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Universal inequalities for Dirichlet eigenvalues
on discrete groups

Bobo Hua and Ariel Yadin

Abstract. We prove universal inequalities for Laplacian eigenvalues with Dirichlet boundary
condition on subsets of certain discrete groups. The study of universal inequalities on Rieman-
nian manifolds was initiated by Weyl, Pólya, Yau, and others. Here we focus on a version by
Cheng and Yang. Specifically, we prove Yang-type universal inequalities for Cayley graphs of
finitely generated amenable groups, as well as for the d -regular tree (simple random walk on
the free group).

1. Introduction

The spectral theory of Laplace–Beltrami operators on Riemannian manifolds was
extensively studied in the literature, see e.g., [15,26,43,51]. For a bounded domain�
in a Riemannian manifold, we denote by

0 < �1 < �2 � �3 � � � �

the spectrum of the Laplace–Beltrami operator with Dirichlet boundary condition
on �, counting the multiplicity of eigenvalues.

For the Euclidean space, Weyl [54] proved the asymptotic behavior of eigenvalues
that

�k �
4�2

.!nvol.�//
2
n

k
2
n ; k !1;

where !n is the volume of the unit ball in Rn and vol.�/ is the volume of �. It was
conjectured by Pólya [49] that

�k �
4�2

.!nvol.�//
2
n

k
2
n ; k D 1; 2; 3; : : : :
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Li and Yau [44] proved that

�k �
n

nC 2

4�2

.!nvol.�//
2
n

k
2
n ; k D 1; 2; 3; : : : :

Payne, Pólya, and Weinberger [47] proved the gap estimate of consecutive eigen-
values for a bounded domain in R2, generalized to Rn by Thompson [53]:

�kC1 � �k �
4

nk

kX
iD1

�i for any k � 1.

This was improved by Hile and Protter [34]. A sharp inequality was proved by Yang
[22, 55]:

kX
iD1

.�kC1 � �i /
2
�
4

n

kX
iD1

�i .�kC1 � �i /: (1)

The above is called Yang’s first inequality (Yang 1); it implies the Payne–Pólya–
Weinberger inequality, etc. [1]. It was Mark. S. Ashbaugh who first emphasized in
his papers [1, 2] the importance of the 1991 preprint of Yang. In fact, the notions
of “Yang-type” inequalities were introduced Ashbaugh (“Yang 1”, and “Yang 2” are
Ashbaugh’s designations and his take on the work of Yang.) The use of “optimal
Cauchy–Schwarz” was laid out here, and further developed in [9] where a general
framework, including the connections between the Payne–Pólya–Weinberger, Hile–
Protter, Yang 1 and Yang 2 inequalities, and the use of the Chebyshev inequalities was
first established. These are called universal inequalities for eigenvalues since they are
independent of the domain �. See [4–8, 20, 33] for more results regarding Euclidean
spaces.

Universal inequalities have been generalized to eigenvalues of Laplace–Beltrami
operators on Riemannian manifolds. In particular, Yang’s inequality has been proved
for space forms. For the unit n-sphere, Cheng and Yang [20] proved that

kX
iD1

.�kC1 � �i /
2
�
4

n

kX
iD1

.�kC1 � �i /
�
�i C

n2

4

�
:

For Hn, the n-dimensional hyperbolic space of sectional curvature �1, Cheng and
Yang [23] proved that

kX
iD1

.�kC1 � �i /
2
� 4

kX
iD1

.�kC1 � �i /
�
�i �

.n � 1/2

4

�
: (2)

Note that .n�1/2

4
is the bottom of the spectrum of Hn. For a general Riemannian

manifold, Chen and Cheng [16] proved a variant of Yang’s inequality using related
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geometric quantities via isometric embedding into the Euclidean space. For universal
inequalities on manifolds, we refer the readers to [17–19, 21, 23, 28, 30–32, 40, 42, 52,
56].

