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On the topologies of the exponential
Anna Cepek and Damien Lejay

Abstract. Factorization algebras have been defined using three different topologies on the Ran
space. We study these three different topologies on the exponential, which is the union of the
Ran space and the empty configuration, and show that an exponential property is satisfied in
each case. As a consequence, we describe the weak homotopy type of the exponential Exp(X)
for each topology, in the case where X is not (necessarily) connected.

We also study these exponentials as stratified spaces and show that the metric exponen-
tial is conically stratified for a general class of spaces. As a corollary, we obtain that locally
constant factorization algebras defined by Beilinson—Drinfeld are equivalent to locally constant
factorization algebras defined by Lurie.

Introduction

Roughly speaking, a factorization algebra + on a space X with values in a symmetric
monoidal category €® is a gadget associating to each finite subset of points S C X
an object Ag € €, such that

(factorization) A||._, s; = @,y s, for every finite family I of disjoint finite
subsets S; C X;

(continuity) the assignment S — g be continuous.
Yet, to be able to say that 4 g varies continuously with S, one first needs to answer
the question:

What is the topology on the set of all finite subsets S C X ?

The set of all finite subsets of X is called the exponential Exp(X) of X. The
literature on factorization algebras provides three different candidates to topologize
Exp(X):

(2004) In Chiral algebras [4, Sect. 3.4.1], Beilinson and Drinfeld endow Exp(X)
with a colimit topology.
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(2009) In Derived algebraic geometry VI [17, Def. 3.3.2], Lurie endows Exp(X)
with a topology reminiscent of the metric topology introduced by Hausdorff
on the space of compact subsets of a metric space.

(2016) In Factorization algebras in quantum field theory [6, Sect. 1.4.1], Costello
and Gwilliam use yet another topology to define factorization algebras, this
time using coverings inspired from Weiss.

For a given separated X, the three topologies above are given from finest to
coarsest and one then obtains three different levels of strength for the continuity
requirement of a factorization algebra. It has been conjectured that the three different
definitions agree in the special case of locally constant factorization algebras which
are, roughly speaking, those factorization algebras +4 for which #4, is “homotopic” to
sy when x, y € X both belong to the same contractible open subset.

The set of all finite subsets of X is called the exponential of X because its alge-
braic properties resemble that of exponential functions. This is the subject of the first
section, where we define exponential functors in general and give some general prop-
erties.

In the second section, we introduce the three different topologies giving rise to the
topological exponential (B&D version), the metric exponential (Lurie version) and
the minimal exponential (C&G version). We show how each exponential listed above
is an exponential functor in the sense of the definition given in the first section. From
this we deduce the weak homotopy type of each exponential in the case where X is
not necessarily connected, extending contractibility results of Handel [10, Cor. 4.3]
and Curtis & Nhu [7].

Finally, the last two sections are dedicated to the study of the stratification of the
metric exponential. The goal is to show that it is conically stratified (in the sense of
Lurie) for a general class of spaces. For this we need to solve an optimization problem:
finding the smallest enclosing ball of a finite number of points in a general normed
space; this is the content of the third section. Using a companion article from the
second author [13], one can then deduce from the conical stratification of the metric
exponential that the notions of locally constant factorization algebras from Beilinson
& Drinfeld and Lurie coincide.

1. Exponentials

1.1. Exponential functors

Any continuous function f:R — R satisfying f(x + y) = f(x) f(y) must be an
exponential x — a* with base @ = f(1). The exponential is traditionally the one with
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base e defined

using power series.

An analogous theory can be described in the realm of categories. The set R can
be replaced by any category €, functions can be replaced by functors, sums can be
replaced by coproducts and products can be replaced by categorical products.

However, there shall be two main differences between exponential functors and
exponential functions. First, what was a property of a function in the realm of set the-
ory shall become a structure on a functor in category theory. An exponential functor
shall be a symmetric monoidal functor

ey L, ex
between € endowed with the coproduct symmetric monoidal structure and € en-
dowed with the product symmetric monoidal structure, provided € admits all finite
products and coproducts.
Let us see some of the first obvious consequences. First, since each object X
admits a map Je — X with source the initial object of €, one gets a map

*e = E(fe) > E(X)

with source the terminal object of €, so each E(X) is a pointed object of €. Since
every object X € € is a commutative monoid with product map X II X — X the fold
map, it follows that £(X) is also a commutative monoid with composition

EX)x E(X) ~ E(X 1 X) - E(X)

and with unit the pointing already described.

Second, one needs to replace continuity with an equivalent notion. There is already
a notion of continuity for functors in category theory: a functor is (co)continuous if it
preserves small (co)limits. This is unreasonable to ask. Instead, let us rewrite an equiv-
alent definition for the continuity of an exponential function: a function f:R — R for
which f(x + y) = f(x)f(y) for every x, y € R is continuous if and only if for
every converging series )  x, = x, the sequence with general term [ [; _,, f(x;) con-
verges to f(x). In category theory, convergence is replaced by existence and “limit
of a sequence” can be replaced with the “colimit of a filtered diagram”. To make this
precise, we first recall the notion of the finite product of an infinite family.
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Definition 1.1 (Finite product). Let € be a category with finite products and filtered
colimits. Given a small family of pointed objects {X; };es in €, let

l_le,' = h_n)l l_[Xj

iel JCI jeJ
J finite

denote the finite product (or weak product, or restricted product) of the family ob-
tained by taking the colimit over all finite subsets J C 1.

Example 1.2. In the category of vector spaces (seen as pointed via their zero vector),
the finite product of a small family {V; };er,

[1vi=dv
iel iel

coincides with their direct sum.
If { X }ies is a small family of pointed topological spaces, then one has

1'% — [T x>
iel iel

a continuous injection from the finite product to the product, endowed with the box
topology. When the points * — X; are all open, this map becomes an open embedding.
In this case, a basis of opens of the finite product is given by the images of the products
[ljes Uj with J C [ finite and U; C X open.

Construction 1.3. Let E: €” — € be a symmetric monoidal functor with € having
enough limits and colimits. Let {X;};c; be a small family of objects of €, then for
each finite subset J C I, one gets a map

[TEx) = E( 1] Xi) > E(]_[ X,-),
ieJ ieJ iel
using the functoriality of E and its monoidal structure. Moreover, for any K C J, the

diagram

Hie] E(Xi) — E(]_[ieJ Xi)

T

E(]_[iel Xi)

/

HieK E(X;) —= E(]_[ieK Xi)
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commutes by functoriality of £ and its monoidal structure. One then obtains a canon-

ically defined map
f
[T Ecx) - E(]_[X,-)
iel iel

from the finite product of { £ (X;)}ier.

