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Critical points of the Eisenstein series E4
and application to the spectrum of the Lamé operator

Zhijie Chen and Chang-Shou Lin

Abstract. We give a complete description of the distribution of the critical points of the classi-
cal Eisenstein series E4.�/. An application to the spectrum of the Lamé operator is also given.

1. Introduction

The Eisenstein series are well known as the first nontrivial examples of modular
forms. Since their discovery in the early 19th century, the Eisenstein series have
always played fundamental roles in the theory of modular forms and elliptic func-
tions. On the other hand, besides their numerous applications, the Eisenstein series
are rather deep objects by themselves.

This paper is the second in our project of understanding the critical points of the
classical Eisenstein series. We studied the Eisenstein series E2.�/ in [8]. By devel-
oping further the idea from [8], the aim of this paper is to completely determine all
the critical points of the Eisenstein series E4.�/ of weight 4, or equivalently the well-
known invariant g2.�/ in the theory of elliptic curves. We will see that this result has
interesting applications to the spectrum of the Lamé operator.

Throughout the paper, we use the notations !1 D 1, !2 D � , !3 D 1 C � and
ƒ� D ZC Z� , where � 2HD ¹� j Im � > 0º. Let }.z/D }.zj�/ be the Weierstrass
}-function with periods ƒ� , defined by

}.z/ D }.zj�/´ 1

z2
C
X

!2ƒ�n¹0º

� 1

.z � !/2 �
1

!2

�
:

It is well known that }.zj�/ satisfies the following cubic equation:

}0.zj�/2 D 4}.zj�/3 � g2.�/}.zj�/ � g3.�/:
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Here g2.�/;g3.�/ are invariants of the elliptic curveE�´C=ƒ� , which are just mul-
tiples of the basic two Eisenstein series G4.�/;G6.�/, or equivalently the normalized
E4.�/; E6.�/, respectively:

g2.�/ D 4�4

3
E4.�/ D 60G4.�/´ 60

X0

.m;n/2Z2

1

.m� C n/4 ;

g3.�/ D 8�6

27
E6.�/ D 140G6.�/´ 140

X0

.m;n/2Z2

1

.m� C n/6 ;

where
P0 means to sum over .n;m/ 2 Z2 n ¹.0; 0/º conventionally. The derivative of

E4.�/ is given by Ramanujan’s formula (see e.g., [25, p.1786])

E 04.�/ D
2�i

3
.E2.�/E4.�/ �E6.�//; (1.1)

where E2.�/ is the Eisenstein series of weight 2 defined by

E2.�/´ 3

�2

1X
mD�1

1X0

nD�1

1

.m� C n/2 :

It is well known that E4.�/;E6.�/ are both modular forms for SL.2;Z/ of weight
4; 6 respectively, while E2.�/ is not a modular form but only a quasimodular form
(cf. [19]), and so is E 04.�/. This infers that the set of the zeros of E 04.�/ is not stable
under the modular group SL.2;Z/. Recently, there are many works studying the zeros
of quasimodular forms including critical points of modular forms; see e.g., [3, 12, 19,
25, 26] and references therein. In particular, Saber and Sebbar [25] proved that for
each modular form f for a subgroup of SL.2;Z/, its derivative f 0 has infinitely many
inequivalent zeros and all, but a finite number, are simple. As an example, they proved
that E 04.�/ has infinitely many inequivalent zeros which are all simple. However, the
distribution of the zeros of E 04.�/ is still far from being understood.

In this paper we develop our own approach to completely determine its critical
points. Since the basic fundamental domain F0 of �0.2/ plays a crucial role in our
approach, we would like to state our results in fundamental domains of �0.2/ first. The
corresponding statements Theorems 1.5–1.6 in fundamental domains of the modular
group SL.2;Z/ will be given as consequences.

1.1. Distribution in fundamental domains of �0.2/

Recall that �0.2/ is the congruence subgroup of SL.2;Z/ defined by

�0.2/´
²�
a b

c d

�
2 SL.2;Z/

ˇ̌̌̌
c � 0 mod 2

³
;
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and F0 is the basic fundamental domain of �0.2/ given by

F0´
°
� 2 H

ˇ̌̌
0 6 Re � 6 1 and

ˇ̌̌
� � 1

2

ˇ̌̌
>
1

2

±
:

Then for any  D � a b
c d

� 2 �0.2/=¹˙I2º (i.e., consider  and � to be the same),

.F0/´
°
 � � ´ a� C b

c� C d
ˇ̌̌
� 2 F0

±
D .�/.F0/

is also a fundamental domain of �0.2/. Note that .F0/ D F0 Cm for some m 2 Z

if and only if c D 0. Our first result shows that the critical points of E4.�/ satisfy the
following distribution.

Theorem 1.1. Let .F0/ be a fundamental domain of �0.2/ with

 D
�
a b

c d

�
2 �0.2/=¹˙I2º:

Then the following hold:

(1) E4.�/ has no critical points in .F0/ if c D 0;

(2) E4.�/ has exactly one critical point in .F0/ if c ¤ 0.

In view of Theorem 1.1, we can transform every critical point of E4.�/ via the
Möbius transformation of �0.2/ action to locate it in F0. Denote the collection of
such corresponding points in F0 by D0, which consists of countable many points.
A fundamental question related to the distribution of the critical points is: What is the
geometry of the set D0?

Surprisingly, it turns out that D0 locates on the union of three disjoint smooth
curves �.C /’s in F0, which are parameterized by C 2 R n ¹0; 1º via the following
identity:

C D � � 4�ig2.�/

2�1.�/g2.�/ � 3g3.�/ ; � 2 F0: (1.2)

Here �1.�/´ 2�.!1
2
j�/ is a quasi-period of the Weierstrass zeta function �.z/ D

�.zj�/´ � R z }.�j�/d� . Indeed, it is a multiple of the Eisenstein series E2.�/:
�1.�/ D �2

3
E2.�/. The relation between (1.2) and E 04.�/ comes from Ramanujan’s

formula (1.1), which can be written in terms of g2; g3; �1 as follows (see also [5,
p.704]):

g02.�/ D
i

�

�
2�1.�/g2.�/ � 3g3.�/

�
: (1.3)

We will prove in Section 3 that for each C 2 R n ¹0; 1º, there is a unique point
�.C / 2 F0 such that (1.2) holds. Consequently, the parametrization (1.2) will give
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three disjoint curves

C0´ ¹�.C / j C 2 .0; 1/º;
C�´ ¹�.C / j C 2 .�1; 0/º; CC´ ¹�.C / j C 2 .1;C1/º;

the limit points of which are exactly the cusps of F0:

@C0 D ¹0; 1º; @C� D
°
0;
1

4
C i1

±
; @CC D

°
1;
3

4
C i1

±
:

Theorem 1.2. Let �.C / be defined by (1.2) for C 2 R n ¹0; 1º. Then

D0 D
²
�
��d
c

� ˇ̌̌̌ �a b

c d

�
2 �0.2/=¹˙I2º; c 6D 0

³
� C� [ C0 [ CC: (1.4)

Furthermore, the closure of D0 inF0 is precisely the union of the three disjoint smooth
curves:

D0 \ F0 D D0 n ¹0; 1;1º D C� [ C0 [ CC: (1.5)

Remark 1.3. In fact, we will prove �.C / 2 VF0, where VF0 D F0 n @F0 denotes the set
of interior points of F0. Given  D � a b

c d

� 2 �0.2/=¹˙I2º with c ¤ 0, we will prove
in Theorem 4.1 that the unique critical point of E4.�/ in .F0/ is precisely

a�
�
�d
c

�C b
c�
�
�d
c

�C d 2 . VF0/:
For j 2 �0.2/=¹˙I2º with 1 6D ˙2, we have

1. VF0/ \ 2. VF0/ D ;

(though 1.@F0/\ 2.@F0/ ¤ ; may happen). Thus, there is a one-to-one correspon-
dence between D0 and the set of critical points of E4.�/.

Remark 1.4. As mentioned before, E4.�/ is a modular form, but E2.�/ is not. It
is interesting to compare the distribution of the critical points of E4.�/ with that of
E2.�/. We proved in [8] that, under the Möbius transformations of �0.2/ action, the
images of all critical points of E2.�/ in F0 form a dense subset of the union of three
smooth curves in F0. However, this union is path-connected for the E2 case, which is
different from the situation of Theorem 1.2. See [8] for the complete theory concern-
ing the critical points of E2.�/. We will study the critical points of E6.�/ in a coming
work.

