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Uniform decay of unimodal states
and non-local Minami estimates

for a class of Fermionic Anderson models
with deterministic potentials

Victor Chulaevsky

Abstract. We prove Anderson localization for a class of interactive Fermionic Hamiltonians in
a deterministic (including some quasi-periodic) disordered external potential on a one-dimen-
sional lattice. As in our earlier paper on 1-particle Hamiltonians (Chulaevsky, 2014), and in
contrast to a recent work (J. Bourgai and I. Kachkovskiy, 2019), the sampling function on the
phase space of the dynamical system generating the external potential is not even continuous.
As a complement to the parametric analysis of the eigenpairs, we also prove some analogs of the
Minami estimate for pairs of eigenvalues in arbitrarily placed intervals, not necessarily nested,
or close to/distant from each other.

1. Introduction

Structure of the paper

(1) Description of the model and main results (Sections 1–3).

(2) The linear KAM (Kolmogorov–Arnold–Moser) inductive procedure and the
proof of uniform localization of eigenfunctions (Sections 4–5).

(3) Parametric smoothness of the approximate and exact eigenpairs (Section 6).

(4) Parametric exclusion of the “small denominators” (Section 7).

(5) Generalized (“non-local”) Minami-type estimates in the parameter space and
concluding remarks (Sections 8–9).

We study spectral properties of finite-difference operators arising as Hamiltonians
of N-body Fermionic quantum systems on Zd with a nontrivial interaction of infinite
range, subject to the common external potential. Our goal is two-fold. Firstly, we
extend to the interactive quantum systems the Kolmogorov–Arnold–Moser (KAM)
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techniques used in [11] where a uniform exponential localization was established for
a class of deterministic (including quasi-periodic) potentials. Secondly, building on a
recent work [13], we establish for the first time “non-local” analogs of the Minami-
type estimates for interactive particle systems.

The main results are stated in Sections 2 (Theorem 2.1) and 8 (Theorem 8.1).
The class of the external potentials, introduced and studied in earlier works [10,
11] in the framework of disordered single-particle quantum systems, provides a rare
opportunity to gain an insight into what an “ideal,” viz., uniform localization of eigen-
functions (ULE), does look like. Long ago, the authors of [17, 18] made a fairly
general constatation: ULE fails for many models (cf. [18, Appendix 3]). The nature
of this phenomenon can be understood, at least on a heuristic level, with the help
of a simple example where a full-fledged Anderson-type random Hamiltonian in an
infinite lattice is replaced with its counterpart acting in the two-dimensional space
`2.J1; 2K/ (here and below, we use the notation Ja; bK´ Œa; b� \ Z):

H .2/
" .!/ D

�
v1.!/ "

" v2.!/

�
; " > 0;

where vx.!/, x 2 J1;2K, are IID (independent and identically distributed random vari-
ables on some probability space .�;F;P /, say, with the standard uniform distribution
Unif.Œ0; 1�/. Within the event ¹! W jv1.!/ � v2.!/j � ıº, with a fixed ı > 0, the two
eigenvectors of H .2/

" .!/ converge to the basis vectors .1; 0/ and .0; 1/ as "! 0. In
the traditional terminology of Anderson localization, the eigenfunctions of H .2/

" .!/

are localized near their “localization centers,” viz. the points 1 and 2. However, once
the nonrandom parameter " > 0 is fixed, for any arbitrarily small c > 0, the event
¹! W jv1.!/ � v2.!/j � cº has a positive probability. With c � ", the two eigen-
functions are close to those for v1 D v2, and the latter are “completely delocalized,”
as shows an elementary calculation. While in the former case, the eigenfunctions
are “unimodal” functions on J1; 2K, in the latter one, they are bi-modal, and this
phenomenon, having a nonzero probability, can be reproduced on any large scale,
although its rigorous parametric analysis, obviously, becomes much more complic-
ated. On the other hand, if the ultimate freedom (independence) of variations of the
potential is replaced with a strongly constraint disorder, e.g., generated by a quasi-
periodic function on a lattice, one has a chance of constructing an ergodic ensemble
of the potential samples in such a way that excessively strong “resonances,” harmful
to localization, never appear.

Even within the class of random potentials with a strongly constrained, quasi-peri-
odic disorder, an inevitable appearance of multi-modal eigenstates has been observed,
for example, in [20, 38], in the one-dimensional models with quasi-periodic potential
of the form V.x; !/ D cos.! C x˛/, ! 2 � D T D R=Z, ˛ 62 2�Q. See also the
recent papers [22, 24, 27, 34, 35].
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However, a deterministic onset of Anderson localization with unimodal states was
observed in a class of quasi-periodic systems [2], extending the well-known Maryland
model [19], in the strong disorder regime. While the potentials considered in [2, 19],
as well as those from [10, 11], are certainly quite exceptional, they provide some
useful “laboratory” where a very detailed parametric analysis of various quantities
turns out to be possible. In the present work, we extend this “laboratory” to the class
of interactive quantum systems. Note also that ULE was observed in a large class of
so-called limit-periodic potentials; cf. [16] and the references therein.

Among more recent papers, we mention in particular [23,25,27–30] where various
aspects of the strongest forms of localization have been studied in great detail.

Apart from the localization analysis of eigenfunctions, we also focus on the cor-
relation measures of the eigenvalues studied in the pioneering works [3, 21, 37] and
subsequent papers; cf., e.g., [15, 32] and the references therein. Starting from [37],
one usually assesses the probability for n � 1 eigenvalues to fall in the same inter-
val I � R, or in nested intervals, or in otherwise close intervals. Following a recent
work [13], we consider the case of two eigenvalues �0;�00, and assess the probab-
ility of the events ¹�0 2 I 0;�00 2 I 00º, with arbitrarily placed intervals I 0; I 00 � R.
Extensions to any n � 2 are also possible (see the discussion in [13]).

In several ways, the class of deterministic potentials considered initially in [10,
11], as well as a larger one from [9], is complementary to those studied in the deep
works [5, 6, 8], viz. generated by analytic hull functions on a torus.

Recently, an interactive particle system in a potential generated by an analytic hull
was considered in [7] (see in this connection the book [4] and the paper [26]). Com-
pared to [7], the hull functions on T generating the external potential in our model
are not even continuous, let alone smooth, and the resulting potential x 7! V.x/ is not
necessarily almost-periodic, for we allow for a richer class of the underlying dynam-
ical systems generating the disorder (see the hypotheses (UPA) and (DIV) below).

1.1. Assumptions

The configuration space of our model, i.e., the space where the interacting Fermi
particles evolve, is the lattice Z. An adaptation to lattices of arbitrary dimension
d � 2 is discussed in Section 9 (Paragraph D). We address first the particular case
of 2-particle Fermi systems, for the sake of clarity and notational simplicity, but, as is
explained in Section 9 (Paragraph B), an extension to any number of particles N � 2

is fairly straightforward, especially in one dimension, where a rigorous definition of
the Hamiltonian and formulation of the main results do not require a rather technical
construction.

Instead of working with a restriction of the Hamiltonian to the subspace of anti-
symmetric functions, we use an alternative but equivalent construction. Specifically,
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the quantum configuration space of the Fermionic 2-particle system is

Z2 D ¹.x1; x2/ 2 Z2 W x1 < x2º:

Ordering the particle positions amounts to declaring the pairs .x; y/ and .y; x/ equi-
valent, indistinguishable, and then selecting one representative per equivalence class
¹.x; y/; .y; x/º. Removing the pairs with identical positions corresponds to the Fermi
quantum statistics. In the general case where d > 1, one needs to introduce the so-
called symmetric powers of graphs; cf. Section 9 (Paragraph D).

It is readily seen that an equivalent construction of the configuration space Z2

is given by the set of functions nWZ 7! ¹0; 1º with card supp n D 2, i.e., such thatP
z2Z n.z/ D 2. Specifically, x D .x1; x2/ corresponds to the function

z 7! nx.z/´ 1x1
.z/C 1x2

.z/

which we call an occupation numbers function. To inverse the mapping x 7! nx, it
suffices to take supp n, which has cardinality 2, and sort it in the increasing order,
thus obtaining a point x D .x1; x2/ with x1 < x2. We set …x´ ¹x1; x2º. In fact,
as explained in Section 9, one can slightly reformulate our construction so that the
subsets ¹x1; x2º � Z of cardinality 2 become themselves the points of the Fermi-
onic 2-particle configuration space, and then the notation …x.D ¹x1; x2º/ becomes
redundant.

The subset Z2 � Z2 is endowed with the natural graph structure inherited from
Z2, and this provides the canonical graph Laplacian� on Z2.

Remark 1.1. The early papers on multi-particle Anderson localization [1, 14, 31]
operated with configurations of distinguishable particles. As a result, one had to
work with some pseudo-metrics in the N -particle configuration space. In particu-
lar, the decay estimates with respect to the so-called Hausdorff pseudo-metrics did
not allow one to prove localization in any bounded spatial domain, no matter how
large, thus severely reducing the significance of the first results to the physical mod-
els. Moreover, one had to deal formally with “phantom” resonant tunneling processes
not corresponding to the physical reality of the modeled quantum systems. Had the
same setup been used in the present work, there would (or might) be multi-modal
states with multiple “localization centers.” Owing to the restriction to a subset of the
configuration space corresponding to a specific quantum statistics (Fermi–Dirac’s, in
the present paper), we can operate with a bona fide, natural distance in the 2-particle
quantum space and prove a uniform localization with unimodal eigenstates.

We often make use of balls of some radius R � 0 in Z (relative to the distance in
R � Z) and in Z2 (relative to the max-norm distance in Z2 � Z2): for x 2 Z and
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x 2 Z2 we set

BR.x/´ ¹y 2 Z W jy � xj � Rº; BR.x/´ ¹y 2 Z2 W jy � xj � Rº:

Occasionally, we denote by BR.�/ the R-neighborhood of a given subset A � Z:

B.A/´
[
a2A

BR.a/; R � 0: (1.1)

We assume that a compactly supported two-body interaction potential uWN�!R

is given:
9r0 � 1 8x > r0 u.x/ D 0: (1.2)

The interaction in our model is given by the operator of multiplication by the function

Z2 3 x D .x1; x2/ 7! U.x/´ u.x2 � x1/:

Adaptation to the potentials u.�/ of infinite range is discussed in Section 9 (Para-
graph C). The single-particle external potential has the same general form as in [11],
viz.

x 7! V.x; !; #/ D v.T x!; #/;

v.!; #/ D
X
n�1

an

KnX
kD1

#n;k�n;k.!/; an D e�n
2

; Kn´ 2n;

�n;k D 1Cn;k
; Cn;k D

hk � 1
2n

;
k

2n

�
; k 2 J1;KnK;

(1.3)

except for the functions �n;k which were the orthogonal Haar’s wavelets in [11] (see
Remark 1.2). Here, ! is an element of the phase space �, endowed with the structure
a probability space .�;B�;P�/, of a conservative dynamical system T WZ��!�.
For clarity, we assume as in [11] that � D T D R=Z, and P� is the Haar measure
on the Borel � -algebra B�. What is crucial to the proof of localization in the model
considered here, is that T satisfies, as in [11], the properties of uniform power-law
aperiodicity (UPA),

(UPA) 9A;CA > 0 such that, for all ! 2 � and x; y 2 Z with x ¤ y, one has

dist�.T x!; T y!/ � C�1A jx � yj
�A;

and of tempered rate of divergence of trajectories:

(DIV) 9A0; CA0 > 0 such that, for all !;!0 2 � and x 2 Z n ¹0º

dist�.T x!; T x!0/ � CA0 jxjA
0

dist�.!; !0/:

For the rotations of the torus, (DIV) holds trivially, since T x are isometries, and (UPA)
becomes a Diophantine condition for the irrational frequency.
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We also assume a particular form of the parameters ¹#n;k; n 2 N�; k 2 J1;KnKº:

(UNI) the factors #n;k in (1.3) form a family of IID (independent and identically
distributed) random variables on an auxiliary probability space .‚;B‚;P‚/

with the common uniform distribution Unif.Œ0; 1�/.

Remark 1.2. To avoid any confusion, it is to be stressed that, regardless of the choice
of #�;�, the function ! 7! v#.!/´ v.!; #/ generates a deterministic (e.g., quasi-
periodic) spatial external potential, with no “hidden” strong randomness. In fact, the
localization that we prove could never be uniform in presence of a fully developed,
non-deterministic random disorder, no matter how masterly hidden (see the discussion
in [18]).

