Abelian reduction if the identity
component A0 of the Néron model A of A is a semi-Abelian scheme over OK , i.e., if
its special fibre is an extension of an Abelian variety by a torus. This is equivalent to
the condition that the defect ı.A/ be equal to the toric rank of the special fibre of A. If
P is a pseudo-Abelian variety over K with Néron model P! SpecOK , then we still
have t .P�/ � ı.P / by Proposition 3.5.

Definition 5.1. The pseudo-Abelian variety P over K has pseudo-semi-Abelian
reduction (over OK) if

ı.P / D t .P�/:

In the realm of classical semi-Abelian reduction, there are two fundamental results.
The first is the semi-Abelian reduction theorem, due originally to Grothendieck, which
says that we can find a finite separable extension F=K such that the Abelian variety
acquires semi-Abelian reduction over the integral closure of OK in F . The second is a
characterisation of semi-Abelian reduction in terms of the Galois representation on the
Tate module of the Abelian variety. We shall see that both of these results hold true in
the world of pseudo-Abelian varieties as well. However, we shall also see that Néron
models of pseudo-Abelian varieties with pseudo-semi-Abelian reduction behave quite
differently from semi-Abelian schemes in some ways.
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Theorem 5.2. Let P be a pseudo-Abelian variety overK. Then there exists a finite
separable extension F=K with the following property: for all localisations S of the
integral closure of OK in F at a non-zero prime ideal, PF has pseudo-semi-Abelian
reduction over S .

Proof. Let L be a finite purely inseparable extension of K over which there is an
exact sequence 0! U ! PL! A! 0, where U is smooth, connected, commutative,
and unipotent, and A is an Abelian variety. By Grothendieck’s theorem on semi-
Abelian reduction (see [3, Chapter 7.4, Theorem 1]), there exists a finite separable
extension F 0 of L such that A acquires semi-Abelian reduction over F 0. Because
L=K is purely inseparable, F 0 is of the form F 0 D F ˝K L for some finite separable
extension F=K. We claim that P acquires pseudo-semi-Abelian reduction over F .
Indeed, let S be the localisation of the integral closure of OK in F at a non-zero prime,
and let S 0 be the integral closure of S in F ˝K L. Let P! Spec S be the Néron
model of PF , and let A be the Néron model of AF˝KL over S 0. Then the morphism

P �S SpecS 0 ! A

induces isomorphisms on `-torsion subschemes for all prime numbers ` 2 O�K by
Proposition 4.4, which implies (using Proposition 3.3) that the invariants ˛.�/ and
t .�/ of the special fibres of P and A coincide. Because AF˝KL has semi-Abelian
reduction by our choice of F , the claim of the proposition follows.

In the world of Abelian varieties, semi-Abelian models satisfy a uniqueness property
almost as strong as smooth proper models: Suppose that A is an Abelian variety over
K and that A! SpecOK is a smooth separated model with connected special fibre.
Assume further that t .A�/D ı.A/. ThenA is isomorphic to the identity component of
the Néron model of A. In particular, there is only one model of A with those properties
up to unique isomorphism. This fails for pseudo-Abelian varieties as shown by the
remark after Proposition 4.8. We do, however, have the following proposition:

Proposition 5.3. Let P be a pseudo-Abelian variety over K, and suppose that
there is a smooth separated model P0 ! SpecOK of P of finite type such that

t .P0�/ D ı.P
0/:

Then P has pseudo-semi-Abelian reduction.

Proof. We may assume without loss of generality that OK is strictly Henselian [3,
Chapter 7.2, Corollary 2]. Let P! SpecOK be the Néron model of P . Let ˛ WD ˛.P�/,
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˛0 WD ˛.P0�/, t WD t .P�/ and t 0 WD t .P0�/. We shall first show that t 0 � t . Let T 0 and T be
the maximal tori in the special fibres of P0 and P, respectively. Let ` be a prime number
invertible in OK which does not divide the number of irreducible components of the
special fibre of either P or P0. If the induced morphism T 0! T were not finite, the map
T 0Œ`�.�/! T Œ`�.�/ would not be injective. However, the map P0Œ`�.OK/! PŒ`�.OK/

is injective because PŒ`� and P0Œ`� are both separated and étale over OK and the map
is injective generically. Further observe that ordPŒ`�.OK/ D `tC2˛ , and similarly for
P0Œ`�.OK/. This shows that t 0 C 2˛0 � t C 2˛. Moreover, Proposition 3.5 tells us that
t C ˛ � ˛.P / D t 0 C ˛0. Putting all these inequalities together, we obtain

0 � t � t 0 � ˛0 � ˛ � 2.˛0 � ˛/ � t � t 0:

This forces ˛ D ˛0 and hence t D t 0.

Remark. The proof of the proposition above also shows that the invariants ˛0 and
t 0 do not depend on the choice of the particular model P0.

