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Solid generators in module categories and applications
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Abstract – Let R be a commutative noetherian ring. Denote by modR the category of finitely
generated R-modules. In the present paper, we introduce the notion of solid subcategories of
modR and investigate it. The main result of this paper not only recovers results of Schoutens,
Krause and Stevenson, and Takahashi on thick subcategories, but also unifies and extends
them to solid subcategories. Moreover, it provides some contributions to the study of the
question asking when a thick subcategory is Serre.

Mathematics Subject Classification (2020) – Primary 13C60; Secondary 13H10.

Keywords – Solid subcategory/closure, thick subcategory/closure, Serre subcategory, narrow
subcategory, singular locus, nonfree locus, support, isolated singularity.

1. Introduction

Let A be an abelian category. A thick subcategory of A is defined to be a full
subcategory closed under direct summands and satisfying the 2-out-of-3 property with
respect to short exact sequences. Various works on thick subcategories of abelian
categories have been done so far; see [1, 6, 7, 9, 11] for instance.

Stanley and Wang [8] defined a narrow subcategory of A to be a full subcategory
closed under extensions and cokernels. In the present paper, we shall define a solid
subcategory of A as a full subcategory closed under direct summands, extensions and
cokernels of monomorphisms. By definition, the notion of a solid subcategory is a
common generalization of those of a thick subcategory and a narrow subcategory.

Now, let R be a commutative noetherian ring, and modR the category of finitely
generated R-modules. (It is shown in [8] that any narrow subcategory of modR is
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Serre, and in particular it is thick.) For each collection � of objects of modR, we
denote respectively by thick � and solid � the thick closure and the solid closure of � ,
that is to say, the smallest thick and solid subcategories of the abelian category modR
containing � . Our main result is the following theorem that provides an equality of
solid closures.

Theorem 1.1. Let R be a commutative noetherian ring. Let M be a finitely gener-
ated R-module. Then

solid¹R=p;M j p 2 SingR [ NF.M/º D solid¹R=p j p 2 SingR [ SuppM º:

Here, SingR denotes the singular locus of the ring R, while NF.M/ and SuppM
respectively stand for the nonfree locus and the support of the R-module M . The
meaning of Theorem 1.1 becomes clearer if we ignore the parts coming from the
singular locus: if we put h�i D solid.� [ ¹R=pºp2Sing R/ for each collection � of
modules, then Theorem 1.1 asserts that there is an equality

hR=p;M j p 2 NF.M/i D hR=p j p 2 SuppM i:

This equality means that, up to the singular locus of R, the quotient of each prime ideal
in the support of M can be reconstructed from M itself and the quotients of prime
ideals in the nonfree locus ofM , by taking direct summands, extensions and cokernels
of monomorphisms.

Theorem 1.1 yields Corollary 1.2 below, which implies Corollary 1.3 below. The
latter corollary is the combination of a result of Schoutens [7] and Krause and Stevenson
[6], and a result of Takahashi [11]. The only relationship between (1) and (2) of
Corollary 1.3 that has been found out so far seems to be the fact that (1) follows from (2)
in the case where R is a local ring with an isolated singularity. Theorem 1.1 provides a
common generalization of (1) and (2) of Corollary 1.3.

Corollary 1.2. LetR be a commutative noetherian ring. One then has an equality

modR D solid¹R;R=p j p 2 SingRº:

IfR is an isolated singularity with residue field k andM is a nonzero finitely generated
R-module which is locally free on the punctured spectrum ofR, then there is an equality

solid¹k;M º D solid¹R=p j p 2 SuppM º:

Corollary 1.3. Let R be a commutative noetherian ring. Then the following two
statements hold true.
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(1) (Schoutens, Krause–Stevenson) There is an equality

modR D thick¹R;R=p j p 2 SingRº:

(2) (Takahashi) If R is an isolated singularity with residue field k and M ¤ 0 is a
finitely generated R-module which is locally free on the punctured spectrum, then

thick¹k;M º D thick¹R=p j p 2 SuppM º:

This paper is organized as follows. In Section 2, we give the precise definitions of
thick, narrow and solid subcategories, and prove the above theorem and two corollaries.
In Section 3, as further applications of the above theorem, we give answers to the
question asking when a solid subcategory is Serre.