In the paper [11], �n;k with a fixed n � 1 were assumed to be the orthogonal Haar
wavelets on � D T , and it was mentioned that a simpler choice with

�n;k D 1Cn;k
; Cn;k D Œ.k � 1/2

�n; k2�n/; k 2 J1;KnK; Kn´ 2n;

requires only a minor technical adaptation. (Here and below, Ja; bK stands for the
integer interval Œa; b� \ Z.) The above form of the functions ��;� also provides some
notational simplifications, and so we work here with the non-orthogonal functions
��;�, but our main results remain valid for the Haar’s wavelets ��;�.

1.2. Some measure-theoretic constructions and conventions

It is convenient to fix a particular realization of the space ‚:

‚ D �
n2N
�

l2J1;KnK
Œ0; 1�;

so that #n;k are just the coordinates, or projections, of # . Given a partition N D 	 tJ

(or into a greater finite disjoint union of subsets of N), one can introduce a decompos-
ition of the elements # D .#	; #J/ 2‚	 �‚J . We will be mostly concerned with the
case where the elements of the partition of N, like 	 and J, are intervals of N. Spe-
cifically, for every equality/order relation # 2 ¹“¤ ”, “D ”, “� ”, “� ”, “< ”, “> ”º,
we can consider the factors ‚#n of the infinite product ‚, with n 2 N; for example,
‚<n D �n0<n�l2J1;Kn0KŒ0; 1�. The cylindrical � -algebra on ‚#n, generated by the

Lebesgue � -algebra on each factor Œ0; 1�, will be denoted B‚
#n. In other words,

B#n D �Œ#n0;k W n
0#n; k 2 J1;Kn0K�; (1.4)

where the conditions inside the brackets �Œ�� specify the ‚-random variables #�;�
generating the corresponding � -algebra . As the reader shall see, on each step j 2 N
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of the inductive procedure, we actually work with finite-dimensional sections of ‚,

‚�n D �
n02J1;nK

�
l2J1;Kn0K

Œ0; 1�; ‚Dn D �
l2J1;KnK

Œ0; 1�;

with a suitably chosen nD n.j /. By a slight abuse of notations, the � -algebras defined
in (1.4) will occasionally be identified with their embeddings into B‚ generated by
the natural projections‚!‚#n, e.g., P�nW‚!‚�n defined by P�nW .#�n;#>n/ 7!

#�n. The most significant measure-theoretic work will be performed, on each induc-
tion step, with the components of the form #<n, #�n, and #n. The finite dimen-
sionality of the sections ‚Dn will allow us in Section 6 to treat the “disorder-to-
eigenvalues” mappings as smooth, not just measurable functions, with efficiently
controllable smooth inverses, and thus establish the crucial measure-theoretic estim-
ates on the “small denominators” inevitably appearing in the KAM (Kolmogorov–
Arnold–Moser) procedure, the staple of our approach to uniform localization. In a
more general context, the idea of smooth inversion of a suitably restricted “disorder-
to-eigenvalues” has been employed in our prior work [12].

Following a recent work [13], we make use of the parametric analysis of the
approximate/exact eigenvalues from Section 6 and prove an analog of the well-known
Minami estimates for pairs of eigenvalues in arbitrarily located (and not necessarily
identical or nested) pairs of intervals of the spectral axis.

1.3. Formal definition of the Hamiltonian

The operator of total external (i.e., particle-media) interaction energy can be defined
with the help of the particle positions xk of a configuration x D .x1; x2/ 2 Z2:

V.x; !; #/ D
X
1�k�2

v.T xk!; #/:

Since we are using the representation of Z2 by the sites .x0; x00/ with a specific order
of x0 and x00, such a definition, with numbered particles, is unambiguous, but only
in dimension d D 1. A better, more invariant representation of the external energy V
makes use of the occupation numbers:

V.x; !; #/ D
X
z2Z

nx.z/v.T
z!; #/:

Now, we are ready to define the 2-particle Fermionic Hamiltonian:

H".!; #/ D �"�C UC V.�; !; #/
D H".!; #/˝ 1C 1˝H".!; #/C U; (1.5a)

H".!; #/ D �"�C V.�; !; #/; (1.5b)

where � is the graph Laplacian on Z, and V.x; !; #/ D v.T x!; #/.
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Occasionally, we make use of the approximate eigenpairs .'jx .!;#/;�
j
x.!;#// of

the single-particle counterpartH".!;#/ of H".!;#/, with the same external potential
V.x; !; #/ as in (1.3), constructed in [11]. Most importantly, 'jx .!; #/ and �jx.!; #/
appear in the analysis of the two-particle AEF/AEV associated with the configurations
x such that diam…x � jx1 � x2j > CLj with a suitable C > 0; cf. (4.5). We do not
repeat their construction, nor do we prove the probabilistic bounds on the subsets of
‚ to be excluded in the course of the inductive procedure relative to the 1-particle
Hamiltonian H".!; #/. All the required information can be found in [11].

The inner product in the Hilbert spaces `2.Z2/ and `2.Z/ is denoted by h� j �i.

2. Main results

Theorem 2.1. Consider the Hamiltonian H" defined by (1.5), and assume (UPA),
(DIV), and (UNI). There exists some "� > 0 with the following properties.

For any " 2 .0; "�/, there exists a subset ‚.1/."/ � ‚ such that

P‚¹‚.1/."/º � 1 � C"1=4

and the following holds for all .!; #/ 2 � �‚.1/."/.

(A) H".!I#/ has a simple pure point spectrum.

(B) For any x 2Z2, there is exactly one eigenfunction, denoted 'x.� I!I#/, with
j'x.xI!I#/j2 > 1

2
. We say that x is the localization center of 'x. Moreover,

the family ¹'x.xI!I#/; x 2 Z2º is an orthonormal basis in `2.Z2/.

(C) For all x 2 Z2, the eigenfunctions 'x decay uniformly exponentially fast
away from their respective localization centers:

8y 2 Z2 j'x.yI!I#/j � e�m."/jx�yj; m."/ D "1=4 > 0:

We often say that functions satisfying (B) are unimodal.
Observe that, while the parameter # 2 ‚ is restricted to ‚.1/."/, the assertions

(A)–(C) hold for all ! 2 � and not just for P�-almost all.
The last, functional-analytic part of the proof of Theorem 2.1, based on a scale

induction, occupies Sections 4–5. It relies upon the eigenvalue concentration estimates
established in Section 7. As was already mentioned in [10, 11], the deterministic and
uniform (with respect to ! 2 �) exponential decay of all eigenfunctions implies an
exponential decay of the averaged eigenfunction correlators (cf., e.g., [18, 33, 39]):

sup
!2�

sup
t2R
jh1x je�itH.!I#/

j 1yij � Const e�m."/jx�yj:
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In Section 8, we prove an analog of the Minami estimate (cf. [37]) extended to
a more general case where a pair of eigenvalues .�0;�00/ is restricted to the product
I 0 � I 00 of arbitrarily placed intervals I 0; I 00 � R.

3. Phase-space analysis

Partitions of the torus. Recall that we have introduced the partitions Cn, n � 1, of
� D T1 D R=Z into Kn D 2n adjacent intervals Cn;k:

Cn;k D Œln;k2
�n; .ln;k C 1/2

�n/; ln;k 2 J0; 2n � 1K: (3.1)

Cn;k is uniquely identified by an index sequence . Ok0; : : : ; Okn�1; Okn/, with Okn D k,
labeling the .nC 1/ intervals C

i; Oki
� Cn;k , 0 � i � n, of the partitions preceding or

equal to Cn. Here and below, Oki .!/ stands for the unique index such that

! 2 C
i; Oki .!/

:

Piecewise-constant approximants of ! 7! v.!; #/. For each N � 0, consider the
N -th partial sum of the series v.!I#/ defined in (1.3):

vN .!I#/ D

NX
nD0

an

KnX
kD1

#n;k�n;k; an D e�n
2

:

The random variables # 7! vN .!I #/ on .‚;B; P‚/ are correlated via the values
.#n0;�; n

0 < n/. However, for any fixed n, the family ¹#n;k; k D 1; : : : ;Knº (the “n-th
generation”) is independent, by construction, and so are generations with different n.
We shall see that the amplitudes #n;k bring enough “innovation” into the n-th gener-
ation of the functions 'n;k for the localization to occur.

We shall need a simple estimate of kv � vN k1´ sup!2� kv � vN kL1.‚/:

kv � vN k1 � aN
X
i�1

e�.NCi/
2CN2

� C e�NaN : (3.2)

It is crucial to our proofs to have the right-hand side much smaller than the width aN
of the probability distribution of the random coefficients aN#N;k � UnifŒ0; aN �). Let

On.L/ D dln2.L/e: (3.3)

A more optimal choice for L 7! On.L/ would be, as in [10,11], On.L/ D C 0 ln.L/ with
a suitable C 0 > 0, but the above makes even clearer that, by (UPA), for L � L0 with
L0 large enough, for all u 2 Zd and ! 2 �, all the points of a large finite trajectory
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¹T x!; x 2 BL2.u/º are separated by the partition COn.L/. As in [10,11], this proves to
be a satisfactory replacement for a “strong randomness” (e.g., independence) of the
values of the external potential V . As we shall see, this allows one to eliminate, at the
price of suitable parameter exclusions in ‚, the excessively small denominators well
before they might appear in the inductive construction of the localized eigenstates.

4. KAM induction

We work with square-summable (most often, compactly supported) functions on a
specific graph Z2, but some important notions can be introduced in a wider frame-
work of a countable graph G endowed with the canonical graph-distance dG .�; �/.

Definition 4.1. Let f 2 `2.G / n ¹0º. A site x 2 G is called a localization center of
f if and only if jf .x/j D kf k1 . The set of all localization centers of f is denoted
yX.f /.

Lemma 4.1. For any f 2 `2.G / n ¹0º, one has 0 < card yX.f / < C1.

Definition 4.2. Let be given m > 0 and f 2 `2.G / with kf k2 D 1. f is called uni-
formly m-localized if and only if

(i) f has a localization center Ox such that jf . Ox/j2 > 1
2

;

(ii) for all y 2 G n ¹xº, one has jf .y/j � e�mdG .x;y/.

Clearly, if kf k2 D 1 and jf .x/j2 > 1
2

for some x 2 G , then yX.f / D ¹xº, so we
will say sometimes that such a function f is uniformlym-localized at the point x 2 G .

Before going to the next definition, note that the additive group Z acts (non-tran-
sitively) on Z2 � Z2 by the shifts SaW .x1; x2/ 7! .x1 C a; x2 C a/, a 2 Z.

Definition 4.3. Let a dynamical system T WZ ��! �, some set A, and an action S
of the group Z on A be given. A mapping F WZ2 ��! A is called T -covariant if
and only if

8z 2 Z2 F.Saz; !/ D SaF.z; T a!/:

It is often convenient to write Fz.!/ instead of F.z; !/.

We shall need three kinds of covariant mappings:

(i) scalar mappings .z;!/ 7! gz.!/2R such that gSaz.!/D gz.T
a!/, z2Z2;

(ii) vector-valued mappings .z; !/ 7! fz.�; !/, with the implicit argument .�/ in
Z2 and values in `2.Z2/, such that fSaz.x; !/ D fz.S

ax; T a!/, x 2 Z2;
here Sa acts by unitary transformations in `2.Z2/ (shifts Sa of the argument
x 2 Z2);

(iii) matrix-valued mappings with T -covariant column-vectors.
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As in [11], apart from the conventional Hilbert norm in `2.Z2/, we often use the
vector norms k�kx and the matrix norms jjj � jjj, both depending upon the parameter
m D m."/ > 0 figuring in (4.17), defined as follows:

kf kx D
X

y2Z2

emjy�xj
jf .y/j; x 2 Z2;

jjjAjjj D sup
x2Z2

X
y2Z2

emjy�xj
jAyxj:

Their efficiency in the context of exponential localization analysis has been demon-
strated long ago in [2].

4.1. Induction hypotheses

Introduce an integer sequence .Lj /j2N (with L0 > 2r0, cf. (1.2)) and decaying posit-
ive sequences .�j /j2N , .ıj /j2N , . ǰ /j2N of the form

Lj D L0q
j ; �j D �

qj

0 ; q D 3=2; �0 � �0."/´ "1=4; (4.1)

ıj D aOnj ǰ ; ǰ D e�Onj ; Onj ´ On.Lj / (cf. (3.3)): (4.2)

For notational brevity, we often use notations like �b
˙

i as shortcuts for �b˙ci with
c > 0 that can be chosen (before the induction starts) as small as necessary. For future
use, we stress that any bounded factors can be absorbed in �b˙ci , i.e., OŒ1��b

˙

i � �
b˙

i .