We will see in Section 6 that the three curves have interesting geometric mean-
ings from the viewpoint of the multiple Green function on the elliptic curve and also
monodromy meanings from the classical Lamé equation.
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1.2. Distribution in fundamental domains of SL.2 ;Z/

SinceE4.�/ is a modular form for the modular group SL.2;Z/, it is natural to consider
the distribution of the critical points of E4.�/ in fundamental domains of SL.2;Z/.
In this paper, it is convenient for us to choose

F ´ ¹� 2 H j 0 6 Re � 6 1; j� j > 1; j� � 1j > 1º (1.6)

to be the basic fundamental domain of SL.2;Z/, because F � F0 and (see Figure 2
in Section 2)

F0 D F [ 1.F / [ 2.F /; 1´
�
0 1

�1 1

�
; 2´

�
1 �1
1 0

�
:

Now, we can restate Theorem 1.1 as follows, which gives the distribution of the criti-
cal points of E4.�/ in fundamental domains .F /’s of SL.2;Z/.

Theorem 1.5. Let .F / be a fundamental domain of SL.2;Z/ with  D �
a b
c d

� 2
SL.2;Z/=¹˙I2º and �.C / be defined by (1.2) for C 2 R n ¹0; 1º. Then

(1) E4.�/ has no critical points in .F / if �d
c
2 .�1; 2/ [ ¹1º;

(2) E4.�/ has exactly one critical point

a�
�
�d
c

�C b
c�
�
�d
c

�C d
in .F / if �d

c
2 .�1;�1� [ Œ2;C1/. Moreover, the unique critical point

lies on the boundary @.F / D .@F / if and only if �d
c
2 ¹�1; 2º.

Similarly, we can transform every critical point of E4.�/ via the Möbius transfor-
mation of SL.2;Z/ action to locate it in F . Denote the collection of such correspond-
ing points in F by D . Recalling the smooth curves C�, CC in Theorem 1.2, we define
two disjoint sets

C1´ C� \ F; C2´ CC \ F: (1.7)

Theorem 1.6. Under the above notations, the following hold.

(1) Each of C1 n @C1 and C2 n @C2 is a smooth curve in F with

@C1 D
°
�.�1/; 1

4
C i1

±
; @C2 D

°
�.2/;

3

4
C i1

±
with �.�1/, �.2/ 2 @F :

(2) D is a dense subset of the union of the two disjoint curves C1 and C2, i.e.,

D � C1 [ C2 D xD \ F D xD n ¹1º:
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The above results give a complete description of the distribution of all critical
points of E4.�/ or equivalently g2.�/. We believe that they will have important appli-
cations. Here we give an application to the spectrum of the n D 3 Lamé operator.

1.3. Application to the spectrum of the Lamé operator

As an application, we study the spectrum �.L/D �.LI �/ of the nD 3 Lamé operator

L´ d2

dx2
� 12}.x C z0I �/; x 2 R (1.8)

in L2.R;C/, where z0 2 C is chosen such that }.x C z0I �/ has no singularities on
R. The spectrum of the general Lamé operator

Ln´ d2

dx2
� n.nC 1/}.x C z0I �/; x 2 R

with n 2 N has been widely studied in the literature; see e.g., [4, 7, 9, 14–17] and
references therein. It is well known that the spectrum does not depend on the choice
of z0. For the nD 3 Lamé operator (1.8), let us recall the so-called spectral polynomial
(see e.g., [14])

Q.B/ D Q.BI �/ D B
3Y

jD1

.B2 � 6ejB C 15.3e2j � g2//; (1.9)

where ej D }.!j2 j�/ for j D 1; 2; 3. Since 3e2j � g2 ¤ 0 for any j , B D 0 is always
a simple zero of Q.B/. Then it is already known the following.

• The spectrum �.L/ consists of one semi-infinite simple analytic arc tending to
�1 and at most 3 bounded analytic arcs. Furthermore, the finite endpoints of
�.L/ coincide with those zeros of the spectral polynomial Q.B/ with odd order.
This result follows from Gesztesy and Weikard’s remarkable result [16, Theo-
rem 4.1]. Consequently, 0 is always an endpoint of �.L/.

• When � varies, different spectral arcs of �.LI �/ might intersect with each other;
see [14, 15]. There are two kinds of intersection points in general. One is that the
intersection point B is not an endpoint (i.e., Q.B/ ¤ 0), so it is met by 2k semi-
arcs for some k � 2. It was proved in [14] that such inner intersection point B
must satisfy the following cubic polynomial

4

15
B3 C 8

5
�1B

2 � 3g2B C 9g3 � 6�1g2 D 0:

The other one is that the intersection point B is also an endpoint (i.e.,Q.B/D 0),
so it is met by 2kC 1 semi-arcs for some k � 1. Such intersection point was called
a cusp in [9], where it was proved that for any � , �.LI �/ has at most one cusp.
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In view of the above theory and since 0 is always an endpoint of �.LI �/, we ask a
natural question: When is 0 an intersection point of different spectral arcs, i.e., when
is 0 is a cusp? Here we can answer this question as follows.

Theorem 1.7. 0 is a cusp of the spectrum �.LI �/ if and only if � is a critical point
of E4. In other words, using the same notations as Theorem 1.5, the following holds.

(1) If �d
c
2 .�1; 2/ [ ¹1º and � 2 .F /, then 0 is not a cusp of the spectrum

�.LI �/.
(2) If �d

c
2 .�1;�1�[ Œ2;C1/ and � 2 .F /, then 0 is a cusp of the spectrum

�.LI �/ if and only if � D a�.�dc /Cb

c�.�dc /Cd
.

The rest of this paper is organized as follows. In Section 2, we introduce an aux-
iliary pre-modular form Z

.3/
r;s .�/ from the study of the Lamé equation in [13, 23],

and recall the theorem concerning the zero structure of Z.3/r;s .�/ from our previous
work [11]; see Theorem 2.1, which plays a fundamental role in this paper. In Sec-
tion 3, we apply Theorem 2.1 to prove the existence and uniqueness of �.C /. See
Theorem 3.1. In Section 4, we give the detailed proofs of Theorems 1.1–1.2. Some
precise geometry of the three curves (see Theorem 4.2) will also be described. In
Section 5, we apply Theorems 1.1–1.2 to prove Theorems 1.5–1.6. In Section 6, we
introduce the geometric meaning of the three curves from the Green function on
the elliptic curve, and also the monodromy meaning from the Lamé equation. The-
orem 1.7 can be proved as a consequence.

2. An auxiliary pre-modular form

Our basic strategy is similar to our previous work [8] concerning E2; the key point
is to establish the existence and uniqueness of �.C /. For E2, we used an auxiliary
pre-modular formZ

.2/
r;s .�/ of weight 3 in [8]. Differently, here we need to study a new

auxiliary pre-modular form Z
.3/
r;s .�/ of weight 6 introduced in [23, Example 5.9] (see

also [13]). For each pair .r; s/ 2R2 n 1
2
Z2, we define a holomorphic functionZ.3/r;s .�/

by

Z.3/r;s .�/´Z6 � 15}Z4 � 20}0Z3 C
�27
4
g2 � 45}2

�
Z2

� 12}}0Z � 5
4
.}0/2; (2.1)

where we write
} D }.r C s� j�/; }0 D }0.r C s� j�/
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for convenience and Z D Zr;s.�/ is the Hecke form [18]:

Z D Zr;s.�/´�.r C s� j�/ � r�1.�/ � s�2.�/
D�.r C s� j�/ � .r C s�/�1.�/C 2�is: (2.2)

Here �k.�/´ 2�
�
!k
2

ˇ̌
�
�
, k D 1; 2, are the two quasi-periods of �.zj�/:

�1.�/ D �.z C 1j�/ � �.zj�/; �2.�/ D �.z C � j�/ � �.zj�/; (2.3)

which satisfy the well-known Legendre relation �2.�/ D ��1.�/ � 2�i .
Note that Z.3/r;s .�/ is not well defined for .r; s/ D .0; 0/ since Z0;0 � 1 and so

do }.0/; }0.0/. To prove Theorems 1.1–1.2, in Section 3 we will “blow up” Z.3/r;s .�/
by considering lims!0Z

.3/
�Cs;s.�/, C 2 R, and the existence and uniqueness of �.C /

will follow from that of the zero of Z.3/
�Cs;s.�/ as s ! 0.

