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Abstract – This paper is divided into two parts. The first is a review, through categorical lenses,
of the classical theory of regular-singular differential systems over C..x// and P1

C
n ¹0;1º,

where C is algebraically closed and of characteristic zero. It aims to read the existing
classification results as an equivalence between regular-singular systems and representations
of the group Z. In the second part, we deal with regular-singular connections over R..x// and
P1
R
n ¹0;1º, where R D C ŒŒt1; : : : ; tr ��=I . The picture we offer shows that regular-singular

connections are equivalent to representations of Z, now over R.
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1. Introduction

This paper is an outgrowth of our study of regular-singular connections through the
past years. It is divided into two parts which although thematically close, are distinct
in originality. Indeed, Part I is a patient revision of classical theory ([10, Chapter 4],
[34, 43], [28, Section 16]) of regular-singular connections (or differential systems) in
a more categorical setting, plus an exposition of a more recent original contribution
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of Deligne [12, §15]. Part II is a study of the theory of regular-singular connections
on R..x// and on P1R n ¹0;1º, where R is a certain complete local ring. The method
behind Part II comes in great part from [24] and it is hoped that it will be a means to
grasp [24] in a less complex-analytic setting.

The classical theory of formal regular-singular connections presents roughly two
classifications of these objects: one by reducing each system to one with constant
coefficients ([10, 28, 43]), and one by means of tensor products of unipotent and rank-
one connections [34]. As beautiful as they are, these classifications tend to give an
incomplete picture due to the lack of categorical structures and equivalences. For
example, although systems of differential equations with constant coefficients play a
fundamental role, their natural properties are seldom addressed. Our take on the matter,
accomplished in Part I, is to use [11] as a guiding principle and obtain an equivalence
between formal regular-singular systems and representations of the “fundamental
group,” which is Z. As far as we know, this point of view is adopted, over C, only in
[42]. In addition, under this mindset, we are able to comment on the important theory
of Deligne’s tensor product of categories. Our approach to the theory of connections
on P1 n ¹0;1º follows the same path, but its structuring is facilitated by the formal
case.

Part II contains new material on formal differential modules whose ring of constants
is a complete local ring. Our original motivation for writing down this piece of work
was to give a less technical and algebraic version of our paper [24] which, nevertheless,
would allow us to see the main ideas in it. To wit, an abstract picture stemming
from [24] is the following: Let C be an algebraically closed field of characteristic
zero, R a noetherian, local and complete C -algebra with maximal ideal r and residue
field C . We now give ourselves two R-linear categories C and C 0; denote by Cn

and C 0n the full subcategories of objects “annihilated by rnC1.” Now, suppose that
C0 ' C 00. We wish to conclude that C ' C 0. The strategy is to promote C0 ' C 00 into
an equivalence Cn ' C 0n for all n and then to “pass to the limit.” (Needless to say, this
is only reasonable in certain cases.) Part II of the present work goes through this idea
in the special case where C is the category of regular-singular formal connections and
C 0 is the category of representations of the abstract group Z. The equivalence between
C0 and C 00 is derived here from the results of Part I, while in [24] we relied on [11].

Let us now review the remaining sections separately. In what follows, C is an
algebraically closed field of characteristic zero and for any C -algebra R, we let # stand
for the derivation of R..x// D RŒŒx��Œx�1� defined by #

P
akx

k D
P
kakx

k .
Section 2 serves to introduce basic notation and definitions: especially important are

the logarithmic connections and the regular-singular ones over C..x//; see Definitions
2.1 and 2.2. Section 3 covers basic facts on Euler connections, which correspond to
differential systems of the form #y D Ay in which A is a matrix with entries on C
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(Definition 3.1). The approach is categorical and we study the Euler functor from the
category of “endomorphisms” to the category of logarithmic connections (Definition
3.2). Most findings contain little more than simple remarks on spectral analysis of
linear operators in finite dimension.

Section 4 brings to light one of the main actors in the whole theory: the residue
endomorphism of a logarithmic connection. Most results of this part are well known,
although not phrased in our language (see Theorems 4.1 and 4.2). But not all is referen-
cing, and in Proposition 4.4 we show, motivated by our categorical take, how to limit
“the size of poles” between an arrow of logarithmic models in terms of the difference
of the exponents. Later, this plays an important role when dealing with regular-singular
connections “depending on parameters” (e.g. the proof of Theorem 9.1). The section
ends with the construction of preferred logarithmic models of regular-singular connec-
tions (Theorem 4.5); we name these Deligne–Manin models, but many other names
are in the literature (canonical extensions, � -extensions, etc.).

Section 5 revisits Manin’s elegant paper [34] with the intention of presenting its gist
as an equivalence between the categories of representations of Z and regular-singular
connections. It begins by using classical results to prove a fundamental structural
theorem of [34] and then goes on to study unipotent (Section 5.2) and diagonalizable
(Section 5.3) regular-singular connections. The former category is then proved to be
equivalent to the category of unipotent endomorphism (see Theorem 5.4); this allows us
to observe that unipotent regular-singular connections amount to representations of the
additive group (Corollary 5.5). We go on to exhibit an equivalence between the category
of diagonalizable connections and representations of the diagonal group scheme whose
group of characters is C=Z. Calling on set theory, we note that C=Z' C�, which puts
us in an ideal position to establish an equivalence between regular-singular connections
and representations of Z. This final goal is obtained by means of the Deligne tensor
product of abelian categories. This construction is a delicate piece of category theory
so that some of the necessary results are to be written down in a separate work [15].
Here we content ourselves with a brief presentation of the definitions and fundamental
results (Section 5.4). In Section 5.5, all is put together to arrive at the conclusion
motivating the section, which is Corollary 5.14.

With Section 6 we end Part I with a review of an equivalence between regular-
singular connections on C..x// and on P1 n ¹0;1º (Theorem 6.4). Mostly we follow
the ideas in [12, Sections 15.28–36] in proving the key non-trivial point: all regular-
singular connections on P1 n ¹0;1º are “Euler connections”; see Proposition 6.5.
From that and the knowledge obtained in the previous sections, the desired equivalence
follows without much effort.

We now begin to review the sections pertaining to Part II. In Section 7 we fix a
certain finite-dimensional C -algebra ƒ and start exploring the notion of objects in
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C -linear categories carrying an action of ƒ (Definition 7.1). This is to be applied to
categories of regular-singular connections and we show that most results from Part I
carry over to this context. See for example the existence of Deligne–Manin models
stated in Theorems 7.8 and 7.12. Let us draw the reader’s attention to the notion of
freeness in relation to1 ƒ (see Definitions 7.2 and 7.10), which plays a key role in the
rest of the paper.

In Section 8, after fixing a complete local noetherian C -algebra R having residue
field C , we begin the study of regular-singular connections over R..x//. One of
the most relevant concepts in this case is our definition of residues and exponents
(Definition 8.6) stating that “exponents should be indifferent to reduction modulo
the maximal ideal of R.” In particular, exponents are elements of C . This definition
allows us to prove Theorem 8.10, the analogue of Theorem 4.1, which shows that
Euler connections still play a central role in this theory. Then, applying ideas around
the theme of Hensel’s lemma, we explain how to lift the Jordan decomposition of
an endomorphism between R-modules (Corollary 8.12), which in turn allows us to
deduce Theorem 8.16, paralleling Theorem 4.2 in the present context. At this point,
our assumptions on the RŒŒx��-modules are in many places strong – they are to be free –
and improvements appear in Section 9. We also draw attention to Theorem 8.18 and
Remark 8.20. In the former result, we present a criterion for a connection over R..x//
to underlie a flat R..x//-module. Since the fibres of SpecR..x//! SpecR are not
generally of finite type over the residue field, the proof of Theorem 8.18 relies on a
beautiful result of Y. André, which we re-prove swiftly in Remark 8.20.

Section 9 contains the first main result, Corollary 9.7. It shows the equivalence

(�)
regular-singular connections
over R..x//

�
�! R-representations of Z;

thus obtaining the exact analogue of Deligne–Manin’s theory from Section 5. (No
assumption is made on the nature of theR..x// orR-modules underlying connections or
representations.) The heart of the matter is the existence of certain preferred logarithmic
models (Deligne–Manin) for regular-singular connections over R..x// and these are
obtained in Theorem 9.1. The proof of this result relies on the fact that we are able to
“pass to the limit” of the models obtained previously – since RŒŒx�� is a complete local
ring – to construct a suitable logarithmic model. Such a limit process is only possible
since exponents do not change from “truncation to truncation” and since the “size of

(1) In [24], we used the expression “relatively to”, but after more careful study, we prefer to
write “in relation to”, as will be done in this paper.
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the pole” of a given arrow is controlled by the differences of exponents (Proposition
4.4). To see what can easily go wrong, the reader should read Counterexample 9.3.
Once the logarithmic models of Theorem 9.1 have been shown to exist, we are then
able to apply a limit process to arrive at the equivalence (�).

The paper then ends with Section 10, which shows a second main result: the
restriction functor

regular-singular connections
over PR n ¹0;1º

restriction
�����!

category of regular-singular
connections over R..x//

is an equivalence. (See Theorem 10.1.) The proof is based on the previous techniques,
with one important modification: the fact that modules over RŒŒx�� are constructed from
limits leaves room for Grothendieck’s GFGA, stating that coherent modules over PR
are constructed by limits of coherent modules over the truncations of PR modulo the
maximal ideal.

Finally, let us call the reader’s attention to some important works on “differential
structures depending on parameters” which have appeared in recent times: these are
[20, 21, 37–39]. At the end of the introduction in [24], the reader will find a brief
summary of some of the ideas behind these works.

Notation and conventions

(1) In this text, C stands for an algebraically closed field of characteristic zero.

(2) Given a (commutative and unital) ring R, we let R..x// stand for RŒŒx��Œx�1� and
# WR..x//! R..x// the derivation defined by

#
X

anx
n
D x

d

dx

X
anx

n
D

X
nanx

n:

(3) We let Mm�n.R/, respectively Mn.R/, stand for the associative ring of m � n
matrices, respectively n � n matrices, with entries in a ring R.

(4) For a prime ideal p in a ring R, we let k.p/ stand for the residue field of the local
ring Rp.

(5) If AWV ! V is an endomorphism of vector space over C , we let SpA stand for
the set of its eigenvalues. Given % an eigenvalue, G.A; %/ denotes the generalized
eigenspace of A associated to %.

(6) For an abstract group or group scheme G, we let RepC .G/ stand for the category
of finite-dimensional C -linear representations of G.

(7) Throughout the text, � stands for a subset of C such that the natural map � ! C=Z

is bijective.

(8) If A and B are subsets of C , we denote by A	 B the set ¹a � bW a 2 A; b 2 Bº.
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Part I

2. Definitions, terminology and basic results

For the convenience of the reader and to ease referencing, we recall some standard
definitions.

Definition 2.1. The category of connections, MC.C..x//=C /, has for
objects those couples .M;r/ consisting of a finite-dimensional C..x//-space and a C -

linear endomorphism rWM !M , called the derivation, satisfying Leibniz’s
rule r.f m/ D #.f /mC f r.m/, and the

arrows from .M;r/ to .M 0;r 0/ are C..x//-linear morphisms 'WM !M 0 such that
r 0' D 'r.

The category of logarithmic connections,MClog.C ŒŒx��=C /, has for

objects those couples .M;r/ consisting of a finite C ŒŒx��-module and a C -linear
endomorphism, called the derivation, rWM!M satisfying Leibniz’s rule
r.f m/ D #.f /mC f r.m/, and

arrows from .M;r/ to .M0;r 0/ are C ŒŒx��-linear morphisms 'WM!M0 such that
r 0' D 'r.

As is well known,MC.C..x//=C / is an abelian category: subobjects, respectively
quotients, will be called subconnections, respectively quotient connections. Also, when
speaking of the rank of a connection, we shall mean the dimension of the underlying
C..x//-vector space. The categoryMClog.C ŒŒx��=C / is also abelian.

We possess an evident C -linear functor

 WMClog.C ŒŒx��=C / �!MC.C..x//=C /:

Definition 2.2. An objectM 2MC.C..x//=C / is said to be regular-singular if
it is isomorphic to a certain .M/. The full category ofMC.C..x//=C / whose objects
are regular-singular will be denoted byMCrs.C..x//=C /.

GivenM 2MCrs.C..x//=C /, any object M 2MClog.C ŒŒx��=C / such that .M/'

M is called a logarithmic model ofM . In the case that the model M is, in addition, a
free C ŒŒx��-module, we shall speak of a logarithmic lattice.

It is not hard to see that any object inMCrs.C..x//=C / admits a logarithmic lattice;
indeed, if M is a logarithmic model, then Mtors D ¹m 2MW xm D 0º is stable under
# and M=Mtors is the desired logarithmic lattice.
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Given .M;r/ and .M0;r 0/ in MClog.C ŒŒx��=R/, the C ŒŒx��-module M ˝CŒŒx�� M0

becomes a logarithmic connection by means of

r ˝ r
0
WM ˝M0 �!M ˝M0;X
mi ˝m

0
i 7�!

X
i

r.mi /˝m
0
i Cmi ˝r

0.m0i /:

We then obtain inMClog.C ŒŒx��=C / the structure of a C -linear tensor category which
givesMCrs.C..x//=C / the structure of a C -linear tensor category. (Note that inMClog

we do not always have “duals.”) Similar constructions then allow us to obtain the next
proposition, which is explicitly written down in [42, Lemma 3.10]. See also the proof
of Proposition 8.3 further ahead.

Proposition 2.3. The category MCrs.C..x//=C / is an abelian subcategory of
MC.C..x//=C / which is stable under direct sums, duals and tensor products. Fur-
thermore, given .M; r/ 2 MCrs.C..x//=C / and a subobject .M 0; r 0/ � .M; r/,
respectively a quotient .M;r/! .M 00;r 00/, then both .M 0;r 0/ and .M 00;r 00/ are
regular-singular.

Of course, not all objects ofMClog.C ŒŒx��=C / have “duals.”

Example 2.4 (Twisted models). Let ı 2 Z. Write 1.ı/ for the C ŒŒx��-submodule
of C..x// generated by x�ı . Clearly #.1.ı// � 1.ı/ and in this way, whenever ı � 0,
we obtain a subobject of .C ŒŒx��; #/. More generally, for any M 2MClog.C ŒŒx��=C /,
we obtain a new logarithmic connection M.ı/ by defining M.ı/ D 1.ı/˝M.