Definition 1.4 (Exponential functor). Let € be a category with finite products, small
filtered colimits and small coproducts. An exponential functor of the category € is a

symmetric monoidal functor
E

e X
between € endowed with the coproduct symmetric monoidal structure and € en-
dowed with the product symmetric monoidal structure, for which, in addition, the
canonical map

f

[TEx) - E(]_[X,-)

iel iel
is an isomorphism for every small family {X;};e; of objects of €. A morphism
between two exponential functors is the data of a monoidal natural transformation.

Remark 1.5. One could define exponential functors in the following more abstract
way. The coproduct is an infinitary symmetric monoidal structure: the operations
{Xi}ier = |l;e; Xi are associative, symmetric and unital in an obvious way. Sim-
ilarly, the finite product endows the category of pointed objects €, with another
infinitary symmetric monoidal structure.

An exponential functor can then be defined as an infinitary symmetric monoidal
functor €2 — €. Here it happens that any (finitary) lax monoidal functor €% — €
gives rise to an infinitary lax monoidal functor €" — €,Xf which allows us to define
exponential functors without first having to develop the theory of infinitary monoidal
categories.

The classification result for exponential functions on R has an equivalent form in
the case of exponential functors on the category of sets: these are classified by their
base.

Definition 1.6 (Exponential of base 4). Let A be a commutative monoid. The expo-
nential of base A is the endofunctor of the category of sets defined by

Expy(X) := {¢: X — A | $~1(0) is cofinite}
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for any set X. If f: X — Y is a function and ¢: X — A is almost null, its image by
Exp4(f) is the function ¥: Y — A, where

v = Y. ¢
xef~1(y)

for any y € Y. The function i is well defined and almost null since A is commutative
and ¢ is almost null. The exponential structure of Exp, is straightforward.

Theorem 1.7. The assignment A — Exp, induces an equivalence
Commutative monoids = Set exponentials

between the category of commutative monoids and the category of exponential func-
tors of the category of sets.

Proof. The assignment A — Exp, is functorial, its inverse takes an exponential £ and
extracts the commutative monoid E (x). By construction one has a canonical isomor-
phism Exp, (%) = A and the maps Exp,(9) — Exp,(*) and Exp4(*) x Exp,(*) =
Exp, (x I %) — Exp,4 (%) recover the commutative monoid structure on A.

Conversely, if E is an exponential, let A denote the commutative monoid E ().
Then one has E(X) =~ ]_Lt,( A = Exp4(X) for every set X. Lastly, let us show that
E(f) = Expy(f) for every function f: X — Y. The case where Y is a singleton and
X is finite is true by construction and corresponds to the monoid structure [ [y A — A4
of A. Taking the colimit over finite subsets gives us the case ]_[gf A — A where X is
infinite. Finally, the general case is obtained by writing a function f: X — Y as a
disjoint union fy: X, — {y} withy €Y,

f
E(f) =[] E(fy) = Expa(fy) = Expy(f).

yey

The natural isomorphism Exp, = E we have just described, is monoidal by construc-
tion.

It is straightforward to check that Exp4(*) = A is natural in A and Expg(,) = E
is natural in E. =

Example 1.8. The exponential of base N
Expy(X) =X° I X 11 X§ L X5 II---

is the exponential functor corresponding to the analyst exponential of base e. Indeed,
every ¢: X — N can be interpreted as a multiplicity function giving the recipe to cook
up a tuple out of the complement of ¢~1(0) C X.
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Let I, be the idempotent commutative monoid on two elements. Then the expo-
nentials of base I, and Z, have identical sets

Expy, (X) = Expg, (X) = {S C X | § is finite}

but their monoid structures are different: for the exponential of base I, the pair
({x}, {x}) is sent to {x} whereas for that of base Zj, it is sent to @.

Remark 1.9. One can extend the definition of an exponential functor to accommo-
date any monoidal structure on the target. For example, the classification theorem
above also holds for exponential functors Vectf{9 — Vectg’ : they are equivalent to uni-
tal commutative R-algebras.

The exponential of base R[X] is the symmetric algebra functor. The exponential
of base R[Z,] is the antisymmetric algebra functor.

1.2. The exponential functor

As is apparent from the definition of the exponential functors with bases, there is
a preferred exponential, the exponential of base I, which we shall refer to as the
exponential functor, and denote it simply by Exp.

For any set X, Exp(X) can be identified with the set of all finite subsets of X. For
each function f: X — Y, the associated function Exp( f): Exp(X) — Exp(Y) sends
a finite subset S C X to f(S) C Y.

The exponential can also be described as a particular colimit. This is the definition
one can use to define the exponential in a general category.

Definition 1.10. Let € be a category admitting finite products and small colimits. Let
Fin_» denote the category of finite sets and surjections. Given an object X € € and a
surjection ¢: I — J between two finite sets, one gets a split monomorphism

X?:x7 — x'

which means that X defines a functor Fin™, — €.
The exponential functor on € is the colimit

— 1 I
Exp(X) := h_r)n X

Ierin®,

of the functor X: Fin®, — €, with the convention that X ? is the terminal object of €,
forevery X € €.

We shall first make a remark about the structure of this colimit and then show its
universal property.
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Definition 1.11. Let w, denote the poset
wy =0 0{1<2<---<n<---}.

The opposite category of the category of finite sets and surjections admits a canon-
ical functor to w4 sending a finite set [ to its cardinal. Hence the colimit defining Exp
can be computed in two steps.

Notation 1.12. Forn € wy, let

Exp=*"(X) := lim x!

0<|I|<n

if n # 0, and let Exp=*°(X) be s the terminal object of €.

For example, if X € Set, Exp=*"(X) is the set of all non-empty finite subsets
S C X having at most n elements.

Since w has an isolated point, we shall let

* 1 1
Exp*(X) = h_n)l X
o<|I|
be the subobject called the Ran space of X in some parts of the literature.

Remark 1.13. By construction

Exp(X) = %e HExp*(X) and Exp*(X) = lim Exp=*"(X).
n>0
Theorem 1.14 (The exponential is an exponential). Let € be a category with finite
products and small colimits. Assume moreover that Y — X x Y commutes with all
small colimits for every X € €. Then the exponential Exp: € — € has the canonical
structure of an exponential functor.

Proof. For each finite set I, the functor X +— X I commutes with filtered colimits.

lim Exp(]_[Xj) =Exp( Il Xk).