We close the section by stating our convention.

Conventions. Throughout the remainder of this paper, we assume that all rings are
commutative and noetherian, that all modules are finitely generated, and that all sub-
categories are nonempty and strictly full. Let R be a (commutative noetherian) ring.
Denote by modR the category of (finitely generated) R-modules. Whenever we are
concerned with R, we take modR as the ambient abelian category.

2. Our theorem and direct applications

In this section, we state and prove the main result of this paper, and provide immediate
applications. We first recall the definitions of thick and narrow subcategories, and give
that of solid subcategories.

Definition 2.1. Let A be an abelian category, and let X be a subcategory of A.

(1) We say that X is thick if it satisfies the following two conditions.

(a) X is closed under direct summands, that is, all direct summands of objects in
X are also in X.

(b) X satisfies the 2-out-of-3 property, that is, for any short exact sequence 0!
L!M ! N ! 0 in A, if two of the objects L, M and N belong to X, then
so does the third.

(2) We say that X is narrow if it satisfies the following two conditions.

(a) X is closed under extensions, namely, for every short exact sequence 0! L!

M ! N ! 0 in A, if L and N belong to X, then so does M .

(b) X is closed under cokernels, namely, for every exact sequenceL!M !N ! 0

in A, if L and M belong to X, then so does N .
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(3) We say that X is solid if it satisfies the two conditions below.

(a) X is closed under direct summands and extensions.

(b) X is closed under cokernels of monomorphisms, namely, for each short exact
sequence 0! L!M ! N ! 0 in A, if L and M are in X, then so is N .

(4) By thick X and solid X respectively we denote the thick closure and the solid closure
of X in A, i.e., the smallest thick and solid subcategories of A containing X.

Remark 2.2. (1) As properties of subcategories of an abelian category, the impli-
cations

thick H) solid (H narrow

hold. Indeed, the former implication is obvious, while the latter follows from the
fact that closedness under extensions and cokernels implies closedness under direct
summands, which is shown by splicing the exact sequences M ˚N ! N ! 0 and
0! N !M ˚N !M ! 0 in the abelian category.

(2) For each subcategory X of an abelian category, the equality

thick.solid X/ D thick X

holds. In fact, the inclusion X � solid X induces at once the inclusion thick X �

thick.solid X/. The inclusion solid X � thick X that comes from (1) induces the inclu-
sion thick.solid X/ � thick X.

(3) Let M be an R-module. Then one has the inclusion

solid¹M º � solid¹R=p j p 2 SuppM º:

In fact, there is a filtration 0 DM0 ¨ � � � ¨ Mn DM of submodules of M such that
each subquotientMi=Mi�1 is isomorphic to R=pi for some pi 2 SpecR. Then the pi

are all in SuppM , while the exact sequences 0!Mi�1 !Mi ! R=pi ! 0 show
that M belongs to the solid closure of ¹R=piº1�i�n.

(4) (i) Let A be an abelian category with enough injective (resp. projective) objects.
Recall that a subcategory of A is said to be coresolving (resp. resolving) if it contains
all the injective (resp. projective) objects of A, and is closed under direct summands,
extensions and cokernels of monomorphisms (resp. kernels of epimorphisms). By
definition, every coresolving subcategory is solid.

(ii) Set .�/� D HomR.�; R/. Suppose that R is an artinian Gorenstein ring and
X is a resolving (resp. thick) subcategory of modR. Then the subcategory of modR
consisting of modules of the form X� with X 2 X is coresolving (resp. thick). This
follows from the fact that .�/� gives a duality of modR.

(iii) A solid subcategory of an abelian category A is not necessarily thick even when
A D modR. Indeed, let R be an artinian Gorenstein local ring which does not satisfy
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the so-called uniform Auslander condition (UAC); such a ring exists by [5, Theorem
in §0]. Then by [3, Proposition 6.1] there exists a non-thick resolving subcategory
of modR. It follows from the above (i) and (ii) that there exists a non-thick solid
subcategory of modR.