Example 2.5. Let .M;r/ and .M0;r 0/ be objects fromMClog.C ŒŒx��=C / and on
the C ŒŒx��-module H WD HomCŒŒx��.M;M0/ let us define

DWH �! H ; h 7�! r 0 ı h � h ı r:

This defines a logarithmic connection called the internal “Hom.” In analogous fashion,
we can defined the internal “Hom” for two connections.

By means of the canonical isomorphism

HomCŒŒx��.M;M0/ ˝
CŒŒx��

C..x// ' HomC..x//.M; M0/;

we see that the internal “Hom” constructed from two regular-singular connections is
also regular-singular.
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3. Euler connections

The simplest class of examples of logarithmic connections is given by “Euler”
connections (the name is inspired by [10, Chapter 4, Section 5]; it is also adopted
by [28, Example 15.9]). In this section we shall write MC and MClog in place of
MC.C..x//=C / and MClog.C ŒŒx��=C /.

Definition 3.1 (Euler connections). Let V be a finite-dimensional vector space
over C and A 2 EndC .V /. The Euler logarithmic connection associated to the couple
.V;A/ is defined by the couple .C ŒŒx��˝C V;DA/, whereDA.f ˝ v/D #.f /˝ vC
f ˝ Av. Notation: eul.V; A/.

Since Euler connections play a prominent role in the theory, let us spend some
more time studying them.

Definition 3.2. Let End be the category whose

objects are couples .V;A/ consisting of a finite-dimensionalC -space V and aC -linear
endomorphism AWV ! V , and whose

arrows from .V;A/ and .V 0;A0/ are C -linear morphisms 'WV ! V 0 such that A0' D
'A.

Needless to say, letting e D C be the one-dimensional Lie algebra, End is none
other than RepC .e/. In particular,End comes with the canonical structure of an abelian,
C -linear tensor category [7, §3, Nos. 1–2]. (Its unit object is .C; 0/.) Moreover, for any
couple .V;A/ and .V 0; A0/ in End, we can produce an “internal Hom” HomC ..V;A/;
.V 0;A0// [7, §3, No. 3, Proposition 3] by endowing HomC .V;V 0/ with the endomorph-
ism

HA;A0 WHomC .V; V 0/ �! HomC .V; V 0/; ' 7�! A0' � 'A:

With these properties in sight, we now have a functor

eulWEnd �!MClogI

it is obviously C -linear, exact and faithful. In addition, eul is a tensor functor (the
tensor structure onMClog is explained in Section 2).

As it should, the obvious morphism of C ŒŒx��-module

eul.HomC ..V; A/; .V 0; A0/// �! HomCŒŒx��.C ŒŒx��˝ V;C ŒŒx��˝ V 0/

defines an isomorphism inMClog, where the right-hand-side has the “internal Hom”
logarithmic connection (cf. Example 2.5).
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We end this section by studying the influence of eul on Hom sets.

Lemma 3.3. The following claims are true:

(1) Suppose that SpA contains no negative integer. Then any horizontal section of
eul.V; A/ has the form 1˝ v with v 2 Ker.A/.

(2) Let .V; A/ and .V 0; A0/ have the following property: the difference SpA0 	 SpA
contains no negative integer. Then each arrow ˆW eul.V; A/! eul.V 0; A0/ is of
the form id˝ 'WC ŒŒx��˝C V ! C ŒŒx��˝C V

0 for a certain 'WV ! V 0 such that
A0' D 'A. In addition, if id˝  D ˆ, then ' D  . Said otherwise, the natural
arrow

HomEnd ..V; A/; .V
0; A0// �! HomMClog.eul.V; A/; eul.V

0; A0//

is bijective.

Proof. (1) For each v 2 Ker.A/, the element 1˝ v 2 eul.V; A/ is clearly hori-
zontal. Conversely, let

P
n x

n ˝ vn be horizontal. Then

0 D
X
n

xn ˝ .Avn C nvn/:

This shows that v0 2 Ker.A/. In addition, if n > 0, the equation Ac D �nc cannot
have a non-zero solution in V , and hence vn D 0.

(2) Let ˆW eul.V; A/! eul.V 0; A0/ be a non-zero arrow in MClog and regard it as
a non-zero horizontal element of

Hom.eul.V; A/; eul.V I ; A0// ' eul.HomC .V; V 0/;HA;A0/:

The assumption on the spectra together with a classical result from linear algebra
shows that HA;A0 cannot have a negative integer as eigenvalue: indeed, if T 6D 0 is
such that A0T � TAD�kT , then SpA0CkI\SpA 6D¿ [43, Theorem 4.1, p. 19], which
forces �k 2 SpA0	SpA. By part (1), it follows thatˆ 2 C ŒŒx��˝HomC .V;V 0/ comes
from an element ' 2 HomC .V; V 0/ such that 0 D HA;A0.'/. The fact that ' is unique
follows from the faithfulness of eul.

4. Basic results in the theory of regular-singular connections

We shall continue to write MClog instead of MClog.C ŒŒx��=C / and MCrs instead
ofMCrs.C..x//=C /.
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4.1 – The residue and its applications

Given .M;r/ 2MClog, the very definition of the Leibniz rule ensures r.xM/ �

xM, so that we obtain, by passage to the quotient, a C -linear endomorphism

res.r/WM=.x/ �!M=.x/;

called the residue of r. The set of eigenvalues of res.r/ is named the set of exponents
of r and will be denoted by Exp.r/.

The relevance of the set of exponents is visible through the following central results.
Their proofs are to be found in the classics [10] or [43].

Theorem 4.1 ([10, Chapter 4, Theorem 4.1, p. 119] or [43, Theorem 5.1, p. 21]).
Let M be a free C ŒŒx��-module of finite rank affording a logarithmic connection
rWM!M such that no two of its exponents differ by a positive integer (e.g. they all
lie in � ). Then .M;r/ ' eul.M=.x/I res.r//.

Theorem 4.2 (“Shearing”; cf. [10, Chapter 4, Section 4, Lemma, p. 120] or
[43, Section 17.1]). Let .E;rE / be an object of MCrs. Then it is possible to find a
logarithmic lattice .E;rE/ for .E;rE / such that all exponents of rE lie in � .

Corollary 4.3. Let .M;r/ 2MCrs. Then there exists a finite-dimensional vector
space V and A 2 EndC .V / such that

(1) all eigenvalues of A are in � and

(2) M ' eul.V; A/.

Another relevant feature of regular-singular connections unfolded by the exponents
is the following:

Proposition 4.4. Let �WE ! F be an arrow ofMCrs.C..x//=C /. Let E and F

be models for E and F and assume that F is in fact a lattice. We abuse notation and
write # for all derivations in sight (viz. E ! E, E ! E , etc):

(1) Let % 2 Exp.E/ and let s 2 E be such that

.# � %/�.s/ 2 xE

for a certain � 2 N. Then, for all k 2 Z, we have

.# � .%C k//�.xk�.s// D xkC1�.E/:

(2) Let ı be the largest integer in Exp.F /	Exp.E/. Then xı�.E/�F . In particular,
adopting the notation of Example 2.4, there exists ˆWE ! F .ı/ fromMClog such
that ˆ D �.
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(3) Suppose that Exp.F /	 Exp.E/ contains no positive integer. Then the natural
arrow

Hom.E;F / �! Hom.E; F /

is bijective.

Proof. (1) Using the formula

Œ# � .%C i/��xi D xi .# � %/�;

it follows that

Œ# � .%C k/��.xk�.s// D xk.# � %/�.�.s//

D xk�Œ.# � %/�.s/�

2 xkC1�.E/:

(2) If xı�.E/�F we have nothing to do. Then let k > ı be such that xk�.E/�F .
We choose % 2 Exp.E/ and s 2 E n xE such that .# � %/�.s/ 2 xE . By the previous
item,

.# � .%C k//�.xk�.s// 2 xkC1�.E/ � xF :

Since xk�.s/ 2F and %C k cannot be an eigenvalue of resF , it follows that xk�.s/ 2
xF , which means that xk�1�.s/ 2 F because F has no x-torsion.

Now let �˛ be the multiplicity of the exponent ˛ and write

E=xE '
M
˛2Exp

Ker.resE � ˛/
�˛ :

For any t 2 E , we have
t D

X
˛

s˛ C xt
0;

where .# � ˛/�˛ .s˛/ 2 xE for each ˛ and t 0 2 E . As a consequence, xk�1�.s˛/ 2 F

and we conclude that
xk�1�.t/ 2 F :

Proceeding by induction, we conclude that xı�.E/ � F .

(3) This follows easily from the previous item and the observation that an arrow
�WE ! F which induces 0WE ! F must be trivial as F ! F is injective.

Putting together Corollary 4.3 and Proposition 4.4 (3) we arrive at the following
theorem:
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Theorem 4.5 (Deligne–Manin lattices; [11, Proposition II.5.4]). LetM 2MCrs

be given. There exists a logarithmic lattice M forM having all its exponents in � . In
addition, if M0 2MClog is another logarithmic lattice forM with all exponents in � ,
then there exists a unique isomorphism 'WM!M0 rendering the diagram

.M/
� //

.'/ $$

M

.M0/

�

OO

commutative.

5. Manin’s theory revisited

Manin [34] gives a classification of objects in MCrs.C..x//=C / using certain
specific models (M � andM .a/ in his notation). We wish to rewrite his results in the
light of Euler connections (Section 3), categories, functors and group schemes. The
strategy of this undertaking is to break up the category of regular-singular connections
into those which are unipotent and those which are diagonal.

As before, we write here

MC; MCrs and MClog

instead of

MC.C..x//=C /; MCrs.C..x//=C / and MClog.C ŒŒx��=C /:

5.1 – Jordan blocks

For each � 2 C and each positive integer r , let

Ur;� D

0BBBBBBB@

� 0 � � � � � � 0

1
: : :

:::

0
: : :

: : :
:::

:::
: : :

: : :
:::

0 � � � 0 1 �

1CCCCCCCA
be the Jordan matrix of size r and eigenvalue �. Let Jr.�/ be the object .C r ; Ur;�/ of
End and, for a multi-index of positive integers r D .r1; : : : ; rn/, let

Jr.�/ D Jr1.�/˚ � � � ˚ Jrn.�/:
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With this notation, Jordan’s decomposition theorem and Theorem 4.3 immediately
prove the following result:

Theorem 5.1 (Cf. [34, Theorem 4]). LetM 2MCrs be given and suppose thatM
is indecomposable and of dimension r . ThenM ' .eulJr.�// for a certain � 2 � .

5.2 – Unipotent objects

In an abelian tensor category (in the sense of [14, Definition 1.15, p. 118]), an
object is unipotent if it has a filtration whose graded pieces are isomorphic to the unit
object (see for example [41, Definition 1.1.9]). LetMCurs and Endu be the categories
of unipotent objects in MCrs and End. According to [41, Proposition 1.2.1, p. 521],
both MCurs and Endu are abelian. (This can, of course, be verified directly without
much effort.) Another straightforward exercise is to show that MCurs and Endu are
tensor subcategories ofMCrs and End, respectively.

The following simple lemmas will be employed below.

Lemma 5.2. Let .V; A/ 2 End be given. The following conditions are equivalent:

(1) .V; A/ is unipotent.

(2) A is nilpotent.

(3) The spectrum of A is ¹0º.

Lemma 5.3. Let E be a unipotent object ofMCrs and  WE !Q an epimorphism
inMCrs. ThenQ is also a unipotent.

With this vocabulary at hand, we now have the following theorem:

Theorem 5.4. The functor

eulWEndu �!MCurs

is an equivalence.

Proof. Let us choose � such that � \Z D ¹0º. If .V;A/ and .W;B/ are such that
SpA and SpB are contained in � , then Lemma 3.3 (2) and subsequently Proposition
4.4(3) ensure that the natural arrows

HomEnd..V; A/; .W;B// �! HomMClog.eul.V; A/; eul.W;B//
�! HomMCrs.eul.V; A/; eul.W;B//

are bijections. Because of Lemma 5.2 and the choice of � , this fact proves that eul is
fully faithful when restricted to Endu.
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LetM 2MCrs be non-zero, unipotent and indecomposable. By Theorem 5.1, there
exists � 2 � and r > 0 such thatM ' eul.Jr.�//. Unipotency ensures the existence
of a non-trivial arrow

'W eul.J1.0// �! eul.Jr.�//:

From the bijection

Hom.J1.0/; Jr.�// �! Hom.eul.J1.0//; eul.Jr.�///

mentioned before, we conclude that Hom.J1.0/; Jr.�// 6D 0. This shows that � D 0
and consequently Jr.�/ is unipotent in End. HenceM belongs to the essential image
of eul. In general, we note that any object ofMCurs can be decomposed into a direct
sum of indecomposable objects and that these constituents are unipotent because of
Lemma 5.3.

The task of describing the category MCurs now benefits from a well-known fact
from the theory of algebraic groups.

If Ga D Spec C Œt� is the additive group scheme, [16, Chapter II, Section 2,
no. 2.1 (a), p. 178] explains that there exists an equivalence

lev1WRepC .Ga/ �! Endu

defined by associating to any representation �WGa! GL.V / the nilpotent endomorph-
ism

log.�.1//WV �! V:

(The logarithm of a unipotent endomorphism is defined as usual [6, Chapter II, §6,
no. 1, p. 51].) We derive the following corollary:

Corollary 5.5. The composition

RepC .Ga/
lev1
���! Endu

eul
���!MCurs

is an equivalence.

5.3 – Diagonalizable regular-singular connections

Definition 5.6. A connection .E;r/ in MCrs is diagonalizable if it is the direct
sum of one-dimensional regular-singular connections. The full subcategory of all
diagonalizable regular-singular connections will be denoted byMC`rs.
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Obviously MC`rs is C -linear, stable under tensor products and duals in MCrs. In
addition, it is a standard exercise in the theory of representations of associative rings to
prove that MC`rs is an abelian subcategory of MC (and hence an abelian subcategory
of MCrs). Indeed, letting D stand for the ring of differential operators, MC is the
category of left D-modules whose dimension over C..x// is finite, and the fact that
MC`rs is an abelian subcategory is a straightforward consequence of the study of semi-
simple modules made in [9, Chapter VIII, §4]; see in particular Corollary 3 of no. 1
on p. 52.