JCK jeJ keK
J finite

Hence we have

So it shall be enough to show that Exp is a symmetric monoidal functor.
Let { X% }xek be a finite family of elements of €. One has a sequence of canonical
isomorphisms

Exp(]_[Xk) zliTr)n(L[Xk)I

keK

. Iy o
= llr_I} ]_[ l_[ X" (by distributivity)
I (I->K)keK
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. Ix .
= h_r)n 1_[ X, (by cofinality, see (3) below)
(I—~K) kekK
. Iy .
= h_r)n l_[ X, (by isomorphy, see (2) below)
{Ixtkek k€K
. I . . ..
= l_[ lim X o (by distributivity)
keK Ik
= [ T Exp(X2)
keK

where:
(1) given a map of finite sets ¢: I — K, we let I := ¢~ '(k) foreach k € K;

(2) the coproduct induces an isomorphism of categories
Fink = Fin /K

sending { I }kek t0 [ [rex Ik — K;

(3) given a small category € and an object K € €, let p: €k, — € denote the
forgetful functor. Then for every x € €, the canonical map

P = pyx
is cofinal. Moreover, the fiber p~!(x) is discrete. Thus for any functor F with
source the coslice €/, its colimit can be computed as
lim F =limlim F =lim lim F = lim ]_[ F.
— — — — — —
(K—x) X p/x X p—1(x) X (K—x)

It is straightforward to check that these canonical isomorphisms endow Exp with the
structure of an exponential functor. ]

Remark 1.15. If Y — X x Y only commutes with coproducts, then one can show
that we still get structural maps Exp(] [;c; Xi) — ]_[fe 7 Exp(X;) turning the expo-
nential into what one would call an oplax infinitary symmetric monoidal functor.

Corollary 1.16. Under the same assumptions, for every X € €, Exp(X) is the free
idempotent commutative monoid on X.

Proof. Since Exp is an exponential functor, Exp(X) is a commutative monoid as
explained earlier.
It is idempotent for the following reason: for every finite set /, the diagram

diagonal

XI XI X XI \ (X I X)II_II fold s XILII

| | | ’

Exp(X) —— Exp(X) x Exp(X) —— Exp(X I X) —— Exp(X),
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where all vertical maps are canonical maps, commutes. Moreover, the top composite
map equals the map X! — X’ induced by the fold map I LI I — I. Hence the full
top right composite map is again the canonical map X/ — 1imJ X7 Since this is true
for every finite /, this shows that the bottom composition is the identity of Exp(X).

Let (M, 1) be a commutative and idempotent monoid in €. Assume a given map
¥: X — M. Then for every finite /, one has a well-defined map

1
XIL)MIL)M

because p is associative and commutative. Moreover, because p is idempotent, the
diagram

XI‘/’—I>MI

xs M¢£ X

XJ N MJ

commutes for every ¢p: I — J. One thus gets a map 1;: Exp(X) — M extending .
The map @ is obviously unital.
To show that 1; is compatible with p is to show that

Exp(X) x Exp(X) — =" s M x M

! .

Exp(X) v y M

commutes, which can be done by precomposing with X7 x X7 for all I, J finite sets.
We then only need to show that

1 J
X! x x/ ¥ MIxM? — 2 MM
) » )
(x 1 x)/u7 YEDTT g1 py oY "
fold fold
xIuJ v o AUl K Y

commutes. The left two squares commute by functorality. The right square commutes
because u is unital, commutative and associative. [
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2. Topologies on the exponential

In this section, we shall review three different topologies on the set Exp(X) of finite
subsets S C X of a topological space X, with the goal of transforming Exp into an
exponential endofunctor of the category of topological spaces.

2.1. The topological exponential

As explained in the previous section, the exponential can be computed with the help
of a colimit ranging over the opposite category of the category of finite sets and sur-
jections. Computing the colimit in the category of topological spaces, one obtains the
topological exponential, of which we give a simpler definition.

Definition 2.1 (Topological exponential). The topological exponential Exp(X) of
a topological space X is the topological space with set of points Exp(X), the set of
finite subsets S C X, endowed with the finest topology such that the canonical maps

X" — Exp(X)

given by sending each tuple (x1, ..., x,) to the subset [x1, ..., x,] C X it represents,
be continuous for every n > 0.

The topological exponential is used by Beilinson and Drinfeld [4, Sect. 3.4.1]
to define factorization algebras on a topological space. As we shall soon see, the
topological exponential suffers one drawback: it is not an exponential functor because
the functor ¥ +— X x Y commutes with colimits only when X is core-compact.

2.1.1. First steps towards exponentiability.

Proposition 2.2. Let {X;}ic; be a small family of topological spaces. The bijection

Expr (]_[Xi) — li[ExpT(Xi)

iel iel
is continuous.

Proof. To show that this map is continuous it is enough to check that its compo-
sition with the projections (] [;c; Xi)X — Expy(][;c; Xi) is continuous for every
finite set K. For such a K, the space (] [;¢; X;)X is a disjoint union of spaces of
the form [[;c; X J.Kj with J C I finite, and each projection map [[;c, X ].Kj —
[ljes Expr(X;) — [Ti<; Expr(X;) is continuous. ]
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Lemma 2.3 ([10, Props. 2.4 & 2.5]). Given a separated space X, the projection map
X" — Expr(X)
factors as a composite
X" — Expr*"(X) C Expp(X)
of a closed quotient map followed by a closed embedding, for every n > 0.

Lemma 2.4. For any small family of separated topological spaces {X; }iey and every
natural n, the canonical map

ﬁExp%*"(Xi) — Expr (]_[Xi)

iel iel
is continuous.

Proof. By definition of the finite product, it is enough to show it for / finite. Since
each X; is separated, the quotient map X" —> Exp3*"(X;) is perfect (Lemma 2.3),

iel Xin - Hi el
perfect map, and, in particular, a quotient map. Then, the map

HX{’—>(]_[X,- —>ExpT(]_[Xi)

iel iel iel

and hence a perfect map. Thus the product [ | Exp>*"(X;) is again a

)Iumul

is continuous and by the previous observation, factors as a continuous map through
the quotient [;<; Exps*" (X;). "

2.1.2. The topological exponential is not an exponential.

Lemma 2.5. The topological exponential Exp(S') contains a copy of the infinite
bougquet of circles \/* S*.

Proof. We shall build a sequence of closed embeddings

Sl c NS N \/” Sl SR

i=1

T

Exps*!(S') «—— -\ —— Exp5*"(S!) — ---
which shall lead to a closed embedding \/“ S! < Expy(S!). For this, we embed two
circles into the torus T? via the vectors (0, 1) and (1, 1), three circles in T via the
vectors (0,0, 1), (0,1,1) and (1, 1, 1) etc.. This defines a compatible family of closed
embeddings \/7_, S' < T". Since moreover the projection map T" — Exps*"(S!)
is closed, we get continuous closed maps \/7_, S' — Exp7*"(S!). By construction,
they are injective and fit as expected in the diagram of closed embeddings above. m
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Theorem 2.6 (The topological exponential is not an exponential). The canonical con-
tinuous bijection
Expr(Q I s’ — Expr(Q) x EXPT(SI)

is not a homeomorphism.