In order to prove our theorem, the following two lemmas are necessary. The first
one is stated in [11, Lemma 3.1], but its proof contains a gap in the induction step
which can easily be corrected by experts. As for the second one, the version where
solidity is replaced with thickness is stated in [11, Lemma 2.3(5)] without a proof. For
the convenience of the general reader, we give proofs of those two lemmas.

Lemma 2.3. Let p be a prime ideal of R with height n such that the local ring Rp

is regular. Then there exists an exact sequence

0 �! R=.x/ �! R=p˚R=q �! R=r �! 0

ofR-modules, where xD x1; : : : ; xn is a sequence of elements ofR such that ht.x/D n,
q is an ideal of R, and r is an ideal of R which strictly contains p.

Proof. We claim that there is a sequence x D x1; : : : ; xn of elements in p with
ht.x/ D n and xRp D pRp. Indeed, if n D 0, then Rp is a field, and pRp D 0. Let
n � 1. As p has positive height, it is not contained in any q 2 MinR. Also, if p �

p2Rp \ R, then pRp D p2Rp, which implies pRp D 0 by Nakayama’s lemma, and
we get a contradiction. Hence p ª p2Rp \R. By prime avoidance, we can choose an
element x1 2 p with x1 … .

S
q2Min R q/[ .p2Rp \R/. Krull’s height theorem implies

ht.x1/ D 1, and the image of x1 in Rp is part of a minimal system of generators of
pRp. As Rp is regular, so is Rp=x1Rp D .R=.x1//p=.x1/, and we have ht p=.x1/ D

dimRp=x1Rp D dimRp � 1 D n � 1. Let n � 2. Applying the above argument to
p=.x1/ yields an element x2 2 p which is outside any q 2 MinR R=.x1/ and whose
image in Rp=x1Rp is part of a minimal system of generators of pRp=x1Rp. We see
that ht.x1; x2/ D 2 and the image of the sequence x1; x2 in Rp is part of a minimal
system of generators of pRp. Iterating this procedure if n � 3, we finally choose a
sequence x D x1; : : : ; xn in p such that ht.x/ D n and the image of x in Rp is part
of a minimal system of generators of pRp. Note that pRp is the maximal ideal of the
n-dimensional regular local ring Rp, whose minimal number of generators is n. We
get xRp D pRp, and the claim follows.

Choose a sequence x as in the claim. Then xRp \ R D p and p 2 MinR R=.x/.
Hence the p-primary component of the ideal .x/ of R coincides with p. Letting q

be the intersection of the other primary components, we see that there is an equality
.x/ D p \ q and that r´ p C q strictly contains p. The natural exact sequence
0!R=p\ q!R=p˚R=q!R=pC q! 0 completes the proof of the lemma.
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Lemma 2.4. Let X be a solid subcategory of modR. Let

X D .0 �! Xn �! Xn�1 �! � � � �! X1 �! X0 �! 0/

be a complex of R-modules in X. If Hi .X/ belongs to X for all 1 � i � n, then so
does H0.X/.

Proof. For each integer i , there are exact sequences

0 �! Bi �! Zi �! Hi �! 0; 0 �! Zi �! Xi �! Bi�1 �! 0;

whereZi ; Bi ;Hi are respectively the i th cycle, the i th boundary and the i th homology
of X . By assumption, Xi is in X for all 0 � i � n and Hi is in X for all 1 � i � n.
Note that Bn D 0 and Z0 D X0 belong to X. As X is closed under extensions and
cokernels of monomorphisms, we inductively get H0 2 X.

We denote by SingR the singular locus of R, that is, the set of prime ideals p of R
such that the local ringRp is singular (i.e., nonregular). For anR-moduleM we denote
by NF.M/ the nonfree locus ofM , which is by definition the set of prime ideals p ofR
such that the Rp-module Mp is nonfree. Now we can prove the theorem below, which
is the main result of this paper and the same as Theorem 1.1. The proof of the theorem
given here is obtained by making some modifications to that of [11, Theorem 3.3].