To this goal, we need to recall some basic properties of Z.3/r;s .�/. First, we recall
the modularity of g2.�/; g3.�/, }.zj�/ and �.zj�/. Given any

�
a b
c d

� 2 SL.2;Z/, it is
well known that

g2

�a� C b
c� C d

�
D .c� C d/4g2.�/; g3

�a� C b
c� C d

�
D .c� C d/6g3.�/; (2.4a)

}
� z

c� C d
ˇ̌̌ a� C b
c� C d

�
D .c� C d/2}.zj�/; (2.4b)

�
� z

c� C d
ˇ̌̌ a� C b
c� C d

�
D .c� C d/�.zj�/: (2.4c)

From here and �k.�/ D 2�
�
!k
2

ˇ̌
�
�
, we easily obtain 

�2
�
a�Cb
c�Cd

�
�1
�
a�Cb
c�Cd

�! D .c� C d/�a b

c d

��
�2.�/

�1.�/

�
: (2.5)

In the rest of this paper, we will freely use the formulas (2.4)–(2.5).
As mentioned before,Z.3/r;s .�/ is not well defined for .r; s/ 2Z2. If we take .r; s/ 2

1
2
Z2 n Z2, where

1

2
Z2´

°�m
2
;
n

2

� ˇ̌̌
m; n 2 Z

±
;

then (2.3) and the oddness of �.zj�/ imply Zr;s.�/ � 0 and so Z.3/r;s .�/ � 0, where
we used }0

�
!k
2

� D 0. Thus, we only consider .r; s/ 2 R2 n 1
2
Z2. Then both Zr;s.�/

and Z.3/r;s .�/ are holomorphic in H, and it is easy to see that the following properties
hold:

(P1) Zr;s.�/D˙Zm˙r;n˙s.�/ and hence we getZ.3/r;s .�/DZ.3/m˙r;n˙s.�/ for any
.m; n/ 2 Z2;
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(P2) Zr 0;s0.� 0/ D .c� C d/Zr;s.�/ and hence Z.3/r 0;s0.�
0/ D .c� C d/6Z.3/r;s .�/ for

any  D � a b
c d

� 2 SL.2;Z/, where � 0 D  � � ´ a�Cb
c�Cd

and .s0; r 0/ D .s; r/ �
�1 D .ds � cr; ar � bs/.

In particular, when .r; s/ 2 QN is an N -torsion point for some N 2 N�3, where

QN ´
°�k1
N
;
k2

N

� ˇ̌̌
gcd.k1; k2; N / D 1; 0 � k1; k2 � N � 1

±
;

then for any  2 �.N/´ ¹ 2 SL.2;Z/ j f  � I2modN º, we have .r 0; s0/� .r; s/
mod Z2 and so properties (P1)–(P2) imply

Zr;s

�a� C b
c� C d

�
D .c� C d/Zr;s.�/; Z.3/r;s

�a� C b
c� C d

�
D .c� C d/6Z.3/r;s .�/;

namely Zr;s.�/ and Z.3/r;s .�/ are modular forms of weight 1 and 6, respectively, with
respect to �.N/. Due to this reason,Zr;s.�/ andZ.3/r;s .�/ are called pre-modular forms
in this paper as in [23]. It was proved in [23] that, given .r; s/ 2 R2 n 1

2
Z2 and �0, the

monodromy group of the classical Lamé equation

y00.z/ D Œn.nC 1/}.zj�0/C B�y.z/; n D 3 (2.6)

for some B 2 C is generated by�
e�2�is 0

0 e2�is

�
;

�
e2�ir 0

0 e�2�ir

�
if and only if Z.3/r;s .�0/ D 0.

We are interested in the zero structure of Z.3/r;s .�/ for .r; s/ 2 R2 n 1
2
Z2. By prop-

erty (P2), we can restrict � in the basic fundamental domain F0 of �0.2/:

F0 D
°
� 2 H

ˇ̌̌
0 6 Re � 6 1 and

ˇ̌̌
� � 1

2

ˇ̌̌
>
1

2

±
;

and by (P1), we only need to consider .r; s/ 2 Œ0; 1� � �0; 1
2

� n 1
2
Z2. Define four open

triangles (see Figure 1):

40´
°
.r; s/

ˇ̌̌
0 < r; s <

1

2
; r C s > 1

2

±
; (2.7a)

41´
°
.r; s/

ˇ̌̌ 1
2
< r < 1; 0 < s <

1

2
; r C s > 1

±
; (2.7b)

42´
°
.r; s/

ˇ̌̌ 1
2
< r < 1; 0 < s <

1

2
; r C s < 1

±
; (2.7c)

43´
°
.r; s/

ˇ̌̌
r > 0; s > 0; r C s < 1

2

±
: (2.7d)

Then Œ0; 1� � �0; 1
2

� D S3
kD04k . We recall the following result from our previous

work [11].
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r0 0:5 1

0:5

s

40 41

42 43

Figure 1. The four open triangles4k .

Theorem 2.1 ([11]). Let .r; s/ 2 Œ0; 1� � �0; 1
2

� n 1
2
Z2.

(1) For .r; s/ 2 40, Z.3/r;s .�/ has exactly three different zeros in F0, which are all
simple and belong to the interior VF0.

(2) For .r; s/ 2 41 [42 [43, Z.3/r;s .�/ has a unique zero in F0, which is simple
and also belongs to VF0.

(3) For .r; s/ 2S3
kD0 @4k n 12Z2, Z.3/r;s .�/ has no zeros in F0.

In later sections, we will apply Theorem 2.1 to study the critical points of E4.�/.

3. Existence and uniqueness of �.C /

The purpose of this section is to prove the existence and uniqueness of �.C / for C 2
R n ¹0; 1º by applying Theorem 2.1. This will give the parametrization of the three
curves as mentioned in Section 1. Given C 2 R, we define a holomorphic function
fC .�/ on H by

fC .�/´ 2g2.�/
�
C�1.�/ � �2.�/

� � 3g3.�/.C � �/: (3.1)

By �2 D ��1 � 2�i , we see that fC .�/ D 0 if and only if (1.2) holds. Recall the
fundamental domain F0 of �0.2/:

F0 D
°
� 2 H

ˇ̌̌
0 6 Re � 6 1 and

ˇ̌̌
� � 1

2

ˇ̌̌
>
1

2

±
:

The following result proves the existence and uniqueness of �.C / as zeros of fC .�/.

Theorem 3.1 (Zero structure of fC .�/ in F0). The following facts hold.

(1) For any C 2 R n ¹0; 1º, fC .�/ has a unique zero �.C / in F0. Furthermore,
�.C / 2 VF0 and is simple.

(2) For C 2 ¹0; 1º, fC .�/ has no zeros in F0.
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To prove Theorem 3.1, first we need the following lemma.

Lemma 3.2. If � D ib with b > 0, then g02.�/ ¤ 0 and

2g2.�/�1.�/ � 3g3.�/ > 0; (3.2)

�.2�2.�/g2.�/ � 3�g3.�// > 0: (3.3)

Proof. Denote q D e2�i� and recall the q-expansion of g2.�/ (cf. [20, p.44]):

g2.�/ D 4

3
�4
�
1C 240

1X
kD1

�3.k/q
k
�
; where �3.k/ D

X
1�d jk

d3: (3.4)

Let � D ib with b > 0. Then q D e�2�b and hence d
db
g2.ib/ < 0 for b > 0. So,

g02.�/¤ 0 and (3.2) follows from (1.3). To prove (3.3), we use the following modular
property (see (2.5)):

�1

��1
�

�
D ��2.�/; g2

��1
�

�
D �4g2.�/; g3

��1
�

�
D �6g3.�/: (3.5)

It follows that

�.2�2.�/g2.�/ � 3�g3.�// D 1

�4

h
2�1

��1
�

�
g2

��1
�

�
� 3g3

��1
�

�i
> 0;

i.e., (3.3) holds.

Lemma 3.3. For any C 2 R n ¹0; 1º, fC .�/ 6D 0 for � 2 @F0 \H.

Proof. Suppose fC .�/ D 0 for some � 2 @F0 \H.

Case 1. � 2 iR>0. It is known that g2.�/ > 0 and �1.�/; g3.�/ 2 R. It follows from
fC .�/ D 0, (3.1) and (3.2) that

C D � � 4�ig2.�/

2�1.�/g2.�/ � 3g3.�/ 2 iR;

a contradiction with our assumption C 2 R n ¹0º.
Case 2.

ˇ̌
� � 1

2

ˇ̌ D 1
2

. One has � 0 D �
1��
2 iR>0. Define C 0 ´ C

1�C
2 R n ¹0º. By

g2.�
0/ D .1 � �/4g2.�/, g3.� 0/ D .1 � �/6g3.�/ and

�2.�
0/ D .1 � �/�2.�/; �1.�

0/ D .1 � �/.�1.�/ � �2.�//; (3.6)

a straightforward computation leads to

fC 0.�
0/ D .1 � �/5

1 � C fC .�/ D 0:

Then we obtain a contradiction as in Case 1.
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Case 3. � 2 1C iR>0. One has � 0 D � � 1 2 iR>0. Define C 0´ C � 1 2 R n ¹0º.
By using g2.� 0/ D g2.�/, g3.� 0/ D g3.�/ and

�1.�
0/ D �1.�/; �2.� 0/ D �2.�/ � �1.�/;

we easily obtain fC 0.� 0/ D fC .�/ D 0, again a contradiction as in Case 1.
The proof is complete.

Recall the pre-modular form Z
.3/
r;s .�/ in Section 2. Now, we study the precise

relation between Z.3/r;s .�/ and fC .�/. This is the key point of our whole idea. Fix any
C 2 R, and for s 2 �0; 1

4.1CjC j/2

�
we define

FC;s.�/´ �4.� � C/
9

Z
.3/
�Cs;s.�/:

Lemma 3.4. Letting s ! 0, FC;s.�/ converges to fC .�/ uniformly in any compact
subset of F0 D xF0 \H.