Proof. Using the same tori embeddings as in the previous lemma, one can fit a copy
of Q x \/7_, S" in Exps*"*1(Q LI S!) for every n > 1. One can then check that the
continuous bijection Exp(Q LI S') — Exp;(Q) x Expy(S!) restricts to the continu-
. . . n 1 w o1 . . .
ous bijection h_r>n0<n<w Qx /=, S' = Qx \/*S! which is not a homeomorphism
[14, Sect. 3.2]. ]
2.1.3. The topological exponential is almost an exponential. As we have just seen,
the canonical continuous bijection Exp (X LI Y) — Exp(X) x Expp(Y) is not al-
ways a homeomorphism. However, when X and Y are separated, its inverse is still
sequentially continuous.

Remark 2.7 (Converging sequences in a colimit topology). Let Zy — -+ — Z,
< .- be a sequence of closed embeddings between T; topological spaces and let Z
denote its colimit. Then every morphism K — Z with K compact factors through one
Z, C Z [11, Prop. 2.4.2]. More generally this is true if Z is the colimit of an ordinal
sequence of closed embeddings.

As a consequence, if X is separated, a sequence (S,),en in Exprp(X), converges
only if the sequence of cardinals |Sy |, <. is bounded.

Proposition 2.8. Let {X,}ic; be a small family of separated spaces, the canonical
bijection

li[ExpT(Xi) — Expq <]_[X,~>

iel iel
is sequentially continuous.

Proof. Let S be a sequence in Exp(] [;<; X;). Since S, is a finite subset of [ [;<; X;
for each natural number »n, the union |, , S, intersects only a countable number
of X;, and we can thus reduce to the case where [ is countable. Given a sequence

Xo, X1, ... of separated spaces, the sequence
EXpT(X()) — EXpT(X()) X EXpT(Xl) —> EXpT(X()) X EXpT(Xl) X EXpT(Xz) > ...

is made of closed embeddings between separated spaces. Thus  J, _, S, intersects
only a finite number of X; (Remark 2.7).

Then, we only need to consider the case of two separated spaces X and Y. In
that case, the sequence S is then comprised of a pair of two sequences S(X) and
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S(Y). Because Expr(X) is a union of closed embeddings between separated spaces,
S(X) is bounded in cardinality (Remark 2.7). The same is true for S(Y). We con-
<xn

clude using that Expz*" (X) x ExpF*"(Y) — Exp;(X LI Y) is continuous for every n
(Lemma 2.4). [

2.1.4. The topological exponential is a restricted exponential. As we have ex-
plained earlier, the topological exponential is not an exponential functor because
the functor ¥ + X x Y does not commute with colimits in general, for a given X.
One might ask whether the exponential property could still hold if restricted to core-
compact spaces, i.e., the spaces X for which ¥ — X x Y commutes with colimits.
The answer to this question is non-obvious as Expp(X) is usually not going to be
core-compact, even when X is.

Proposition 2.9. Let {X;}ic; be a small family of separated and core-compact topo-
logical spaces. The canonical bijection

li[ExpT(Xi) — Expq <]_[X,~>

iel iel
is a homeomorphism.

Proof. We only need to show that the above map is continuous (Proposition 2.2).
By definition of the finite product, we can reduce to the case of a finite /. Since
each X; is separated, the projection map X" — Exp>*"(X;) is a perfect map and
thus Exp%*” (X;) is core-compact. Because sequential unions of core-compact spaces
commute with finite products [14], one has canonical homeomorphisms

[TExpr(xi) = [T tim Exps*"(X;) = lim []Exps*"(X;)

iel iel n€wx newsxjel

and the map

l_[ExpT(X,-) = lim HEXp?*"(X,-) — Expy (L[X,-)

iel newsxjel iel
is continuous, as a colimit of continuous maps (Lemma 2.4). ]

Corollary 2.10. Let X be a separated and core-compact topological space. Then
Exp(X) is the free idempotent commutative topological monoid on X .

2.2. The metric exponential

In addition to not being an exponential functor, the topological exponential also does
not preserve metrizability. In fact, Exp;(X) is almost never metrizable.
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Proposition 2.11. Let X be a metrizable topological space. If X has an accumulation
point, then Expr(X) is not metrizable.

Proof. Pick a metric D inducing the topology on Expr(X). Let x € X be an accumu-
lation point. For every n > 0, using the quotient map X" — Exp%*" (X), one can find
a subset S, C X made of exactly n elements such that D(S,, {x}) < 1/n. In other
words, Sy, = n—+00 {X}and |S,| =>n—+o0o +00 which is forbidden (Remark 2.7). m

One way to remedy this is to compute the colimit defining the exponential not
in the category of topological spaces but rather in the category Met, of generalized
metric spaces.

A generalized metric space is a metric space whose distance function is allowed to
have the value +o00. Morphisms in Met, are the metric maps: the maps f: (M, dys) —
(N,dy) such that dy (f(x), f(»)) < dm(x,y) forevery x,y € M.

The main advantage of the category of generalized metric spaces is that it admits
all small limits and colimits [15, Exm. 4.5 (3)]. Computing the colimit defining the
exponential in Met,, one obtains the metric exponential, of which we give a concrete
definition.

Definition 2.12 (Metric exponential of a metric space). Given a (generalized) metric
space (X, d), its metric exponential is the generalized metric space (Exp(X), D),

where
ma minser d(s,t),
D(S,T) := max XseS ter d(s, 1)
max;er Minges d(s,1).
We shall denote the metric exponential by Exp,,(X). In particular, one has
D([9], T) = D(T,[9]) = +o0 when T is not empty.

Remark 2.13. The metric subspace Expy;(X) C Expy(X) is used by Lurie as an
intermediate tool to deal with locally constant non-unital factorization algebras which
are locally constant cosheaves on Exp}(X) [17, Def. 3.3.2]. In Higher Algebra [18,
Rem. 5.5.4.12] he suggests using a variant of the exponential Exp,,(X) where
D([9],T) = D(T,[9]) =0forevery T C X, to deal with unital factorization algebras.
This topology on the exponential differs from all of the topologies discussed in this
paper and we are not aware of any further use of it.

The metric exponential has also been used by Knudsen [12] in his work extending
the constructions of Francis and Gaitsgory [9] to the topological setup.

The topology of the metric exponential admits a basis given by opens of the form
[Uilier where
SellUlier © Viel, SNU; #0.
This allows us to define the metric exponential Exp,;(X) when X is only a topological
space.
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Definition 2.14 (Metric exponential of a topological space). For a topological space
X, its metric exponential Exp,,(X) consists of the set Exp(X) endowed with the
coarsest topology including all [U;];e; for every finite set I of open subsets U; C X.