Theorem 2.5. For any R-module M one has the equality

solid¹R=p;M j p 2 SingR [ NF.M/º D solid¹R=p j p 2 SingR [ SuppM º:

Proof. It is immediately seen from Remark 2.2 (3) that the inclusion .�/ holds.
In what follows, we prove the opposite inclusion .�/. It suffices to verify that R=q
is in X ´ solid¹R=p;M j p 2 SingR [ NF.M/º for all q 2 SuppM . We show the
stronger statement that R=I 2 X for all ideals I of R with V.I / � SuppM .

Suppose that this statement does not hold true. Then the set 	 of ideals I of R
with V.I / � SuppM and R=I …X is nonempty. Since R is noetherian, there exists a
maximal element P of 	 with respect to the inclusion relation. Here, let us verify that
P is a prime ideal ofR. Take a filtration 0D L0 ¨ � � �¨ Lm D R=P of submodules of
the R-module R=P such that Li=Li�1 Š R=pi with pi 2 SpecR for each 1 � i � m.
Then we have pi 2 SuppRR=P DV.P /, so thatP � pi and V.pi /�V.P /� SuppM .
If P is not a prime ideal of R, then each pi strictly contains P , and the maximality of
P shows R=pi 2 X for all 1 � i � m, which and Remark 2.2 (3) imply that R=P is
in X, a contradiction. Thus P is a prime ideal.
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Put n D htP . As R=P … X, we must have P … SingR. Thus the localization RP

is a regular local ring. Lemma 2.3 gives an exact sequence

� W 0 �! R=.x/ �! R=P ˚R=Q �! R=J �! 0;

where x D x1; : : : ; xn is a sequence in R with ht.x/ D n and J is an ideal of R which
strictly contains P . We establish two claims.

Claim 1. If N is an R-module such that SuppN is contained in V.P / n ¹P º, then N
belongs to X.

Proof of Claim 1. There is a filtration 0 D N0 ¨ � � � ¨ Nm D N of submodules
of N such that Ni=Ni�1 Š R=pi with pi 2 SpecR for each 1 � i � m. We then
have pi 2 SuppN � V.P / n ¹P º, so that P ¨ pi and V.pi / � V.P / � SuppM . The
maximality of P shows R=pi 2 X. Remark 2.2 (3) implies N 2 X. �

Claim 2. For all i > 0, the support of the Koszul homology Hi .x;M/ is contained in
SingR [ NF.M/.

Proof of Claim 2. Suppose that Supp Hi .x; M/ is not contained in SingR [
NF.M/ for some positive integer i , and choose a prime ideal p 2 Supp Hi .x; M/

with p … SingR [ NF.M/. Then Rp is a regular local ring, Mp is isomorphic to
R˚`

p for some ` � 0, and we have 0 ¤ Hi .x; M/p Š Hi .x; Mp/ Š Hi .x; Rp/
˚`.

In particular, ` > 0 and Hi .x; Rp/ ¤ 0. As the sequence x annihilates Hi .x; M/,
the set Supp Hi .x; M/ is contained in V.x/, and hence p contains x. It holds that
n � ht.xRp/ � ht.x/ D n, where the first inequality follows from Krull’s height
theorem. Hence ht.xRp/ D n. Since Rp is a regular local ring, x is a regular sequence
on Rp. This implies that Hi .x; Rp/ D 0 as i > 0, which is a contradiction. �

Claim 2 and Remark 2.2 (3) deduce that Hi .x;M/ is in X for all i > 0. The Koszul
complex K.x;M/ has the form .0!M !M˚n ! � � � !M˚n !M ! 0/, all of
whose homogeneous components are in X. Lemma 2.4 yields thatM=xM DH0.x;M/

is in X. The exact sequence � induces an exact sequence

TorR
1 .R=J;M/

f
�!M=xM

g
�!M=PM ˚M=QM �!M=JM �! 0:

Let F and G be the images of the maps f and g, respectively. There are inclusions

SuppF � Supp TorR
1 .R=J;M/ � V.J / � SuppM=JM

and
V.J / � V.P / n ¹P º;
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which and Claim 1 show that F and M=JM are in X. From the exact sequences

0 �! F �!M=xM �! G �! 0

and
0 �! G �!M=PM ˚M=QM �!M=JM �! 0;

we see that M=PM 2 X. Putting r D rankR=P M=PM , we have .M=PM/P Š

�.P /˚r . Since P 2 V.P / � SuppM , Nakayama’s lemma shows .M=PM/P ¤ 0,
whence r > 0. There is an exact sequence

0 �! K �!M=PM
h
�! .R=P /˚r

�! C �! 0

of R=P -modules such that the localized map hP is an isomorphism. Let H be the
image of h. We see that the supports ofK;C are contained in V.P / n ¹P º, and Claim 1
shows K;C 2 X. It follows from the exact sequences

0 �! K �!M=PM �! H �! 0

and
0 �! H �! .R=P /˚r

�! C �! 0

that .R=P /˚r is in X, and so is its direct summand R=P . This is a contradiction, and
the proof of the theorem is completed.

Let R be a local ring with maximal ideal m. We put Spec0R D SpecR n ¹mº; this
is called the punctured spectrum ofR. Recall thatR is said to be an isolated singularity
if it is locally regular on Spec0 R. We denote by mod0 R the subcategory of modR
consisting of modules that are locally free on Spec0R. By definition, every artinian
local ring R is an isolated singularity and satisfies mod0R D modR.

From now on to the end of this section, we provide a couple of direct applications
of the above theorem. We begin with the following corollary. In the situation of the
first assertion of the corollary, the specialized term NF.M/ in the left-hand side of the
equality of Theorem 2.5 disappears. In the situation of the second assertion, the terms
SingR in both sides of the equality of Theorem 2.5 are removed.

Corollary 2.6. (1) Assume either that M is a maximal Cohen–Macaulay R-
module, or that R is singular and M 2 mod0R. One then has

solid¹R=p;M j p 2 SingRº D solid¹R=p j p 2 SingR [ SuppM º:

(2) Suppose either that R is a regular ring, or that R is an isolated singularity and M
is a nonfree R-module. Then there is an equality

solid¹R=p;M j p 2 NF.M/º D solid¹R=p j p 2 SuppM º:
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Proof. One has NF.M/ � SingR for (1) and SingR � NF.M/ � SuppM for
(2). Use Theorem 2.5.

Next we deduce the following result from Theorem 2.5.

Corollary 2.7. There is an equality

modR D solid¹R;R=p j p 2 SingRº:

If R is an isolated singularity with residue field k and 0 ¤ M 2 mod0 R, then the
equality

solid¹k;M º D solid¹R=p j p 2 SuppM º

holds.

Proof. We prove the first and second assertions of the corollary in (1) and (2)
below, respectively.

(1) LetM D R in Theorem 2.5. Since NF.R/ D ; and SuppR D SpecR, we have

solid¹R=p; R j p 2 SingRº D solid¹R=p j p 2 SpecRº:

By Remark 2.2 (3) the right-hand side coincides with modR.
(2) The equality

solid¹R=p;M j p 2 SingR [ NF.M/º D solid¹R=p j p 2 SingR [ SuppM º

follows by Theorem 2.5, while SingR [ NF.M/ � ¹mº � SuppM by assumption.
The right-hand side of the equality is solid¹R=p j p 2 SuppM º. The left-hand side
is solid¹M º if SingR [ NF.M/ D ;, and is solid¹k;M º if SingR [ NF.M/ D ¹mº.
Let us consider the former case. Then R is regular andM is free. The R-module k has
finite projective dimension. As M is nonzero, k is in solid¹M º. Hence solid¹M º D
solid¹k;M º.