Notations like OŒ��, oŒ�� usually refer to " # 0, and " # 0 () �0."/ # 0 (cf. (4.1)).
We call spread of a matrix .Aab/ the quantity SPRŒA�2N such thatAabD 0whenever
ja � bj > SPRŒA�. (This terminology is not traditional but convenient.)

To prove the main results, we have to establish by induction, for every j 2 N, the
validity of the set K(Lj ) of hypotheses (K1)–(K10) presented below. Admittedly, this
presentation is long and quite technical but, on the bright side, it provides one with a
wealth of technical features of the approximate and exact spectral data.

Stochastic supports. It is readily seen from the explicit formulae for the approximate
eigenvalues �0x and approximate eigenfunctions '0x , specified below in the hypo-
thesis (K4) (cf. (4.7)–(4.6)), that '0x do not depend at all upon the random potential
V.�; !; #/, while �0x are measurable functions of exactly two values of the potential,
V.x1; !;#/ and V.x2; !;#/. In this simple case, the finite subset ¹x1; x2º �…x� Z

is what we call the stochastic support of the mapping f D�0x. To formalize this notion
in a more general context where f may be scalar, as �ix, or vector/matrix-valued, we
introduce, as in [11], the following definition.
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Definition 4.4. Let .Y;FY/ be a measurable space, and consider the measurable space
.X;FX/ where X D RZ and FX is the corresponding cylindrical � -algebra. For any
A � Z, let FŒA� be the cylindrical � -algebra of RA, canonically identified with the
corresponding sub-algebra of FX, so that, in particular, FŒZ� D FX.

The stochastic support of a measurable mapping f W .X;FX/ ! .Y;FY/ is the
minimal subset S.f / � Z such that f W .X;FX

A /! .Y;FY/ with A D S.f / is meas-
urable.

Finiteness of the stochastic supports of the approximate eigenpairs, while being
very convenient if not crucial to our techniques, comes at a price: the approximate
eigenbases are approximately but not exactly orthogonal. Nevertheless, their precision
rapidly improves as j " C1, because they rapidly converge to an exact eigenbase.

K(Lj ). For all i 2 J0; j K, there exist some sets ‚i 2 B�Oni
, Oni ´ On.Li / (cf. (1.4)),

with P‚
®
‚ n‚i

¯
� �0

C

i and such that the following holds true.

(K1) For any 0 � i � j and all # 2 y‚i ´ \0�l�i‚l , the following T -covari-
ant mappings from � D T � to MAT.Z;R/, parameterized by # , are well
defined:

.!; #/ 7! ˆi .!; #/; ˆiyx.!; #/µ 'ix.y; !; #/;

.!; #/ 7! ‰ i .!; #/; ‰ iyx.!; #/µ  ix.y; !; #/; (4.3)

.!; #/ 7! ƒi .!; #/; ƒiyx.!; #/µ ıyx�
i
x.!; #/: (4.4)

Furthermore, for any x 2 Z2 with diam…x � jx1 � x2j > 4Lj , one has

'ix.!; #/ D '
i
x1
.!; #/˝ 'ix2

.!; #/;

�ix.!; #/ D �
i
x1
.!; #/C �ix2

.!; #/;
(4.5)

where .'i�; �
i
�/ approximate eigenpairs of the 1-particle Hamiltonian stud-

ied in [11], with the external potential defined in (1.3). The discrepancies
relative to the approximate eigenpairs .'i�; �

i
�/ are denoted  i�.

(K2) The matrix ˆi .!; #/ has the form

ˆi .!; #/ D 1CzDi .!; #/; jjjzDi .!; #/jjj �
1

4
�

1

4iC2
;

so it is invertible by the Neumann series, and its columns form a Riesz basis.

The following relations hold, for all 0 � i � j .

(K3) The matrices ˆi , ‰ i and ƒi satisfy the identity Hˆi D ˆiƒi C‰ i .
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(K4) For i D 0 and any x D .x1; x2/ 2 Z2, one has

'0x.!; #/ D '
0
x1
˝ '0x2

D 1x ; (4.6)

�0x.!; #/ D U.x/C V.x; !; #/; (4.7)

 0x.!; #/ D  
0
x1
˝ 1x2

C 1x1
˝ 0x2

: (4.8)

Once the interaction potential u is fixed, for all i 2 J1; j K, the objects #0�,
with # 2 ¹�;ƒ; ';ˆ;  ;‰º, are determined by the matrix ƒ0 with ƒ0yx D
ıyx�

0
x .

(K5) The column-vectors of the discrepancy matrices ‰ i� obey

sup
!2�

k ix.!; #/kx � �
4
3

C

i : (4.9)

(K6) For any x,  ix is “almost orthogonal” to the AEF 'ix:

sup
x2Z2

jh ix j '
i
xij � �

2C

i : (4.10)

(K7) The AEF 'ix have compact support, of size uniformly bounded in x,

8x 2 Z2 supp'ix � BLi
.x/; (4.11)

and since H is a second-order finite-difference operator, this implies

8x 2 Z2 supp x � BLiC1.x/: (4.12)

(K8) For all x; y in Z2 with diam.…x […y/ � 8L2i , one has

inf
!2�

j�iy.!; #/ � �
i
x.!; #/j � 4ıi D �

0C

i : (4.13)

(K9) The objects �ix;'
i
x; 

i
x have bounded stochastic supports:

S.�ix/ [ S.'ix/ [ S. ix/ � BLi
.x/:

(K10) For all 0 � i � j � 1, one has

sup
x
j�iC1x � �ixj � �

2C

i � �
4
3

C

iC1; (4.14)

sup
x
k'iC1x � 'ixkx � �

2C

i : (4.15)

Apart from the operator family H".!;#/, the fundamental objects of the inductive
procedure are ƒj and ˆj , while ‰j and Fj are derived from ƒj , ˆj and H".

Remark 4.1. We will start the induction step by showing that ˆj is “almost ortho-
gonal,” so the Gram matrix Ci D .ˆj /|ˆj of the Riesz basis 'j� is close to 1:

jjj.ˆj /|ˆj � 1 jjj � �1
C

j : (4.16)
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4.2. The base of induction

We assume that 0 < " � 1=16, and set

m."/´ ln "�1=4 ���!
"!0

C1: (4.17)

Recall that we have introduced in (4.1) the sequence �i D �
qi

0 , q D 3=2, i � 0.
Relations (4.6)–(4.7) merely define the column-vectors '0x of the matrix ˆ0,

serving as approximate eigenfunctions (AEF) of H with approximate eigenvalues
(AEV) �0x, providing the diagonal entries of the diagonal matrix ƒ0. A simple calcu-
lation (cf. [13, Eqn. (3.11)]) shows that the column-vectors 0x of the matrix‰0 given
by (4.8) are the correct discrepancies for the approximate eigenpairs .'0x ;�

0
x/. Also,

it is readily seen from (4.8) that supp 0x \ supp'0x D supp 0x \ ¹xº D ¿, whence
. 0x ;'

0
x/ � 0, which is stronger than (K6) with i D 0.

Among the implicit exponents of the form b˙ introduced in the first paragraph
of Section 4.1, the one figuring in (4.13) is quite important, so now we denote it
by � and specify its relations to other key quantities. Specifically, denote for brevity
On0 D On.L0/ D ln2.L0/ > 1 (cf. (3.3)), and assume that

" � e�8�
�1 On2

0 D e�8�
�1 ln4.L0/;

then, with ı0 D aOn0
ˇ0 D e�On

2
0�On (cf. (4.2)) and �0."/ D "1=4 (cf. (4.1)), we have

ı0."/ > e�2On
2

� "�=4 D ��0 ."/: (4.18)

As the reader can see, (4.18) can be improved, but it is already sufficient.
Now, assess the norms of the discrepancies  0�. The interaction operator U is

diagonal in the basis of vectors 1x D 1x1
˝ 1x2

, thus U.x/'0x cancels out in the
difference .�� C V C U/'0x � �

0
x'
0
x , and so for each x 2 Z2, it suffices to check

if (4.8) provides the correct discrepancy of the AEF '0x relative to the reduced oper-
ator ��CVDH .1/˝ 1C1˝H .2/,H .k/ D��C V.xk; �; �/. A simple calculation
shows that (4.8) is correct, thus on account of "1=2 � 1

4
,

k 0xkx D "
X
jy�xjD1

emjy�xj
� 4em" D 4"1=2 � em"1=2 � 1 � ��

1
4C

1
2 D �

1
4 :

Taking " sufficiently small, one can have both �0 arbitrary small and the m-norm
estimate (4.9) from (K5) with i D 0 holding with m > 0 as large as one pleases.

4.3. The inductive step

Below we sometimes use for brevity the notation a.j / . b.j / for quantities depend-
ent upon the scale Lj , meaning that a.j / � Cb.j / for some finite constant C and all
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j � 0. The subscript " in H" will be often omitted, firstly, for brevity, and secondly,
to avoid using in the same formulae the amplitude " from (1.5) and the smallness
parameters �j depending upon it. The transpose of a matrix A is denoted A|.

Theorem 4.2. For any j � 0, K(Lj ) implies K(LjC1).

Proof. Fix j � 0 and assume K(Lj ).

Step 1. The Gram matrix. Let us show that the Gram matrix Cj D .ˆj /|ˆj of the
Riesz basis ¹'j� º is close to 1, viz. Cj D 1CDj , jjjDj jjj D Œ�1

�

j �: It will imply the
convergence of Neumann’s series for .1CDj /�1, so

.Cj /�1 D .1CDj /�1 D 1�Dj C ŒjjjDj jjj2� D 1CŒ�1
�

j �:

Case 1. Assume that diam.…x[…y/ � 8L2j , so j�jy � �
j
x j � 4ıj by (K8). By sym-

metry of H, we have

jCjyxj D jh'
j
y j '

j
x ij �

jh'
j
y j  

j
x i C h 

j
y j '

j
x ij

j�jx � �
j
y j

�
jh'

j
y j  

j
x ij C jh 

j
y j '

j
x ij

4ıj
: (4.19)

The inductive hypotheses (4.15) and (4.6)–(4.8) imply that k'jx kx � 1C
P
i �i � 2,

while k jx kx � �
1C

j by (4.9). Thus, on account of (K8) (cf. (4.11)–(4.12)), we have,

jh jy j '
j
x ij C jh'

j
x j  

j
y ij . L

d�1
j e�mjx�yjı�1j �1

C

j . e�mjx�yj�1
C

j : (4.20)

Recalling that Cjxx D k'
j
x k
2 D 1 by (K1) (here k�k is the `2-norm), we get

Cjyx D

8̂̂<̂
:̂
1; if x D y;

Djyx; jDjyxj . e�mjx�yj�1
C

j ; if 0 < jx � yj � 2Lj ;

0; if jx � yj > 2Lj .

(4.21)

To complement the Case 1, it remains to consider the pairs of sites .x; y/ with

diam.…x […y/ > 8L2j : (4.22)

Case 2. Two factorized states. Assume that (4.22) holds true and, in addition,

min ¹diam…x; diam…yº > L2j : (4.23)

Then 'jx D '
j
x1
˝ '

j
x2

, 'jy D '
j
y1
˝ '

j
y2

by (K1) (cf. (4.5)), thus, by the assumed
normalization of the AEF,

jh'jx j '
j
y ij D jh'

j
x1
j 'jy1
ijjh'jx2

j 'jy2
ij � min

kD1;2
jh'jxk

j 'jyk
ij:
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By definition of the max-norm, 0 ¤ jx � yj D jx Qk � y Qkj for some Qk 2 ¹1; 2º, thus

Cjyx D jh'
j
x j '

j
y ij � jh'

j
x Qk
j 'jy Qk
ij D jCjy Qkx Qk j

so the required bound follows, for we have by induction (cf. also [11])

Cjyx D

8̂̂<̂
:̂
1; if x D y;

Djyx; jD
j
yxj . e�mjx�yj�1

C

j ; if 0 < jx � yj � Lj ;

0; if jx � yj > Lj .

(4.24)

Case 3. Finally, assume again (4.22) is true, but the opposite to (4.23) holds:

min ¹diam…x; diam…yº � L2j :

Without loss of generality, we can assume that diam…x � L2j , for the roles of x and
y in (4.22)–(4.23) are symmetric. Then, for at least one value k0 2 ¹1; 2º, we have
d.yk0 ;…x/ D d.…y;…x/ > 2L2j ; otherwise, we would have a contradiction:

8L2j � diam.…x […y/ � d.y1;…x/C diam…xC d.…x; y2/ � L2j C 4L
2
j :

Letting k00 D 2 � k0, so that ¹k0; k00º D ¹1; 2º and …y D ¹yk0 ; yk00º, consider the
following two alternatives.