In this paper, we study universal inequalities for eigenvalues on graphs, in par-
ticular Cayley graphs of discrete groups. We recall the setting of general networks.
A network is a pair .V; c/ where V is a countable set and cWV � V ! Œ0;1/ is called
the conductance. The conductance must satisfy 0 � c.x; y/D c.y; x/ <1 (symmet-
ric) and �.x/´

P
y c.x;y/ <1 for every x. We write x � y to indicate c.x;y/ > 0

(in which case we say that x � y is an edge in the network). A network naturally pro-
vides a reversible Markov chain, whose transition matrix is given byP.x;y/D c.x;y/

�.x/
.

The (normalized) Laplacian is the operator � D I � P , where I denotes the identity
operator, i.e.,

�f .x/ D
X
y

P.x; y/.f .x/ � f .y//:

We denote by L2.V; �/ the Hilbert space of L2 summable functions on V , equipped
with the inner product

hf; gi D hf; gi� WD
X
x

�.x/f .x/g.x/:

It is well known that the Laplacian � is a bounded self-adjoint operator on L2.V; �/,
whose spectrum is contained in Œ0; 2�. We write �min for the bottom of the spectrum
of �.

The Laplacian with Dirichlet boundary condition on finite subsets of networks has
been investigated in the literature, see e.g., [14, 24, 25, 27, 29]. For finite � � V , the
Laplacian with Dirichlet boundary condition on �, denote by ��, is defined as the
Laplacian � restricted to the subspace

L2.�/´ ¹f 2 L2.V; �/ W f jV n� � 0º:

The eigenvalues of ��, called Dirichlet eigenvalues on �, are ordered by

0 < �1 � �2 � � � � � �j�j;

where j � j denotes the cardinality of the subset. We are interested in proving universal
inequalities on graphs, in particular Yang-type inequalities (1) and (2). Due to the
discrete nature of graphs, some modification is required.

Definition 1. We say that the network .V; c/ satisfies Yang’s inequality (resp. the
Yang-type inequality) with constant CY (resp. CYT) if the following holds for any
finite subset� � G. Let 0 < �1 � �2 � � � � � �j�j be the Dirichlet eigenvalues of�.
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Then, for any k < j�j,

kX
iD1

j�kC1 � �i j
2
� CY �

kX
iD1

.�kC1 � �i /.�i � �min/; (3a)

(resp.,
kX
iD1

j�kC1 � �i j
2.1 � �i / � CYT �

kX
iD1

.�kC1 � �i /.�i � �min//: (3b)

Since �i � 2, for any i � 1, one easily sees that in case of �min D 0, the Yang-type
inequality implies Yang’s inequality with CY D CYT C 2. Following the arguments
in [1, 22, 55], Hua, Lin, and Su [35] proved that the integer lattice Zn, a discrete
analog of Rn, satisfies a Yang-type inequality, with constant CYT D

4
n

. Recently,
Kobayashi [37] proved a Yang-type inequality for the eigenvalues of the Laplacian
(not Dirichlet eigenvalues) of a finite edge-transitive graph.

Note that Zn can be regarded as a Cayley graph of a free Abelian group. In this
paper, we prove Yang-type inequalities for more general Cayley graphs of finitely
generated infinite groups.

1.1. Amenable groups

Our first result regards amenable groups.

Definition 2. Let G be a finitely generated group, and let � D .V; E/ be a Cayley
graph of G with respect to some finite symmetric generating set. Define the Cheeger
constant of � to be

ˆ� D inf
A�V
jAj<1

j@Aj

jAj
@A D ¹¹x; yº 2 E W x 2 A; y 62 Aº:

A group G is called amenable if there exists a Cayley graph � such that ˆ� D 0.
Otherwise, it is called non-amenable.

It is a simple exercise to show that the definition of amenable does not depend on
the specific choice of Cayley graph. That is, for any two Cayley graphs �; � 0 of the
same group, ˆ� D 0 if and only if ˆ�0 D 0.

Examples of amenable groups include finite groups, Zd , and Abelian groups. The
free group on d � 2 generators is a non-amenable group. See [48, Chapter 7] and also
below in Section 4 for more on amenable groups.