Proof. Denote u D �Cs C s� D s.� � C/ for convenience. Then u! 0 as s ! 0.
Let � 2 K where K is any compact subset of F0. Then g2 D g2.�/ and g3 D g3.�/
are uniformly bounded for � 2 K. So, it follows from the Laurent series of �.�j�/ and
}.�j�/ (see e.g., [1, 2]) that

�.uj�/ D 1

u
� g2
60
u3 � g3

140
u5 CO.juj7/; (3.7a)

}.uj�/ D 1

u2
C g2

20
u2 C g3

28
u4 CO.juj6/; (3.7b)

}0.uj�/ D �2
u3
C g2

10
uC g3

7
u3 CO.juj5/ (3.7c)

hold uniformly for � 2 K as s ! 0. From (3.7) and (2.2), we see that

Z�Cs;s.�/ D 1

u
C au � g2

60
u3 � g3

140
u5 CO.juj7/;

where
a´ 2�i

� � C � �1 D
C�1 � �2
� � C :

Inserting these into the expression (2.1) of Z.3/
�Cs;s.�/, a lengthy yet straightforward

calculation (it is much easier if using Mathematica) implies that

Z
.3/
�Cs;s.�/ D �

9

4
.2ag2 C 3g3/CO.juj2/

D �9
4

�
2g2

� 2�i

� � C � �1
�
C 3g3

�
CO.juj2/

D � 9

4.� � C/fC .�/CO.juj
2/ (3.8)

uniformly for � 2 K as s ! 0. The proof is complete.
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Lemma 3.5. Let s > 0. Then as s ! 0, any zero �.s/ 2 ¹� 2 HjRe � 2 Œ�1; 1�º of
Z
.3/
�Cs;s.�/ (if exist) is uniformly bounded.

Proof. Assume by contradiction that up to a subsequence of s ! 0, Z.3/
�Cs;s.�/ has a

zero �.s/ 2 ¹� 2HjRe � 2 Œ�1; 1�º such that �.s/!1 as s! 0. Write � D �.s/D
a.s/C ib.s/, then a.s/ 2 Œ�1; 1� and b.s/!C1.

As before, we denote u´�Cs C s� D s.a.s/� C C ib.s// and q D e2�i� . We
also denote x D e2�iu for convenience. Then

e2�b.s/ D jqj�1 > 1 > jxj D e�2�sb.s/ > jqj D e�2�b.s/: (3.9)

We note that if x ! 1, then sb.s/! 0 and

1 � x D 1 � e2�is.a.s/�CCib.s// D 2�sb.s/C o.sb.s//:

Together with b.s/!C1 as s ! 0, we always have

s D o.jx � 1j/: (3.10)

Since jx�1qj D e�2�.1�s/b.s/ ! 0 as s ! 0, there are two cases.

Case 1. Up to a subsequence, jx�1qj � ds3jx � 1j3jxj for some constant d > 0. It
follows from (3.10) that

e�2�.1�2s/b.s/ D jx�2qj � ds3jx � 1j3 � s6

and so b.s/ � ln 1
s

for s > 0 small. Then u D s.� � C/ D s.a.s/ � C C ib.s//! 0

as s ! 0 and

u2 D s2.a.s/ � C C ib.s//3
� � C D o.j� � C j�1/: (3.11)

Recall the q-expansions of �1.�/ and g3.�/ (see e.g., [20, p.44]):

�1.�/ D �2

3

�
1 � 24

1X
kD1

�1.k/q
k
�
; where �1.k/ D

X
1�d jk

d: (3.12)

g3.�/ D 8

27
�6
�
1 � 504

1X
kD1

�5.k/q
k
�
; where �5.k/ D

X
1�d jk

d5: (3.13)

Since b.s/!C1, (3.4) and (3.12)–(3.13) show that

g2 D 4

3
�4 CO.jqj/; g3 D 8

27
�6 CO.jqj/

and
�1 D 1

3
�2 CO.jqj/
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are uniformly bounded, so (3.7)–(3.8) still hold, namely

0 D Z.3/
�Cs;s.�.s// D �

9

4

�
2g2

� 2�i

� � C � �1
�
C 3g3

�
CO.juj2/: (3.14)

Since
2g2�1 � 3g3 D O.jqj/ D O.e�2�b.s// D o.j� � C j�1/;

we easily obtain from (3.14) and (3.11) that

0 D �9
4

�
2g2

� 2�i

� � C � �1
�
C 3g3

�
CO.juj2/

D �12�
5i

� � C C o.j� � C j�1/; (3.15)

which is a contradiction.

Case 2. Up to a subsequence, jx�1qj D o.s3jx � 1j3jxj/. We need to treat this case
in a different way since u D s.� � C/ does not necessarily converge to 0 as s ! 0.
We recall the q-expansions (see e.g. [20, p.46] for } and [8, (3.13)] for Zr;s): for
jqj < je2�izj < jqj�1,

}.zj�/
�4�2 D

1

12
C e2�iz

.1 � e2�iz/2

C
1X
mD1

1X
nD1

nqnm.e2�inz C e�2�inz � 2/; (3.16a)

}0.zj�/
�4�2 D

2�ie2�iz

.1 � e2�iz/2 C
4�ie4�iz

.1 � e2�iz/3

C 2�i
1X
mD1

1X
nD1

n2qnm.e2�inz � e�2�inz/; (3.16b)

and

Zr;s.�/ D 2�is � �i 1C e
2�iz

1 � e2�iz

� 2�i
1X
nD1

� e2�izqn

1 � e2�izqn �
e�2�izqn

1 � e�2�izqn
�
; (3.17)

where z D r C s� in (3.17).
Now, we let z D u D s.a.s/ � C C ib.s//, then e2�iz D x and it follows from

(3.9) that we can apply the above q-expansions. It is easy to see that

2 > jx C 1j > 1

2
; 12 > jx2 C 10x C 1j > 1

2
for s small:
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Recalling jxj< 1 and our assumption jx�1qj D o.s3jx � 1j3jxj/D o.s3jx � 1j3/,
we derive from (3.4) and (3.16)–(3.17) that

g2 D 4

3
�4 C o.s3jx � 1j3/; (3.18)

} ´ }.zj�/ D ��
2

3

x2 C 10x C 1
.x � 1/2 C o.s3jx � 1j3/;

}0´ }0.zj�/ D 8�3i x.x C 1/
.x � 1/3 C o.s

3jx � 1j3jxj/;

Z´ Z�Cs;s.�/ D �i
�x C 1
x � 1 C 2s

�
C o.s3jx � 1j3/: (3.19)

Then by (3.18)–(3.19) and (3.10) that s D o.jx � 1j/, we easily obtain

Z6 D � �6
h .x C 1/6
.x � 1/6 C 12s

.x C 1/5

.x � 1/5 C 60s
2 .x C 1/4
.x � 1/4

i
CO

� s3

jx � 1j3
�
;

�15}Z4 D �6
h5.x C 1/4.x2 C 10x C 1/

.x � 1/6

C 40s .x C 1/
3.x2 C 10x C 1/
.x � 1/5

C 120s2 .x C 1/
2.x2 C 10x C 1/
.x � 1/4

i
CO

� s3

jx � 1j3
�
;

�20}0Z3 D � 160�6
hx.x C 1/4
.x � 1/6 C 6s

x.x C 1/3
.x � 1/5 C 12s

2x.x C 1/2
.x � 1/4

i
CO

� s3jxj
jx � 1j3

�
;�27

4
g2 � 45}2

�
Z2 D � 4�6.x4 � 34x3 � 114x2 � 34x C 1/

�
h .x C 1/2
.x � 1/6 C 4s

.x C 1/
.x � 1/5 C 4s

2 1

.x � 1/4
i
C o

� s3

jx � 1j2
�
;

�12}}0Z D � 32�6
hx.x C 1/2.x2 C 10x C 1/

.x � 1/6

C 2s x.x C 1/.x
2 C 10x C 1/

.x � 1/5
i
C o

� s3jxj
jx � 1j2

�
;

�5
4
.}0/2 D 80�6x

2.x C 1/2
.x � 1/6 C o.s

3jxj2/:
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Therefore, inserting these formulas into (2.1) leads to

0 D Z.3/
�Cs;s.�.s// D �6

h
12s

.x C 1/

.x � 1/ C 44s
2 CO

� s3

jx � 1j3
�i
:

Since jx � 1j < 2, jx C 1j > 1
2

and s D o.jx � 1j/ imply

44s2 CO
� s3

jx � 1j3
�
D o

�
s
ˇ̌̌x C 1
x � 1

ˇ̌̌�
;

we finally obtain

0 D 12�6s .x C 1/
.x � 1/ C o

�
s
ˇ̌̌x C 1
x � 1

ˇ̌̌�
;

a contradiction. Remark that, when u D s.� � C/! 0 as s! 0, we have x! 1 and
then 12�6s .xC1/

.x�1/
D �12�5i

��C
C o.j� � C j�1/, the same as (3.15).