This definition is functorial: if f: X — Y is a continuous map, the preimage of

[Uilicr by Exp(f) equals [/~ (U;)]ier-

Before looking at the exponential property of Exp,,, we shall discuss how some
limits and colimits are computed in Mety,. Given a small family {(X;, d;)}ies of
(pointed) metric spaces, their

* coproduct is the disjoint union of sets | [;.; X; endowed with the distance d for
which
di(x;,yi), ifi =],
d(xi,yj)= i (i, i) N ]
+00, ifi # j,

*  product is the product set [ [;; X; endowed with the sup metric
d({xi},{yi}) = supd;(xi, i),
iel

* finite product is the finite product set endowed with the sup metric. In other words,
in that case, the natural map

f
HX,‘ —)HX,‘

iel iel
is an isometric embedding.

Proposition 2.15 (Exponential property). The metric exponential Expy, is an expo-
nential functor for both Mets, and Top.

Proof. Starting with the metric case: let {(X;, d;)}ie; be a small family of metric
spaces. We only need to show that the bijections in the exponential structure of Exp
are isometric. Let S and T be two finite subsets of the unionin (X, d) :=[[;; (Xi.d;)
and write S; == S N X; and 7; := T N X; for every i € I. By construction of the
disjoint union, if s € S and ¢ € T do not belong to the same component X;, their
distance d(s,?) in X is infinite. As a consequence the distance D(S, T') in Expy;(X)
becomes
D(S.T) = max { maxges Minge7 d(s,1) = Sup;c; Maxses; Minger; d; (s,1),
maxser Minges d(s,t) = sup;c; maxser; Minges; d; (s, 1),
and thus D(S,T) = sup;¢; Di(S:i, T;).
Let {X;}ies be a small family of topological spaces. Because finite sets can only
intersect a finite number of connected components, the open sets of the form
[Uj’k]]‘e_]’keKj where J C I and each K; are finite, and where each U;; C X; is
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open, form a basis of the topology of Expy (] [;c; Xi). It corresponds bijectively to
the base open set inside H,fe 1 Expy(X;) given by [[;c;[Ujklkek, - Thus the bijec-
tion Expyy([ [;e; Xi) = [Ttc; Expy(X;) is a homeomorphism. ]

Proposition 2.16. Let X be a (generalized) metric space. Then Expy(X) is the free
idempotent commutative metric monoid on X.

Proof. The canonical map X — Exp,,(X) is an isometry by construction.

So the only thing to show is that for (4, d) an idempotent and commutative metric
monoid, the map Expy;(4) — A sending S C Ato [[,cg s € A— which is well defined
because A4 is commutative and is a monoid map because A is idempotent — is a metric
map.

Given two finite subsets S, 7 C A, we need to show that d([ [;cg 5. [[;e7 1) <
D(S,T). If S or T is empty, it is immediate. Because A is an idempotent met-
ric monoid d(a, bc) = d(aa, bc) < max(d(a, b), d(a, c)) for every a,b,c € A. By
straightforward induction, one gets the case where either S or T has a unique element.
Let n be an integer and assume that the inequality has been shown for every S, T with
|S|+|T| <n.LetS,T C Awith |S|+ |T| = n + 1. Without loss of generality, we
can assume that there exists x € S such that D(S,T) = d(x, T). Let Sy denote the
complement of x in S. Then

d(l_[s,l_[t):d(xx l_[s,l_[t)

seS teT seSo teT
< max(d (x, 1_[ t), d( 1_[ S, 1_[ t)) (A is metric)
teT seSo teT
<max(d(x,T), D(Sy,T)) (by hypothesis)
= D(S,T) (by definition of x)
ending showing that Exp,,(4) — A is a metric map. |

Proposition 2.17. For every topological space X, the identity
Expr(X) — Expy(X)
is a continuous map, which restricts to homeomorphisms
Exp3*" (X) = Exps™" (X)
for every n € wy, whenever X is separated.

Proof. Let U C X be an open subset. Let n > 1 be an integer and let o denote
the permutation (1 ---n). Then the preimage along X" — Exp(X) of [U] is the set
U;<, @' (U x X™~1) which is open. It follows that [U] is open in Expy(X). For a
finite 7, [Uilier = (;e;[Ui] is then also open in Exp(X). [
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2.3. The minimal exponential

Definition 2.18. Given a topological space, the minimal exponential Exp,,(X) is the
set Exp(X) endowed with the coarsest topology containing the subsets Exp(U) C
Exp(X) for all open subsets U C X.

Remark 2.19. One distinctive feature of the minimal exponential is that the point
presenting the empty configuration [@] is dense.

Families of open subsets {U; C V};ey for which {Exp(U;) C Exp(V)}ier is a
cover in the minimal exponential, were introduced by Weiss in his work on the embed-
ding calculus [22]. This notion of covering is used by Costello and Gwilliam to define
factorization algebras in general [6, Sect. 1.4.1]. It is also used by Ayala and Francis
in their study of factorization homology [2, Sect. 2.6].

Proposition 2.20 (Exponential property). The minimal exponential is an exponential
functor on the category of topological spaces.

Proof. Let {X;}ic; be a small family of spaces. Since [d] is open in the minimal
topology, the finite product of the Exp,, (X;) is a subspace of the product endowed
with the box topology.

Given a family of open subsets {U; C X;};ier, one has bijections

Exp ([ ) = [ e = (TTExpn) N (li[Exp(X»)
iel iel

iel iel
showing the correspondence between the two bases of open sets Exp,, ([ [;<; X;) and
f
[Ticr Expy(Xi). u

Remark 2.21 (Minimality). The functors Expy, Expy; and Exp,, preserve open em-
beddings between topological spaces. In the category of exponential functors of Top
with base I, having this preservation property, Exp,, is a final object.

2.4. Weak homotopy type of the exponentials

The functors X +— Exp%*" (X) have interesting homotopy properties as shown
by Handel. In particular, he showed that for X a separated and path connected space,
Exp}(X) is weakly contractible [10, Cor. 4.3]. In the meantime, Lurie has also
shown that Expy;(M) is weakly contractible when M is a connected manifold [17,
Thm. 3.3.6].

Here we shall enhance these results by describing the weak homotopy type of each
exponential for any separated and locally path connected space. Since [@] is dense in
Exp,, (X), it follows that Exp,,(X) is contractible for any space X. Hence, we shall
focus on the metric and the topological exponentials.
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We start with a lemma due to Beilinson and Drinfeld.

Lemma 2.22. Let G be a group endowed with an extra operation \: G X G — G
such that A is associative, idempotent and such that ab N cd = (a A c¢)(b A d) for
anya,b,c,d € G. Then G is a trivial group.