Let G be a finitely generated amenable group. Consider some probability mea-
sure � on G (which we think of as a non-negative function �WG ! Œ0; 1� such thatP
x �.x/D 1). Assume that � is symmetric, i.e., �.x/D �.x�1/ for all x 2 G. Then
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� induces a corresponding Cayley graph (or network) by setting the conductances
c.x; y/D �.x�1y/. This network corresponds to the �-random walk on G. This net-
work is denoted by .G;�/.

Theorem 3. Let G be a finitely generated infinite amenable group. Let � be a sym-
metric probability measure on G, and consider the Cayley network .G; �/ of G with
respect to �. Set �� WD inf1¤y2supp.�/ �.y/.

Then, the network .G;�/ satisfies Yang’s inequality, with constant CY D 6
��

.

For finitely generated groups with Abelian quotients, i.e., those groups which
admit homomorphisms onto Zn for some n, we prove the Yang-type inequality with
CYT D

4
n

for specific �-random walks, see Theorem 7. This extends the result for Zn

from [35].

1.2. Free groups

Next, we consider Yang-type inequalities on regular trees, which can be regarded as
Cayley graphs of free groups. Let Td , d � 3, be a d -regular tree with the conductances
of the edges c.x; y/ D 1¹x�yº

1
d

, which is a discrete analog of hyperbolic space Hd .
The Laplacian corresponds to the generator of the simple random walk on Td . As is
well known, the bottom of the spectrum of Td is �min ´ 1 � 2

p
d�1
d

. Following the
arguments in [23], we prove the following result.

Theorem 4. The network given by the simple random walk on the d -regular tree Td
(where d > 2) satisfies the Yang-type inequality with constant CYT D

8
p
d�1
d

.

We sketch the proof strategies of Theorem 3 and Theorem 4. By the variational
principle, for an upper bound estimate of eigenvalues, it suffices to construct appro-
priate test functions. Following the arguments in [21,55], for any network and any test
function ˛WV ! R, we prove the Dirichlet eigenvalues satisfy some crucial estimate
involving ˛, see Lemma 5, a discrete analog of [21, Proposition 1]. This enables us to
derive the Yang-type inequality with choice of ˛ with nice properties for �˛ and the
gradient of ˛. For Rn or Zn, as in [22, 35, 55], linear functions are good candidates
for test functions.

In order to generalize the result to Cayley graphs of amenable groups, i.e.,
Theorem 3, we use harmonic cocycles as test functions. The existence of harmonic
cocycles for amenable groups was proved by [38, 45]. Harmonic cocycles are non-
trivial and deep objects. They are related to notions from homology (or cohomology)
and dynamics, outside the scope of this paper. We use these as a tool here, only
scratching the surface. Perhaps one point of view which may be useful here is the
following. A cocycle is a map cWG ! H from a group G to a Hilbert space H such
that G acts on H by unitary operators and the map c satisfies the cocycle equation
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c.xy/ D c.x/ C x:c.y/. If the action of G happened to be the trivial action (i.e.,
all elements of G act trivially), then c is just a group homomorphism from G to
the additive group H . For more general representations of G, what we get is that
a cocycle is a kind of “twisted homomorphism” since the group action “twists” the
homomorphism-defining equation. Sometimes, as is the case here, cocycles can be
used to replace homomorphisms into Abelian groups to obtain similar behavior.

As an example, if cWG ! H is a homomorphism, then one can just define the
action of G to be the trivial action on H , and c will automatically be a harmonic
cocycle. Finite groups do not admit non-trivial harmonic cocycles, because the pro-
jection of these onto a fixed vector would provide a bounded harmonic function, which
must be constant on a finite group by the maximum principle. However, for infinite
finitely generated groups, harmonic cocycles are extremely useful. They are guaran-
teed to exist in the case that the group does not have property (T) (originally proved by
Mok [45]). Harmonic cocycles have been used for many applications, perhaps most
notably in proofs of Gromov’s theorem regarding groups of polynomial growth, but
also in other contexts.