Now let

X D

´
isomorphisms classes
of rank one objects inMCrs

µ
and endow X with the group structure induced by the tensor product. It is not hard to
see that

C �! X; � 7�! isomorphism class of eul.C; �/

defines an isomorphism

(5.1) C=Z ��! XI

see [34, Theorem 3, p. 120]. Indeed, let .L;r/ 2MClog be such that L D C ŒŒx�� � `

is free of rank one. Then, if r.`/ D a` and `0 D p` with p 2 C..x//�, we see that
r.`0/ D .aC p�1#p/`0. The desired result is a consequence of the fact that

C..x//� �! C ŒŒx��; b 7�!
#b

b

establishes an isomorphism of groups C..x//� ��! ZC xC ŒŒx��.
Write Diag.X/ for the diagonalizable affine group scheme having X as a group of

characters. Said otherwise,

Diag.X/ D SpecC ŒX�;

where C ŒX� is the group algebra; cf. [16, Chapter II, §1, no. 2.8, 154ff] or [29, Part I,
Chapter 2, Section 5]. As is well known, the tensor category RepC .Diag.X// can
be identified with the tensor category of X-graded finite-dimensional vector spaces
[16, Chapter II, §2, no. 2.5, p. 177]. Hence, from now on, given V 2 RepC .Diag.X//,
we shall write V� for the component of degree � .

For each � 2 X, let O� 2 C be such that O� C Z corresponds, under the isomorphism
(5.1), to � . Then, for each V 2 RepC .Diag.X//, we put

L.V / D C..x//˝C V
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and endow it with the derivationDV obtained from

DV .1˝ v�/ D O� � .1˝ v�/; v� 2 V� :

Obviously, the map L gives rise to a C -linear additive functor

LWRepC .Diag.X// �!MC`rs:

It is perhaps useful to note that if C� is the X-graded vector space with a copy of C in
degree � and zero elsewhere, then L.C�/ D eul.C; O�/.

Proposition 5.7. The functor L is a C -linear tensor equivalence.

Proof. The only point requiring close examination is the tensor nature of L. For
that, given �; � 2 X, define k.�; �/ 2 Z by

(5.2) 1� C � D O� C O�C k.�; �/:

Now let V and W be objects of vectX and define an arrow of C..x//-spaces

C..x//˝C .V ˝C W /
ˆVW
����! .C..x//˝ V / ˝

C..x//
.C..x//˝W /

by imposing that

1˝C .v� ˝ w�/ 7�! xk.�;�/ � Œ.1˝ v�/˝ .1˝ w�/�

whenever v� 2 V� and w� 2 W� . Because of equation (5.2), ˆVW is an isomorphism
inMC. Three lengthy but straightforward verifications ensure that the couple .L; ˆ/
is a tensor functor: indeed, the associativity constraint is a consequence of

k.�; �C �/C k.�; �/ D k.� C �; �/C k.�; �/;

the commutative constraint of

k.�; �/ D k.�; �/;

and the identity constraint of O0 2 Z.

Using basic cardinal arithmetic, we derive another simple description of X D C=Z

which is well known in the case C D C.

Lemma 5.8. The abelian groups C=Z and C� are (non-canonically) isomorphic.
In particular, X and C� are isomorphic.
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Proof. Let � � C� be the subgroup of roots of unity; it is a divisible group and
hence there exists an isomorphism C� ' �˚ .C�=�/. Similarly, C=Z ' .Q=Z/˚
.C=Q/. Since � ' Q=Z, we only need to show that C=Q ' C�=�.

Now, C=Q is a Q-vector space as is C�=� and we prove that any Q-basis of C=Q
has the same cardinal as a Q-basis of C�=�.

Following [8], write Card.S/ to denote the cardinal of a set S . We need a simple
result, which we are unfortunately unable to find in the literature.

Claim. For any infinite-dimensional Q-vector space V with basis B , the equality
Card.V / D Card.B/ holds.

As Card.B/ � Card.V /, we only need to show that Card.B/ � Card.V /. Let F

be the set of finite subsets of B and for each F 2 F, write VF for the vector space
generated by F . Clearly,

Card.V / � Card
�a
F

VF

�
:

Since Card.VF / D Card.Q/ [8, Corollary 2, Chapter III, §6, no. 3] and Card.Q/ �
Card.F/, we conclude, with the help of [8, Corollary 3, Chapter III, §6, no. 3], that

Card
�a
F

VF

�
D Card.F/:

Finally, let Fn be the subset of F consisting of those subsets with cardinal bounded
by n. Clearly, Card.B/n � Card.Fn/, which shows that Card.B/ � Card.Fn/ [8,
Corollary 4, Chapter III, §6, no. 3] and consequently that Card.B/ � Card.F/. The
claim is settled.

To end the proof, we note that Card.C=Q/ �Card.Q/D Card.C / [8, Proposition 9,
Chapter III, §5, no. 8], and hence Card.C=Q/ D Card.C / [8, Corollary 4, Chapter III,
§6, no. 3]. Likewise, Card.C�=�/ D Card.C�/ so that Card.C�=�/ D Card.C /.

5.4 – The Deligne tensor product

In order to put the findings of Sections 5.2 and 5.3 together—this is the theme of
Section 5.5—we require Deligne’s theory of the tensor product of C -linear abelian
categories; see [13, Section 5] and [32]. Since the amount of material necessary to
explain this theory and the pertinent results is disproportionate to the rest of this text,
we shall dedicate [15] to the matter. On the other hand, for the convenience of the
reader, we present a summary.
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In what follows, k is any field. Let A1; : : : ;An andX be k-linear abelian categories
and write

Rex.A1; : : : ; An W X/

for the category of functors

F WA1 � � � � � An �! X;

which are k-multilinear and right-exact in each variable.

Definition 5.9 ([13, Section 5], [32, Definition 1]). Given k-linear abelian cat-
egories A and B , a couple .P; T / consisting of a k-linear abelian category P and
a functor T 2 Rex.A; B W P / is called a Deligne tensor product of A and B if the
following holds. For each k-linear abelian category X , the functor

(5.3) Rex.P W X/ �! Rex.A;B W X/; F 7�! F ı T;

is an equivalence.

Example 5.10. Let G and H be group schemes over k. It then follows that the
usual tensor product of vector spaces

Repk.G/ � Repk.H/ �! Repk.G �H/

is a Deligne tensor product. See [15].

As argued by [32, p. 208], the drawback of Definition 5.9 is the requirement that P
be abelian, while the properties involved speak solely of right exactness. For that reason,
[32] employs a weaker version of the tensor product (the Kelly tensor product) and
then studies the cases where the Kelly tensor product is a Deligne tensor product. This
allows [32] to give a complete proof of Deligne’s existence theorem [13, Proposition
5.13] (see [32, Proposition 22]), affirming that if A and B are categories with length
(cf. [32, p. 217] for the definition), then the Deligne tensor product exists.

The question concerning the transport of tensor structures in the theory of the
Deligne tensor product is in order. This is dealt with in [13, Sections 5.16–17], but
we found that [13] has two omissions: First, the verification of the various functorial
commutativity constraints for coherence is left to the reader at the beginning of
[13, Proposition 5.17]. Second, nowhere in [13] is a discussion to be found on the
monoidal nature of the functors obtained from monoidal functors via the equivalence
(5.3). We explain these matters in more detail.

LetA andB be k-linear abelian categories. Let .A;˝A;1A/ and .B;˝B ;1B/ define
symmetric monoidal structures [33, Chapter VII, Section 1] on each one of them, and
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assume that, in addition, we have˝A 2 Rex.A;A W A/ and˝B 2 Rex.B;B W B/. On
A � B , let us introduce an evident structure of symmetric monoidal category:

˝AB 2 Rex.A;B;A;B W A � B/;

is given by
.a; b/˝AB .a

0; b0/ D .a˝A a
0; b ˝B b

0/:

Suppose that .P; T / is a Deligne tensor product for A and B . As explained in [15],
we then have an equivalence

.�/ ı T �nWRex.P; : : : ; P„ ƒ‚ …
n

W X/ �! Rex.A;B; : : : ; A; B„ ƒ‚ …
2n

W X/

for each n � 1. Letting
˝P 2 Rex.P; P W P /

correspond to T ı ˝AB under equation (5.3), we then have a natural isomorphism

�W ˝P ı T
2

�
H) T ı ˝AB :

In addition, letting 1P D T .1A; 1B/, it then follows that .P;˝P ; 1P / is a symmetric
monoidal category and T is a monoidal functor. These details are verified in [15].
(Needless to say, the difficulty is ensuring coherence of the monoidal structure.)

Finally, let F WA � B ! X be any k-bilinear functor which is right exact in each
variable. Suppose that, giving A � B the symmetric monoidal structure explained
above, F is monoidal. Then a functor NF 2 Rex.A;B W P / corresponding to F under
equation (5.3) is also monoidal.

5.5 – Conclusions

Let .T ;�/ be the Deligne tensor product of MC`rs andMCurs. If

P WMC`rs �MCurs �!MCrs

is the obvious tensor product, we obtain through the equivalence (5.3) a right-exact
C -linear functor

xP WT �!MCrs

and a natural isomorphism

(5.4) xP ı� �H) P

in Rex.MC`rs;MCurs WMCrs/. In addition, Section 5.4 ensures that xP is a tensor functor
and [13, Proposition 5.13 (vi), p. 148] that xP is also left exact.
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Theorem 5.11 (The categorical Manin equivalence). The above-defined functor
xP is an equivalence of C -linear abelian tensor categories.

Proof. Essential surjectivity: It suffices to show that any indecomposableM 2
MCrs belongs to the essential image. According to Theorem 5.1,M ' eul.Jr.�//.
Using that Jr.�/ ' J1.�/˝ Jr.0/, from equation (5.4) we obtain

eul.Jr.�// ' eul.J1.�//˝ eul.Jr.0//
D xP Œeul.J1.�//� eul.Jr.0//�:

Full faithfulness: Let L;L0 2 MC`rs and U;U 0 2 MCurs so that we have an arrow
induced by P.L;U /;.L0;U 0/:

(5.5) HomMC`rs
.L;L0/˝C HomMCurs .U; U

0/ �! HomMCrs.L˝ U;L
0
˝ U 0/:

That (5.5) is an isomorphism if L D 1 and U 0 D 1 is easily verified. Indeed, in this
case, if L0 6' 1, then HomMC`rs

.1; L0/ D 0 and HomMCrs.U; L
0/ D 0, which implies

that both sides in (5.5) vanish; if ˛W 1 ��! L0, then Hom.1; L0/ D C˛, and using the
natural isomorphism

Hom.1˝ U;L0 ˝ 1/ ��! Hom.U; 1/;

we may identify (5.5) with the arrow which maps ˛ ˝ ' to '. Making use of duals,
we conclude that (5.5) is an isomorphism for all L, L0, U and U 0. Then, employing
[13, Proposition 5.13 (v)], we conclude that

xPL�U;L0�U 0 WHomT .L� U;L0 � U 0/ �! HomMCrs.
xP .L� U/; xP .L0 � U 0//

is an isomorphism.
Now let T0 be the full subcategory of T whose objects are finite direct sums of

objects of the form L� U . The previous argument shows that xP when restricted to
T0 is fully faithful.

Now let X and X 0 be arbitrary objects in T . We can then find two exact sequences,

K
�
���! Y

�
���! X �! 0

and
K 0

� 0

 � Y 0
�0

 � X 0  � 0;

in which Y , Y 0, K and K 0 are in T0. This is because each element in T is the
target of an epimorphism from an object of T0; see [32, p. 212]. That of the second
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exact sequence is a consequence of the fact that T is the category of representations
of a group scheme (Example 5.10), and hence any object of T is the source of a
monomorphism to an object of T0.

Let aW xP .X/ ! xP .X 0/ be given; as xP jT0 is full, there exist c0WK ! K 0 and
b0WY ! Y 0 such that

xP .K/
xP.�/
//

xP.c0/
��

xP .Y /
xP.�/

//

xP.b0/
��

xP .X/

a

��

// 0

xP .K 0/ xP .Y 0/
xP.� 0/

oo xP .X 0/
xP.�0/

oo 0oo

commutes. As xP jT0 is faithful, it is the case that

K

c0
��

� // Y

b0
��

K 0 Y 0
� 0
oo

commutes. Faithfulness of xP jT0 ensures also that b0� D 0, since xP .b0�/ D 0. Then
there exists d WX ! Y 0 such that d� D b0. Since xP .� 0d�/ D 0, we can say that
� 0d� D 0. Hence, there exists a0WX ! X 0 rendering

K

c0
��

� // Y

b0
��

� // X

a0
��

// 0

K 0 Y 0
� 0
oo X 0

�0
oo 0oo

commutative. As �0 and xP .�0/ are monomorphisms, and � and xP .�/ are epimorphisms,
we see that xP .a0/ D a and that a0 is unique with such a property.

From now on, the group scheme

Z D Diag.X/ �Ga

will play a relevant role.
Translating the equivalences described in Corollary 5.5, in Proposition 5.7 and in

Theorem 5.11, and applying Example 5.10, we arrive at the following corollary:

Corollary 5.12. There exists an equivalence of C -linear abelian tensor categor-
ies

ˆWRepC .Z/ �!MCrs

having the following properties:



P. H. Hai – J. P. dos Santos – P. T. Tâm 192

(1) Let � 2X induce �WZ!Gm via pr1WZ! Diag.X/. Thenˆ.�/ lies in the class � .

(2) Let �WGa ! GL.V / induce � WZ! GL.V / via pr2WZ! Ga. Then

ˆ.�/ ' eul.V; log �.1//:

We now set out to identify Diag.X/�Ga with the algebraic envelope of the abstract
group .Z;C/. Let us recall what this means.

Given an abstract group � , there exists an affine group scheme �aff (over C ) and
an arrow

uW� �! �aff.C /

such that, for any algebraic group scheme G, the natural map

Hom.�aff; G/ �! Hom.�;G.C //;
� 7�! �.C / ı u

is bijective. We know of three ways of constructing �aff : by means of the main theorem
of Tannakian theory [14, Theorem 2.11], by means of Freyd’s adjoint functor theorem
[33, Theorem 2, Chapter V, Section 6] or by means of Hochschild–Mostow’s method
[26, p. 1140], [1, p. 72]. In the case � D Z, the construction is folkloric, but the only
concrete references we were able to find were [42, Section 5.3], which is not really
what we want, and [4, Example 1, p. 23], which is imprecise (there is no need for yZ to
appear in their conclusion).