Proof. For every g € G one has
grg=g = (I9r(g) =g = (1rg)’ =g
So forevery h € G, letting g = 1 A h,
AAR?=0UA1ARZ=1Ah
since G is group, we get 1 Ah = 1and h = (1 Ah)? = 1forevery h € G. ]

Lemma 2.23. [f X is path connected, then Exp}(X) is path connected. As a conse-
quence, Expyy(X) is also path connected.

Proof. Given two proper finite subsets S, 7" C X, there exists a large enough positive
n € N and two tuples (s1,...,S,) and (¢, ..., ?,) representing respectively S and 7.
Since X is path connected, there exists a path between those two tuples in X” and
since the map X" — Expr(X) is continuous by construction and factors through
Exp7(X), this gives us a continuous path between S and 7" in Exp}(X). [

In what follows, let us denote by I, the commutative idempotent monoid with two
elements ({0, 1}, V) and endow it with the discrete topology.

Theorem 2.24. Let X be a locally path connected topological space. The monoid
map
3
Bxpy(X) 2> @ L
70 (X)
sending a finite subset S C X to the family {3; };ex,(x) with 3; = 0 if and only if no
element of S belongs to the connected component X; C X, is continuous and a weak
homotopy equivalence.
Moreover, if X is also separated, the induced continuous map

3
Expr(X) — @ I,
mo(X)

is also a weak homotopy equivalence.
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Proof. Using that Exp,, is an exponential and the fact that for each connected com-
ponent X; C X, Expy(X;) is the disjoint union of [@] and Expy;(X;), Expy(X) splits
as

f
Expu(X) = ] Expu)= ] []Expm(X))

ieny(X) J;go'(X)jEJ
nite

immediately showing that the map 3 is continuous and that 7ty (3) is a bijection. Let
S C X be a finite subset. Then, since S U S = §, the monoid structure of Expy;(X)
induces an associative and idempotent map

Tt (Bxppy (X)), §) X 76, (Exppg (X)), §) — 70, (Expy (X)), §)

which satisfies the exchange property, for every n > 0. As a consequence, each of
these groups is trivial (Lemma 2.22).
When X is separated, the canonical bijection

f
Expr(X) > [] Expr(Xi)
1€ (X)

is sequentially continuous with continuous inverse (see Proposition 2.8) and thus one
has

f
mo(Expr(X)) = mo( [ Expr(Xi)
iET[()(X)
because the segment [0, 1] is a sequential space. Since spheres and balls are also
sequential spaces, the sequentially continuous map Exp(X) x Expp(X) — Expp(X)
still induces maps

70, (Expy (X)), S) X 7, (Expy (X)), S) — 7, (Expy (X)), S),

so using the same proof as for the metric case, we see that 3: Exp(X) — D, ¢ o) 12
is a weak equivalence. ]

Remark 2.25. The above theorem was proven by Handel in the case where X is
path-connected and separated [10, Cor. 4.3]. Curtis & Nhu showed that Exp,,(X) is
homeomorphic to a linear space, whenever X is a connected, locally path connected
metric space, which is a countable union of finite dimensional compact spaces [7]; it
is in particular contractible in the strong sense.
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3. Interlude: Minimal enclosing balls

Given a normed vector space V' and a proper finite subset S C V, a minimal enclosing
ball for S is a closed ball B C V which contains S and such that any other ball
containing S has a bigger radius (Figure 1).

Using classic convex optimization results, one can show the existence and unique-
ness of a minimal enclosing ball in the case of rotund reflexive normed vector spaces
[19]. One may wonder whether the center cg and the radius rg of the minimal enclos-
ing ball of a proper finite subset S vary continuously with S. This question is naturally
posed using the metric exponential Expy, (V).

For such a general space as a reflexive vector space, one can only show that the
center cg varies continuously with S for the weak topology of V. The continuity of
the center becomes strong if one instead considers a restricted version of the minimal
enclosing ball problem. This is what we shall see here.

Definition 3.1 (Restricted minimal enclosing ball). Let V' be a normed vector space
and let S C V be a proper finite subset of V. A restricted minimal enclosing ball is a
closed ball B C V containing S and whose center belongs to the convex hull Conv(sS)
of S, such that, any other ball with center in Conv(S) and containing S has a bigger
radius.

Remark 3.2. In a Hilbert space H, the restricted minimal enclosing ball of S C H
coincides with its minimal enclosing ball.

Restricted minimal enclosing balls might not be unique for a given norm. We shall
then restrict our attention to spaces that can be endowed with a norm with strictly
convex unit ball.

Definition 3.3 (Rotund vector space). We shall say that a topological vector space
is rotund if its topology can be induced by a norm for which the closed unit ball is

Figure 1. The enclosing circle of a finite set of points in the plane.
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strictly convex: the equation

X|| = =
lxll = Iy 5

x+yH

holds only when x = y. By extension, we shall say that such a norm is rotund.

Example 3.4. Finite dimensional vector spaces are rotund. More generally separable
complete normable spaces are rotund [5, Thm. 9]. The space £°° is not rotund [8,
Thm. 8]. Every reflexive normed vector space is rotund [16, Cor. 1 (i)].

Lemma 3.5. Let V be a normed vector space. The correspondence sending S €
Expy; (V) to its convex hull Conv(S) C V is continuous.

Proof. Tt is upper hemicontinuous: let v € V' and let ¢ > 0. One has
Conv'(B(v, ¢)) :=={S | Conv(S) C B(v,e)} = B({v},¢)

showing that the upper inverse image preserves opens.
It is lower hemicontinuous: let

S € Conv!(B(v, €)) := {S | Conv(S) N B(v, ) # @},

then there exists s € S such that ||s —v|| < e. Let § = ¢ — ||s — v||, then B(S,§) C
Conv!(B(v, €)) showing that the lower inverse image preserves opens. [

Lemma 3.6. The function
V x Expy(V) = Ry,
(v, 8) > max ||[v — s
SES
is continuous.

Proof. Consider a converging sequence (v, Sy) —n—o0o (v, S). For & > 0 small
enough, if S, is at distance less than ¢ from §, then S, must have more points than S
and for each x € S,, there is a unique s, € S such that |x — 5| < e. This gives us
a partition of Sy, as S, = (Useg Sn(s). Then for [|v, — v|| < e and D(S,,S) < € one
has

|max lv —s|| — max ||v, — t||| < max|||v —s|| — max |v, — t|||
seS teSy seS teSy(s)
< max(||lv—v,| + max [s—t])
sES teSy(s)

< 2e,

showing that (v, S) +— max;es ||v — §|| is continuous. ]
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Theorem 3.7 (Solution to the restricted minimal enclosing ball problem). Let V be
a vector space endowed with a rotund norm. Then every proper finite subset S C V
admits a restricted minimal enclosing ball of radius
rs == inf max|s— ||
veConv(S) s€S
and this ball is unique.