By Corollary 2.7 (and Remark 2.2 (2)), we immediately recover the two results
below due to Schoutens [7, Theorem VI.8], Krause and Stevenson [6, Proposition 9],
and Takahashi [11, Theorem 1.1(i)].

Corollary 2.8 (Schoutens, Krause–Stevenson). There is an equality

modR D thick¹R;R=p j p 2 SingRº:

Corollary 2.9 (Takahashi). Let R be an isolated singularity with maximal ideal
m and residue field k. Let 0 ¤M 2 mod0R. Then there is an equality

thick¹k;M º D thick¹R=p j p 2 SuppM º:
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Following [2], we say that a module N over a local ring S is deep if depthN �
depth S holds. Using this notion, we can define the nondeep locus ND.M/ of each
module M over a ring R as the set of prime ideals p of R such that the module
Mp over the local ring Rp is not deep. It is evident that ND.M/ � NF.M/, so that
SingR [ ND.M/ � SingR [ NF.M/. This gives rise to the first inclusion in the
following, while the second one is the obvious part of Theorem 2.5; see the first
sentence in the proof of the theorem.

solid¹R=p;M ºp2Sing R[ND.M/ � solid¹R=p;M ºp2Sing R[NF.M/

� solid¹R=pºp2Sing R[Supp M :

The following corollary says that the above two inclusions are actually equalities. Thus,
the corollary can be regarded as a refinement of Theorem 2.5.

Corollary 2.10. Let M be an R-module. Then there is an equality

solid¹R=p;M j p 2 SingR [ ND.M/º D solid¹R=p j p 2 SingR [ SuppM º:

Proof. By the arguments discussed before the corollary and Theorem 2.5, it suffices
to show that SingR[ND.M/ contains SingR[NF.M/. Assume that there is a prime
ideal p 2 SingR[NF.M/with p … SingR[ND.M/. ThenRp is a regular local ring,
and Mp is a nonfree deep Rp-module. The Auslander–Buchsbaum formula implies
that Mp is a free Rp-module, a contradiction. The proof is completed.

3. Applications to a basic question

In this section, we provide further applications of our Theorem 2.5. We begin with
stating two lemmas on the subcategory mod0R of modR. The first one gives criteria
for the equality mod0R D modR.

Lemma 3.1. Let R be a local ring with maximal ideal m and residue field k. The
following are equivalent.

(1) One has the equality mod0R D modR.

(2) The local ring R is locally a field on the punctured spectrum Spec0R.

(3) The local ring R is an isolated singularity of dimension at most one.

Proof. The implications .3/) .2/) .1/ obviously hold. Assume that dimR �
2. Then there exist prime ideals p ¨ q ¨ m. If .R=q/q is Rq-free, then qRq D 0

and q 2 MinR, which is a contradiction. Hence R=q is not in mod0 R. Suppose
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mod0R D modR. Then for each p 2 Spec0R, the Rp-module .R=p/p is free. This
implies pRp D 0, which means that Rp is a field. We have shown the implication
.1/) .3/.

For a subsetˆ of SpecR, we denote by IPD�1ˆ the subcategory of modR consisting
of modules that are locally of finite projective dimension outsideˆ. Note that IPD�1ˆ

is a thick subcategory of modR.

Lemma 3.2. LetR be a d -dimensional local ring with maximal ideal m and residue
field k. Then:

(1) One has the equality IPD�1
¹mº D thick¹k;Rº.

(2) If d � 1, then the equality mod0R D thick¹k;Rº holds and in particular, mod0R

is a thick subcategory.

Proof. (1) Clearly, IPD�1
¹mº contains k and R, whence it contains thick¹k;Rº.

Let M be an R-module in IPD�1
¹mº. Then M locally has finite projective dimension

on Spec0R. By the Auslander–Buchsbaum formula the d th syzygy N of M is locally
free on Spec0R, that is,N 2 mod0R. The first equality in [10, Corollary 4.3(3)] shows
that mod0R is contained in thick¹k;Rº. Thus, N is in thick¹k;Rº, and so is M .