Lemma 5.13. Let ˛WX ��! C� be an isomorphism. Define

f WZ �! Diag.X/.C / D Hom.X; C�/;

f .k/W � 7�! ˛.�/k;

and �WZ! Ga.C / as being the evident inclusion. Then

.f; �/WZ �! Z.C /

is the affine envelope of Z. In particular, there exists a tensor equivalence of C -linear
categories

‚WRepC .Z/ �! RepC .Z/

such that we have the following properties:

(1) Let � 2 X induce �WZ! Gm via Z! Diag.X/. Then ‚.�/ corresponds to the
representation defined by 1 7! ˛.�/ 2 C�.

(2) Let �WGa! GL.V / induce � WZ! GL.V / via Z!Ga. Then‚.�/ corresponds
to the representation defined by 1 7! �.1/ 2 GL.V /.
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Proof. Let ƒ be an abelian group, hW Z ! Diag.ƒ/.C / a morphism and
h1WC Œƒ�! C the image of 1 2 Z under h. The morphism of abstract groups

ƒ
h1
���! C�

˛�1

���! X

gives us a morphism of group schemes h\WDiag.X/! Diag.ƒ/. Clearly

h\.C / ı f D h:

Now let U be an algebraic unipotent group scheme and hWZ! U.C/ a morphism
of abstract groups. Using [44, Theorem 8.3 and Exercise 11 of Chapter 9] plus the fact
that Ga has no non-trivial subgroup schemes, there exists a morphism gWGa ! U

such that g.1/ D h.1/. This of course just means that g� D h.
Now let G be any algebraic group scheme and �WZ! G.C/ a morphism. The

closure of Im.�/ is an abelian group scheme [44, Section 4.3, Theorem] and as such
can be decomposed into a diagonalizable and a unipotent part [44, Theorem 9.5]. The
previous claims then establish what we want.

Considering an inverse tensor equivalence to ‚ [40, Chapter II, Section 4.4] and
employing Corollary 5.12, we arrive at the following corollary:

Corollary 5.14. The C -linear abelian tensor category MCrs is equivalent to
RepC .Z/. More precisely, following Lemma 5.8, let us fix an isomorphism

˛WX ��! C�:

Then there exists an equivalence of tensor C -linear categories

‰˛WRepC .Z/ �!MCrs

having the following properties:

(1) If L 2 RepC .Z/ has dimension one and is defined by letting 1 2 Z act as � 2 C�,
then ‰˛.L/ belongs to the class ˛�1.�/.

(2) If V 2 RepC .Z/ is defined by the unipotent automorphism uWV ! V , then

‰˛.V / ' eul.V; log.u//:

For the sake of readability, let us state Corollary 5.14 “in the other direction” and
in the case where C is the field of complex numbers, and

˛.class of eul.C; �// D e2� i�:

(Consequently, if ��WZ! C� is defined by k 7! e2� ik�, then ‰˛.��/' eul.C; �/.)



P. H. Hai – J. P. dos Santos – P. T. Tâm 194

Corollary 5.15. Let ˛ be defined as before. Then there exists an equivalence of
C-linear tensor categories

�˛WMCrs
�
�! RepC.Z/

such that to each endomorphism AWV ! V , we have

�˛.eul.V; A// D
the representation of Z on V
defined by k 7! e2�kiA.

In other words, the “exponential” is an inverse to ‰˛ .

Proof. We construct �˛ as an inverse equivalence to ‰˛ following the proof of
[33, Chapter IV, Section 4, Theorem 1]. That this inverse equivalence is automatically
a tensor functor is verified by the considerations in [40, Chapter II, Section 4.4].

In what follows, for a given .V; A/ 2 End, we shall write �A to mean the repres-
entation k 7! e2�kiA of Z. Let .V; A/ 2 End be given. We are required to show that
‰˛.�A/' eul.V;A/. Assume first that .V;A/ is indecomposable as an object of End;
this implies in particular that A has a single eigenvalue �. This being so, AD �I CN ,
with N nilpotent. Then e2� iA D e2� i�e2� iN , which shows that �A ' �� ˝ �N . Then,
by Corollary 5.14,

‰˛.�A/ ' ‰˛.��/„ ƒ‚ …
'eul.C;�/

˝ ‰˛.�N /„ ƒ‚ …
'eul.V;N/

and we conclude that
‰˛.�A/ ' eul.V; �I CN/:

The case in which .V; A/ is not indecomposable is treated by considering a decompos-
ition into direct sums and we conclude that ‰˛.�A/ ' eul.V; A/, as wanted.

Remark 5.16. It is possible, if the ground field is C, to obtain Corollary 5.14
using the universal Picard–Vessiot extension [42, Chapter 10, Section 2, 262ff].

6. Connections on P n ¹0; 1º after [12, Sections 15.28–36]

The theory of regular-singular connections over the ring C Œx˙�D C Œx;x�1� works
in close analogy with that of C..x//. In this section we review it following Deligne.

Let P stand for the projective line obtained by gluing

A0 WD SpecC Œx� and A1 WD SpecC Œy�

along the open subsets SpecC Œx˙� and SpecC Œy˙� via the isomorphism x D y�1. As
suggested by notation, 0 2 P is the point .x/ of A0 and1 2 P the point .y/ of A1.
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Note that # WC Œx�! C Œx� can be extended to a global section of the tangent sheaf,
call it # also, on P .

Definition 6.1. (1) We let MC.C Œx˙�=C / be the category whose

objects are couples .M;r/ consisting of a C Œx˙�-module of finite type and a
C -linear endomorphism rWM !M satisfying Leibniz’s rule r.f m/ D
#.f /mC f r.m/ and

arrows between .M;r/ and .M 0;r 0/ are just C Œx˙�-linear maps 'WM ! M 0

satisfying r 0' D 'r.

It is called the category of connections on P n ¹0;1º or on C Œx˙�.

(2) We let MClog.P=C / be the category whose

objects are couples .M;r/ consisting of a coherent OP -module and a C -linear
endomorphismrWM!M satisfying Leibniz’s ruler.f m/D #.f /mC
f r.m/ on all open subsets and

arrows between .M;r/ and .M0;r 0/ are OP -linear maps 'WM!M0 satisfying
r 0' D 'r.

It is called the category of logarithmic connections on P .

(3) We let
P WMClog.P=C / �!MC.C Œx˙�=C /

be the obvious functor. (If convenient we shall write simply  .) A connection
.M;r/ inMC.C Œx˙�=C / is regular-singular if P .M/ 'M for a certain M 2

MClog.P=C /; in this case, any such M is a logarithmic model ofM . In the case
that M is in addition a locally free OP -module, we call M a logarithmic lattice.

(4) The full subcategory of MC.C Œx˙�=C / having regular-singular connections as
objects is denoted byMCrs.C Œx

˙�=C /.

Remark 6.2. A fundamental result for an object .M;r/ from MC.C Œx˙�=C /
is that M is automatically a free C Œx˙�-module. (That it is a projective module
can be found in [30, Proposition 8.9] for instance, but we offer a short proof of a
more general fact in Remark 8.20 below.) In addition, proceeding as discussed after
Definition 2.2, we can always ensure the existence of logarithmic lattices for objects in
MCrs.C Œx

˙�=C /.

Example 6.3. Let .V; A/ 2 End (see Definition 3.2). We let eulP .V; A/ 2
MClog.P=C / be the couple .OP ˝C V;DA/, whereDA.f ˝ v/D #f ˝ vC f ˝Av
on any open subset of P . This construction gives rise to a functor eulP W End !
MCrs.C Œx

˙�=C /.
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The canonical inclusions C Œx˙�! C..x// and C Œx�! C ŒŒx�� produce C -linear
exact tensor functors

r0WMClog.P=C / �!MClog.C ŒŒx��=C /; M 7�! C ŒŒx�� ˝
CŒx�

M.A0/

and
r0WMC.C Œx˙�=C / �!MC.C..x//=C /; M 7�! C..x// ˝

CŒx˙�

M:

It should be noted that if eulP .V; A/ is as in Example 6.3, then r0.eulP .V; A// is
simply eul.V; A/, as in Definition 3.1.

In entirely analogous fashion, we have functors “r1” with targetsMClog.C ŒŒy��=C /

andMC.C..y//=C /. Note, on the other hand, that r1.eulP .V; A// then corresponds
to eul.V;�A/ as #.y/ D �y.

The relation between MCrs.C Œx
˙�=C / and MCrs.C..x//=C / is given by the fol-

lowing theorem:

Theorem 6.4. The functor r0 induces an equivalence between categories of
regular-singular connections.

In [12, Sections 15.28–36], Deligne offers a proof of this result by constructing an
inverse functor and in studying [12], we obtained the following sequence of thoughts
(which is possibly not exactly what Deligne had in mind).

Proposition 6.5 (Regular-singular connections are “Euler”). The functor eul W
End! MCrs.C Œx

˙�=C / is essentially surjective. More precisely, given .M;r/ 2
MCrs.C Œx

˙�=C /, there exists .M; A/ 2 End and an isomorphism eulP .M; A/ '

.M;r/. In addition, A can be chosen to have no two distinct eigenvalues differing by
a positive integer.

Proof. This is mostly spectral theory of the connection operator. Let .M;r/ 2
MCrs.C Œx

˙�=C / be given. There exists a finite C Œx�-submodule M ofM which is
invariant under r and generatesM as a C Œx˙�-module. Note that M is necessarily
free. For each k 2 Z, we define M.k/ D xkM to obtain a decreasing, separated and
exhaustive filtration ofM .

Given k < `, let us write M.k;`/ for the quotient M.k/=M.`/ (this is a finite-
dimensional C -space) and rk;` for the C -linear map induced by r on it. Since
multiplication by xk induces an isomorphism of C -spaces M.0;1/ 'M.k;kC1/, we
can show that

Sp.rk;kC1/ D ¹kº ˚ Sp.r0;1/:
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From the exact sequence

0 �!M.kC1;kC2/
�!M.k;kC2/

�!M.k;kC1/
�! 0

we derive

Sp.rk;kC2/ D Sp.rkC1;kC2/ [ Sp.rk;kC1/
D .Sp.r0;1/˚ ¹k C 1º/ [ .Sp.r0;1/˚ ¹kº/;

which in all generality gives

Sp.rk;`/ D Sp.rk;kC1/ [ � � � [ Sp.r`�1;`/

D

`�1[
jDk

Sp.r0;1/˚ ¹j º:

We now require the following lemma:

Lemma 6.6. The following claims are true:

(1) The spectral set Sp.r/ is contained in
S
k2Z¹kº ˚ Sp.r0;1/ and is invariant

under the action of Z on C .

(2) Let % 2 Sp.r/. Then there exists a couple of integers k < ` such that G.r; %/ �
M.k/ and G.r; %/ \M.`/ D .0/. In particular, dimG.r; %/ <1.

Proof. (1) Let % 2 Sp.r/ and let m 2M be an eigenvector. Let k 2 Z be such
that m 2M.k/ nM.kC1/. Then

% 2 Sp.rk;kC1/ D Sp.r0;1/˚ ¹kº:

This shows the inclusion. The final statement is a consequence of the fact that if m is
an eigenvector for the eigenvalue %, then xkm is an eigenvector for k C %.

(2) Consider I% the set of all k 2 Z such that % 2 Sp.r0;1/˚ ¹kº. Clearly I% is
finite; let � D min I% and � D max I%. For a given m 2 G.r; %/ n ¹0º, there exists
k 2 Z such that m �M.k/ nM.kC1/. Hence, % 2 Sp.rk;kC1/ so that k 2 I%. This
implies that

� � k � �:

Hence, m 2M.�/ while m 62M.�C1/.

Finding a logarithmic lattice for M and looking at the space of sections with
poles on 0 and1, we can construct an increasing and exhaustive filtration ofM by
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finite-dimensional vector spaces which is, in addition, stable under r. It then follows
that

M D
M

%2Sp.r/

G.r; %/:

Let us now select a finite set S � Sp.r0;1/ such that

Sp.r/ D
G
k2Z

S ˚ ¹kº:

Write
M D

M
%2S

G.%;r/I

this is a finite-dimensional space because of Lemma 6.6. As multiplication by xk

induces isomorphisms
G.r; %/ ��! G.r; %C k/;

we have
M D

M
k2Z

xkM D C Œx˙�˝C M:

Let AWM!M be the restriction of r. We then see that

M ' eul
P
.M; A/:

In addition, by construction, no two distinct elements of Sp.A/ D S can differ by a
non-zero integer.

Proof of Theorem 6.4. We know that r0 is faithful since the C Œx˙�-module
of any object in MC.C Œx˙�=C / is free (Remark 6.2). Essential surjectivity is an
immediate consequence of Corollary 4.3 and Example 6.3. We consider fullness. Let
.M;r/ and .M 0;r 0/ in MCrs.C Œx

˙�=C / be given. Because of Proposition 6.5, we
may assume that

.M;r/ D .OP ˝C V;DA/ and .M 0;r 0/ D .OP ˝C V
0;DA0/;

where AW V ! V and A0W V 0 ! V 0 have no two distinct eigenvalues differing by
an integer. The result is then a consequence of the explicit determination of
Hom.eul.V; A/; eul.V 0; A0// made in Lemma 3.3 and Proposition 4.4.

Let us now express these findings using the notion of exponents.
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Definition 6.7. Let M 2 MClog.P=C / be given. Define its set of exponents,
Exp.M/, as

Exp.M/ D Exp.r0M/ [ Exp.r1M/:

With this definition, we can fix certain preferred logarithmic models.

Theorem 6.8 (Deligne–Manin models). LetM 2MCrs.C Œx
˙�=C /. Then there

exists a logarithmic lattice M 2MClog.P=C / forM whose exponents are all on � . In
addition, if M0 is another logarithmic lattice forM with all exponents on � , then there
exists a unique isomorphism 'WM!M0 rendering the diagram

P .M/
� //

P .'/ %%

M

P .M
0/

�

OO

commutative.