Case 3a. d.yk00 ; …x/ > L2j . One has jy � xj > L2j , so .supp 'x/ \ .supp 'y/ D ¿
by (K7) (cf. (4.11)), thus Cjyx D h'

j
y j '

j
x i D 0.

Case 3b. d.yk00 ;…x/ � L2j . One has

diam…y D jyk0 � yk00 j � d.yk0 ;…x/ � d.yk00 ;…x/ � 2L2j � L
2
j D L

2
j ;

hence 'jy D '
j
y1
˝ '

j
y2

, by (K1). Expand 'jx in a finite sum,

'jx D
X

z

'jx .z/ 1z D
X
z2�x

'jx .z/ 1z1
˝ 1z2

; �x ´ supp'jx ;

and observe that

d.yk0 ;…�x/ � d.yk0 ;…x/ � diam supp'jx � L
2
j � Lj �

1
2
L2j :

Since ¹k0; k00º D ¹1; 2º, we can write…zD ¹z1; z2º D ¹zk0 ; zk00º. Furthermore, z 2 �x

implies …z D ¹zk0 ; zk00º � …�x, thus

Cjyx D h'
j
y j '

j
x i D

X
z2�x

'jx .z/h'
j
y1
˝ 'jy2

j 1z1
˝ 1z2

i

D

X
z2�x

'jx .z/'
j
yk0
.zk0/'

j
yk00
.zk00/ D 0;

for we have jyk0 � zj > 1
2
L2j > diam supp'jyk0

for all z 2 …�x.
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Conclusion of Step 1. Collecting the estimates of jCjyxj obtained in Cases 1–3, we
have Cj D 1CDj where, on account of �j D �

qj

0 and Lj D L0qj ,

jjjDj jjj D sup
z2Z2

X
t¤zWCj

tz¤0

emjzjjCjtzj . L
2
j �
1C

j � �1
C

j : (4.25)

Thus, it follows from ..ˆj /| � .ˆj /�1/ˆj D Dj and jjj.ˆj /�1jjj � 2 that

.ˆj /|
� .ˆj /�1 D Dj .ˆj /�1; (4.26)

jjj.ˆj /|
� .ˆj /�1jjj � 2jjjDj jjj � �1

C

j : (4.27)

By (K3), the matrix ˆj D 1CzDj is invertible by Neumann series, and

jjj.ˆj /�1 � 1 jjj �
X
k�1

jjjzDj jjj
k
�
1

3
;

whence
max
0�i�j

maxŒjjjˆi jjj; jjj.ˆi /|
jjj; jjj.ˆi /�1jjj� � 2: (4.28)

Step 2. Expansion of the discrepancy vectors. Introduce a matrix

zQj
zx D .ˆ

j /|‰j ; zQj
y;x D h'

j
y j  

j
x i; (4.29)

serving as a convenient approximant for Fj D .ˆj /�1‰j with jjj � jjj-accuracy of �1
C

j

(cf. (4.26)–(4.27)), and its truncated version Qj given by

Qj
yx ´

zQj
yx 1jy�xj�cLj

(4.30)

with 0 < c < 1
3

, e.g., c D 1
4

; the exact value is of little importance. Note that

8C; c > 0 8m �
C ln ��10
cL0

e�mcLi � .�
qi

0 /
C
D �Ci :

so for any c > 0, the norm jjjQj � zQj jjj can be made smaller than, say, �4j . Now, we
can assess the jjj � jjj-norm and the spread of the truncated matrix Qj :

jjjQj
jjj � jjj zQj

jjj � jjj.ˆj /|
jjj � jjj‰j jjj � �1

C

j ; (4.31)

SPRŒQj � � cLjC1:

On account of (4.28), we have a similar jjj � jjj-norm bound on Fj :

jjjFj jjj � jjj.ˆj /�1jjj � jjj‰j jjj � �1
C

j : (4.32)
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Step 3. new basis. Due to the length scale growth, Lj  LjC1 D qLj with q > 1,
we must redefine the area Z

j;fact
2 � Z2 where the AEF 'jC1x with x 2 Z

j;fact
2 can be

chosen in a factorized form, 'jC1x .y/ D f .y1/˝ g.y2/, with the precision required
on the step j C 1. As before, we prefer to be on the safe side and do not define
Z
j;fact
2 in an optimal way: for some x 2Z2 nZ

j;fact
2 , it may or might be possible, too,

to construct 'jC1x in a tensor-product form. However, as we shall see in the Case 2
below, an alternative procedure applies equally well to the actually entangled and
factorizable AEF with localization centers x having a reasonably bounded diam…x.

The principal reason for a special treatment of 'jC1x with diam…x “too large” is
that, for jx2 � x1j large enough, the phase points T x2! and T x1! may too close to
each other, resulting in abnormally small denominators that one would be unable to
avoid by #-parameter exclusion (cf. Step 9 and Section 7). The specifics will become
clear when we turn to the analysis of the Case 2.

Case 1. diam…x > 4LjC1 (tensor-factorized states). By (K1), the AEF 'jx have the
form '

j
x1
˝ '

j
x2

. Define the new AEF and AEV,

'jC1x D 'jC1x1
˝ 'jC1x2

; �jC1x D �jC1x1
C �jC1x2

; (4.33)

where .'jC1z ; �
jC1
z / are the approximate eigenpairs of the 1-particle Hamiltonian

H" D �"�C V.�; !; #/ constructed on the step j C 1 of the KAM induction, carried
in essentially the same (but simpler) way as we do for the 2-particle Hamiltonian.
Formally, speaking, one should have provided here a parallel scale induction, but this
task has already been completed in [11,13], and it only remains to assess the discrep-
ancy terms  jC1x relative to .'jC1x ;�jC1x /. To that end, we use the bounds on the
1-particle discrepancies  jC1� available from [11,13]. Since jx2 � x1j > 4LjC1, one
has u.jz1 � z2j/ D 0 for all pairs .z1; z2/ with z1; z2 2 supp'jC1xk

, whence (cf. (1.5))

H'jC1x D .��C V/'jC1x D .H 1
˝ 1C 1˝H 1/'jC1x :

Therefore, on account of (4.33), we have

.H � �jC1x /'jC1x D  jC1x ´  jC1x1
˝ 'jC1x2

C 'jC1x1
˝  jC1x2

: (4.34)

The norm-bound on  jC1z of the form (K5) (cf. (4.9)) is proved as in [11]. It is worth
mentioning that the bound actually proved there was (cf. [11, Eqn. (3.41)])

jjj jC1z jjj � �2
�

j � �1
C

jC1;

although it was stated in a weaker form. Since k'jC1� k D 1, we infer from (4.34)

jjj jC1x jjj � 2�1
C

jC1 � �
1C

jC1;

absorbing, once again, the factor 2 in an implicit exponent 1C.
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Case 2. diam…x � 4LjC1 ((possibly) entangled states). Define a matrix MjC1, set-
ting MjC1

yx ´ 0 if y D x or Qj
yx D 0 (which occurs for distant x and y), otherwise

MjC1
yx ´ .�jx � �

j
y /
�1Qj

yx: (4.35)

The entries MjC1
yx in (4.35) are indeed well defined, owing to the hypothesis (K8)

(cf. (4.13)). (Actually, the possibility of having uncontrollable small denominators
in (4.35) is always eliminated on Step 8 well before they appear for the first time in
the definition of MjC1

yx .) Clearly, the matrix MjC1 defines an operator on the space of
compactly supported functions on Z2, on which one has (cf. (4.13) and (4.31))

jjjMjC1
jjj � �1

C

j ı�1j � �
1C

j ; (4.36)

SPRŒMjC1� D SPRŒQj � � cLjC1;

so MjC1 defines also a bounded operator in `2.Z2/. The columns of the matrix

ẑ jC1´ ˆj
�

1CMjC1
�

form a Riesz basis in `2.Z2/, because bothˆj and .1CMjC1/ are boundedly invert-
ible. Denoting these column-vectors by Q'jC1� , we have

Q'jC1x D 'jx C
X
z¤x

MjC1
zx 'jz ; x 2 Z2: (4.37)

Normalization of Q'jC1� , producing 'jC1� , is performed on Step 7. By the inequalities
SPRŒAB� � SPRŒA�C SPRŒB� and SPRŒAC B� � maxŒSPRŒA�; SPRŒB��, one has

SPRŒ ẑ jC1� � SPRŒˆj �C SPRŒMjC1� � 2cLj C 1 � 3cLj < LjC1;

supp Q'jC1x [ SŒ Q'jC1x � � B3cLj
.x/ < LjC1: (4.38)

with c < 1=3. By expansion in the Neumann series, convergent by (4.36), we have

.1CMjC1/�1 D 1�MjC1
C .MjC1/2 � .MjC1/3.1CMjC1/�1; (4.39)

so the inverse .1CMjC1/�1 can be replaced with 1�MjC1 C .MjC1/2 with accur-
acy OŒjjjMjC1jjj

3
�. The explicit inversion formula (4.39) will be used later.

Step 4. action of H � H" on Q'jC1� . By definition of zQj and Dj , we have

Ad
ˆj ŒH� D ƒj C zQj

� DjFj :

Straightforward calculations making use of the identities Œƒj ; MjC1� D �Qj

(cf. (4.35)) and (4.39), give rise to the representation

Ad ẑ jC1 ŒH� D .1CMjC1/�1.ˆj /�1Hˆj .1CMjC1/ D ƒj CWjC1
C ZjC1;
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where

WjC1
D ŒQj ;MjC1�C DjFj C .MjC1/2ƒj �MjC1ƒjMjC1; (4.40)

ZjC1 D �MjC1QjMjC1
C ŒDjFj ;MjC1� �MjC1DjFjMjC1

C .MjC1/2ƒjMjC1
� .MjC1/2DjFj .1CMjC1/

� .MjC1/3.1CMjC1/�1.ƒj C zQj
� DjFj /.1CMjC1/: (4.41)

Equivalently,
. ẑ jC1/�1H ẑ jC1 D ƒjC1 C FjC1; (4.42)

with ƒjC1 and FjC1 defined by their matrix elements:

ƒjC1yx D ƒjyx C ıyxWjC1
xx ; (4.43)

FjC1yx D .1 � ıyx/WjC1
yx C ZjC1yx : (4.44)

Now, we are ready to define the new approximate eigenvalues �jC1� :

�jC1x ´ ƒjC1xx D �jx CWjC1
xx : (4.45)

It follows from (4.31), (4.36), (4.21), and (4.32) that

jjjWjC1
jjj . jjjQj

jjjjjjMjC1
jjj C jjjƒj jjjjjjMjC1

jjj
2
C jjjDj jjjjjjFj jjj � �2

C

j ; (4.46)

thus

sup
x
j�jC1x � �jx j � sup

x
jWjC1

xx j � �
2C

j � �
4
3

C

jC1:

An equivalent form of (4.42) is

H ẑ jC1 D ẑ jC1ƒjC1 C‰jC1; ‰jC1´ ẑ jC1FjC1; (4.47)

and on account of jjj ẑ jC1jjj � 2, one has

jjj ẑ
jC1ZjC1jjj . jjjFjC1jjjjjjMjC1

jjj
2
C jjjFjC1jjjjjjDj jjjjjjMjC1

jjj C jjjMjC1
jjj
3
:

Since ‰jC1 D H ẑ jC1 � ẑ jC1ƒjC1, where SPRŒH� D 1, SPRŒƒjC1� D 0, we have

SPRŒ‰jC1� � SPRŒ ẑ jC1�C 1:

Step 5. norm of the discrepancy. Collecting the bounds jjj ẑ jC1jjj � 2, jjjQj jjj � �1
C

j

(cf. (4.31)), jjjMjC1jjj � �1
C

j (cf. (4.36)), jjjDj jjj � �1Cj (cf. (4.25)), jjjFj jjj � �1Cj (cf.
(4.32)), and jjjFjC1jjj � jjjWjC1jjj C jjjZjC1jjj, we get

jjjZjC1jjj . jjjDj jjjjjjFj jjjjjjMjC1
jjj C jjjMjC1

jjj
2
jjjFj jjj C jjjMjC1

jjj
3
� �3

C

j : (4.48)

Recalling FjC1yx D .1 � ıyx/W
jC1
yx C ZjC1yx (cf. (4.44)) and (4.46), it follows that

jjjFjC1jjj � �2
C

j ; jjj‰jC1jjj D jjj ẑ jC1FjC1jjj � �2
C

j � �
4
3

C

jC1:
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Step 6. perturbations of the AEF. By ẑ jC1 D ˆj .1CMjC1/, we have

jjj ẑ
jC1
�ˆj jjj � jjjˆj jjjjjjMjC1

jjj � 2jjjMjC1
jjj � �1

C

j ; (4.49a)

k Q'jC1x � 'jx kx � �
1C

j : (4.49b)

Now, we prepare for the proof of the assertion (4.10) with i D j C 1 (to be completed
on Step 7). By definition of  jC1� and FjC1 (cf. (4.47) and (4.43)),

 jC1x D

X
z

..1 � ızxWjC1
zx /C ZjC1zx / Q'jC1z :

Since k Q'jC1y � '
j
y kx � �

1�

j for all y 2Z2, and j.'jx ;'
j
z /j � �

1C

j for z¤ x by (4.20),

we also have jh Q'jC1x j Q'
jC1
z ij � �1

C

j , yieldingˇ̌̌X
z

.1 � ızx/WjC1
zx . Q'jC1z ; Q'jC1x /

ˇ̌̌
. Ldj jjjW

jC1
jjj�1
C

j � �3
C

j � �2
C

jC1: (4.50)

By the norm estimate (4.48), we have, with �jC1 D �
q
j D �

3=2
j ,ˇ̌̌X

z

ZjC1zx h Q'
jC1
z j Q'jC1x i

ˇ̌̌
. Ldj jjjZ

jC1
jjj � �3

C

j � �2
C

jC1: (4.51)

Collecting (4.50)–(4.51), we get jh jC1x j Q'
jC1
x ij � �2

C

jC1. The proof of (4.10) will be
completed at the next step.