The proof is complete.

Recall4k; k D 0; 1; 2; 3, defined in (2.7). We define

z41´¹.r; s/ j .r C 1; s/ 2 41º

D
°
.r; s/

ˇ̌̌
0 < s <

1

2
;
�1
2
< r < 0; r C s > 0

±
;

z42´¹.r; s/ j .r C 1; s/ 2 42º

D
°
.r; s/

ˇ̌̌
0 < s <

1

2
;
�1
2
< r < 0; r C s < 0

±
:

Recalling property (P1) in Section 2 that Z.3/r;s .�/ D Z
.3/
rC1;s.�/, we see from Theo-

rem 2.1 (2) that

for .r; s/ 2 z41 [ z42 [43, Z.3/r;s .�/ has a unique and simple zero in F0: (3.20)

Now, we fix C 2 .�1; 0/ [ .0; 1/ [ .1;1/. Then s 2 �0; 1
4.1CjC j/2

�
implies

.�Cs; s/ 2 z41 [ z42 [43, so (3.20) implies that Z.3/
�Cs;s.�/ has a unique and sim-

ple zero �.s/ 2 F0. By the definition of F0, we easily see that

�1
�.s/

;
�.s/

1 � �.s/ 2 ¹� 2 H j Re � 2 Œ�1; 1�º:

Lemma 3.6. As s ! 0, the unique zero �.s/ 2 F0 of Z.3/
�Cs;s.�/ cannot converge to

any of ¹0; 1;1º.
Proof. Lemma 3.5 shows �.s/ 6! 1. To prove �.s/ 6! ¹0; 1º, we use the properties
(P1)-(P2) of Z.3/r;s .�/ in Section 2:

Z
.3/
m˙r;n˙s.�/ D Z.3/r;s .�/; for all m; n 2 Z;
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and

Z
.3/
r 0;s0

�a� C b
c� C d

�
D .c� C d/6Z.3/r;s .�/;

where

.s0; r 0/ D .s; r/
�
d �b
�c a

�
;

�
a b

c d

�
2 SL.2;Z/:

Letting
�
a b
c d

� D � 0 �11 0

�
, we obtain

Z.3/s;�r

��1
�

�
D �6Z.3/r;s .�/:

Recall C 2 .�1; 0/ [ .0; 1/ [ .1;C1/ and s 2 �0; 1
4.1CjC j/2

�
.

Case 1. C 2 .�1; 0/. By defining

zC ´ �1
C
; Qs´ �Cs > 0;

we have Qs 2 �0; 1

4.1Cj zC j/2

�
for s small and

�6Z
.3/
�Cs;s.�/ D Z.3/s;Cs

��1
�

�
D Z.3/

�s;�Cs

��1
�

�
D Z.3/

� zC Qs;Qs

��1
�

�
:

Therefore,Z.3/
� zC Qs;Qs

.�/ has zero �1
�.s/
2 ¹� 2H j Re � 2 Œ�1; 1�º. Since Qs! 0 as s! 0,

Lemma 3.5 implies �1
�.s/
6! 1, i.e., �.s/ 6! 0 as s ! 0.

Case 2. C 2 .0; 1/ [ .1;C1/ By defining

zC ´ �1
C
; Qs´ Cs > 0;

we have Qs 2 �0; 1

4.1Cj zC j/2

�
for s small and

�6Z
.3/
�Cs;s.�/ D Z.3/s;Cs

��1
�

�
D Z.3/

� zC Qs;Qs

��1
�

�
:

Again, we obtain �.s/ 6! 0 as s ! 0.
To prove �.s/ 6! 1 as s ! 0, we let

�
a b
c d

� D � 1 0
�1 1

�
and obtain

Z
.3/
r;rCs

� �

1 � �
�
D .1 � �/6Z.3/r;s .�/:

Case 3. C 2 .�1; 0/ [ .0; 1/. By defining

zC ´ C

1 � C ; Qs´ .1 � C/s > 0;

we have Qs 2 �0; 1

4.1Cj zC j/2

�
for s small and

.1 � �/6Z.3/
�Cs;s.�/ D Z.3/�Cs;.1�C/s

� �

1 � �
�
D Z.3/

� zC Qs;Qs

� �

1 � �
�
:
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So, Z.3/
� zC Qs;Qs

.�/ has zero �.s/
1��.s/

2 ¹� 2 H j Re � 2 Œ�1; 1�º, and Lemma 3.5 implies
�.s/
1��.s/

6! 1, i.e., �.s/ 6! 1 as s ! 0.

Case 4. C 2 .1;C1/. By defining

zC ´ C

1 � C ; Qs´ �.1 � C/s > 0;

we have Qs 2 �0; 1

4.1Cj zC j/2

�
for s small and similarly,

.1 � �/6Z.3/
�Cs;s.�/ D Z.3/Cs;�.1�C/s

� �

1 � �
�
D Z.3/

� zC Qs;Qs

� �

1 � �
�
:

Again, we obtain �.s/ 6! 1 as s ! 0. The proof is complete.

Now, we are in a position to prove Theorem 3.1 (1).

Proof of Theorem 3.1 (1) . Fix C 2 R n ¹0; 1º and let s 2 �0; 1
4.1CjC j/2

�
. Recall that

�.s/ is the unique and simple zero of Z.3/
�Cs;s.�/ in F0. By Lemma 3.6, up to a subse-

quence of s ! 0, we have

�.C /´ lim
s!0

�.s/ 2 xF0 \H DF0: (3.21)

Recalling

FC;s.�/ D �4.� � C/
9

Z
.3/
�Cs;s.�/;

we have FC;s.�.s// D 0. Then Lemma 3.4 implies fC .�.C // D 0, namely �.C / 2
F0 is a zero of fC .�/. Applying Lemma 3.3, we have �.C / 2 VF0. Suppose fC .�/
has another zero �1 6D �.C / in VF0. Since FC;s.�/ and fC .�/ are all holomorphic
functions, it follows from Lemma 3.4 and Rouché’s theorem that FC;s.�/ has a zero
�1.s/ satisfying �1.s/! �1 as s! 0, namely Z.3/

�Cs;s.�/ has two different zeros �.s/
and �1.s/ in F0 for s > 0 small, a contradiction with (3.20). Therefore, �.C / is the
unique zero of fC .�/ in F0. The same argument also implies that �.C / is a simple
zero and (3.21) actually holds for s ! 0 (i.e., not only for a subsequence).

The proof is complete.

The proof of Theorem 3.1 (2) will be postponed to the next section. As in The-
orem 3.1 (1), we always denote by �.C / the unique zero of fC .�/ in F0. Since
�.C / is simple, the implicit function theorem infers that �.C / is a smooth function of
C 2 R n ¹0; 1º. Here we study some basic properties of �.C / for later usage.

Lemma 3.7. The smooth function �.C / satisfies

�
� 1

1 � C
�
D 1

1 � �.C / ; for all C 2 R n ¹0; 1º: (3.22)
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Proof. Let � 0 D 1
1��

and C 0 D 1
1�C

, then we have

� 0 2 F0 () � 2 F0 and C 0 2 R n ¹0; 1º () C 2 R n ¹0; 1º:

By using g2.� 0/ D .1 � �/4g2.�/, g3.� 0/ D .1 � �/6g3.�/ and

�2.�
0/ D .1 � �/�1.�/; �1.� 0/ D .1 � �/.�1.�/ � �2.�//;

a straightforward computation leads to

fC 0.�
0/ D .1 � �/5

1 � C fC .�/:

So, fC .�.C // D 0 gives fC 0
�

1
1��.C/

� D 0. Applying Theorem 3.1 (1), we obtain
(3.22). This completes the proof.

Lemma 3.8. Write �.C / D a.C /C b.C /i with a.C /; b.C / 2 R. Then

b.C /!C1; a.C /!
´
1=4� if C ! �1;
3=4C if C !C1;

(3.23)

�.C /! 0 as C ! 0 and �.C /! 1 as C ! 1. (3.24)

Proof. Recalling (1.2), we define

�.�/´ � � 4�ig2.�/

2�1.�/g2.�/ � 3g3.�/ ; � 2 F0: (3.25)

Write � D a C bi and q D e2�i� as before. Recall from the q-expansions (3.4)
and (3.12)–(3.13) that

�1.�/ D 1

3
�2.1 � 24q � 72q2/CO.jqj3/;

g2.�/ D 4

3
�4.1C 240.q C 9q2//CO.jqj3/;

g3.�/ D 8

27
�6.1 � 504.q C 33q2//CO.jqj3/:

Inserting these into (3.25) leads to

�.�/ D � � i

120�
q�1 � 37i

20�
CO.jqj/

D a � sin 2�a
120�

e2�b C i
�
b � cos 2�a

120�
e2�b � 37

20�

�
CO.jqj/:
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Therefore, when C 2 R and jC j ! C1, it is easy to prove the existence of �1.C / D
a1.C /C ib1.C / 2 VF0 such that C D �.�1.C // and

b1.C /!C1; a1.C /!
´
1=4� if C ! �1;
3=4C if C !C1:

As mentioned before, C D �.�1.C // implies fC .�1.C // D 0. Since �.C / is the
unique zero of fC in F0, we conclude �.C / D �1.C /. This proves (3.23), and then
(3.24) follows from (3.23) and (3.22).