Proof. There exists, by Corollary 4.3, an object .V; A/ 2 End with SpA � �
and an isomorphism u0W eul.V; A/ ��! r0.M/. Let M0 D eulP .V; A/; this is an
object ofMClog.P=C /. Since r0.P .M0// D eul.V; A/, Theorem 6.4 produces an
isomorphism Qu0WP .M0/

�
�!M such that r0. Qu0/D u0. Similarly, we obtain .W;B/ 2

End, u1W eul.W; B/ ��! r1.M/, M1 D eulP .W; B/ and Qu1W P .M1/ ��! M .
From this we derive an isomorphism fromMC.C Œx˙�=C /:

vW P .M0/
�
�! P .M1/

and hence an object M 2MClog.P=C / with the properties required in the statement.
Now let M and M0 be as in the statement; we possess an isomorphism in

MC.C Œx˙�=C /: f W P .M/
�
�! P .M

0/. Write M0 D M.A0/ and M00 D M0.A0/

so that we have an isomorphism of C Œx˙�-modules

f WM0 ˝
CŒx�

C Œx˙�
�
�!M00 ˝

CŒx�
C Œx˙�:

Going over to C..x// and using Theorem 4.5, we conclude that

f
�
M0 ˝

CŒx�
C ŒŒx��

�
�M00 ˝

CŒx�
C ŒŒx��;

and this allows us extend f to a morphism of '0WM0 !M00 of C Œx�-modules. Note
that '0 is the unique such extension and that it is automatically compatible with the
derivations; all this is because M00 !M00 ˝ C Œx

˙� is injective. In addition, working
with the inverse of f , we conclude that '0 is an isomorphism. The same reasoning can
be applied to M1 DM.A1/ and M01 DM0.A1/ and the proof is concluded.
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A difference between the construction given in Theorem 6.8 and that of Section 4
is that the logarithmic model is not necessarily of the form eulP .V; A/: indeed, these
are free OP -modules. Here is an illustration.

Example 6.9. Let C D C, � D ¹z 2 CW 0 � Re.z/ < 1º andM D eulP .C; 12 /.
In this case, B D eulP .C; 12 / is not what we look for since Exp.r1B/ D ¹�1

2
º. Let

us now consider M D OP .1/, which we understand as being defined by M.A0/ D

CŒx� �m0 and M.A1/ D CŒy� �m1 subjected to the relation m1 D x�1m0. Now
define rjA0 by rm0 D

1
2
m0, so that r.m1/ D �12m1 and hence Exp.M/ D ¹1

2
º.

Part II

We shall now concentrate on the study which gives the title to this paper: regular-
singular connections depending on parameters.

7. Connections with an action of a ring

We fix a commutative C -algebra ƒ whose dimension as a vector space is finite.
The following definition is basic:

Definition 7.1. Let C be a C -linear category. We define C.ƒ/ as the category
whose

objects are couples .c; ˛/ with c 2 C and ˛Wƒ! End.c/ is a morphism of rings, and
an

arrow from .c; ˛/ to .c0; ˛0/ is a morphism 'W c! c0 such that ˛0.�/ ı ' D ' ı ˛.�/
for all � 2 ƒ.

To ease terminology, we shall also refer to objects in C.ƒ/ as objects of C with an
action of ƒ and usually abandon the arrow to the ring of endomorphism from notation.
In this case, the endomorphism obtained from � 2 ƒ will come with no distinctive
graphical symbol.

Definition 7.2. LetM 2 .C ŒŒx��-mod/.ƒ/. We say thatM is free in relation to ƒ
if there exists aƒ-module V , an isomorphism of C ŒŒx��-modules WC ŒŒx��˝C V !M

such that, for each � 2 ƒ, f 2 C ŒŒx�� and v 2 V , we have

 .f ˝ �v/ D �. .f ˝ v//:

Remark 7.3. One easily sees that the canonical arrow ƒ˝C C ŒŒx��! ƒŒŒx�� is
an isomorphism and hence we may identify .C ŒŒx��-mod/.ƒ/ with ƒŒŒx��-mod. Then a
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C ŒŒx��-module with the action of ƒ is free in relation to ƒ if and only if, as a ƒŒŒx��-
module, it is of the form ƒŒŒx��˝ƒ V for some ƒ-module V . The reason for working
with C ŒŒx��-modules with an action of ƒ instead of with ƒŒŒx��-modules is justified by
the fact that we wish to rely on the theories of connections over C..x// and C ŒŒx��.

Here is the first useful property stemming from the definition:

Lemma 7.4. LetM 2 .C ŒŒx��-mod/.ƒ/ be free in relation to ƒ. ThenM is a free
C ŒŒx��-module.

Another key property is the following:

Lemma 7.5. Let M 2 .C ŒŒx��-mod/.ƒ/ be free in relation to ƒ. Then, for each
ideal l � ƒ, the C ŒŒx��-module M=lM is also free in relation to ƒ. In particular,
M=lM is a free C ŒŒx��-module.

We now begin to apply the definition of objects with an action of ƒ to categories
of connections.

Example 7.6. The category End.ƒ/ consists of couples .V; A/ where V is a
ƒ-module and A is an endomorphism of ƒ-modules.

Example 7.7. The simplest way of constructing objects inMClog.C ŒŒx��=C /.ƒ/
is by means of Euler connections. Let V be a finite ƒ-module, AW V ! V a C -
linear endomorphism and eul.V; A/ the associated Euler connection. Now assume
that A is, in addition, ƒ-linear (so that .V; A/ 2 End.ƒ/). Then, for each � 2 ƒ, the
endomorphism Œ��WC ŒŒx��˝C V ! C ŒŒx��˝C V defined by Œ��.f ˝ v/ D f ˝ �v
is horizontal and gives eul.V; A/ the structure of an object fromMClog.C ŒŒx��=C /.ƒ/.
Clearly, C ŒŒx��˝C V 2 .C ŒŒx��-mod/.ƒ/ is free in relation to ƒ.

Theorem 7.8 (Deligne–Manin lattices). Let M 2 MCrs.C..x//=C /.ƒ/. There
exists a logarithmic lattice M 2MClog.C ŒŒx��=C / forM and an action ofƒ on it such
that

(1) all exponents of M lie on � ;

(2) the isomorphism .M/ 'M is compatible with the ƒ-actions;

(3) M is free in relation to ƒ;

(4) in fact, M and its ƒ action can be chosen to be of the form eul.V; A/, where
.V; A/ 2 End.ƒ/ is as in Example 7.7.
Finally, if

'WM �! N
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is an arrow ofMCrs.C..x//=C /.ƒ/ and N 2MClog.C ŒŒx��=C / is a logarithmic lattice
of N affording an action ofƒ and having properties (1)–(3), then there exists a unique
Q'WM! N in MClog.C ŒŒx��=C /.ƒ/ rendering

M
Q'
//

can:
��

N

can:
��

M
'
// N

commutative.

Proof. By shearing (Theorem 4.2) there exists a logarithmic lattice M of M
whose exponents are all on � . By Theorem 4.1 we can say that M D eul.V; A/,
where AWV ! V is an endomorphism of the finite-dimensional C -space V . Note that
SpA � � .

Using Proposition 4.4, the natural morphism

EndMClog.eul.V; A// �! EndMCrs.M/

is bijective. Hence, we obtain a morphism of rings ƒ! EndMClog.eul.V; A//; this
gives an action of ƒ on eul.V; A/ and condition (2) is tautologically fulfilled.

In order to show that eul.V; A/ is free in relation to ƒ, we remark that, due to
Lemma 3.3 (2), for each � 2 ƒ, the arrow

�WC ŒŒx��˝C V �! C ŒŒx��˝C V

in MClog.C ŒŒx��=C / is of the form 1˝ � for an arrow �WV ! V such that � ı A D
A ı �. We therefore obtain an action of ƒ on V . We have therefore shown that
properties (1)–(4) hold.

Let N and N be as in the statement. The existence of an arrow Q'WM! N from
MClog.C ŒŒx��=C / fitting into the commutative diagram

M
Q'
//

can:
��

N

can:
��

M
'
// N

is guaranteed by Proposition 4.4 (3). (Recall that as C ŒŒx��-modules, M and N are
free.) That Q' is unique and respects the actions of ƒ is a simple consequence of the
fact that N ! N is an injection.
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We end this section by showing that what was said before about formal connections
is, modified accordingly, valid for regular-singular connections on C Œx˙� (considered
in Section 6). We start with an immediate consequence of Theorem 6.4.

Corollary 7.9. The natural functor

MCrs.C Œx
˙�=C /.ƒ/ �!MCrs.C..x//=C /.ƒ/

deduced from r0 is an equivalence.

Before stating the next result, let us put forward the analogue of Definition 7.2.

Definition 7.10. A coherent OP -module M with an action of ƒ is locally free
in relation to ƒ if there exists a finite ƒ-module V and an isomorphism M.A0/ '

V ˝C O.A0/, resp. M.A1/ ' V ˝C O.A1/, such that, under these isomorphisms,
the action of ƒ is given by means of its action on V .

Remark 7.11. Obviously, if M 2MClog.P=C/.ƒ/ is locally free in relation to ƒ,
then it is a locally free OP -module.

Theorem 7.12 (Deligne–Manin models). LetM 2 MCrs.C Œx
˙�=C /.ƒ/. There

exists a logarithmic lattice M 2MClog.P=C / endowed with an action of ƒ such that

(1) all exponents of M lie on � ;

(2) the canonical isomorphism
P .M/

�
�!M

is compatible with ƒ-actions;

(3) M is locally free in relation to ƒ.

Proof. This is much the same as the proof of Theorem 6.8, except that we make
the following replacements. The use of Corollary 4.3 is replaced by that of Theorem 7.8.
The use of Theorem 6.4 is replaced by that of Corollary 7.9.

Note that the statement of Theorem 7.12 leaves out the uniqueness properties
analogous to those in Theorem 7.8. The verification of these occupies the following
lines.

LetM 2MClog.P=C /.ƒ/ and ı 2Z. LetM.ı/ stand for the logarithmic connection
obtained by gluing x�ıM.A0/ and y�ıM.A1/ via the isomorphism x D y�1. In the
possession of this definition, we have an analogue of Proposition 4.4:

Proposition 7.13. Let 'WE ! F be an arrow ofMCrs.C Œx
˙�=C /.ƒ/. Let E and

F be logarithmic models for E and F and assume that F is in fact a lattice. Let ı
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be the largest integer in Exp.F /	 Exp.E/. Then xı'.E/ � F . In particular, there
exists a unique ˆWE ! F .ı/ fromMClog.P=C /.ƒ/ such that P .ˆ/ D '.

Proof. Let us write .�/0 and .�/1 for sections over A0 and A1. Similarly
to the proof of Proposition 4.4, we obtain xı'.E0/ � F0 and yı'.E1/ � F1. As
F is locally free, we extend ' to ˆW E ! F .ı/, an arrow of MClog.P=C /. As the
restrictions F .ı/0 ! F and F .ı/1 ! F are injective, we conclude that ˆ is an
arrow ofMClog.P=C /.ƒ/. Obviously P .ˆ/ D '. The injectivity of F .ı/0! F and
F .ı/1 ! F again ensures that ˆ is unique.

Theorem 7.14. Let 'WM ! N be an arrow ofMCrs.C Œx
˙�=C /.ƒ/. Let M and

N be logarithmic models forM andN affording an action ofƒ, and having properties
(1)–(3) of Theorem 7.12. Then there exists a uniqueˆWM!N inMClog.C ŒŒx��=C /.ƒ/
satisfying

P .ˆ/ D ':

Proof. This is much the same as the last part of the proof of Theorem 7.8, except
that we make the following replacement. The use of Proposition 4.4 (3) is replaced by
that of Proposition 7.13.

8. Formal connections with parameters in a ring: Basic results

We let R be a complete local noetherian C -algebra with residue field C and
maximal ideal r. The C -algebras R=rkC1 will be abbreviated to Rk . We let # stand
for the R-linear derivation on RŒŒx�� defined by #

P
anx

n D
P
annx

n, as well as
its extension to R..x// D RŒŒx��Œx�1�. Finally, in developing our arguments, we shall
find it convenient to identify RŒŒx��=rkC1RŒŒx�� and RkŒŒx�� via the canonical morphism
[36, Theorem 8.11, p. 61]. (Note also that this identification is possible by replacing
rkC1 with any given ideal of R.)

We begin by recycling the definitions appearing in Section 2.

Definition 8.1. (1) We letMC.R..x//=R/, the category ofR-linear connections,
be the category whose objects are couples .M;r/ consisting of a finite R..x//-
module and an R-linear endomorphism rWM ! M satisfying Leibniz’s rule
r.f m/ D #.f /mC f r.m/, and whose arrows are defined by imitating Defini-
tion 2.1.

(2) We let MClog.RŒŒx��=R/, the category of R-linear logarithmic connections, be the
category whose objects are couples .M;r/ consisting of a finite RŒŒx��-module
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and an R-linear endomorphism rWM!M satisfying Leibniz’s rule r.f m/ D
#.f /m C f r.m/, and whose arrows are defined by imitating Definition 2.1.
Whenever no confusion is possible, we omit reference to r in the notation.

(3) We denote by
 WMClog.RŒŒx��=R/ �!MC.R..x//=R/

the obvious functor and define MCrs.R..x//=R/, the category of regular-singular
connections, as being the full subcategory of MC.R..x//=R/ whose objects are
(isomorphic to an object) in the image of  .

(4) GivenM 2MCrs.R..x//=R/, any object M 2MClog.RŒŒx��=R/ for which there
is an isomorphism .M/ 'M is said to be a logarithmic model ofM .

(5) A logarithmic model M ofM is called x-pure if multiplication by x is injective
on M.

It comes as no surprise that MC.R..x//=R/ is an abelian category such that the
forgetful functor to R..x//-mod is exact.

Given .M;r/2MClog.RŒŒx��=R/, it is clear that theRŒŒx��-module
S
k.0 W x

k/MD

¹m2MWxkmD 0º is stable underr, so that, taking the quotient, we have the following
lemma:

Lemma 8.2. EachM 2MCrs.R..x//=R/ has an x-pure logarithmic model.

This simple result can be improved; see Theorem 9.1 below. But its utility is
promptly manifest.

Proposition 8.3. The full subcategory MCrs.R..x//=R/ of MC.R..x//=R/ is
stable under quotients and subobjects.