Step 7. normalization of the ACE. Introduce the normalized AEF

'jC1x ´ kQ'jC1x k
�1
Q'jC1x

(as before, k�k stands for the `2-norm). Thus, SŒ'jC1x �D SŒ Q'
jC1
x � � BLjC1

.x/. Since
k'

j
�k D 1, we have

k Q'jC1x k
2
� 1 D 2. Q'jC1x � 'jx ;'

j
x /C k Q'

jC1
x � 'jx k

2:

Recalling .1 � ızx/Cjzx D OŒ�
1C

j �, it follows from (4.37) and (4.24) that

j. Q'jC1x � 'jx ;'
j
x /j �

X
z¤x

jMjC1
zx jjC

j
zxj . L

d
j �

1C

j � �
1C

j � �2j ;

and k Q'jC1x � '
j
x k � �

1C

j (cf. (4.49)), thus jk Q'jC1x k � 1j � �2
�

j , and (4.10) with i D
j C 1 follows from the bounds

k'jC1x � Q'jC1x kx � �
2C

j ; (4.52a)

k'jC1x � 'jx kx � k'
jC1
x � Q'jC1x kx C k Q'

jC1
x � 'jx kx � �

2C

j ; (4.52b)

jh jC1x j 'jC1x ij � �2
�

jC1: (4.52c)
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Step 8. The assertion (K2) is proved in the same way as in [11, Section III, Step 8].

Step 9. The spectral spacings. Fix a pair of configurations x; y 2 Z2 such that one
has diam.…x […y/ � L2jC1, and consider the following two alternatives.

Case I. L2j < diam.…x[…y/ � L2jC1. In this case, we define the moment O|.x;y/´
j C 1 when a lower bound on j��x ��

�
yj is established for the first time, at the price of

exclusion of some subset of ‚. Before this moment, i.e., for 0 � i < O|.x; y/, we have
no effective control of j�ix � �

i
yj: the latter may be abnormally small. On the other

hand, j�ix � �
i
yj
�1 never appears in the inductive procedure until the moment O|.x; y/.

As discussed in Case II below, the value of the spacing j�O|.x;y/x � �
O|.x;y/
y j is essen-

tially preserved on all subsequent induction steps j > O|.x;y/. More precisely, denoting
temporarily for brevity O| D O|.x; y/, one can guarantee that

8j > O| j�jx � �
j
y j � j�

O|
x � �

O|
yj � oŒıO|�; (4.53)

provided " > 0 is small enough. To make the right-hand side of inequality (4.53)
compatible with hypothesis (K8) for all j � O|, we shall exclude from ‚ a subset on
which a stronger lower bound j�O|x � �

O|
yj > 5ıO| fails, and assess the P‚-probability of

this larger subset to be excluded.
This task requires some deviation from the functional-analytic flow of arguments

presented in this section, and so we postpone it to Section 7. Specifically, it follows
from Theorem 7.2 that there exists a subset x‚jC1 D ‚ n‚jC1 2 B�Onj

such that

8# 2 y‚j \‚jC1 j�jC1x � �jC1y j > 5ıjC1; (4.54a)

P‚¹x‚jC1º � �0
C

jC1: (4.54b)

This completes the treatment of Case I, and, as was said, makes a sufficient provision
for the bounds j�ix � �

i
yj � 4ıi , for all i � j C 1, as per (K8).

Remark 4.2. It is worth emphasizing that the proof Theorem 7.2 relies on the para-
metric analysis carried out in Section 6, and the parametric smoothness properties of
the approximate eigenpairs .'i�;�

i
�/ are also proved by induction in i � 0. Further, we

shall see that the induction in Section 6 can be carried out in parallel with the one in
the present Section 4, and it is driven by latter: once the eigenpairs .'i�;�

i
�/ are con-

structed for 0� i � j (viz. Steps 1–8), their smoothness properties can be established
as in Sections 6–7, and so the Step 9 can be completed, too. Note also that the recourse
to the parametric smoothness analysis is not required in the 1-particle model for the
proof of uniform localization per se, as it can be replaced with simpler arguments
(cf. [11]). However, already the case of N D 2 particles is more challenging.
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Case II. diam.…x […y/ � L2j . In this case, the difference between the AEV asso-
ciated with the configurations x and y has already been assessed on some previous
induction step O|.x; y/ � j , falling in the category treated in Case I. After the exclu-
sion of a suitable subset of ‚, one has j�O|x.!; #/ � �

O|
yj.!; #/ > 5ıO| for all remaining

# 2 ‚. Therefore, by the bounds on the perturbations j�jC1x � �jx j and j�jC1y � �jy j,
we get

j�jC1x � �jC1y j � j�
O|
x � �

O|
yj �

X
O|.x;y/�i�j

.j�iC1x � �ixj C j�
iC1
y � �iyj/

� 5ıO|.x;y/ �
X
i�O|.x;y/

�2i � 5ıO|.x;y/ � oŒıO|.x;y/� � 4ıO|.x;y/: (4.55)

It is to be stressed that the lower bound in (4.55) is uniform in j C 1 > O|.x;y/, derived
at any step j C 1 from the bound on j�O|x � �

O|
yj, with the help of a j -dependent partial

sum of a convergent series with general term �2
C

i < �2i .
The properties (K7) for i D 0 follow directly from the explicit formulae for '0�

and  0� (cf. Section 4.2).

Summary of the inductive step. For the reader’s convenience, we provide the refer-
ences to the stages in the proof where each of the inductive hypotheses is proved.

(K1) Steps 3 and 4 (K2) Steps 3 and 8 (K3) Step 4
(K4) Section 4.2 (K5) Step 5 (K6) Steps 6 and 7
(K7) Step 3 (K8) Step 9 (K9) Step 3, (4.38)
(K10) Steps 6 and 7

5. Proof of the main theorem

Theorem 2.1 can be proved now in the same way as [11, Section IV, Theorem 1]. In
fact, the concluding arguments used in the aforementioned paper apply to any self-
adjoint operator family in the Hilbert space `2.G /, where G is a countable graph, for
which the properties (K1)–(K10) are proved for all j 2 N.

A. The existence of the norm-limits 'x.!; #/ D limj!C1 '
j
x .!; #/ follows from

the perturbation estimates (4.15).

The completeness of the family ¹'x; x 2Z2º follows from the norm-convergence
of the transformation operatorsˆj along with their inverses. Taking the limit j !1
in (4.16), we see that this family is orthonormal. Moreover, taking the limit j !1
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in the equation

H"'
j
x D �

j
x'

j
x C 

j
x where k jx kx ����!

j!1
0,

we see that ¹'x.!; #/; x 2 Z2º is an eigenbasis of H".!; #/, so the latter has pure
point spectrum. Its simplicity follows from the property (K8) by taking the limit j !
C1.

B. The unimodality of all eigenfunctions 'x follows easily from the norm-perturb-
ation estimates (4.15) in (K10), since '0x D 1x and 'x D '

0
x C

P
j�0.'

jC1
x � '

j
x /;

hence for " small enough, k'x.x/k > 1=
p
2 for all x 2 Z2.

C. The exponential decay of 'x follows from the k�kx-convergence of .'jx /j�0.

6. Parametric smoothness of the eigenpairs

The results of this section prepare the ground for an application of Proposition 8.2 to
the proof of Theorem 2.1, as well as for the proof of Theorem 8.1. We have to analyze
the regularity of ‚-probability distributions of pairs of eigenvalues .�x1

;�x2
/. Such

an analysis is required in Section 4 to complete the Step 9 within the inductive step.
This is achieved with the help of the approximate eigenvalues �ix1

and �ix2
by induc-

tion in i . The induction requires also a regularity analysis of 'ix and  ix . Lemma 6.1
sets the base of induction in i , and the induction step is covered by Lemma 6.2.

6.1. General setting and the principal lemmata

The objects #ix (with “#” standing for “�”, “'”, or “ ”) are considered as functions of
the ‚-random variables #n;k . For any x, the objects #iy with y close to x are impacted
by independent #n;k , with n large enough, so the dependence of #iy upon a single
variable #n;k can be studied with the help of the one-parameter families V.xI tz/´
V.x/C tz 1z.x/, z 2 Z, or two-parameter families V.xI tz; tu/´ V.x/C tz 1z.x/C
tu 1u.x/, z; u 2 Z, z ¤ u.

We focus on the approximate eigenpairs, for these objects are most important
to the proofs of the main theorem, but the reader can see that the limiting, exact
eigenpairs are just as smooth, owing to the uniform perturbation estimates.

Remark 6.1. The analytic treatment of the smoothness properties of the approxim-
ate eigenpairs presented here is an adaptation of the one introduced in our recent
work [13] where a 1-particle version of H" was studied. As in [13], it can be shown
that, for any M � 1 and all " 2 .0; "�.M// with some "�.M/ > 0, the approximate
(hence exact) eigenvalues and eigenfunctions admit the derivatives of order N .
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We use a shortcut @z for d=dtz . The explicit formulae for the objects #0� show that

8z 2 Z 8x 2 Z2 @z�
0
x D ız;x1

C ız;x2
; (6.1)

8z 2 Z @zˆ
0
D @zF0 D @z‰0 D 0:

It is convenient to introduce the matrices Si , i � 0, with matrix elements

Siyx ´

´
.�ix � �

i
y/
�1; if Mi

yx ¤ 0 and �ix ¤ �
i
y;

0; otherwise.

Lemma 6.1. Consider the functions t 7! �0zŒƒ
0.!; #/C t 1u�, z 2 Z2, t 2 R, and

assume that j�0x.!; #/ � �
0
y.!; #/j � ı0 for any pair of non-identical configurations

x; y with diam.…x […y/ � 8L20. Then

j@u�
1
x � @u�

0
xj � �

2�

0 ; (6.2)

k@u Q'
1
x � @u'

0
xkx � �

1�

0 ;

k@u 
1
xkx � �

2�

0 : (6.3)

By ƒ0 C t 1u we mean the matrix with the entries ƒ0yx C tıyxıyu.

Lemma 6.2. Under the hypotheses of Lemma 6.1, fix some j � 1 and consider the
functions t 7! �izŒƒ

0.!; #/C t 1u�, 0 � i � j . Assume that, for any i 2 J1; j K and
any configurations x ¤ y with diam.…x […y/ � 8L2i , one has

j�ix.!; #/ � �
i
y.!; #/j � ıi ;

j@u�
i
x � @u�

i�1
x j � �

2�

i�1; (6.4)

k@u'
i
x � @u'

i�1
x kx � �

1�

i�1; (6.5)

k@u 
i
xkx � �

2�

i�1: (6.6)

Assume also (6.2)–(6.3). Then (6.4)–(6.6) hold true for i D j C 1.