Moreover, the function
Expy (V) = V xRy

mapping a proper finite subset S C V' to the pair (cg,ts) where cs denotes the center
of the restricted minimal enclosing ball of S, is continuous.

Proof. Because S is finite, its convex hull Conv(S) is compact in V. As a conse-
quence, rg is finite and S admits a restricted minimal enclosing ball. It is unique:
because the norm is rotund, the function v > maxses || — v|| is strictly convex, so
its infimum on the convex hull Conv(\S) is attained at a unique point.

The continuity of cg and rg can be obtained using the maximum theorem [1,
Thm. 17.31]: the correspondence S +— Conv(S) is continuous with compact values
and the function (v, S) — maxsegs ||§ — v|| is continuous by the previous lemmas. =

4. Stratification of the exponentials

The exponential of a set X admits a natural counting function Exp(X) — N sending
each finite subset S C X to its cardinal |S|. In this section, we study the exponentials
endowed with the stratification given by this counting function. We shall show that,
under some conditions on X, the metric exponential Exp,;(X) is conically stratified.
The final result is that the oo-categories of constructible hypersheaves on Expy,(X)
and Expy(X) are equivalent, which leads to the following statement: locally con-
stant factorization algebras on X in the sense of Beilinson—Drinfeld are equivalent to
locally constant factorization algebras on X in the sense of Lurie.

4.1. The exponentials as stratified spaces

There are several inequivalent definitions of stratified spaces. The following one is a
mild one, introduced by Lurie [17, Def. A.5.1].

Definition 4.1 (Stratified space). A stratified space is the data of a poset P, endowed
with the topology whose open sets are the upward-closed subsets, and a continuous
map f: X — P.
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A morphism of stratified spaces is a commutative square

X — Y

L]

P— 0

where the top map is continuous and the bottom map is a poset map.

In our case, we select the poset w,. Since the empty configuration is dense in
Exp,, (X), the minimal exponential shall never be stratified over w, or even w as soon
as X is not empty. We shall thus only have a look at the two other exponentials.

Proposition 4.2. When X is separated, the canonical maps
Expr(X) — Expy(X) — ws«
are continuous. Moreover, one has homeomorphisms
ExpF" (X) = Expy;™" (X)
foreveryn € wy.

Proof. We need to show that Exp5*" (X) is a closed subset of Expy(X) for every
n € wy. For n = 0 this is obvious. Let S be a non-trivial finite subset of X. Since
X is separated, one can find a disjoint family of open neighborhoods {s € Us}ses.-
Then [Us]ses becomes an open neighborhood of S in Exp,(X) which lies in the
complement of Exp5*" (X).

When X is separated, Handel has shown that the opens of the form [U;];e;r N
Expt*"(X) form a basis of the topology of Exps*"(X) [10, Prop. 2.11], giving us

the homeomorphism Exp=*" (X) = Expy*" (X) for every n € w. [

4.2. Cones and joins

Definition 4.3 (Geometric open cone). For a topological space X, the geometric open
cone of X is the set
C(X) :== {0} I (R} x X)

with topology defined as follows: A subset U C C(X) is open if and only if U N
(R% x X) is open, andif 0 € U, then (0,&) x X C U for some positive real number &.

If X is stratified over a poset P, then C(X) is naturally stratified over the poset
P < obtained from P by adding a new element smaller than every other element of P.
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Warning 4.4. One should not confuse the geometric open cone on X with the topol-
ogist’s open cone defined as the quotient Ry x X /{0} x X. When X is compact and
separated, the geometric cone on X and the open cone on X are homeomorphic. This
is no longer true in the general case: the geometric cone on the open interval (0, 1)
can be embedded in R2, whereas the open cone on (0, 1) is not metrizable.

If (X, d) is a metric space, the topology of the geometric open cone C(X) is metri-
zable by letting d((A, x), (1, y)) = max(J]A — |, d(x, y)) and by adding d(0, (1, x))
=A.

Definition 4.5 (Geometric join). Given two posets P and Q, their geometric join is
the poset
P« Q=PLU(PxQ)UQ

where one adds to the disjoint sum the additional relations p < (p,q) and ¢ < (p, q)
for every (p,q) € P x Q.

Let X — P and Y — Q be two stratified topological spaces. Their geometric join
X <Y is the set

XV =XHXxO)xY)Y

where a basis of opens is given by the opens U C X x (0, 1) x Y together with opens
XHIOX x(0,e) xV withV C Y open,andopens W x (6,1) x Y LY with W C X
open.

It is naturally stratified over P >< Q.

Warning 4.6. Similarly to what we just said about cones, when X and Y are both
separated and compact, the geometric join of X and Y is homeomorphic to the topol-
ogist’s join X x [0, 1] x Y /R where R is the relation identifying X x {0} x ¥ ~ X
and X x {1} x Y ~ Y. In general, this is no longer the case.

Proposition 4.7. Let X — P and Y — Q be two stratified spaces. Then there is a
homeomorphism

C(X)xC(Y) = C(X > Y)

over the canonical isomorphism P x Q< = (P 1 Q)<

Proof. The map sends bijectively tuples (A, (x, ¢, y)) € C(X >« Y) to tuples ((Af, x),
(A(1 —1),y)) € C(X) x C(Y) and obviously respects the isomorphism P< x Q¢ =
(P > Q)<. Let us see why it is open: there are four different cases to look at.

Case 1: open neighborhoods of the tip of C(X < Y). Let & > 0, then the open
{0} LI (0,&) x (X p<1Y) is mapped to the open ({0} LI (0,¢&) x X) x ({0} LI (0,¢) x Y).

Case 2: open neighborhoods of C(X < Y') not containing the tip but including X .
An open of the form (o, 8) x (X LI X x (0,¢&) x V) with 0 < & < B is mapped to the
open ({0} II (0, ea) x X) X ((1 — &), (1 —e)B) x V.

Case 3: open neighborhoods of C(X >« Y') not containing the tip but including Y .
Confere supra.
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Case 4: a general open of C(X > Y). Let U C X,V C Y opens, 0 < @ < §,
0<t<s<1.Then (¢, ) x U x (t,s) x V is mapped to the open (tc, s8) x U x
(1=, (1=0p)x V.

Since the image of basis neighborhoods form a basis of neighborhoods of C(X) x
C(Y), one can see that it is a homeomorphism. ]

Remark 4.8. A very similar proposition has been given by Ayala, Francis and Tanaka
using the topologist’s open cone and join instead of the geometric ones [3, Sect. 3.4.1].
Of course, both propositions agree in the case where both X and ¥ are compact and
separated.

4.3. Conical stratification

There are many inequivalent notions of “goodness” for stratified space. The definition
below is a mild one introduced by Lurie [17, Def. A.5.5].