Sketch of proof. LetN2MC.R..x//=R/ be a subobject ofM2MCrs.R..x//=R/.
Let M be an x-pure logarithmic model forM (cf. Lemma 8.2). Then N WDM \N

is an x-pure logarithmic model of N . Quotients are treated using models for the
kernel.

Furthermore, given .M;r/ and .M0;r 0/ in MClog.RŒŒx��=R/, their tensor product
M ˝RŒŒx�� M0 gives rise to an object of MClog.RŒŒx��=R/ by decreeing that

r ˝ r
0.m˝m0/ D r.m/˝m0 Cm˝r 0.m0/:

It is then the case that MClog.RŒŒx��=R/ becomes an R-linear tensor category and
MCrs.R..x//=R/ is an R-linear abelian tensor category.



P. H. Hai – J. P. dos Santos – P. T. Tâm 206

Example 8.4 (Twisted models). For each ı 2 Z, let 1.ı/ denote the free RŒŒx��-
submodule ofR..x// generated by x�ı . Clearly, 1.ı/ is invariant under # and we obtain
in this way an x-pure logarithmic model for the trivial object .R..x//; #/. We define
analogously, for each M 2MClog.RŒŒx��=R/, the object M.ı/ as being 1.ı/˝M.

We now explore further immediate similarities between this theory and the classical
one.

Example 8.5. Let EndR be the category whose objects are couples .V; A/ con-
sisting of a finite R-module V and an R-linear endomorphism AWV ! V , and whose
arrows are given as in Definition 3.2. Given .V; A/ 2 EndR, letDAWRŒŒx��˝R V !
RŒŒx��˝R V be defined by

DA.f ˝ v/ D #f ˝ v C f ˝ Av:

This gives rise to an R-linear functor

eulWEndR �!MClog.RŒŒx��=R/

analogous to the one in Definition 3.1.

Let .M;r/ 2MClog.RŒŒx��=R/ and note that

(8.1) resr WM=.x/ �!M=.x/;

given by
resr.mC .x// D r.m/C .x/;

is R-linear.

Definition 8.6 (Residue and exponents). The R-linear map (8.1) is called the
residue of r. If

resr WM=.r; x/ �!M=.r; x/

stands for the C -linear morphism obtained from resr by reduction modulo r, we call
the set Spresr the set of exponents of r; it will be denoted by Exp.M;r/, Exp.r/ or
Exp.M/ if no confusion is likely.

Remark 8.7. It should be highlighted that the exponents belong to C . The reason
for taking this path is, from a practical viewpoint, justified by the fact that we are
able to prove the results we wanted with it. But it is important to throw more light
on our choice. While explaining either this work or [24] to others, the question “Why
not take, in the case that R is a domain, the exponents in a quotient field of R?”
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frequently appeared. This is certainly a possible path and when we started this theory,
our exponents (in Definition 8.6) were called reduced exponents. Then at some point
it became clear that (a) reduced exponents were the ones controlling the theory and
leading to Corollary 9.7, our main result; (b) in taking limits, we need non-reduced
rings; (c) in taking limits, it is important to have the exponents being constant while
“reducing”; see Corollary 8.12. We then decided that the reduced exponents deserved
a prominent name. On the other hand, in different situations, our definition may be
insufficient; see Remark 8.17 below.

Let us now start by recalling the following lemma:

Lemma 8.8 ([43, Chapter II, Problem 4.1]). Let m and n be positive integers, A
an element ofMm.C /, and B an element ofMn.C /. Let

f WMm�n.C / �! Mm�n.C /

be the linear map defined by X 7! AX �XB . Then Spf D SpA	 SpB . In particular,
if no two distinct eigenvalues of A differ by an integer, then the linear transformation
�id � adAWMm.C /! Mm.C / is invertible for each � 2 Z n ¹0º.

A direct application of Lemma 8.8 and Nakayama’s lemma shows the following:

Corollary 8.9. Let A 2 Mn.R/ be such that its reduction modulo r, call it
NA 2 Mn.C /, has no two distinct eigenvalues differing by an integer. Then, for any
� 2 Z n ¹0º, the R-linear morphism �id � adAWMn.R/! Mn.R/ is bijective.

Theorem 8.10 (Cf. Theorem 4.1). Let .M;r/ 2 MClog.RŒŒx��=R/ be such that
M is a free RŒŒx��-module and no two distinct exponents of r differ by an integer. Then
.M;r/ is isomorphic to eul.M=.x/; resr/.

Said otherwise, consider a differential system

#y D Ay

defined by A 2 Mr.RŒŒx��/ such that A.0/ modulo r has no two distinct eigenvalues
differing by an integer. Then there exists P 2 GLr.RŒŒx��/ such that, writing y D P z,
we arrive at the system

#z D Bz

in which B 2 Mr.R/.

Proof. One proceeds as in [43, Sections 4.2, 4.3 and 5.1], but substitute the use
of Wasow’s Theorem 4.1 by our Corollary 8.9.
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We now move to shearing techniques which allow us to eliminate the hypothesis on
the exponents in Theorem 8.10. We begin by setting up the necessary linear algebra.

Proposition 8.11. Let ƒ be a commutative C -algebra which is a finite-dimen-
sional C -space. Let n � ƒ be a nilpotent ideal, V a finite ƒ-module and AWV ! V

a ƒ-linear arrow. Considering A as a C -linear endomorphism, write %1; : : : ; %r for
its distinct eigenvalues and let

V D G.A; %1/˚ � � � ˚G.A; %r/

be the decomposition into generalized eigenspaces:

(1) Each G.A; %j / is invariant under ƒ and n �G.A; %j / 6D G.A; %j /.
(2) Write xV D V=nV andG.A; %j / for the image ofG.A;%j / in xV . ThenG.A; %j / 6D

0.

(3) Let NA be the endomorphism of xV induced by A. Then the space G.A; %j / is the
generalized eigenspace of NA associated to %j and Sp NA D SpA.

Proof. By definition,

G.A; %j / D
[
n

Ker.A � %j id/n;

so that for every � 2ƒ, we have �G.A;%j /�G.A;%j /. SinceG.A;%j / 6D 0, we know
that n �G.A; %j / 6D G.A; %j /. This establishes (1). To prove (2), we note that nV DL
j nG.A; %j / and hence G.A; %j /=nG.A; %j / ��! G.A; %j /. Also, as a consequence,

we arrive at the direct sum decomposition

(8.2) xV D G.A; %1/˚ � � � ˚G.A; %r/:

The nilpotence of NA � %j id when restricted to G.A; %j / now shows that %j is the only
eigenvalue of NA on G.A; %j / and that

G.A; %j / � G. NA; %j /:

Let us fix j0 2 ¹1; : : : ; rº and show that G.A; %j0/ � G. NA; %j0/. Suppose that xw 2 xV
is annihilated by . NA� %j0 id/m and write it as Nv1C � � � C Nvr with Nvj 2 G.A; %j /. Since
Nvj 2 G.A; %j /, there exists nj 2 N such that . NA � %j id/nj . Nvj / D 0. We now choose
� D max¹m; n1; : : : ; nrº and then find P;Q 2 C ŒT � such that

P.T / � .T � %j0/
�
D 1CQ.T / �

Y
j 6Dj0

.T � %j /
�:
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Hence,
0 D xw CQ. NA/ �

Y
j 6Dj0

. NA � %j id/�. xw/:

Now
Q. NA/ �

Y
j 6Dj0

. NA � %j id/�. xw/ D Q. NA/ �
Y
j 6Dj0

. NA � %j id/�. Nvj0/„ ƒ‚ …
2G.A;%j0 /

;

which shows xw 2 G.A; %j0/. Finally, (8.2) is the decomposition of xV into generalized
eigenspaces.

The previous result also allows us to grasp the utility of our definition of exponents.

Corollary 8.12. The following claims are true:

(1) Let ƒ be a C -algebra which is a finite-dimensional vector space and n � ƒ

a nilpotent ideal. Let .M;r/ 2 MClog.C ŒŒx��=C /.ƒ/ and define Mjn D M=n.
Then r gives rise to rjnWMjn !Mjn and the couple .Mjn;rjn/ is an object of
MClog.C ŒŒx��=C /.ƒ=n/ which has the same set of exponents as .M;r/.

(2) Let .M;r/ 2 MClog.RŒŒx��=R/ and k 2 N be given. Define Mjk WD M=rkC1.
Then this is a C ŒŒx��-module of finite type (since it is a finite RkŒŒx��-module).
Let rjk WMjk ! Mjk be induced by r. Then .Mjk; rjk/ is an object of
MClog.C ŒŒx��=C /.Rk/ and Exp.r/ D Exp.rjk/.

Another useful consequence of Proposition 8.11 is the following corollary:

Corollary 8.13 (Lifting of Jordan decomposition). Let V be an R-module and
AWV ! V be an R-endomorphism. Denote by NAW xV ! xV the C -linear endomorphism
obtained by reducing A modulo r.

Then there exist R-submodules ¹V.%/W % 2 Sp NAº of V enjoying the following prop-
erties:

(1) The R-module V is the direct sum of ¹V.%/W % 2 Sp NAº.

(2) Each V.%/ is stable under A.

(3) If V.%/ stands for the image of V.%/ in xV D V=rV , then V.%/ D G. NA; %/.
In addition, if V is free, then each V.%/ is also free.

Proof. Let % be fixed. For a given k 2 N, let Ak W Vk ! Vk be the Rk-linear
endomorphism obtained by reducing A modulo rkC1. The eigenvalues of Ak will
always mean those of the associated C -linear endomorphism of Vk . Applying Proposi-
tion 8.11 to the caseƒD RkC1 and nD rkC1 �RkC1, we obtain that SpAkC1 D SpAk .
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By induction, SpAk D SpA0 D Sp NA. In addition, we also know that the canonical arrow

G.AkC1; %/ �! G.Ak; %/

is a surjective morphism of RkC1-modules whose kernel is rkC1G.AkC1; %/. Now we
define

V.%/ D lim
 �
k

G.Ak; %/;

which is considered as an R D lim
 �k

Rk-module. According to [22, 0I, Proposition
7.2.9, p. 65], the natural projection V.%/! G.Ak; %/ is surjective and has kernel
rkC1V.%/.

Using the inclusions G.Ak; %/! Vk , we obtain an injective arrow of R-modules

uW
M
%

V.%/ �! lim
 �
k

Vk .' V /:

In addition, reducing umodulo r and employing the fact that V.%/=rV.%/'G.A0; %/,
Nakayama’s lemma [36, Theorem 2.2, p. 8] tells us that u is surjective.

The verification of the final assertion is clear: because V.%/ is a direct summand of
V , we can infer that V.%/ is projective and of finite type, hence free.

In the case that the module V appearing in the statement of Corollary 8.13 is free,
we have the following (probably well-known) consequence:

Corollary 8.14. Let A 2 Mn.R/ be given and denote by ¹%1; : : : ; %rº the spec-
trum of NA 2 Mn.C /. Then there exist

(1) P 2 GLn.R/,

(2) a partition n D n1 C � � � C nr and

(3) matrices
U.1/ 2 Mn1.R/; : : : ; U.nr/ 2 Mnr .R/

such that

P�1AP D

0B@ U.1/ 0 0

0
: : : 0

0 0 U.nr/

1CA ;
and, for every i , the image of U.ni / in Mni .C / is a generalized Jordan matrix with
eigenvalue %i .

Remarks 8.15. (a) Corollary 8.14 should be compared with [43, Theorem 25.1].
In fact, it is not difficult to show that this result holds under the weaker assumption
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that R is only strictly Henselian. Indeed, the Hensel property allows us to lift
the factorization of the characteristic polynomial of A and one proceeds by
showing that the kernels of the various factors evaluated at A produce a direct
sum decomposition.

(b) There is a substantial literature on the problem of similarity of matrices over
rings; see e.g. [23] and references in there.

Once in possession of these properties, we can follow the shearing technique in
[43] to prove the following theorem::

Theorem 8.16. Let .M;rM/ 2MClog.RŒŒx��=R/ be such that M is a free RŒŒx��-
module and let .M;rM / be the regular-singular connection associated to .M;rM/.
Then there exists an object .W; B/ 2 EulR, with W a free R-module, such that
.M;rM /' eul.W;B/. In addition, the eigenvalues of the endomorphism ofW=.x;r/
defined by B all belong to � .

Said otherwise, consider a differential system

#y D Ay

defined by A 2 Mr.RŒŒx��/. There exists P 2 GLr.R..x/// such that, writing y D P z,
we arrive at the system

#z D Bz

in which B belongs to Mr.R/ and its image in Mr.C / only has eigenvalues lying in � .

Proof. Because of Nakayama’s lemma [36, Theorem 2.2, p. 8] (and the fact
that RŒŒx�� is local), a set of elements of M which is mapped to a basis of M=.x/ is
necessarily a basis ofM. According to Corollary 8.14, there exists a basismD¹miº

r
iD1

of M such that the basis
xm D ¹mi C .x/º

r
iD1

of M=.x/ has the following properties:

(a) the matrix of resMWM=.x/!M=.x/ with respect to m has the form 
J11 0

0 J22

!
;

where J11 2 Mq.R/ and J22 2 Mr�q.R/. (Here, q 2 ¹1; : : : ; rº is a positive
integer. In the case that q D r , we say only that resM D J11.)

(b) If NJ11 2Mq.C / and NJ22 2Mr�q.C / stand for the images of J11 and J22 respect-
ively, then Sp NJ11 D ¹%º and % 62 Sp NJ22 .
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Hence, the matrix of rM with respect to m is 
J11 C x‰11 x‰12

x‰21 J22 C x‰22

!
;

where ‰11 2 Mq.RŒŒx��/ and ‰22 2 Mr�q.RŒŒx��/.
Let us now define m0 D ¹m01; : : : ; m

0
rº �M by

m0j D

´
xmj if j 2 ¹1; : : : ; qº;
mj if j 2 ¹q C 1; : : : ; rº;

which is to say that the base-change matrix from m to m0 is 
x 0

0 I

!
:

Clearly,

M0 D

rX
jD1

RŒŒx�� �m0j

is a free RŒŒx��-module such that M0Œ1=x� DM . In addition, the matrix of rM with
respect to m0 is 

1=x 0

0 I

!
�

 
x 0

0 0

!