Note that by (K9), diam SŒ�i�� � Li , thus, with “#” 2 ¹“�”; “'”; “ ”º,

SŒ#ix� \ SŒ#iy� D ¿ for jx � yj > 2Li :

Let
Q|.R/´ d.ln.R/ � ln.2L0//= ln qe ; R > 0: (6.7)

It is readily seen that Q|.R/´ min¹i � 0 W 2Li � Rº.

Lemma 6.3. For any u 2 Z and x 2 Z2 with dist.…x; u/ D R � 1, on has

8j � Q|.R/ j@u�jx j � �
Q|.R/
2L0

0 ; k@u'
j
x kx � �

Q|.R/
4L0

0 :
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Proof. For all i < Q|.R/ and z with …z � BLi
.u/, we have, by (K8) and (6.7),

SŒ�iz� [ SŒ'iz� [ SŒ iz� � BLi
.…z/

(cf. (1.1)), hence for any 0 � i < Q|.R/ and z such that u 62 BLi
.…z/, we have

@u�
i
x; @u'

i
x; @u 

i
x D 0:

Recalling �i D �
qi

0 with q > 1, it follows that

j@u�
j
x j � j@u�

0
xj C

X
1�i�j

j@u�
i
x � @�

i�1
x j �

X
Q|.R/�i�j

�2
�

i � �Q|.R/ � �

Q|.R/
2L0

0 :

The proof of the asserted bound on @u'
j
x is similar.

Corollary 6.4. Fix any j 2 N, consider the AEV �jx as functionals of the 1-particle
potential V 2 `1.Z/, and denote this dependence by �jx ŒV �. Then, for any x 2 Z2,
the mapping `1.Z/ 3 V 7! �jx ŒV � 2 R is Lipschitz continuous: for all sufficiently
small " > 0 in (1.5), one has

8V;W 2 `1.Z/ j�ixŒV CW � � �
i
xŒV �j � 3kW k1: (6.8)

Proof. Owing to finiteness of the stochastic support S.�jx /, it suffices to prove (6.8)
for the functions W with suppW � S.�jx /. The transition from V to V CW can be
decomposed intoN D cardS.�jx // single-point perturbations VkC1DVkCW.zk/1zk

,
where V0 ´ V , and ¹zk; k 2 J1; N Kº are all the points of S.�jx / numbered in some
way. Furthermore, the functions Vk and VkC1 can be included in a smooth para-
metric family Vk.s/´ Vk C sW.zk/ 1zk

, s 2 Œ0; 1�. This gives rise to a function
s 7! �jx ŒVk.s/�, and such functions, viz. the AEV depending upon a single-point per-
turbation of the potential, are considered in Lemmata 6.1 and 6.2.

Although card S.�jx / grows as j !C1, Lemmata 6.3 and 6.2 show that j@u�ixj
decays exponentially as dist.u;…x/!C1, and the principal contribution, provided
by @zk

�0x with zk 2…xD ¹x1; x2º, is bounded by 2kW k1. By straightforward calcu-
lations, the higher-order terms in �0 D "1=4 sum up to a quantity bounded by kW k1,
provided " is small enough. This proves the claim.

It is plain that, for the exact eigenvalues, an estimate even slightly better than (6.8)
would follow immediately from the min-max principle.
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6.2. Proof of Lemma 6.1

In this section, u 2 Z is an arbitrary lattice point, unless specified otherwise. To keep
the notations less cumbersome, we use the shortcut @ � @u.

By (4.35) and (4.29)–(4.30), we have, for x; y 2 Z such that M1
yx ¤ 0,

M1
yx D "

X
zWjz�xjD1

S0yxh1y j 1zi D "S0yx 1¹jy�xjD1º ;

@M1
yx D �" 1¹jy�xjD1º.S0yx/

2.@�0x � @�
0
y/; (6.9)

j@M1
yxj . "ı

�2
0 � �

1�

0 : (6.10)

In (6.10), we have " D .�0."//
4 � �0 for 0 < " � 1 (cf. (4.1)). Replacing " with

�0 D "
1=4 results in non-optimal upper bounds, but this is not crucial, and we keep

here the calculations closer to those used in the next subsection, for arbitrary j � 1.
Sinceˆ0 D 1, we have D0 D 0. Q0 is a truncated version of zQ0 D .ˆ0/|‰0 D Const
(cf. (4.30)), hence @Q0.� @uQ0/ D 0 for any u. By construction,

W1
D ŒQ0;M1�C ŒD0;F0�C .M1/2ƒ0 �M1ƒ0 M1; D0 D 0; (6.11)

F1yx D .1 � ıyx/W1
yx;

ƒ1xx D �
1
x D �

0
x CW1

xx: (6.12)

Assess @�1x � @�
0
x. By (6.11)–(6.12), and with ŒQ0;M1�xx D 0 by antisymmetry,

@�1x � @�
0
x D @W1

xx D @..M
1/2ƒ0 �M1ƒ0 M1/xx

where jjjƒ0jjj; jjj@ƒ0jjj � Const. By assumption, j�0x � �
0
yj � ı0 D �

0C

0 for all y figur-

ing in the non-zero entries of the matrices in (6.11), hence ık0 D �
0C

0 , thus we have
�0ı
�k
0 � �

1�

0 , say, for 1 � k � 2, which suffices for our purposes. Therefore,

j@�1x � @�
0
xj � j@..M

1/2ƒ0/xx C @.M1ƒ0 M1/xxj . jjjM1
jjjjjj@M1

jjj C jjjM1
jjj
2

. �1�0 � �0ı
�2
0 C .�

1�

0 /2 � �2
�

0 (cf. (4.36) and (6.9)) :

Next, assess Q'1x � '
0
x . By (4.37), Q'1x � '

0
x D

P
jy�xjD1 M1

yx'
0
y , whence

@ Q'1x � @'0x„ƒ‚…
D0

D @ Q'1x D
X
jy�xjD1

.@M1
yx/'

0
y C

X
jy�xjD1

M1
yx @'0y„ƒ‚…
D0

D�"
X
jy�xjD1

.S0yx/
2.@�0x� @�

0
y/'

0
y

with j@�0x � @�
0
yj � j@�

0
xj C j@�

0
yj � 2 by (6.1) and (6.2). Therefore,

k@ Q'1x � @'
0
xkx D k@ Q'

1
xkx � �

1�

0 : (6.13)
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To estimate the effect of normalization Q'1� '1�, one can argue as in the proof of (6.5)
in the next subsection (cf. (6.21)–(6.22)), and conclude that

k@'1x � @'
0
xkx � �

1�

0 :

Now, consider the discrepancies. By construction,  1x D
P

z¤x W1
zx Q'

1
z , so

@ 1x D
X
z¤x

.@W1
zx/ Q'

1
z C

X
z¤x

W1
zx@ Q'

1
z ; (6.14)

Here, jjjWjC1jjj � �2
�

0 and k@ Q'1zkx � �
1�

0 (cf. (4.46),(6.13)), so we focus on the first
sum in (6.14). By (6.11) with D0 D 0 and Q0 D Const,

@W1
D Œ@Q0;M1�C ŒQ0; @M1�C @..M1/2ƒ0 CM1ƒ0M1/

D ŒQ0; @M1�C @..M1/2ƒ0 CM1ƒ0 M1/:

Applying (6.10) and recalling that factors OŒ1� can be absorbed in �c
˙

0 , c > 0, we get

jjjŒQ0; @M1�jjj . �1�0 jjjQ
0
jjj . �1�0 � �0 � �

2� ;

jjj@..M1/2ƒ0 CM1ƒ0 M1/jjj . jjjƒ0jjjjjjM1
jjjjjj@M1

jjj C 2jjjM1
jjj
2
jjj@ƒ0jjj

� �1
�

0 � �
1�

0 C C�
2�

0 � �
2�

0 ;

thus jjj@W1jjj � �2
�

0 C �
2�

0 � �
2�

0 . Since k Q'1zkx D OŒ1�, we conclude that

k@ 1xkx � �
2�

0 C oŒ�2
�

0 � � �2
�

0 :

This completes the proof of Lemma 6.1.

6.3. Proof of Lemma 6.2

We shall need the following estimates:

jjj@MjC1
jjj � �1

�

j ; (6.15)

jjj@WjC1
jjj � �2

�

j : (6.16)

Remark 6.2. The explicit formulae for '0�, �
0
� and the perturbation estimates

(6.4)–(6.5) with i 2 J1; j K, imply a uniform boundedness of all quantities j@�ixj,
k@'ixkx, k@ ixkx, 0 � i � j , x 2 Z2.

By construction (cf. (4.45), (4.40), (4.35), (4.29)–(4.30)), we have

�jC1x D �jx CWjC1
xx ; (6.17a)

WjC1
D ŒQj ;MjC1�C DjFj C ..MjC1/2ƒj / �MjC1ƒjMjC1; (6.17b)

MjC1
yx D .1 � ıyx/ SiyxQj

yx; (6.17c)

Qj
yx D 1¹jy�xj�Lj º

h'jy j  
j
x i: (6.17d)



Uniformly localized unimodal states of N-body systems with infinitesimal density 919

To prove (6.15), recall that MjC1
xx D 0 (cf. (6.17)). For y ¤ x we have

@MjC1
yx D .@Sjyx/ �Q

j
yx C Sjyx � @Qj

yx

D �.Sjyx/
2Qj

yx.@�
j
x � @�

j
y /C Sjyx.h@ 

j
y j '

j
x i C h 

j
y j @'

j
x i/

where k j kx � �
1�

j by (K5), and k'j k D 1 by construction, hence

jQj
yxj � jh 

j
y j '

j
x ij � e�mjx�yj

k j kx � e�mjx�yj�1
�

j :

Further, j�jx � �
j
y j
k � ıkj � �

0C

j for k D 1; 2 and " small enough, thus

jSjyxj
2
jQj

yx.@�
j
x � @�

j
y /j . e�mjx�yj.�0

C

j /�1�1
�

j � e�mjx�yj�1
�

j :

On account of boundedness of k@'jx kx (cf. Remark 6.2) and k@ jy ky��
2�

j�1 (cf. (6.6)),
the estimate (6.15) now follows from the inequalities

jSjyxh@'
j
y j  

j
x ij � e�mjx�yj.�0

C

j /�1k@'
j
j kxk 

j
kx � e�mjx�yj�1

�

j ;

jSjyxh'
j
y j @ 

j
x ij � e�mjx�yj�1

�

j :

Now, we turn to (6.16). By (6.17), we have

jjj@WjC1
jjj � jjjŒ@ŒQj ;MjC1�jjj C jjj@ŒDj ;Fj �jjj
C jjj@..MjC1/2ƒj /jjj C jjj@.MjC1ƒjMjC1/jjj:

By construction, Qj D .ˆj /�1‰j , and jjj.ˆj /�1jjj < 2 by (K2), thus

jjj@Qj
jjj � jjj@..ˆj /�1/jjjjjj‰j jjj C jjj.ˆj /�1jjjjjj@‰j jjj;

jjj@..ˆj /�1/jjj � jjj.ˆj /�1jjj
2
jjj@ˆj jjj � 4jjj@ˆj jjj;

yielding f
jjj@Qj

jjj . jjj@ˆj jjjjjj‰j jjj C jjj@‰j jjj � �1�j (cf. (6.6)):

Observe that the uniform in j boundedness of jjj@ˆj jjj follows from the bound (6.5),
since it is already derived for i D j C 1 from its counterpart for j D i . Therefore,

jjjŒ@Qj ;MjC1�jjj . �1�j �1
�

j � �
2�

j : (6.18)

Further,

jjjŒQj ; @MjC1�jjj � 2jjjQj
jjjjjj@MjC1

jjj � 4�j jjj@MjC1
jjj � �2

�

j



V. Chulaevsky 920

(cf. (6.15)). Next,

jjj@..MjC1/2ƒj CMjC1ƒjMjC1/jjj

. jjjƒj jjjjjjMjC1
jjjjjj@MjC1

jjj C jjj@ƒj jjjjjjMjC1
jjj
2

� �1
�

j � �
1�

j C �
2�

j � �
2�

j :

By definition, Dj D Cj � 1 and Fj D .ˆj /�1‰j , so applying the identity (4.19), we
obtain in a similar way the bounds

jjj@Dj jjj � �1
�

j ; jjj@.DjFj /jjj � �2
�

j : (6.19)

It follows from (6.18)–(6.19) that

j@WjC1
yx j � jjj@WjC1

jjj � �2
�

j :

For the proof of (6.4), notice that, by antisymmetry, ŒFj ;MjC1�xx D 0, so

@�jC1x � @�jx D @..M
jC1/2ƒj /xx C @.MjC1ƒjMjC1/xx

whence

j@�jC1x � @�jx j . jjjƒ
j
jjj jjjMjC1

jjj jjj@MjC1
jjj C 2jjjMjC1

jjj
2
jjj@ƒj jjj

� �2
�

j C �
2�

j � �
2�

j (cf. (6.15)):

Proof of the bound (6.5) on @'jC1x � @'j . By construction, we have

Q'jC1x D 'jx C
X
y¤x

MjC1
yx 'jy ;

whence

jjj@ Q'jC1x � @'jx jjj �
X
y¤x

j@MjC1
yx jk'

j
y kx C

X
y¤x

jMjC1
yx jk@'

j
y kx

�

X
y¤x

.e�mjx�yj�1
�

j C C e�mjx�yj�1
�

j / . e�mjx�yj�1
�

j (cf. (6.15)):
(6.20)

Furthermore, it follows from the definition of 'jC1x , viz.