4. Distribution in fundamental domains of �0.2/

This section is devoted to the proof of Theorems 1.1–1.2. First, we prove the following
result, which implies Theorem 1.1 as a consequence.

Theorem 4.1. Let �.C / be the unique zero of fC .�/ for C 2 R n ¹0; 1º given in
Theorem 3.1 (1). Then the following holds.

(1) For any m 2 Z, there holds g02.�/ 6D 0 in F0 Cm. Consequently, g02.�/ 6D 0
whenever Im � � 1

2
.

(2) Given  D � a b
c d

� 2 �0.2/=¹˙I2º with c 6D 0. Then a�.�d=c/Cb
c�.�d=c/Cd

is the unique
zero of g02.�/ in the fundamental domain .F0/ of �0.2/. In particular,

‚´
²
a�
�
�d
c

�C b
c�
�
�d
c

�C d
ˇ̌̌̌ �
a b

c d

�
2 �0.2/=¹˙I2º with c 6D 0

³
(4.1)

gives rise to all the zeros of g02.�/ in H.

Proof. (1) First, we claim that

2�1.�/g2.�/ � 3g3.�/ 6D 0 for � 2 @F0 \H: (4.2)

If � 2 iR>0, Lemma 3.2 shows 2�1.�/g2.�/� 3g3.�/ > 0. If � 2 iR>0C 1, then

2�1.�/g2.�/ � 3g3.�/ D 2�1.� � 1/g2.� � 1/ � 3g3.� � 1/ > 0:

If
ˇ̌
� � 1

2

ˇ̌D 1
2

, then � 0 D �
1��
2 iR>0. By using (3.6), we see from (3.1) with C D�1

that

f�1.�
0/ D 2g2.� 0/.��1.� 0/ � �2.� 0// � 3g3.� 0/.�1 � � 0/
D �.1 � �/5Œ2�1.�/g2.�/ � 3g3.�/�:
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Since Lemma 3.3 shows f�1.� 0/ 6D 0, we obtain 2�1.�/g2.�/ � 3g3.�/ 6D 0. This
proves (4.2).

Suppose by contradiction that 2�1.�/g2.�/ � 3g3.�/ has a zero �0 in VF0. Then
g2.�0/¤ 0 because g32 � 27g23 ¤ 0 for any � . Recalling �.�/ in (3.25), it follows that
�.�/ is meromorphic at �0 with �0 being a pole and so maps a small neighborhood
U � VF0 of �0 onto a neighborhood of1. Then for C > 0 large enough, there exists
�1.C / 2 U such that C D �.�1.C //, which implies fC .�1.C // D 0. Applying The-
orem 3.1 (1) and Lemma 3.8, we obtain �1.C / D �.C /!1 as C ! C1, which
contradicts with �1.C / 2 U .

Therefore, we have proved that

2�1.�/g2.�/ � 3g3.�/ ¤ 0 for any � 2 F0: (4.3)

Since (1.3) says

g02.�/ D
i

�

�
2�1.�/g2.�/ � 3g3.�/

�
and g2.� C 1/ D g2.�/, we conclude that g02.�/ 6D 0 for any � 2 F0 Cm andm 2 Z.
This proves (1).

(2) Given  D � a b
c d

� 2 �0.2/=¹˙I2º with c 6D 0. Write � 0 D  � � D a�Cb
c�Cd

with
� 2 F0. By using g3.� 0/ D .c� C d/6g3.�/ and

�1.�
0/ D .c� C d/.c�2.�/C d�1.�//; g2.�

0/ D .c� C d/4g2.�/;

we have

2�1.�
0/g2.�

0/ � 3g3.� 0/

D �c.c� C d/5
h
2g2.�/

�
�d
c
�1.�/ � �2.�/

�
� 3g3.�/

�
�d
c
� �

�i
D �c.c� C d/5f�d

c
.�/:

Clearly, �d
c
2 Q n Z, so Theorem 3.1 (1) shows that �

�
�d
c

� 2 VF0 is the unique zero
of f�d

c
.�/ in F0. Consequently,

 � �
��d
c

�
D a�

�
�d
c

�C b
c�
�
�d
c

�C d 2 . VF0/
is the unique zero of 2�1g2 � 3g3 in .F0/. Since

H D
[

2�0.2/=¹˙I2º

.F0/;

we conclude that the set ‚ defined in (4.1) gives all the zeros of 2�1g2 � 3g3 and so
g02. This proves (2). The proof is complete.



Z. Chen and C.-S. Lin 980

Now, we can finish the proof of Theorem 3.1.

Proof of Theorem 3.1 (2). First we consider C D 0, i.e.,

f0.�/ D �2g2.�/�2.�/C 3�g3.�/:

Suppose f0.�/ D 0 for some � 2 F0. Then it is easy to see that � 0´ ��1
�
2 F0. By

�1.�
0/ D ��2.�/; g2.�

0/ D �4g2.�/; g3.�
0/ D �6g3.�/;

we obtain
2�1.�

0/g2.�
0/ � 3g3.� 0/ D ��5f0.�/ D 0;

a contradiction with (4.3).
Now, we consider C D 1, i.e.,

f1.�/ D 2g2.�/.�1.�/ � �2.�// � 3g3.�/.1 � �/:

Suppose f1.�/ D 0 for some � 2 F0. Then it is easy to see that � 0 ´ 1
1��
2 F0. By

g3.�
0/ D .1 � �/6g3.�/ and

�1.�
0/ D .1 � �/.�1.�/ � �2.�//; g2.�

0/ D .1 � �/4g2.�/;

we obtain
2�1.�

0/g2.�
0/ � 3g3.� 0/ D .1 � �/5f1.�/ D 0;

again a contradiction with (4.3). The proof is complete.

Recall the curves defined in Section 1:

C0 D ¹�.C / j C 2 .0; 1/º;
C� D ¹�.C / j C 2 .�1; 0/º; CC D ¹�.C / j C 2 .1;C1/º:

Clearly, (3.22) implies

C0 D
° 1

1 � �
ˇ̌̌
� 2 C�

±
; C� D

° 1

1 � �
ˇ̌̌
� 2 CC

±
; CC D

° 1

1 � �
ˇ̌̌
� 2 C0

±
:

(4.4)

Before going to the proof of Theorem 1.2, we want to describe some geometry about
these three curves.

Theorem 4.2. The following holds.

(1) The function C 7! �.C / is one-to-one for C 2 R n ¹0; 1º, i.e., any one of the
curves C�, C0, CC has no self-intersection, and any two of them are disjoint.
Furthermore,

@C0 D ¹0; 1º; @C� D
°
0;
1

4
C i1

±
; @CC D

°
1;
3

4
C i1

±
: (4.5)
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(2) The curve C0 is symmetric with respect to the line Re � D 1
2

; C� and CC are
symmetric with respect to the line Re � D 1

2
.

(3) �
�
1
2

�
is the unique intersection point of the curve C0 with the line Re � D 1

2
.

Furthermore, Im �
�
1
2

� 2 �1
2
;
p
3
2

�
.

(4) Both C� and CC have no intersection with the line Re � D 1
2

.

Proof. (i) As pointed out before, fC .�.C // D 0 is equivalent to

C D �.�.C // D �.C / � 4�ig2.�.C //

2�1.�.C //g2.�.C // � 3g3.�.C // : (4.6)

That is, C D �.�.C // for any C 2 R n ¹0º. Thus, C 7! �.C / is one-to-one for C 2
R n ¹0; 1º. Note that (4.5) is just Lemma 3.8. This proves (i).

(ii) By the q-expansions (3.4) and (3.12)–(3.13), we easily obtain

�1.1 � N�/ D �1.�/
and

gk.1 � N�/ D gk.�/; k D 2; 3:

We also have

�2.�/ D 2�.�=2j�/ D 2�. N�=2j1 � N�/
D 2�.1=2j1 � N�/ � 2�..1 � N�/=2j1 � N�/
D �1.1 � N�/ � �2.1 � N�/;

i.e., �2.1 � N�/ D �1.�/ � �2.�/. Since C 2 R n ¹0; 1º, we easily obtain

f1�C .1 � N�/ D 2g2.1 � N�/
�
.1 � C/�1.1 � N�/ � �2.1 � N�/

� � 3g3.1 � N�/. N� � C/
D �2g2.�/.C�1.�/ � �2.�//C 3g3.�/.C � N�/ D �fC .�/:

Therefore, it follows from Theorem 3.1 (1) that

�.1 � C/ D 1 � �.C /: (4.7)

Since � and 1 � N� is symmetric with respect to the line Re � D 1
2

, we see that asser-
tion (ii) holds.