(2) It is obvious that mod0 R is contained in IPD�1
¹mº, which coincides with

thick¹k;Rº by (1). LetM be anR-module which does not belong to mod0R. ThenMp

is not Rp-free for some p 2 Spec0R. We must have that d D 1 and p 2 MinR. Over
the artinian local ring Rp, finite projective dimension is equivalent to freeness. Thus,
M is not in IPD�1

¹mº, and we conclude that mod0R D IPD�1
¹mº D thick¹k;Rº.

Next, we recall the definition of a Serre subcategory of modR.

Definition 3.3. A subcategory X of modR is said to be Serre provided that it
is closed under subobjects, quotients and extensions, that is to say, that for each short
exact sequence 0! L!M ! N ! 0 of R-modules, one hasM 2X if and only if
L;N 2 X.

For a subcategory X of modR, let Supp X denote the union of the supports of
modules in X. For a subset ˆ of SpecR, denote by Supp�1 ˆ the subcategory of
modR consisting of modules whose supports are contained inˆ. It is seen that Supp X

is specialization-closed and Supp�1 ˆ is Serre. A well-known theorem of Gabriel
[4] asserts that the assignments X 7! Supp X and ˆ 7! Supp�1ˆ give a one-to-one
correspondence between the Serre subcategories of modR and the specialization-closed
subsets of SpecR.

It is evident that a Serre subcategory of modR is thick. Thus it is natural to ask the
following question.
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Question 3.4. When is a thick subcategory of modR a Serre subcategory?

This natural question is studied in [11]. Although he knows no other direct reference
for this question, the author has learned through oral communication that several people
have the question in mind.

Theorem 2.5 gives an answer to the more general question asking when a solid
subcategory is Serre. For a subcategory X of modR, we denote the union of the nonfree
loci of modules in X by NF.X/.

Corollary 3.5. A solid subcategory X of modR is Serre if R=p 2 X for every
p 2 SingR [ NF.X/.

Proof. It suffices to deduce X D Supp�1.Supp X/, whose inclusion .�/ is clear.
To show the opposite inclusion .�/, let M 2 Supp�1.Supp X/. Take a filtration 0 D
M0 ¨ � � � ¨ Mn DM of submodules of M such that for each 1 � i � n the module
Mi=Mi�1 is isomorphic toR=pi , where pi 2 SpecR. We have pi 2 SuppM � SuppX,
and find Xi 2 X with pi 2 SuppXi . It follows from Theorem 2.5, the assumption of
the corollary and the solidity of X that

R=pi 2 solid¹R=p j p 2 SingR [ SuppXiº

D solid¹R=p; Xi j p 2 SingR [ NF.Xi /º � X:

Remark 2.2 (3) implies that M belongs to X. Thus, we are done.

As a direct consequence of the above corollary, we get the following result.

Corollary 3.6. LetR be an isolated singularity with maximal ideal m and residue
field k. Then, a solid subcategory X of modR is Serre if X contains k and is contained
in mod0R.

Proof. The assumptions imply that SingR [NF.X/ � ¹mº and R=m D k 2 X.
Apply Corollary 3.5.

We denote by flR the subcategory of modR consisting of R-modules of finite
length.

Remark 3.7. (1) The assumption in Corollary 3.6 that R is an isolated singularity
cannot be removed. In fact, let R be a 1-dimensional local ring which is not an isolated
singularity, and let X D mod0 R. Then X is a thick subcategory of modR with
k 2X � mod0R by Lemma 3.2. If X is Serre, then X D modR as R 2X, and get a
contradiction from Lemma 3.1. Therefore, X is not Serre.

(2) Corollary 3.6 should be compared with the following two results from [11,
Theorem 1.2].
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(a) LetR be an isolated singularity of dimension at most two. Then a thick subcategory
of modR is Serre if it contains the residue field of the local ring R.

(b) Let R be a regular local ring of positive characteristic. Let X be a nonzero thick
subcategory of modR contained in flR (hence, X is contained in mod0R). Then
X D flR (hence, X is Serre).