Definition 4.9 (Conically stratified space). Let f: X — A be a stratified topological
space. One says that X is conically stratified whenever for each p € A and each
x € X, there exists an open neighborhood U, C X, of x and a stratified space L
over Py, such that U, C X, can be extended to a stratified space over the poset map
Py = Py< CP.

We have already seen that the minimal exponential Exp,,(X) is never stratified.
Even though the topological exponential is always a stratified space over w, when X
is separated, it is usually impossible for the topological exponential Exp(X) to be
conically stratified; conical opens would allow sequences with unbounded cardinality
to converge (Remark 2.7) [13, Thm. 2.14]. We shall then restrict our attention to the
metric exponential Exp,,(X) and show that it is conically stratified for a large class
of spaces X.

Lemma 4.10. Let V be a normed vector space, then the function
Ry x V x Expy (V) — Expy(V)
sending a triple (A, v, S) to the configuration
AS+v={As+v|seS}
is continuous.
Proof. One has
DAS +v,uT +w) <|lv—w||+AD(S,T)+ |A — u|DO,T)

which shows that the function is continuous. [
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Proposition 4.11. Let V be a rotund vector space and let us denote by Sy (V) C
Expy (V') the subspace of configurations whose minimal enclosing ball has center 0
and radius 1. Since such a configuration must have at least two points, Sy(V') is
naturally stratified over the poset wa<. Then, one has a canonical homeomorphism

Expy (V) =V x C(Sm(V))
over the isomorphism w1< = w3_.

Proof. In both cases, the map sends one point configurations v € V' to the tuple (v, 0)
where 0 represents the tip of the cone, and sends multiple point configurations S C V
to the tuple (cs, (rs,rg' (S — cs))). The inverse map simply sends tuples (v, (A, S))
to AS + v.

By the previous lemma and since S + cg and S + rg are continuous, it is clear
that the bijection restricts to a homeomorphism between the open subspace of non-
punctual configurations on one side and the product of V' with the interior of the cone
on the other side.

Finally, if S,, — v is a converging sequence with limit a punctual configuration,
then by continuity cg,, — v and rg, — 0, which means that the image of S, converges
to (v, 0) by definition of the topology of the cone. Conversely, if (v,, (A, Sp)) is a
sequence converging to (v, 0), this means by definition of the topology of the cone
that A,, — 0 and since S,, is bounded, then A, S, — 0 so that v, + A,S,, — v in
Expy (V). [

Theorem 4.12. When X is a separated topological space locally homeomorphic to a
rotund vector space, then Expy(X) is conically stratified.

Proof. Since the empty set is a disjoint point from the rest of the space, it emits a
conical neighborhood trivially. Let S € Expy; (M) so that |S| > 0. By assumption, for
each s € S, one can find an open embedding Vy < X carrying the origin of a rotund
vector space Vs to s € X. Moreover, these can be chosen to be disjoint in X .

Since Exp,,; is an exponential which also preserves open embeddings, one can
build a stratified open embedding

HSES EXPIT/[(VS) — HSES EXpM(VS) i> EXpM (]_[seS VS) — EXPM(M)

! ! | |

[Ties w1 —— [lses wi< > Wi W

whose image contains .
Since a finite product of cones is again homeomorphic to a cone as a stratified
space (Proposition 4.7) and since Expy; (V) is homeomorphic to Vs x C(Sm(Vs)) for
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every s € S (Proposition 4.11), one gets stratified homeomorphisms

[Ties Expyi(Ve) —== Tles Vs X C(SM(Vs)) —= Tlyes Vs X C<tses Sm(Vs))

| | |

[[res wis —— [[ies(W22)? ————— (><ses wa2)®
which concludes the proof. |

Example 4.13. Since Fréchet manifolds are locally homeomorphic to Hilbert spaces
[21, Thm. 6.1] and Hilbert spaces are rotund, Expy (V') is conically stratified when V'
is a Fréchet manifold.

Remark 4.14. Since Exp,,(X) is conically stratified, it follows that each truncated
version Exps*” (X) is also conically stratified. This truncated result was obtained by
Ayala, Francis and Tanaka for X a manifold [3, Prop. 3.7.5].

Corollary 4.15. Let X be a metrizable space, locally homeomorphic to a rotund topo-
logical vector space. Then, the co-categories of wx-constructible hypersheaves of
spaces on Expp(X) and Expy(X) are canonically equivalent.

Moreover, both can be represented as the oo-category of functors from the exit
path oco-category Exity,, (Expr(X)) = Exity,, (Expy (X)) to the co-category of spaces.

Proof. Since we know that Expy(X) is conically stratified, we only need to check the
other axioms of the main theorem of Constructible hypersheaves via exit paths [13,
Cor. 3.13]. Since X is metrizable, Expy;(X) is also metrizable and thus paracompact.

We now prove that each stratum is locally of singular shape. Being a local prop-
erty, we can reduce to the case where X is homeomorphic to a separated locally
convex topological vector space V [17, Rem. A.4.16]. The stratum 0 € w, amounts
to a single point so there is nothing to prove.

Assume 1 > 1. By assumption the convex open sets form a basis of the topology of
V which is stable under finite intersections. As a consequence, the opens of the form
[Cslses N Expy (V) where {Cs} s is a family of |.S| = n disjoint convex open subsets
of V, form a basis of the topology of Expy; (V') which is stable under intersection. It
is then enough to see that [Cs]ses N Expy; (V') has singular shape [17, Lem. A.4.14],
which immediately follows from the fact that [Cs]ses N Expyy(V) is homeomorphic
to [ [;eg Cs and is thus contractible. n

In short, this corollary says that the definition of locally constant factorization
algebras from Beilinson—Drinfeld agrees with that of Lurie. The metrizability axiom
above cannot be easily removed as shown by the following proposition.

Proposition 4.16. There exists a paracompact topological space X for which neither
Expr(X) nor Expy(X) is paracompact.
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Proof. Let X be the set of real numbers R endowed with the lower limit topology: the
topology whose basis of opens is made of the half open intervals [a, b). This space
is paracompact but the product X2 is not even normal [20]. Since the quotient map
X2 - XSZ2 is closed (S, being finite), XSZ2 is also not normal. As it is a closed subset of
both Expr(X) and Exp,;(X) by the previous lemma, neither can be paracompact. m

5. Open questions

Open question 5.1. The metric exponential of a Fréchet manifold is conically strati-
fied (Theorem 4.12). Can this result be extended to conically stratified manifolds?

Open question 5.2. Can one relate factorization algebras in the sense of Costello—
Gwilliam with some factorizable sheaves on the minimal exponential?

Open question 5.3. Is there a way to relate (locally constant) factorization algebras
in the sense of Costello-Gwilliam with the ones from Beilinson-Drinfeld and Lurie?
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