(iii) By (ii), C0 has intersections with the line Re � D 1
2

. Let �0 D 1
2
C ib0 be

such an intersection point. Then �0 D �.C / for a unique C 2 .0; 1/. Applying (4.7),
we have �.1 � C/ D �0 D �.C /, so assertion (i) gives 1 � C D C , i.e., C D 1

2
. This

proves that �0 D �
�
1
2

�
is the unique intersection point of the curve C0 with the line
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Re � D 1
2

. By (4.6),

1

2
D �.�0/ D �0 � 4�ig2.�0/

2�1.�0/g2.�0/ � 3g3.�0/

D 1

2
C ib0 � 4�ig2.�0/

2�1.�0/g2.�0/ � 3g3.�0/ : (4.8)

By the q-expansions (3.4) and (3.12)–(3.13), we know that �1; g2; g3 are all real-
valued for Re � D 1

2
. Therefore, (4.8) is equivalent to say that b0 is the unique zero of

the function

'.b/´ b � 4�g2.
1
2
C ib/

2�1.
1
2
C ib/g2.12 C ib/ � 3g3.12 C ib/

; b � 1

2
;

because if '.b/ D 0, then 1
2
D ��1

2
C ib� and so 1

2
C ib D ��1

2

� D 1
2
C ib0.

It is well known that g2
�
1
2
C
p
3
2
i
� D 0, g3

�
1
2
C 1

2
i
� D 0, and we proved in [8,

p.32] that �1
�
1
2
C 1

2
i
� D 2� . From here, we immediately obtain '

�p
3
2

� D p3
2

and

'
�
1
2

� D �1
2

. Therefore, b0 2
�
1
2
;
p
3
2

�
. This proves (iii).

(iv) This assertion follows directly from (i)–(ii): C� has no intersection with CC,
and they are symmetric with respect to the line Re � D 1

2
.

The proof is complete.

Proposition 4.3. The three curves C�, C0, CC are all smooth curves in F0.

Proof. Recall �.�/ defined in (3.25). It follows from (4.3) that �.�/ is holomorphic
in F0. First we prove that

�0.�/ ¤ 0 for all � 2 C� [ C0 [ CC: (4.9)

Fix any �0 2 C� [ C0 [ CC. Then �0 D �.C / for some C 2 R n ¹0; 1º, i.e., �0 is
the unique and simple zero of fC .�/ in F0. In particular, f 0C .�0/ ¤ 0. As pointed out
before, fC .�0/ D 0 implies �.�0/ D C , namely

�0 � C D 4�ig2.�0/

.2�1g2 � 3g3/.�0/ :

Consequently,

�0.�0/ D 1 � 4�ig02
2�1g2 � 3g3

.�0/C 4�ig2.2�1g2 � 3g3/0
.2�1g2 � 3g3/2

.�0/

D 1 � 4�ig02
2�1g2 � 3g3 .�0/C .�0 � C/

.2�1g2 � 3g3/0
2�1g2 � 3g3 .�0/

D �f 0C .�0/
.2�1g2 � 3g3/.�0/ ¤ 0:
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This proves (4.9).
On the other hand,

C� [ C0 [ CC D ¹� 2 F0 j Im�.�/ D 0º: (4.10)

Write � D aC bi with a; b 2 R. Since

@ Im�

@a
D Im�0;

@ Im�

@b
D Re�0;

we see from (4.9) that C� (resp. C0, CC) is smooth at any � 2 C� (resp. � 2 C0,
� 2 CC). The proof is complete.

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. The smoothness of the three curves is just Proposition 4.3. The
assertion that, under Möbius transformations of the action �0.2/, the collection of all
critical points of g2.�/ is precisely the set D0 given by (1.4), is a direct consequence
of the expression (4.1) of the critical point set ‚. Recall that �.C / is smooth as a
function of C 2 R n ¹0; 1º. Therefore, the denseness, i.e., the identity (1.5), follows
from the fact that °�d

c

ˇ̌̌
d 2 Z; c 2 2Z n ¹0º; .c; d/ D 1

±
is dense in Q and hence dense in R. This completes the proof.

Recall that g2.�/ 2 R for Re � D 1
2

. We conclude this section by a simple obser-
vation.

Corollary 4.4. There exists Qb 2 � 1

2
p
3
; 1
2

�
such that g2

�
1
2
C ib� is strictly decreasing

for b 2 .0; Qb/ and strictly increasing for b 2 . Qb;C1/.
Proof. Let  D � 1 �12 �1

� 2 �0.2/. Then it is easy to prove that

.F0/ D
°
� 2 H

ˇ̌̌ ˇ̌̌
� � 1

2

ˇ̌̌
6
1

2
;
ˇ̌̌
� � 1

4

ˇ̌̌
>
1

4
;
ˇ̌̌
� � 3

4

ˇ̌̌
>
1

4

±
;

and so °
� 2 H

ˇ̌̌
Re � D 1

2

±
� F0 [ .F0/:

Applying Theorem 4.1 (2), we see that Q� ´ �.1=2/�1
2�.1=2/�1

is the unique zero of g02 in
.F0/. Recall Theorem 4.2 (iii) that �

�
1
2

� D 1
2
C ib0 for some b0 2

�
1
2
;
p
3
2

�
. Then

Q� D 1
2
C i

4b0
, namely Q� is the unique zero of g02 on the line

®
� 2 H

ˇ̌
Re � D 1

2

¯
with



Z. Chen and C.-S. Lin 984

Qb´ Im Q� 2 � 1

2
p
3
; 1
2

�
. Note that g2

�
1
2
C i
p
3
2

� D 0 < 4�4

3
D limb!C1 g2

�
1
2
C ib�.

Moreover, for � D 1
2
C ib,

g2

�1
2
C i

4b

�
D g2

� � � 1
2� � 1

�
D 16b4g2.�/!C1 as b !C1:

Thus, g2
�
1
2
C ib� is strictly decreasing for b 2 .0; Qb/ and strictly increasing for b 2

. Qb;C1/. The proof is complete.

5. Distribution in fundamental domains of SL.2 ;Z/

The purpose of this section is to prove Theorems 1.5–1.6 concerning the distribu-
tion of critical points of E4.�/ in fundamental domains of SL.2;Z/. Recall the basic
fundamental domain F of SL.2;Z/ in (1.6):

F D ¹� 2 H j 0 6 Re � 6 1; j� j > 1; j� � 1j > 1º:

Recalling the curves C�;C0;CC � VF0 and also C1;C2 in (1.7), we have the following
important observation.

Lemma 5.1. The following holds:

C1 D C� \ F D
°
�.C /

ˇ̌̌
C 2 .�1;�1�

±
� F \

°
�
ˇ̌̌

Re � 2
�
0;
1

2

�±
(5.1)

with @C1 D
®
�.�1/; 1

4
C i1¯;

C2 D CC \ F D
°
�.C /

ˇ̌̌
C 2 Œ2;C1/

±
� F \

°
�
ˇ̌̌

Re � 2
�1
2
; 1
�±

(5.2)

with @C2 D
®
�.2/; 3

4
C i1¯;

C0 \ F D ;: (5.3)

In particular, C1 and C2 are symmetric with respect to the line Re � D 1
2

.

Proof. Since Theorem 4.2 (iv) implies C� �
®
�
ˇ̌

Re � 2 �0; 1
2

�¯
, we have C� \ @F �

¹� j j� j D 1º. Suppose �.C / 2 C� \ @F , then j�.C /j D 1 and so Re 1
1��.C/

D 1
2

. On
the other hand, Theorem 4.2 (iii) implies

C0 \
°
�
ˇ̌̌

Re � D 1

2

±
D
°
�
�1
2

�±
:

It follows from (4.4) that 1
1��.C/

D ��1
2

�
, i.e., C D�1 by applying (3.22). This proves

C� \ @F D ¹�.�1/º � ¹� j j� j D 1º



Critical points of the Eisenstein series E4 985

and so (5.1) holds. By (5.1) and Theorem 4.2 (ii), we easily obtain (5.2), the symmetry
of C1 and C2 with respect to the line Re � D 1

2
, and

CC \ @F D ¹�.2/º � ¹� j j� � 1j D 1º:

Finally, suppose C0 \ F ¤ ;, then C0 \ .@F n ¹1º/ ¤ ;. Since Theorem 4.2 (ii)
says that C0 is symmetric with respect to Re � D 1

2
, there is � 2 C0 such that

j� � 1j D 1. It follows from (4.4) that Q� ´ ��1
�
2 C� and Re Q� D 1

2
, a contradic-

tion with Theorem 4.2 (iv). Therefore, (5.3) holds.