'jC1x D k Q'jC1x k
�1
Q'jC1x ; k Q'jC1x k D

�X
y

. Q'jC1x .y//2
�1=2

(6.21)

(here k�k is the norm in `2.Z2/), that

@'jC1x D @.k Q'jC1x k
2/�

1
2 Q'jC1x D �

1

2

@.k Q'
jC1
x k2/

k Q'
jC1
x k3

Q'jC1x C
1

k Q'
jC1
x k

@ Q'jC1x
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with k Q'jC1x k D 1COŒ�1
�

j � � .1COŒ�1
�

j �/k'
jC1
x k (cf. (4.52)), and

@.k Q'jC1x k
2/ D .1COŒ�1

�

j �/@
X

z

.'jC1x .z//2 D .1COŒ�1
�

j �/@.k'jC1x k
2/:

As mentioned above, we have k Q'jC1x k D .1COŒ�1
�

jC1�/k'
jC1
x k, whence

k Q'jC1x k
�1
D .1COŒ�1

�

j �/k'jC1x k
�1: (6.22)

Collecting (6.20)–(6.22) and the estimates of k Q'jC1x �'
jC1
x kx and k@ Q'jC1x �@'

jC1
x kx,

we come to the asserted bound (6.5) with i D j C 1.

Proof of the bound (6.6) on @ jC1x . We have by (4.47) and (4.44)

 jC1x D

X
z¤x

.1 � ıyx/WjC1
yx Q'jC1z C

X
z¤x

ZjC1yx Q'jC1z ;

WjC1
D ŒQj ;MjC1�C Dj .ˆj /�1‰j C .MjC1/2ƒj CMjC1ƒjMjC1;

where .ˆj /�1‰j D Fj and ZjC1 is defined in (4.41). Consider first @WjC1
yx . We

already have the norm-bounds on Qj , MjC1, Dj , .ˆj /�1, ‰j , ƒj , as well as on
there derivatives, and all the terms contributing to @WjC1

yx are of order of �2
�

j . As

before, all the bounded factors can be absorbed in �2
�

j , so j@WjC1
yx j � �

2�

j : A bound
on @ZjC1 can be obtained similarly, albeit the calculations are longer, and the reader
can see that it is of order of �3

�

j . Finally,

k@ jC1x kx � jjj@WjC1
jjjk Q'jC1� kx C jjjWjC1

jjjk@ Q'jC1� kx

C jjj@ZjC1jjjk Q'jC1� kx C jjjZjC1jjjk@ Q'jC1� kx � �
2�

j D �
1�

jC1:

This completes the inductive step and concludes the proof of Lemma 6.2.

7. Parametric estimates on small denominators

Recall that in Section 4.3, in the course of the inductive step (cf. Step 9), we stated
the bound (4.54) and postponed its proof to the present section. The ‚-probability
bound (4.54) follows from Theorem 7.2 which we are going to prove now. It provides
a slightly more general and detailed version of (4.54), and its proof is based upon
Theorem 7.3 and Proposition 7.4. Section 6 provides the analytic tools used below.

As to Section 8, it complements the Main Theorem 2.1 on uniform localization
of eigenfunctions (ULE) and shows that, due to ULE, one can develop a rigorous
smooth analysis of all principal approximate and exact spectral objects, first of all
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of the eigenpairs, which is quite problematic in more traditional Anderson models
including (but not limited to) those with IID random potentials, where only SULE
(semi-uniform localization of eigenfunctions) holds.

In the proofs of Theorems 7.3 and 7.2, we rely on Lemma 7.1 given below. We
need it for N D 2 particles, but, in Section 9, we comment on the extensions to any
N � 2 and d � 1, so we formulate a general statement, proved in the same way for
any N. The reader familiar with the notion of a symmetric power of a graph (cf.
Section 9, Paragraph D) can see that the proof remains valid in a lattice of any dimen-
sion d � 1. To make more transparent an extension to a more general graph G (e.g.,
G D Zd ), below we avoid where possible any reference to the algebraic nature of Z1

and use mainly the graph structure of the latter, except for the additions/subtractions
like x˙ 1 in (7.1) and jy2 � x2j in (7.2). Here, x˙ 1 can be replaced with “the nearest
neighbors of the site x of the graph G ,” and jy2 � x2jwith “dG .y2; x2/,” where dG .�; �/

stands for the graph-distance on G .
Assuming as before that the single-particle configuration space is Z1, define the

N-particle Fermionic configuration space ZN as follows:

ZN ´ ¹.x1; : : : ; xN/ 2 ZN
W x1 < x2 < � � � < xNº:

It is endowed with the graph structure inherited from ZN. Specifically, in the case
N D 2, the edge set E2 of the graph with the vertex set Z2 is given by

E2 D ¹..x � 1; y/; .x; y//; ..x; y/; .x; y C 1// W x; y 2 Z; x < yº: (7.1)

Equivalently, the vertex set Z2 can be defined as the set of all subsets x D ¹s; tº � Z

with card ¹s; tº D 2, which in this particular case (N D 2) amounts to s ¤ t . In this
realization of Z2, the edges are defined as follows: .x; y/ is called an edge if

x D ¹x1; x2º; y D ¹x1; y2º; where y2 62 x; jy2 � x2j D 1: (7.2)

Similar to the case N D 2, we set ….x1; : : : ; xN/ D ¹x1; : : : ; xNº and nx.�/´

1…x.�/ for every configuration x D .x1; : : : ; xN/ 2 ZN.

Lemma 7.1. For any x 2 ZN and y 2 ZN n ¹xº, there exist u1 2 …x n…y, u2 2
…y n…x, and some subsets X;Y � Z with card X D card Y D N � 1 such that

…x D ¹u1º [X; …y D ¹u2º [ Y; (7.3)

u1 62 X [ ¹u2º; u2 62 Y [ ¹u1º: (7.4)

Proof. Fix any x ¤ y. The mapping f W Z 3 z 7! nx.z/ � nx.z/ 2 ¹�1; 0; 1º is
not identically zero, for nx � ny would imply x D y. Also,

P
z f .z/ D 0, sinceP

z nv.z/ D N for any v 2 ZN. Hence, there exist some lattice points u1 ¤ u2 with
f .u1/D 1 and f .u2/D �1: otherwise, f would not change sign on Z without being
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identically zero, in contradiction with
P
z f .z/D 0. Further, card…xD card…yDN

implies that X´…x n ¹u1º and Y´…y n ¹u1º have cardinality N� 1, and u1 62X,
u2 62 Y. It is plain that u1 2 …x n…y and u2 2 …y n…x. This proves (7.3). Asser-
tion (7.4) follows from (7.3) combined with u1 ¤ u2, u1 62 X, u2 62 Y.

In the next statement, given a number R > 0, we work with a partition COn D

¹COn;k; k 2 J1;KOnKº of the phase space � D T , with On D On.R/ defined by

On D On.R/´ minŒn � 1 W 2�n � 1
2
C�1A R�A�; (7.5)

so that, for any fixed u 2 Z, the points of the set ¹T z!; z 2 BR.u/º � � are sep-
arated by the elements COn;k . Recall that we introduced in Section 1.2 the � -algeb-
ras like BDn, B�n, etc., naturally injected into B‚, and the decompositions # D
.#<n; #Dn; #>n/. Recall also that we defined the cylinder set y‚i ´

T
0�l�i ‚

l such

that the AEV �iz.!; #/, z 2 Z, are well defined for all ! 2 � and # 2 y‚i .

Theorem 7.2. There exist C;C 0 2 .0;C1/ such that, for any bounded interval I �
R, any i 2 N [ ¹1º, and any pair .x; y/ 2 .Z2/

2 with x ¤ y, diam…x […y � R,
one has a uniform bound

P‚¹9! 2 � �ix.!; #/ � �
i
y.!; #/ 2 I º � eCln

2.R/
jI j: (7.6)

The most important measure-theoretic step towards the bound (7.6), covering all
! 2 �, is the next theorem where a similar bound is stated for every fixed ! 2 �.

Theorem 7.3. Fix any ! 2�. For any interval I �R of length jI j<C1, any i � 0
and any pair .x; y/ 2 .Z2/

2 with x ¤ y, diam…x […y � R, there exists a subset
‚xy.!; I / 2 BDOn satisfying, with some C > 0 uniform in ! 2 �,

P‚¹‚xy.!; I /
ˇ̌
rB<Onº � 1 � eC ln2.R/

jI j;

8# 2 y‚i \‚xy.!; I / �ix.!; #/ � �
i
y.!; #/ 62 I :

Proof. Note that …x [ …y � BR.x1/. By T -covariance of the approximate/exact
eigenvalues �i�, we can assume without loss of generality that 0 2…x, so…x[…y�
BR.0/ � Z. For future use, note that On.R/ � C 0 lnR, with C 0 determined by A and
CA from (UPA). By Lemma 7.1, we have

…x D ¹u1; x0º; …y D ¹u2; y0º; (7.7)

where u1 and u2 fulfill the conditions (7.3)–(7.4). Furthermore, for each k 2 ¹1; 2º,
there is a unique partition element COn;lk (cf. (3.1)) with supp�On;lk D COn;lk 3 T

uk!.
The point u2 and the set COn;l2 will be useful for the proof of Theorem 8.1, but for the
moment, we only need u1 and COn;l1 .
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Estimates for fixed ! 2 �. As a first step of the proof, we make two modifications.
Firstly, we will be considering truncated samples # D .#<On; #DOn; ;>On/. This corres-
ponds to the truncation v vOn of the hull function v (cf. (3.2)), and the impact of the
truncation on the AEV is easily upper-bounded with the help of Corollary 6.4. (For
the exact eigenvalues, one could simply apply the min-max principle.)

Consider the sub-algebra Fu of B�On generated by all #n;k with 0 � n � On except
for .On; l1/. With ! fixed, we condition on Fu, which amounts to “freezing” all aOn#n;k ,
n � On, except #On;l1 . The only ‚-variable left “alive,” viz. aOn#On;l1 , can be considered
as a coordinate, denoted s, in R endowed with the measure �´ a�1

On 1Œ0;aOn�.s/d s.
To operate with the random variables # 7! �i�.!; #/, the latter must be well

defined. By induction, this is the case for all .!; #/ 2 � � y‚j , so we can freely
vary the value of the ‚-random variable aOn#On;l1 in its entire range Œ0; aOn�.

Adopting now the same language as in Section 6, we consider the approximate
eigenvalues �i� as functions of a single parameter s 2 R upon which they depend
through the single-point perturbation of the potential z 7! V.z; !; #/C s 1u1

.z/. It
follows from the results of Section 6 that the mapping fW s 7! .�x.s/;�y.s// is differ-
entiable. Specifically, writing, for any v 2 Z2,

�iv D �
0
v C .�

i
v � �

0
v/ D u.T v1!; #/C u.T v2!; #/C

X
1�j�i

.�jv � �
j�1
v /;

and recalling that @zu.T v!; #/ D ızv for all z; v 2 Z, we have, with @s � @u1
:

@su.T
u1!; #/ D ıu1u1

D 1;

@su.T
x0!; #/ D @su.T

u2!; #/ D @su.T
y0!; #/ D 0 (by (7.4) and (7.7));

while, for any j � 1 and z 2 ¹x; yº (indeed for all z 2 Z2),X
j�1

j@s.�
j
z � �

j�1
z /j �

X
j�1

�1
C

j � �1
C

1

(once again, bounded factors are absorbed in the notation �1
C

1 ). We conclude that

@s.�
i
x � �

i
y/ � 1C oŒ�1� � 1C oŒ"1=4� �

1

2
:

Therefore, the probability measure �.i/x;y of the ‚-random variable .�ix � �
i
y/ is abso-

lutely continuous with respect to �, and its Radon–Nikodym derivative d�.i/x;y=d� is
upper-bounded by .1C oŒ"1=4�/�1 � 2.