C

 
1=x 0

0 I

!
�

 
J11 C x‰11 x‰12

x‰21 J22 C x‰22

!
�

 
x 0

0 I

!
;

which equals  
I 0

0 0

!
C

 
J11 C x‰11 ‰12

x2‰21 J22 C x‰22

!
:

Hence, with respect to the basis ¹m0j C .x/º of M0=.x/, we have

resM0 D

 
J11 C I ‰12

0 J22

!
;

and the exponents of M0 are ¹% C 1º [ Sp NJ22 . Analogously, if we define m00 D

¹m001; : : : ; m
00
r º �M by

m00j D

´
x�1mj if j 2 ¹1; : : : ; qº;
mj if j 2 ¹q C 1; : : : ; rº;



Connections with parameters 213

and

M00 D

rX
jD1

RŒŒx�� �m00j ;

we obtain a logarithmic model .M00;rM / such that ExpM00 D ¹% � 1º [ Sp NJ22 .
By induction, we are able to find a logarithmic model .MC;rC/ ofM such that

MC is free and ExpMC � � . Theorem 8.10 now finishes the proof.

Remark 8.17. As mentioned in Remark 8.7, our definition of exponents can be
inadequate in certain contexts. Suppose that we set out to obtain a “normalization”
result like Theorem 8.16 in the following setting. Let o be a noetherian C -algebra
which is also a domain and defineMCrs.o..x//=o/ along the lines of Definition 8.1 (3).
Given .M;r/ 2MCrs.o..x//=o/ such thatM is a free o-module, is it possible to find
an analogue of the combination of Theorem 8.16 and Corollary 8.14?

Here we recommend [3, Sections 8.3–4]. Their exponents [3, Proposition-Definition
7.6.1] are elements in an extension of Frac.o/ following the classical construction (cf.
Theorems 4.1 and 4.2). From there, André, Baldassarri and Cailotto go on to show that
the exponents of .M;r/ do indeed belong to some integral extension o0 of o and that
a “Jordan decomposition” can be achieved over o0..x// provided that the differences of
exponents are in C [3, Theorem 8.4.2]. This gives another approach to Theorem 8.16.

We end this section with a capital result, Theorem 8.18, concerning the structure
of the R..x//-module underlying an object ofMC.R..x//=R/:

Theorem 8.18. Let .M;r/ be an object of MC.R..x//=R/. ThenM is flat as an
R..x//-module if and only ifM is R-flat.

Since the ringR..x// is not r-adically complete and since the fibres of SpecR..x//!
SpecR may fail to be of finite type over a field, the argument delivering Theorem 8.18
cannot be a direct adaptation of known results, e.g. [31, Lemma 2.4.2, p. 40], [17, p. 82]
or [18, Proposition 5.1.1]. (We profit to note at this point that in the proof of [18, Pro-
position 5.1.1], we need to employ the “fibre-by-fibre flatness criterion” [22, IV3,
11.3.10, p. 138] and not the “local flatness criterion.”) We then need the following
theorem, which will also find future applications.

Theorem 8.19. LetM 2MC.R..x//=R/ be given. Let p be a prime ideal of R, S
the quotient ring R=p and L its field of fractions. Then the L˝R R..x//-module

M jp WD .L˝R R..x/// ˝
R..x//

M

is flat.
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Proof. Since RŒx�=pRŒx� ' SŒx�, the Artin–Rees lemma ensures that RŒŒx��=
pRŒŒx�� ' SŒŒx�� [36, Theorem 8.11, p. 61]; inverting x, we conclude that S ˝R
R..x//

�
�! S..x//. As a consequence, S ˝R M is an object of MC.S..x//=S/. Hence,

we only need to show that for any N 2 MC.S..x//=S/, the L ˝S S..x//-module
L ˝S N is flat. Using [2, Theorem 2.5.2.1, p. 713] (see also Remark 8.20), it is
enough to show that L˝S S..x// has no ideal invariant under # other than .0/ and .1/.
Then let J � L˝S S..x// be a non-zero ideal invariant under # . Since L˝S S..x//
is a localization of SŒŒx�� – note that S..x// is a localization of SŒŒx�� and L˝S S..x//
is a localization of S..x// – we conclude that J is the extension of I WD J \ SŒŒx��;
clearly I is equally stable under # . What we are looking for is a consequence of the
following claim:

Claim. Let I � SŒŒx�� be a #-invariant ideal. Then there exists an ideal a � S

such that
a � S..x// D I � S..x//:

Proof. Let f1; : : : ; fn be generators of I . We conclude that the vector f D
>.f1; : : : ; fn/ satisfies a differential equation

#y D Ay;

where A 2 Mn.SŒŒx��/. Let us now suppose that � \ Z D ¹0º. There exists

P 2 GLn.S..x///

such that, if f D Pg, then

(8.3) #g D Bg

with B 2 Mn.S/ a matrix whose image in Mn.C / only has eigenvalues in � (The-
orem 8.16). Since P 2 GLn.S..x///, letting g D >.g1; : : : ; gn/, we have

nX
iD1

S..x//gi D I � S..x//:

Let us now write
g D

X
i�i0

gix
i :

It then follows from (8.3) that Bgi D igi for each i � i0. Given k 2 N, let

Bk WS
˚n
k
�! S˚n

k
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stand for the C -linear endomorphism defined by B . Since SpBk D SpB0 (cf. Propos-
ition 8.11) and SpB0 \Z D ¹0º, we conclude that, if i 6D 0, then the image of gi in
S˚n
k

vanishes. As k is arbitrary, this implies that gi D 0 for i 6D 0 and hence g 2 Sn.
The ideal a envisaged in the statement is hence obtained.

The proof of the claim, and hence that of the theorem, is finished.

Proof of Theorem 8.18. One applies the previous result and the fibre-by-fibre
flatness criterion [22, IV3, 11.3.10, p. 138].

Remark 8.20. We have employed above a theorem from [2] in order to prove
Theorem 8.19. Here is a self-contained result which gives what we want.

Let A be a ring, � an A-module and dWA! � a derivation. Given an A-module
M , we define a connection onM as being an additive map rWM !M ˝� such that
r.am/ D ar.m/Cm˝ da. Let AŒ�� D A˚� and give it the structure of a ring by
decreeing that !!0 D 0 for !;!0 2 �. Let �WA! AŒ�� be the obvious inclusion and
t WA! AŒ�� the map defined by a 7! aC da; both are morphisms of rings. Using a
connection r onM , we arrive at an isomorphism of AŒ��-modules

(8.4) AŒ�� ˝
t;A
M
�
�!M ˝

A;�
AŒ��

which reduces to the identity modulo � [5, Proposition 2.9].
Let us suppose that M is of finite type and let Fittr be the r th Fitting ideal of

M [19, Corollary-Definition 20.4]. By a fundamental property of these ideals [19,
Corollary 20.5], the isomorphism in (8.4) says that t .Fittr/AŒ�� D �.Fittr/AŒ��. This
implies the inclusion

d.Fittr/ � Fittr ��:

We say that an ideal I � A is d-invariant if d.I / � I�. Therefore, imposing that
the only d-invariant ideals of A are .0/ and .1/ and employing [19, Proposition 20.8],
we conclude that either M D 0, or M is projective of constant rank. (Note that if
SpecA is disconnected, then there are immediately d-invariant ideals other than .0/
and .1/, so constancy of the rank is appropriate.)

9. Logarithmic models for connections from MCrs.R..x//=R/

Let k 2 N. For each .M;r/ 2MClog.RŒŒx��=R/, the arrow

rWM=rkC1 �!M=rkC1
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gives rise to an object ofMClog.C ŒŒx��=C /.Rk/ and this construction produces a functor

�jk WMClog.RŒŒx��=R/ �!MClog.C ŒŒx��=C /.Rk/:

Analogously, we obtain a functor

�jk WMC.R..x//=R/ �!MC.C..x//=C /.Rk/

and these two fit into a commutative diagram (up to natural isomorphism)

MClog.RŒŒx��=R/


//

�jk

��

MC.R..x//=R/

�jk

��

MClog.C ŒŒx��=C /.Rk/ 
// MC.C..x//=C /.Rk/:

In particular, if M 2 MC.R..x//=R/ is regular-singular, then M jk is also regular-
singular.

Theorem 9.1 (Deligne–Manin models). AnyM 2MCrs.R..x//=R/ possesses a
logarithmic model M such that, for every k 2 N, the object

Mjk 2MClog.C ŒŒx��=C /.Rk/

enjoys the following properties:

(1) All its exponents lie in � .

(2) It is free in relation to Rk .

(3) The isomorphism .Mjk/ 'M jk is compatible with the action of Rk .

Put otherwise, Mjk is a Deligne–Manin model in the sense of Theorem 7.8.

Proof. Let us begin with a piece of commutative algebra which is fundamental to
our argument: the ring RŒŒx�� is r-adically complete [36, Exercises 8.6 and 8.2]. This
allows us to construct RŒŒx��-modules by taking limits.

Step 1: Putting Deligne–Manin models of truncations together. For each k, let

Mk be a Deligne–Manin logarithmic
model ofM jk 2MCrs.C..x//=C /.Rk/,

as obtained in Theorem 7.8. By definition, the exponents of Mk are all on � . Note that
MkC1jk , regarded as an object of MClog.C ŒŒx��=C /.Rk/, is a logarithmic lattice for
M jk enjoying all the properties described in Theorem 7.8. (To see that the exponents
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remain unchanged, see Corollary 8.12.) We can therefore, by Theorem 7.8, find an
isomorphism

'k WMkC1jk
�
�!Mk;

in the categoryMClog.C ŒŒx��=C /.Rk/, such that

MkC1jk
'k //

can:
��

Mk

can:
��

.M jkC1/jk can.
// M jk

commutes. Because of [22, 0I, Proposition 7.2.9],

M WD lim
 �
k

Mk

is a finiteRŒŒx��-module since, as mentioned before,RŒŒx��' lim
 �k

RkŒŒx��. Furthermore,
for each k, the natural arrow M=rkC1!Mk is an isomorphism by [22, 0I, Proposition
7.2.9]. Using the derivations on the various Mk , we construct a derivation r on M:
we have therefore produced an element of MClog.RŒŒx��=R/. Clearly, for any given
k 2 N, the object Mjk 2 MClog.C ŒŒx��=C /.Rk/ enjoys properties (1), (2) and (3) of
the statement.

Step 2: Showing that the previously constructed logarithmic connection is a model.
This is not automatic since all we know for the moment is the existence of a compatible
family of isomorphisms

MŒx�1�=rkC1
�
�!M=rkC1:

These do not necessarily give us an isomorphism of R..x//-modules MŒx�1� 'M .
For that, let M be an x-pure logarithmic model for M (cf. Lemma 8.2). Then

Mjk is a logarithmic model forM jk (but we do not have much more to say about it).
According to Corollary 8.12 (2) and Proposition 4.4 (2), there exists an integer ı � 0
such that the dotted arrow in

Mjk

can.
��

 k //M.ı/jk� _

can.
��

M jk M jk

can be found for each k. (The definition of M.ı/ is given in Example 8.4.) Note that
 k is automatically an arrow ofMClog.C ŒŒx��=C /.Rk/.
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As RŒŒx�� is r-adically complete, we then derive an arrow, now inMClog.RŒŒx��=R/,

 WM �!M.ı/

inducing  k for each k. We contend that  Œx�1�WMŒx�1�!M.ı/Œx�1� is an iso-
morphism. Since  Œx�1�=rkC1 is an isomorphism for each k, we conclude that the
rR..x//-adic completion of  Œx�1� is an isomorphism. Hence,  Œx�1� is an iso-
morphism on a neighbourhood of the closed fibre of SpecR..x//! SpecR (apply
[22, 0I, Corollary 7.3.3] and [22, 0I, Corollary 7.3.7] to the cokernel and kernel of
 Œx�1�). This implies that the kernel and cokernel of  Œx�1�, which are objects of
MC.R..x//=R/, vanish on an open neighbourhood of the closed fibre of SpecR..x//!
SpecR. Using Theorem 8.19 and then Lemma 9.2 below, we can infer that the kernel
and cokernel of  Œx�1� are trivial and  Œx�1� is an isomorphism and M.ı/ is a model
forM .

The following result was employed in verifying Theorem 9.1 and will also be useful
in establishing Theorem 9.6 to come.

Lemma 9.2. Let R! O be a faithfully flat morphism of noetherian rings whose
fibre rings are domains. Let M be an O-module of finite type such that for each
p 2 SpecR, the fibreM ˝O .O ˝R k.p// is a flat O ˝R k.p/-module. Assume that
MP0 D 0 for one prime P0 2 SpecO above r. ThenM D 0.

Proof. Let U D ¹P 2 SpecOWMP D 0º be the complement of the support ofM ;
it is an open and non-empty subset of SpecO. Let P 2 U and write p for its image
in SpecR. Now, if Q 2 SpecO is also above p, we can say that MQ D 0. Indeed,
M ˝O k.P/ D 0 and hence the projective O ˝R k.p/-moduleM ˝R k.p/ vanishes.
ThenM ˝R k.Q/ vanishes as well andMQ D 0. Now we note that the image of U in
SpecR is open [35, Section 6.H, Theorem 7, pp. 46–47] and contains the closed point
r, which means that the image of U is SpecR. We conclude that U D SpecO.

Let us dig further into the method of proof of Theorem 9.1. In it, we dealt with an
object .M;r/ 2 MCrs.R..x//=R/ and, for each k 2 N, a logarithmic model Mk of
.M;r/jk to conclude that the Mk could be used to construct a logarithmic model of
M . We now show that the hypothesis that .M;r/ is regular-singular is necessary.

Counterexample 9.3. Let R D C ŒŒt ��, M D R..x// � m and define r.m/ D
.t=x/ �m; this gives us an object .M;r/ 2MC.R..x//=R/. (It is not difficult to prove
that .M;r/ is not regular-singular.) Let Mk D .RkŒŒx��; #/ 2MClog.C ŒŒx��=C /.Rk/.
Let

ek WD

kX
jD0

tjx�j

j Š
2 R..x//:
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Then, in .M;r/jk , the element ekm satisfies r.ekm/D 0. Hence, Mk WD .RkŒŒx��; #/

is a logarithmic model for .M;r/jk , but .RŒŒx��; #/ is not a logarithmic model for
.M;r/.

In passing, we observe that the Deligne–Manin models in Theorem 9.1 have a
remarkable property if the regular-singular connection underlies a flat R-module.