As a consequence of Lemma 5.1, we can restate Theorem 3.1 as follows.

Theorem 5.2. Recall fC .�/ defined in (3.1). Then the following holds.

(1) fC .�/ has no zeros in F for any C 2 .�1; 2/.
(2) For any C 2 .�1; �1� [ Œ2;C1/, fC .�/ has a unique zero �.C / in F .

Moreover, �.C / 2 VF for C … ¹�1; 2º and j�.�1/j D 1, j�.2/ � 1j D 1.

Now we are in the position to prove Theorems 1.5–1.6.

Proof of Theorem 1.5. Let .F / be a fundamental domain of SL.2; Z/ with  D�
a b
c d

� 2 SL.2;Z/=¹˙I2º. If c D 0, then .F /D F Cm � F0 Cm for somem 2 Z,
and it follows from Theorem 4.1 that E 04.�/ has no zeros in .F /. So, it suffices to
consider c ¤ 0, and the proof is similar to that of Theorem 4.1 (2); we omit the details
here.

Proof of Theorem 1.6. It follows from Theorem 1.5 and Lemma 5.1 that

D D
²
�
��d
c

� ˇ̌̌̌ �a b

c d

�
2 SL.2;Z/=¹˙I2º; �d

c
2 .�1;�1� [ Œ2;C1/

³
� C1 [ C2 D D \ F D D n ¹1º:

The proof is complete.

Remark that, if we use the more standard fundamental domain

F ´ ¹� 2 H j 0 6 Re � < 1; j� j > 1; j� � 1j > 1º [ ¹e�i=3º

of SL.2;Z/ instead of F given by (1.6), then the only different thing is �.2/ … F , so
Theorem 5.2 and Theorems 1.5–1.6 can be modified accordingly. We leave the details
to the interested reader.
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6. Geometric and monodromy interpretations of the curves

The purpose of this section is to give (i) the geometric meaning of the three curves
from the Green function on flat tori E� ´ C=.Z C Z�/, and (ii) the monodromy
meaning from the Lamé equation. Theorem 1.7 will be proved as a consequence.

Let G.z/ D G.zI �/ be the Green function on the torus E� :

��G.zI �/ D ı0 � 1

jE� j on E� ;
Z
E�

G.zI �/ D 0;

where ı0 is the Dirac measure at 0 and jE� j is the area of the torus E� . See [22] for a
detailed study ofG.zI �/. In [6,21,23,24], Chai, Wang, and Lin introduced a multiple
Green functionGn, n 2N. Geometrically, any critical point ofGn is closely related to
bubbling phenomena of nonlinear partial differential equations with exponential non-
linearities in two dimension; see [6,21,24] for typical examples. Thus, understanding
the critical points of Gn is important for applications.

For the case n D 3, the multiple Green function G3 is defined by

G3.z1; z2; z3I �/´
X
i<j

G.zi � zj I �/ � 3
3X
iD1

G.zi I �/;

A critical point .a1; a2; a3/ of G3 satisfies

3rG.ai I �/ D
X
j¤i

rG.ai � aj I �/; i D 1; 2; 3:

Clearly, if .a1; a2; a3/ is a critical point then so is .aj1 ; aj2 ; aj3/, where .j1; j2; j3/ is
any permutation of .1; 2; 3/, and we consider such critical points to be the same one.
A critical point .a1; a2; a3/ is called a trivial critical point if

¹a1; a2; a3º D ¹�a1;�a2;�a3º in E� .

Recall !1 D 1; !2 D � and !3 D 1C � . Since G.z/ is even and doubly periodic, we
have rG�!k

2

� D 0 for k D 1; 2; 3. Then a D �
!1
2
; !2
2
; !3
2

�
is a trivial critical point

of G3. Geometrically, we want to determine those � ’s such that a is degenerate (i.e.,
the Hessian of G3 at a vanishes), because bifurcation phenomena should happen and
so nontrivial critical points of G3 should appear near such � ’s. This motivates us to
define the degeneracy curve of G3 in F0 related to

�
!1
2
; !2
2
; !3
2

�
:

L´
°
� 2 F0

ˇ̌̌
detD2G3

�!1
2
;
!2

2
;
!3

2
I �
�
D 0

±
: (6.1)
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On the other hand, we calculated in [10, Example 3.4] that the Hessian of G3 at
a D �!1

2
; !2
2
; !3
2

�
is given by

detD2G3.aI �/ D �P.�/j2�1g2 � 3g3j2 Im
�
� � 4�ig2

2�1g2 � 3g3
�
; (6.2)

where P.�/ 2 .0;C1/ for all � . Recalling (4.3), i.e., that 2�1g2 � 3g3 ¤ 0 for all
� 2 F0, we see from (6.1)–(6.2) and (4.10) that

L D ¹� 2 F0 j Im�.�/ D 0º D C� [ C0 [ CC:

Therefore, the three curves coincide with the degeneracy curve L.

Theorem 6.1. The degeneracy curve satisfies L D C� [ C0 [ CC and L \ F D
C1 [ C2.

Finally, we introduce the monodromy interpretation of the curves from the Lamé
equation. In a series of papers [6, 23, 24], Chai, Wang, and Lin established a theory
that connects the multiple Green function Gn with the Lamé equation

y00.z/ D Œn.nC 1/}.zj�/C B�y.z/: (6.3)

By applying this theory, we proved in [10] that the Hessian of Gn at a trivial critical
point (i.e., a determinant of a 2n � 2n real matrix which is too difficult to compute
directly) can be expressed in terms of the monodromy data of (6.3). Let us takeG3 and
a D �!1

2
; !2
2
; !3
2

�
for example. Let �.z/ D �.zj�/ be the Weierstrass sigma function

defined by �.z/´ exp
R z
�.�/d� . Then a direct computation shows that

y1.z/´
�
�
z � !1

2

�
�
�
z � !2

2

�
�
�
z C !3

2

�
�.z/3

is an elliptic function and solves the Lamé equation (6.3) with n D 3 and B D 0:

y00.z/ D 12}.zj�/y.z/: (6.4)

Up to a constant, we see that

y1.z/
�2 D 1Q3

kD1.}.z/ � }.!k2 //

is even elliptic and so has no residues at !k
2

’s. Then �.z/´ R z
y1.�/

�2d� is mero-
morphic and has two quasi-periods:

�j ´ �.z C !j / � �.z/; j D 1; 2:
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Since y2.z/´ �.z/y1.z/ is a linearly independent solution of (6.4) with respect to
y1.z/, we easily obtain�

�1y1.z C !1/
y2.z C !1/

�
D
�
1 0

1 1

��
�1y1.z/

y2.z/

�
;�

�1y1.z C !2/
y2.z C !2/

�
D
�
1 0

D 1

��
�1y1.z/

y2.z/

�
; D´ �2

�1
:

That is, the monodromy group of (6.4) is generated by�
1 0

1 1

�
;

�
1 0

D 1

�
; (6.5)

and we refer this D D �2=�1 as the monodromy data of (6.4). Consequently, our
result in [10] implies

detD2G3

�!1
2
;
!2

2
;
!3

2
I �
�
D �P1.�/j�1j2 ImD;

where P1.�/ 2 .0;C1/. Since we calculated in [10, Example 3.4] that

�1 D �12.2�1g2 � 3g3/
g32 � 27g23

;
�2

�1
D � � 4�ig2

2�1g2 � 3g3 D �.�/; (6.6)

we immediately obtain (6.2).
Now, we consider the set of those � ’s in F0 such that the monodromy data D D

�2=�1 of the Lamé equation (6.4) is real-valued:

zL´ ¹� 2 F0 j the monodromy data of (6.4) is real-valuedº:

Then the above argument implies that the three curves coincide with zL.

Theorem 6.2. zL D C� [ C0 [ CC and zL \ F D C1 [ C2.

Remark 6.3. Given  D � a b
c d

�2�0.2/with c¤ 0, we let  � �1D a�1Cb
c�1Cd

with �1 2F0
be the unique zero of E 04.�/ in .F0/. Then the above argument indicates that the
monodromy data D of the Lamé equation (6.4) with � D �1 is precisely �d

c
.

Proof of Theorem 1.7. In the proof of [9, Theorem 1.3], it was proved that B D 0 is
a cusp of the spectrum �.LI �/ if and only if the corresponding monodromy data D
(see (6.5)) of the corresponding Lamé equation (6.4) satisfiesD D1. From here and
the expression (6.6) of D D �2=�1, we conclude that B D 0 is a cusp if and only if
2�1g2 � 3g3 D 0, i.e., g02.�/ D 0 or, equivalently, E 04.�/ D 0.
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