Now, the claim follows from a�1
On D eOn

2

, On � C 0 ln.R/.

The proof of Theorem 7.2 from Theorem 7.3, quite similar that of [11, Lemma
2.2] from [11, Lemma 2.1], is based upon the next proposition which is a mere refor-
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mulation of [11, Corollary 2.1]. The proof of the latter quite simple, and it explains the
crucial role of the choice of the piecewise-constant functions �n;k WT !R in the con-
struction of the hull functions ! 7! v#.!/ D v.!; #/ (cf. (1.3)). In essence, it allows
one to replace a continuum family of conditions imposed on # 2 ‚ in Theorem 7.3
with a finite one.

Proposition 7.4. For any j 2 N, there exist constants C;C 0 2 .0;C1/ and a finite
partition Pj D ¹Pj;l ; 1 � l � Lj � L

C 0

j º of the phase space � such that for each
element Pj;l , the family of ‚-random variables

®
v zN .T

z!; #/; z 2 B2Lj
.0/
¯

paramet-
erized by ! 2 � is constant on Pj;l as a function of the parameter !.

By Proposition 7.4, to eliminate the set of # 2 ‚ for which one has the inclusion
�ix.!; #/� �

i
y.!; #/ 2 I for at least one ! 2�, one can pick some points �j;l 2 Pj;l ,

and then eliminate Lj subsets of ‚ on which �ix.!; #/ � �
i
y.�j;l ; #/ 2 I .

Remark 7.1. A direct inspection of the above proof evidences that the probabilistic
bounds on the spectral spacings j�x � �yj can be easily derived from the bounds on
the approximate spectral spacings j�ix � �

i
yj. Naturally, such bounds deteriorate as

jx � yj ! C1.

8. Non-local Minami-type estimates

The original Minami estimate proved in the pioneering paper [37] for the 1-particle
lattice Anderson model with IID random potential V.x; !/, refers to the restrictions
HQ.!/ of the Anderson Hamiltonian H.!/ to finite subsets (e.g., cubes) Q � Zd .
Under the assumption that the common probability measure of the random variables
! 7! V.x;!/ has a bounded density, it states that the probability analogous to the one
in the LHS of (8.1) (relative to the probability space�) is bounded by C jƒj2jI1jjI2j,
but only in the particular case I1 D I2. The situation with arbitrarily placed intervals
I1 and I2, with no restriction on their relative positions, is known to be more chal-
lenging. Certain important particular cases were treated, e.g., in [15, 32]. The model
considered in the present paper has a number of distinctive features: it is 2-particle
(adaptable to the case of N� 2 particles), deterministic (viz. quasi-periodic but adapt-
able to a richer class of dynamical systems), and features ULE which. . . fails in many
models (cf. [18]) including the ones with random IID or cosine-like quasi-periodic
potential (cf. [20, 38]). Yet, like the Hamiltonian (1.5) itself, it might provide some
useful insight into more general Anderson models.

As was indicated in the preamble of Section 6, the proof of Theorem 8.1 relies on
the results of that section.
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Theorem 8.1. Let x; y 2 Z2, x ¤ y, diam…x[…y � R. For any bounded intervals
I1; I2 � R, the approximate/exact eigenvalues �ix;�

i
y, i 2 N [ ¹1º, constructed in

Section 4 admit the following bound:

P‚¹�ix 2 I1; �
i
y 2 I2º � eC ln2.R/

jI1jjI2j;

where C > 0 is independent of x and y, under the above conditions.

For the proof, we need a variant of the inverse function theorem (cf. [12, 13]).

Proposition 8.2. Consider real normed spaces .X;k�kX/; .Y ;k�kY /Š RK ,K 2 N�,
and a mapping fWDX ! Y differentiable in a ball B`.0/ � X, ` > 0. Assume that
there is an invertible linear mapping AWX! Y such that

sup
x2B`.0/

kf 0.x/ �Ak � � �
�

kA�1k
; � 2

�
0;
1

2

�
:

Denote BA
R .0/´ ¹y 2 Y W kA�1ykX � Rº, R � 0. Then f admits a differentiable

inverse f�1WBA
�`
.0/! B`.0/, and for all y 2 BA

�`
.0/ one has

f�1.y/ D A�1yC ı.y/; kı.y/kX � 2�kA�1k kA�1ykX:

Furthermore, for any rectangle of the form Q.˛; �/ D I1 � � � � � IK � B`=4.0/; with
Ik D Œ˛k � �k; ˛k C �k�, 0 < �k � 1

4
`, one has

f�1.Q.˛; �// � �
1�k�K

Œ˛0k � .1C OŒ�k�/�k; ˛0k C .1C OŒ�k�/�k�

Proof of Theorem 8.1. As in the proof of Theorem 7.3, we apply Lemma 7.1 and fix
some lattice points u1 2…x n…y, u2 2…y n…x satisfying the conditions (7.3)–(7.4)
(cf. also (7.7)). Letting On 2 N be defined as in (7.5), for each k 2 ¹1; 2º, there is a
unique element COn;lk of the partition COn (cf. (3.1)) with supp�On;lk D COn;lk 3 T

uk!.
This time, we “freeze” all #n;l such that either n¤ On, or nD On but l 62 ¹l1; l2º. The

‚-random vector .#On;l1 ; #On;l2/ is stochastically equivalent to the vector sD .s1; s2/ in
R2 on the probability space .R2;F.2/

Leb; �/ where F
.2/
Leb is the Lebesgue � -algebra in

R2, and � is the measure a�2
On 1Œ0;aOn�2.s/d s. By the results of Section 6, the mapping

fW s 7! .�x.s/; �y.s// is differentiable, and, writing �iz D �0z1
C �0z2

C .�iz � �
0
z/,

z 2 ¹x; yº, @sk
� @uk

, k D 1; 2, we have (cf. (7.7))�
@s1.�

0
u1
C �0x0/ @s2.�

0
u1
C �0x0/

@s1.�
0
u2
C �0y0/ @s2.�

0
u2
C �0y0/

�
D 1C

�
@s1�

0
x0 @s2�

0
x0

@s1�
0
y0 @s2�

0
y0

�
D 1 :

Further, by Lemma 6.2 (cf. (6.4)),

8j � 1 j@�jz � @�
j�1
z j � �2

�

j�1; z 2 ¹x; yº;
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whence
f 0.s/ D 1CD.s/; kD.s/k � �´ �

Q|�
0 D "

1
2

C

; Q| � 2:

With " assumed to be small, f 0.s/ is invertible, and k.f 0.t//�1k � 1C OŒ�0� � 3=2.
Therefore, Proposition 8.2 applies, with A D f 0.0/, and yields

kf 0.s/ � 1k � � � �=kA�1k; � D
1

4
:

With � < 1
16

, we get kf�1.s/�A�1sk � 1
2
ksk, hence the inverse image f�1.I 01 � I

0
2/

is covered by a rectangle I 001 � I
00
2 with jI 00

k
j � 2jI 0

k
j � 4jIkj, k 2 J1; 2K. Concluding,

P‚¹�ix 2 I1; �
i
y 2 I2º � Const a�2

On.R/jI1jjI2j

with a�1
On.R/ � eC

0 ln2.R/, so the claim follows.

9. Concluding remarks

A. Eigenvalue correlation estimates in the phase space. Theorem 7.2 operates with
the AEV �i� considered as functions of the parameters #n;k 2 Œ0; 1�, with .n; k/ 2S
n02N.¹n

0º � J1;Kn0K/. These parameters are unrelated to the main probability space
(phase space) .�;B�;P�/, but the estimates stated in Theorem 7.2 suit the needs of
the proof of a uniform localization, for every ! 2� and not just with probability one.

Taking the limit i ! C1 and making use of the perturbation formulae (4.14),
one can obtain similar estimates for the exact eigenvalues ��.

However, it is worth mentioning that the parametric estimates provided by The-
orem 7.2 can be transformed into probability estimates in the phase space �, i.e.,
eigenvalue correlation inequalities, with the help of a simple application of Fubini’s
theorem combined with Chebyshev’s inequality in the disorder-parameter space
� �‚, in the same way as in [9, Appendix A] (cf. also [36]).

B. Extension to any number of particles N > 2. The main analytic, inductive pro-
cedure carried out in Section 4 does not present any particular problem with extending
it to N > 2, for it is quite general and robust. A more delicate point is the parametric
and measure-theoretic analysis of the small denominators, as usual in the framework
of the KAM-type approaches. We make, however, a step in this direction and formu-
late a simple but important technical Lemma 7.1 for any N � 2.

C. Particle interaction potentials of infinite range. The present text is already quite
technical, and for this reason, several simplifying assumptions have been made regard-
ing the structure and parameters of the model at hand. One of them concerns the decay
of the inter-particle, two-body potential u.�/: it is assumed to have a compact support,
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as in a certain number of mathematical papers on N -particle Anderson localization.
However, infinite-range potentials have also been considered earlier, and it is natural
to wonder if, for example, exponentially decaying potentials u.�/ can be tolerated by
the KAM-type inductive approximation scheme presented here. To avoid unproven
statements, we do not formulate in this paper any formal results in this direction, but
a thorough inspection of the proofs shows that extending the main results to exponen-
tially decaying potentials is possible; it requires several technical adaptations.

A more challenging question concerns the minimal requirements on the rate of
decay of r 7! u.r/ under which a uniform exponential localization can still be proved,
along with a fairly explicit parametric analysis of the eigenvalues.

D. Symmetric powers of graphs. In the case where the physical, single-particle
configuration space is the one-dimensional lattice, the configuration space of N � 2

fermions can be constructed similarly to Z2,

ZN ´ ¹.x1; : : : ; xN/ 2 ZN
W x1 < x2 < � � � < xNº;

and it is endowed with the graph structure inherited from ZN.
However, starting with d D 2, the absence of a natural order in Zd compels one to

find a different construction. One of them relies on the notion of symmetric power of
a graph. Below we present an equivalent construction making use of the “occupation
numbers” functions n similar to those we used earlier in the case N D 2, d D 1.

Call a (Fermionic) N-particle occupation number function on Zd (the latter can
actually be any countable graph with uniformly bounded coordination numbers) any
mapping nWZd ! ¹0; 1º obeying X

z2Zd

n.z/ D N:

Denote ZN the set of all such mappings. We endow it with the following structure of
unordered graph.

Call a pair of distinct elements n0; n00 2 ZN an edge if the symmetric difference
.supp n0/�.supp n00/ is an edge ¹z0; z00º of the unordered graph Zd .

The above formal definition of the graph ZN has a rather obvious interpretation.
A formal “occupation numbers” function nWZd ! ¹0; 1º is uniquely determined by
its support where it takes the constant value 1, so there is a bijection between ZN and
the set of N-point lattice subsets x D ¹x1; : : : ; xNº with card x D N: x$ nx ´ 1x.
Naturally, the elements xj of x describe N distinct particle positions. Two particle
confugurations x0; x00 form an edge if and only if x00 is obtained from x0 by moving
exactly one particle, positioned at some z0 2 x0, to an adjacent, unoccupied point
z00 2 Zd n x0.
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With such a construction of ZN, the notation …x we had used in the main text of
the paper becomes redundant: an unordered set of exactly N particle positions now is
the configuration with these positions.

Keeping the notation nx which we employed earlier has some advantages; we have
seen some situations where it proves to be useful. It would become even more useful
in the case (which we do not consider here) of bosonic particle configurations; clearly,
in that case nx may take values in J0;NK.

From the perspective of the inductive procedure presented in Section 4, replacing
the subset Z2 � Z2 with a more general graph does not pose any particular problem.
All we need to carry it out in a more general context is an adjacency structure, hence
the canonical graph distance and graph Laplacian, and a tempered rate of growth of
balls of radiusR asR!C1. The only subtle point, crucial for the proof of uniform,
and not semi-uniform, decay of all eigenfunctions, is the possibility to construct a
deterministic random potential in such a way that, by excluding a subset of small
measure in the parameter (or probability) space, one could avoid abnormally small
denominators at a given spatial scale on the entire, possibly infinite configuration
space. This is where the algebraic (viz. periodic lattice) nature of Zd provides various
natural examples of deterministic operator ensembles.

Acknowledgements. I thank the reviewer for critical remarks that contributed to the
improvement of the clarity of presentation.
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