We can now state and prove an analogue of Grothendieck’s representation-theoretic
criterion for semi-Abelian reduction of Abelian varieties:

Theorem 5.4. Let OK be an excellent discrete valuation ring with field of fractions
K. Let Ksep be a separable closure and I � Gal.Ksep=K/ an inertia subgroup. Let P
be a pseudo-Abelian variety over K. Let ` be a prime number invertible in OK . Then
the following are equivalent:

(i) The pseudo-Abelian variety P has pseudo-semi-Abelian reduction over OK ,

(ii) the action of I on T`.P / is unipotent, and

(iii) for all � 2 I , we have .� � 1/2 D 0 as operators on T`.P /.

Proof. (i)) (iii). By [19, Theorem 2.1] we can find an Abelian variety E and a
unipotent group V over K together with an exact sequence 0! E ! P ! V ! 0.
Then the map T`.E/! T`.P / is an isomorphism, and it suffices to show that E has
semi-Abelian reduction (see [11, Proposition 3.5 and Corollaire 3.8]). Let E and P be
the Néron models of E and P , respectively. Then the morphism

EŒ`0�! PŒ`0�

is an isomorphism for all prime numbers `0 invertible on OK (this follows from the
Néron mapping property). Now Propositions 4.7 and 3.3 imply the claim.

(iii)) (ii) is trivial.
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(ii) ) (i). Since T`.E/ ! T`.P / is an isomorphism, we know that E has semi-
Abelian reduction over OK . Now the same argument as above shows that P has
pseudo-semi-Abelian reduction.

Corollary 5.5. Let P be a pseudo-Abelian variety over K. Let L be a finite
purely inseparable extension of K over which P is an extension of an Abelian variety
A by a smooth connected unipotent group U . Further, we write P as an extension
of a smooth connected unipotent group V by an Abelian variety E over K. Then the
following are equivalent:

(i) P has pseudo-semi-Abelian reduction over OK ,

(ii) E has semi-Abelian reduction over OK , and

(iii) A has semi-Abelian reduction over OL.

Proof. This follows from the previous theorem, together with the fact that the
Galois representations T`.P /, T`.A/, and T`.E/ are canonically isomorphic for all
prime numbers ` 2 O�K .

Just as in the case of Abelian varieties, we have the following proposition:

Proposition 5.6. Let 0! P1 ! P2 ! P3 ! 0 be an exact sequence of group
schemes over K, all of whose elements are pseudo-Abelian varieties. Then P2 has
pseudo-semi-Abelian reduction if and only if so do P1 and P3.

Proof. We have an exact sequence 0 ! T`.P1/ ! T`.P2/ ! T`.P3/ ! 0

for some choice of prime number ` 2 O�K . Now the proposition follows from
Theorem 5.4.

Proposition 5.7. Let P be a pseudo-Abelian variety over K and let F=K be a
finite separable extension. Assume moreover that P has pseudo-semi-Abelian reduc-
tion. Let S be the localisation of the integral closure of OK in F at a non-zero prime
ideal. Then PF has pseudo-semi-Abelian reduction over S .

Proof. Write P as an extension 0! E ! P ! V ! 0 of an Abelian variety E
and a smooth connected commutative unipotent group V over K. Since P has pseudo-
semi-Abelian reduction, it follows that E has semi-Abelian reduction by Corollary 5.5.
Since EF has semi-Abelian reduction over S , the same corollary implies that PF has
pseudo-semi-Abelian reduction, as desired.

Remark. If P is a pseudo-Abelian variety over K with pseudo-semi-Abelian
reduction and Néron model P ! Spec OK , it does not follow that the unipotent
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radical of P0
k
is trivial. Indeed, suppose that the residue field � is algebraically closed.

Then, if P arises as the Weil restriction of an Abelian variety over a non-trivial
purely inseparable extension of K with good reduction, the special fibre of P is the
Weil restriction of an Abelian scheme over a finite non-étale (hence non-reduced)
�-algebra A. Using that the special fibre of P is not proper, the following lemma
will show that the unipotent radical of P0� is non-trivial. Note that, in particular, the
unipotent radical of the special fibre of the Néron model cannot be removed after any
finite separable base change.

Lemma 5.8. Let � be a field and let B be a finite �-algebra. Let E be an Abelian
scheme over B . Then the maximal torus of ResB=�E is trivial.

Proof. First note that ResB=�E is representable by Proposition 2.2. We may
assume that � is algebraically closed and show that there are no non-trivial maps
Gm ! ResB=�E, which is the same as showing that all maps Gm ! E over B are
trivial. This is clearly the case at the special points of SpecB , so our assertion follows
from [7, Exposé IX, Corollaire 3.5].

In fact, this is a special case of a more general phenomenon:

Proposition 5.9. Let P be a pseudo-Abelian variety over K and let P0 be a
smooth separated model of P such that P00� is semi-Abelian (i.e., is an extension of an
Abelian variety by a torus). Then P is an Abelian variety with semi-Abelian reduction.
If P00� is an Abelian variety then P has good reduction.