From now on, we concentrate our attention on the condition imposed on the subcat-
egory X in Corollary 3.6. First of all, we show that this condition forces the modules
belonging to X to have low dimension.

Proposition 3.8. Suppose thatR is a local ring with maximal ideal m and residue
field k. Let X be a solid subcategory of modR such that k 2 X � mod0R. Then one
has dimX � 1 for all modules X 2 X.

Proof. Suppose that there exists a module X 2 X such that dimX � 2. Let
M D �m.X/ be the m-torsion submodule ofX . The inclusion mapM !X induces an
exact sequence 0!M !X!N ! 0. The moduleM has finite length, and belongs to
X since X is closed under extensions and contains k. As X is closed under cokernels
of monomorphisms, N is in X. Note that dimN D dimX � 2 and depthN � 1.
Replacing X with N , we may assume that there exists an X-regular element x 2 m.
The exact sequence 0! X

x
! X ! X=xX ! 0 shows that L´ X=xX belongs to

X. Since dimL D dimX � 1 � 1, there exists a prime ideal p 2 SuppL with p ¤ m.
As L is in X, the localization Lp is a nonzero free Rp-module, that is, Lp Š R

˚n
p for

some n > 0. Since L D X=xX is annihilated by x, so is Lp, so is Rp, and so is Xp.
The exact sequence 0! Xp

x
! Xp! Lp! 0 showsXp D 0, which implies Lp D 0,

a contradiction.

The following corollary is deduced from the above proposition, which says that a
stronger conclusion than Corollary 3.6 can be obtained, if we assume that the local
ring R is equidimensional and dimR � 2, instead of assuming that R is an isolated
singularity. Compare the corollary with Remark 3.7 (2) (b).

Corollary 3.9. Let .R;m; k/ be an equidimensional local ring of dimension
at least two. Let X be a solid subcategory of modR containing k and contained in
mod0R. Then one has X D flR.

Proof. Since X contains k and is closed under extensions, it contains flR. Propo-
sition 3.8 implies dimX � 1 for all X 2 X. It suffices to derive a contradiction by
assuming that dimX D 1 for someX 2X. There exists a prime ideal p 2MinX such
that dimR=pD 1. If p is in MinR, then by equidimensionality we get 1D dimR=pD
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dimR � 2, which is a contradiction. Hence there exists a prime ideal q of R which
is strictly contained in p. As X 2 mod0R and m ¤ p 2 SuppX , we have Xp Š R

˚n
p

for some n > 0. It follows that Xq Š R
˚n
q ¤ 0, which says that q 2 SuppX . This

contradicts the fact that p 2 MinX .

Remark 3.10. (1) We cannot remove the assumption in Corollary 3.9 that R is
equidimensional, even if we instead assume thatR is an isolated singularity. Indeed, let
RD kJx;y; zK=.xy;xz/with k a field. Putting pD .x/, qD .y; z/ and mD .x;y; z/,
we have that .R;m; k/ is an isolated singularity with dimR D 2 and MinR D ¹p;qº.
Let X D Supp�1 V.q/. Then X is a Serre subcategory of modR, whence it is solid,
and contains k. The R-module R=q is not in flR but in X. Assume that there exist
X 2X and r 2 Spec0R such thatXr is notRr-free. We then have m¤ r 2 SuppX �
V.q/ D ¹q;mº, which implies r D q. As Rq is a field, we get a contradiction. Thus
X is contained in mod0R.

(2) We discuss the necessity of the assumption in Corollary 3.9 thatR has dimension
at least two.

(a) Suppose that dimR D 0. Let X be a subcategory of modR such that k 2 X �

mod0R. Then X D flR D mod0R D modR, as R is artinian and X contains k
and is closed under extensions.

(b) Suppose that dimR D 1, and assume further that R is an isolated singularity. Then
there exists an R-module M of infinite length, and one has mod0R D modR by
Lemma 3.1. It follows that X D solid¹k;M º is a solid subcategory of modR with
k 2 X � modR D mod0R and X ¤ flR.
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