Corollary 9.4. Let .M;r/ 2MCrs.R..x//=R/ be given. Then, ifM is R-flat, it
is the case that the logarithmic model M from Theorem 9.1 is free as an RŒŒx��-module.

Proof. Let k be fixed. We shall show that Mjk is flat over RkŒŒx�� and then
apply the local flatness criterion [36, Theorem 22.3, p. 174] to ensure flatness of
M ' lim

 �
Mjk ; this in turn shows that M is free since RŒŒx�� is local. SinceM is R-flat,

we note that it is also R..x//-flat (Theorem 8.18) and thereforeM jk is also Rk..x//-flat.
By assumption, we can write Mjk ' RkŒŒx��˝Rk Vk for a certain Rk-module Vk .

Then Rk..x//˝Rk Vk 'M jk is Rk..x//-flat. Because Rk ! Rk..x// is faithfully flat
(flatness follows from the flatness of Rk ! RkŒŒx��) we conclude that Vk is Rk-flat
[36, p. 46]. Hence, Mjk is flat.

In possession of Theorem 9.1, we are now able to interpret the category
MCrs.R..x//=R/ as a category of representations echoing Corollary 5.14. We need a
definition.

Definition 9.5. We letMCrs.R..x//=R/
^ stand for the category whose

objects are families ¹.Mk; 'k/ºk2N , where Mk 2 MCrs.C..x//=C /.Rk/ and 'k W
MkC1jk !Mk are isomorphisms inMCrs.C..x//=C /.Rk/ and

arrows between ¹.Mk; 'k/ºk2N and ¹.Nk;  k/ºk2N are compatible sequences

¹˛k WMk ! Nkº 2
Y
k

HomMC.Rk/.Mk; Nk/:

Theorem 9.6. The natural functor

MCrs.R..x//=R/ �!MCrs.R..x//=R/
^;

.M;r/ 7�! ¹.M;r/jkºk

is an equivalence.

Proof. We start by showing essential surjectivity. To ease notation, we omit
reference to the derivations. Let

¹Mk; 'kºk2N 2MCrs.R..x//=R/
^:
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Let Mk be the logarithmic lattice constructed fromMk as in Theorem 7.8. Note that
MkC1jk 2 MClog.C ŒŒx��=C /.Rk/ is a logarithmic lattice forMkC1jk which satisfies
all conditions of Theorem 7.8. Hence,

'k WMkC1jk
�
�!Mk

can be extended to an isomorphism

ˆk WMkC1jk
�
�!Mk

in MClog.C ŒŒx��=C /.Rk/.
Define

M D lim
 �
k

Mk :

As an RŒŒx�� D lim
 �k

RkŒŒx��-module, it is of finite type. The projection M!Mk has
kernel rkC1M [22, 0I, Proposition 7.2.9]. Therefore, M gives rise to an object of
MClog.RŒŒx��=R/. LetM D .M/. ThenM is an object of MCrs.R..x//=R/ whose
image inMCrs.R..x//=R/

^ is ¹Mk; 'kº.
We now prove fullness. Let M and N be objects of MCrs.R..x//=R/ and pick

Deligne–Manin models M and N ofM and N as in Theorem 9.1. For each k, let

'k WM jk �! N jk

be an arrow in MCrs.C..x//=C /.Rk/ and suppose that 'kC1jk D 'k . Because of The-
orem 7.8, there exists an arrow in MClog.C ŒŒx��=C /.Rk/, Q'k WMjk ! N jk , extending
'k . In addition, uniqueness of the extension forces Q'kC1jk to coincide with Q'k after
all the necessary identifications. Hence, there exists Q'WM! N such that Q'jk D Q'k ,
which establishes the existence of 'WM ! N inducing each 'k .

Finally, we establish faithfulness. Let 'WM ! N be such that 'k WM jk ! N jk is
null; we conclude that I D Im.'/ �

T
k rkN . By Nakayama’s lemma [36, Theorem

2.2, p. 8], there exists a� 1 mod r such that aI D 0. Hence, Ip D 0 if p 2 SpecR..x//
is above r. Now I 2MC.R..x//=R/ and hence Theorem 8.19 followed by Lemma 9.2
proves that I D 0.

Now let
ˆ˛WRepC .Z/ �!MCrs.C..x//=C /

be a tensor equivalence as in Corollary 5.14; it produces obvious equivalences

ˆ˛WRepC .Z/.Rk/
�
�!MCrs.C..x//=C /.Rk/

of Rk-linear categories. Following the pattern established in Definition 9.5, we intro-
duce the category RepR.Z/^. With little effort it can be proved that RepR.Z/^ is
equivalent to RepR.Z/. We hence arrive at the following corollary:
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Corollary 9.7. The composition

MCrs.R..x//=R/ �!MCrs.R..x//=R/
^
�! RepR.Z/

^
' RepR.Z/

is an equivalence of R-linear tensor categories.

10. Connections on PR n ¹0; 1º

In what follows, PR stands for the projective line over R; it is covered by the
two affine open subsets A0 D SpecRŒx� and A1 D SpecRŒy�, and x D y�1 on
A0 \A1 D PR n ¹0;1º.

Following the pattern of Definition 6.1, we introduce the category of connections on
PR n ¹0;1º, or on RŒx˙�, of logarithmic connections on PR and of regular-singular
connections; we denote them respectively by

MC.RŒx˙�=R/; MClog.PR=R/ and MCrs.RŒx
˙�=R/:

Letting

MClog.PR=R/
r0
���!MClog.RŒŒx��=R/ and MClog.PR=R/

r1
���!MClog.RŒŒy��=R/

stand for the obvious functors, we define the exponents of .M;r/ 2MClog.PR=R/ as
the set of exponents of either r0M or r1M (cf. Definition 8.6).

Denote by
P WMClog.PR=R/ �!MC.RŒx˙�=R/

the functor which associates to .E;r/ its restriction to PR n ¹0;1º. Given M 2
MCrs.RŒx

˙�=R/, any M 2 MClog.PR=R/ such that P .M/ ' M is called a logar-
ithmic model ofM .

Note that ifM 2MC.RŒx˙�=R/ is regular-singular, then

M jk DM=r
kC1M 2MC.C Œx˙�=C /.Rk/

is also regular-singular for any given k 2 N.
We now complete the picture drawn in Section 9 by analysing regular-singular

connections on RŒx˙�. We aim for the following theorem:

Theorem 10.1. The restriction

r0WMCrs.RŒx
˙�=R/ �!MCrs.R..x//=R/

is an equivalence.
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Its proof will follow with little effort from Theorem 10.2 below. This, in turn,
requires the category

MCrs.RŒx
˙�=R/^;

whose definition parallels Definition 9.5 (the details are left to the reader). Let

r^0 WMCrs.RŒx
˙�=R/^ �!MCrs.R..x//=R/

^

be the obvious functor. Because of Corollary 7.9, we know that r^0 is an equivalence.

Theorem 10.2. The natural functor

MCrs.RŒx
˙�=R/ �!MCrs.RŒx

˙�=R/^;

.M;r/ 7�! ¹.M;r/jkºk

is an equivalence.

Assuming the veracity of this result, we can give the following proof:

Proof of Theorem 10.1. This follows from the commutative diagram of categor-
ies

MCrs.RŒx
˙�=R/

r0 //

Theorem 10.2 �
��

MCrs.R..x//=R/

Theorem 9.6�

��

MCrs.RŒx
˙�=R/^

r^
0

// MCrs.R..x//=R/
^

and the fact that r^0 is an equivalence.

Let us now start the verification of Theorem 10.2. Simple facts come first.

Lemma 10.3. AnyM 2MCrs.RŒx
˙�=R/ allows a logarithmic model M such that

M.A0/ has no x-torsion and M.A1/ no y-torsion.

Proof. Let N be any logarithmic model. The submodule of x-torsion in N .A0/

is invariant under # . The submodule of y-torsion in N .A1/ is invariant under # . We
can therefore take the quotients to produce the required model.

Lemma 10.4. Let E 2MC.RŒx˙�=R/ be given. Then, for each p 2 SpecR, the
k.p/Œx˙�-module k.p/Œx˙� ˝

RŒx˙�

E is locally free.

Proof. See either [30, Proposition 8.9] or Remark 8.20.
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We are unfortunately unable to find a proof of Theorem 10.2 based simply on
Corollary 7.9 and the equivalence r^0 . Hence, we shall need to go through the arguments
used to establish Theorem 9.6 (the analogue of Theorem 10.2 in the formal case) and
adapt them. Luckily, there are no major modifications, except that the process of
taking the limit allowed by r-adic completeness of RŒŒx�� needs to be replaced by
Grothendieck’s GFGA theorem for sheaves on PR. See [27] for a complete proof
of this result and [25, Section 3.2] for a valuable outline. Note that this is also the
technique employed in [24], which renders the matter technically more demanding.

When employing GFGA in this context, we are hindered by the following difficulty.
Say that M is a coherent OPR -module such that, for every k 2N, the OP -module (with
action of Rk) Mjk WDM=rkC1 carries a logarithmic connection rk WMjk !Mjk ,
and that, in addition, the natural isomorphisms

MjkC1
�
�!Mjk

are compatible with the logarithmic connections. Since M is not the sheaf lim
 �k

Mk ,
we need to ask whether it is possible to endow M with a logarithmic connection
rWM!M inducing the various rk . The answer is yes, as we now explain.

Let E be a coherent OPR -module and introduce JE as being the sheaf of R-
modules E ˚ E . Endow it with the structure of an OPR -module by

a � .e; e0/ D .ae; ae0 C #.a/e/:

Write pWJE ! E for the projection onto the first factor. It is not hard to see that JE

remains coherent and that a logarithmic connection is none other than an OPR -linear
arrow

� WE �! JE

such that p� D id. Indeed, if p� D id, then � D .id;r/, where r is a logarithmic
connection. We now return to the question raised above and state it as a lemma for
future referencing.

Lemma 10.5. Let M be a coherent OPR -module such that, for every k 2 N, the
OP -module (with action of Rk) Mjk WDM=rkC1 carries a logarithmic connection
rk WMjk !Mjk , and that, in addition, the natural isomorphisms

MjkC1
�
�!Mjk

are compatible with these connections. Then M carries a logarithmic R-linear con-
nection r inducing rk for each k. In addition, if N is an object ofMClog.PR=R/ and
ˆWM! N is an arrow of coherent OPR -modules such that ˆjk WMjk ! N jk lies in
MClog.P=C /.Rk/ for each k, then ˆ is actually an arrow ofMClog.PR=R/.
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Proof. Let �k WMjk ! JMjk be defined by �k D .id;rk/. We then obtain, by
GFGA, an arrow � WM! JM such that p� D id, that is, a logarithmic connection.
The final claim is also proved with similar techniques.

We can now give the first step towards Theorem 10.2.

Theorem 10.6 (Deligne–Manin models). LetM 2MCrs.RŒx
˙�=R/. There exists

a unique logarithmic model M ofM such that, for every k 2 N, the object

Mjk 2MClog.P=C /.Rk/;

enjoys the following properties:

(1) All its exponents lie in � .

(2) It is free in relation to Rk .

(3) The isomorphism P .Mjk/ 'M jk is compatible with the action of Rk .

Put otherwise, Mjk is a Deligne–Manin model in the sense of Theorem 7.12.

Proof. This is much the same as the proof of Theorem 9.1 and we shall give only
some indications of how to replace the arguments in its proof for the present context.

For Step 1. The use of Theorem 7.8 is replaced by that of Theorems 7.12 and 7.14.
The use of the r-adic completeness of RŒŒx�� is replaced by GFGA supplemented by
Lemma 10.5. We then arrive at an object M 2MClog.PR=R/.

For Step 2. We replace Lemma 8.2 by Lemma 10.3 in finding a convenient log-
arithmic model M for M . We then replace Proposition 4.4 and Corollary 8.12 by
Proposition 7.13. To continue, we employ GFGA and Lemma 10.5 instead of com-
pleteness of RŒŒx�� and Lemma 10.4 instead of Theorem 8.19.

Proof of Theorem 10.2. Essential surjectivity. Let ¹Mk; 'kºk2N be in
MCrs.RŒx

˙�=R/^. For each k, let Mk 2MClog.P=C /.Rk/ be a Deligne–Manin lat-
tice forMk (cf. Theorem 7.12). Because of Theorem 7.14, the isomorphisms

'k WMkC1jk
�
�!Mk

may be extended to isomorphisms

ˆk WMkC1jk
�
�!Mk

ofMClog.PC=C /.Rk/.
By GFGA, there exists a coherent sheaf M on PR and isomorphisms Mjk 'Mk

such that the natural transition isomorphisms correspond to theˆk above. Lemma 10.5
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now shows that M comes with a logarithmic connection and we arrive at an object
of MClog.PR=R/. Then M D P .M/ is an object in MCrs.RŒx

˙�=R/ satisfying
M jk 'Mk for each k 2 N.

Fullness. LetM and N be objects of MCrs.RŒx
˙�=R/. For each k 2 N, let

'k WM jk �! N jk

be an arrow in MCrs.C Œx
˙�=C /.Rk/ and suppose that 'kC1jk D 'k . Pick Deligne–

Manin models M and N ofM and N as in Theorem 10.6. By Theorem 7.14, there
exists, for any given k, an arrow ˆk WMjk ! N jk in MClog.P=C /.Rk/ such that
P .ˆk/ D 'k . In addition, uniqueness of the extension forces ˆkC1jk D ˆk for each
k. By GFGA, there exists an arrow ˆWM! N of coherent OPR -modules satisfying
ˆjk D ˆk for each k 2 N. From Lemma 10.5, we can also affirm that ˆ is an arrow
ofMClog.PR=R/. The arrow ' D P .ˆ/ lies in MCrs.RŒx

˙�=R/ and induces 'k for
each k 2 N.

Faithfulness. Let 'WM !N be an arrow inMCrs.RŒx
˙�=R/ such that 'k WM jk!

N jk is null for all k 2 N. We conclude that I D Im.'/ �
T
k rkN . By Nakayama’s

lemma [36, Theorem 2.2, p. 8], there exists a � 1 mod r such that aI D 0. Hence,
IP D 0 if P 2 SpecRŒx˙� is above r. To show that I D 0, we only require Lemmas 9.2
and 10.4.
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