Proof. Assume that OK is strictly Henselian. We begin by showing that the
special fibre of the Néron model P! SpecOK of P must be semi-Abelian as well.
Consider the canonical map P0 ! P. Then, for all prime numbers ` 2 O�K , the map
P0Œ`�.OK/! PŒ`�.OK/ is injective (because the map P0Œ`�! PŒ`� is an isomorphism
at the generic fibre). For all such `, the map P00� Œ`�.�/! P0� Œ`�.�/ is injective, which
implies that the morphism P00� ! P0� has finite kernel. Since source and target of this
map have the same dimension, this implies that P0� is semi-Abelian. Now let E be
the maximal Abelian subvariety of P , and denote its Néron model by E. Then the
Néron mapping property implies that EŒ`�! PŒ`� is an isomorphism, so E� and P�

have the same toric and virtual Abelian ranks by Proposition 3.3. This shows that
dimK E � dimK P , so E ! P is an isomorphism. The remaining claims are now
obvious.

In the situation above, it does not suffice to show that the unipotent radical of P0�
is trivial (even if P0 D P), unless � is perfect. Indeed, suppose � is imperfect and let
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a 2 OK be an element whose image in � does not have a pth root for p D char �. Let
L WDKŒX�=hXp � ai. Then the integral closure OL of OK in L is a discrete valuation
ring such that the induced extension � � �0 of residue fields is purely inseparable of
degree equal to ŒL W K�. In particular, �0 D OL ˝OK �. If A! SpecOL denotes a
semi-Abelian scheme with proper generic fibre A, then P WD ResL=KA is a non-proper
pseudo-Abelian variety over K with Néron model P such that P0 D ResOL=OKA. The
special fibre of this scheme has no unipotent subgroups over � but is not semi-Abelian.

6. Étale cohomology of pseudo-Abelian varieties

We shall keep the notation from the last paragraph; in particular, OK is an excellent
discrete valuation ring with field of fractions K. In this section we shall show that, for
a pseudo-Abelian variety P over the field K, the Gal.Ksep=K/-representations T`.P /
and H 1.PKsep ;Z`/ are canonically dual to each other (just as in the case of Abelian
varieties). Hence the representation-theoretic criteria for good reduction and pseudo-
semi-Abelian reduction we proved above can be stated in terms of H 1.PKsep ;Z`/
instead of Tate modules.

Lemma 6.1. Let P be a pseudo-Abelian variety over the field K. Let L be a finite,
purely inseparable extension of K over which P is an extension of an Abelian variety
A by a smooth connected unipotent algebraic group U . Let ` be a prime number
invertible in OK . Then the induced morphismH 1.AKalg ;Z`/! H 1.PKalg ;Z`/ is an
isomorphism.

Proof. First observe that �.PKalg ;O�P
Kalg

/ D Kalg;�. Indeed, let f WPKalg ! Gm
be an element of the first group. After translating f by a Kalg-point of Gm, we
may suppose that f .e/ D 1, where e is the unit element of P.Kalg/. Hence we may
assume that f is actually a homomorphism of algebraic groups by a theorem of
Rosenlicht (see [16, Theorem 3]). In particular, the restriction of f to UKalg vanishes,
so f pulls back from a homomorphism AKalg ! Gm, which clearly vanishes as
well. This shows that our original f is constant. Now consider the exact sequence
0! �`n ! Gm ! Gm ! 0 of étale sheaves on PKalg . We obtain a commutative
diagram with exact rows

0 // H 1.PKalg ;Z=`nZ/ // PicPKalg
� `n // PicPKalg

0 // H 1.AKalg ;Z=`nZ/ //

OO

PicAKalg
� `n
//

OO

PicAKalg ;

OO
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which reduces our claim to showing that the morphism Pic AKalg ! Pic PKalg is
an isomorphism. The map PKalg ! AKalg turns PKalg into a UKalg-torsor over AKalg .
Since UKalg has a composition series with successive quotients isomorphic to Ga

(see [7, Exposé XVII, Corollaire 4.1.3]), we see that this torsor is trivial locally
in the Zariski topology, and that PicUKalg D 0. Hence PicAKalg ! PicPKalg is an
isomorphism by [8, Proposition 3.1].

Proposition 6.2. Let P be a pseudo-Abelian variety over K and let ` be a prime
number invertible in K. Then there is a Gal.Ksep=K/-equivariant perfect pairing

T`.P / �H
1.PKsep ;Z`/! Z`:

Proof. Using topological invariance of the étale site (see Proposition 2.3), we
may replace Ksep by Kalg in the statement, and write P as an extension 0! UKalg !

PKalg ! AKalg ! 0 as above. Then the maps T`.P /! T`.A/ andH 1.AKalg ;Z`/!
H 1.PKalg ;Z`/ are isomorphisms which are clearly Gal.Ksep=K/-equivariant. Hence,
the existence of our desired pairing follows because a Galois equivariant perfect pairing

T`.A/ �H
1.AKalg ;Z`/! Z`

is well known to exist.

Corollary 6.3. In Theorems 4.6 and 5.4 we may replace T`.P / byH 1.PKsep ;Z`/
without affecting the validity of those criteria. The same is true if we replace T`.P / by
T`.P /˝Z` Q` orH 1.PKsep ;Q`/, since T`.P / andH 1.PKsep ;Z`/ are torsion-free.
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