For Hn, Cheng and Yang [23] used Busemann functions of geodesic rays to prove
Yang-type inequality (2). To extend the result to Td , i.e., Theorem 4, we use the
discrete analogs of Busemann functions as test functions.

For trees, Leydold characterized the subtree with Faber–Krahn property for the
first Dirichlet eigenvalue in a d -regular tree Td , which is close to the “ball” [41].
The optimal Faber–Krahn inequality for Dirichlet eigenvalues of subtrees was proved
using discrete rearrangement in Pruss’ work [50]. These results gave the minimization
of the first Dirichlet eigenvalue on a subtree with fixed “volume.” The general thrust of
papers dealing with the Payne–Pólya–Weinberger inequality and Yang’s inequalities
is to push for optimal results for the �2

�1
ratio [5]. By our result, we get the upper

bounds in Corollary 10 for the �2��min
�1��min

ratio and in Corollary 13 for higher order
ratios, where �min D 1 �

2
p
d�1
d

is the bottom of the spectrum of Td .
Note that all eigenvalue estimates in this paper are quantitative. But we do not

know the sharpness of these estimates, which definitely will be interesting for further
studies.

The paper is organized as follows. In next section, we introduce some basic facts
on networks. In Section 3, we prove the useful estimate of eigenvalues for general net-
works, Lemma 5. Section 4 is devoted to the proofs of main results, Theorem 3 and
Theorem 4. In the last section, we derive some applications of the Yang-type inequal-
ity, such as the Payne–Pólya–Weinberger inequality and the Hile–Protter inequality,
etc.
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2. Notation and basic operators

2.1. � calculus

Let .V; c/ be a network on the set of vertices V with the conductance c. We allow
c.x; x/ > 0, which corresponds to a self-edge at x 2 V .

Recall the inner product on functions defined in the introduction:

hf; gi D
X
x

�.x/f .x/g.x/:

Accordingly, we write kf k2 D kf k2� WD hf;f i, and the space of L2 summable func-
tions is given by L2.V; �/ WD ¹f WV ! C W kf k <1º.

The Dirichlet energy is defined to be

E.f; g/´
X
x;y

c.x; y/.f .x/ � f .y//.g.x/ � g.y//;

and E.f / WD E.f; f /. If f; g 2 L2.V; �/, then it is not difficult to prove the “integra-
tion by parts” formula,

E.f; g/ D 2h�f; gi D 2hf;�gi:

Define the so-called carré du champ operator (at x 2 V ) as follows:

2�.f; g/.x/´
�
f� Ng C Ng�f ��.f Ng/

�
.x/

D

X
y

P.x; y/.f .x/ � f .y//.g.x/ � g.y//;

and �.f /´ �.f; f /. Note that � is symmetric and bi-linear. The notion of carré
du champ was introduced by Bakry and Émery in 1984 in [11] in the context of
hypercontractivity, and developed further in [10,12]; see the comprehensive reference
by Bakry, Gentil, and Ledoux [13].

Finally, we define the scalar-valued (non-linear) functional

ƒ.f; g/ D
1

4

X
x;y

c.x; y/jf .x/ � f .y/j2 � jg.x/ � g.y/j2:

2.2. Identities

In this section we summarize a few identities which we will require in the analysis
below. All are straightforward and easy to prove, and hold for all f; g 2 L2.V; �/,

E.f; g/ D 2
X
x

�.x/�.f; g/.x/ D 2h�.f; g/; 1i:
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Also, note that

h�.f; g/; gi D
1

2

X
x;y

P.x; y/.f .x/ � f .y//.g.x/ � g.y//g.x/�.x/

Since �.x/P.x; y/ D c.x; y/ D �.y/P.y; x/,

E.f; g2/ D
X
x;y

c.x; y/.f .x/ � f .y//.g.x/2 � g.y/2/

D

X
x;y

P.x; y/.f .x/ � f .y//.g.x/ � g.y//g.x/�.x/

C

X
x;y

P.x; y/.f .x/ � f .y//.g.x/ � g.y//g.y/�.x/

D 4h�.f; g/; gi:

So, in conclusion,

h2�.f; g/; gi D h�f; g2i:

We also may compute, for real functions f and g,

h2�.f; g/; f � gi D
X
x;y

c.x; y/.f .x/ � f .y//.g.x/ � g.y//f .x/g.x/

D

X
x;y

c.x; y/.f .x/ � f .y//.g.x/ � g.y//

�
f .x/g.x/C f .y/g.y/

2

D

X
x;y

c.x; y/.f .x/ � f .y//.g.x/ � g.y//

�
.f .x/C f .y//.g.x/C g.y//C .f .x/ � f .y//.g.x/ � g.y//

4

D
1

4

X
x;y

c.x; y/.f .x/2 � f .y/2/.g.x/2 � g.y/2/

C
1

4

X
x;y

c.x; y/jf .x/ � f .y/j2 � jg.x/ � g.y/j2;

which culminates in

h2�.f; g/; f � gi D
1

4
E.f 2; g2/Cƒ.f; g/: (4)
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3. Universal inequality

The following is an analog of [21, Proposition 1]. It is the main estimate which will
imply our results.

Let .V; c/ be a network. Let � � V be a finite subset of size n D j�j. Let
u1; : : : ; un be an orthonormal basis of eigenvectors for �� defined on the subspace
L2.�/ of L2.V; �/; that is,

• �min � �1 � �2 � � � � � �n,

• �ui D �iui ,

• ui jV n� � 0,

• hui ; uj i D 1¹iDj º.

Since the Laplacian is self-adjoint, such an orthonormal basis exists, �i 2 R and ui
are real valued. We call such a collection .�i ; ui /niD1 the Dirichlet system for �.

The next lemma is similar to Kobayashi’s [37, Lemma 2.4], both following the
proof of [21, Proposition 1]. Kobayashi proved the result for eigenvalues of Laplacian
of a finite graph without boundary, while we proved it for eigenvalues of Laplacian
on a finite subset with Dirichlet boundary condition.

Lemma 5. Let .V; c/ be a network. Let � � V be a finite subset of size n D j�j. Let
.�i ; ui /

n
iD1 be the Dirichlet system for �. For any k < n and any ˛WV ! R we have

kX
iD1

j�kC1 � �i j
2
�
h�.˛/; u2i i �ƒ.˛; ui /

�
�

kX
iD1

.�kC1 � �i /kui ��˛ � 2�.˛; ui /k
2:

Proof. Let ˛WV ! R. Fix some 1 � k < n. Set

aij D hui � ˛; uj i; 'i D ui � ˛ �

kX
jD1

aij � uj ;

˛i D ui ��˛ � 2�.ui ; ˛/; bij D h˛i ; uj i;

wi D h˛i ; 'i i; yi D ƒ.˛; ui /;

zi D h˛i ; ui � ˛i:

We collect a few observations regarding these quantities. For all 1 � i; j � k,

h'i ; uj i D hui � ˛; uj i �

kX
`D1

hu`; uj iai` D aij � aij D 0: (5)
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Also, aij D aj i and since the Laplacian is self-adjoint,

�j � aij D hui � ˛;�uj i D h�.ui � ˛/; uj i

D h�ui � ˛ C ui ��˛ � 2�.ui ; ˛/; uj i

D �i � aij C h˛i ; uj i D �i � aij C bij ;

which proves that for all 1 � i; j � k,

bij D �bj i D .�j � �i / � aij (6)

�'i D �.ui � ˛/ �

kX
jD1

�uj � aij D �iui � ˛ C ˛i �

kX
jD1

�juj � aij : (7)

Since hui ; uj i D 1¹iDj º,


˛i � kX
jD1

bij � uj




2 D k˛ik2 C kX
jD1

kbij � uj k
2
� 2

kX
jD1

bij � h˛i ; uj i

D k˛ik
2
�

kX
jD1

jbij j
2: (8)

By (6), we know that �h˛i ; uj i D �bij D .�i � �j /aij , so

wi D zi �

kX
jD1

h˛i ; aij � uj i D zi C

kX
jD1

.�i � �j /jaij j
2: (9)

By (4), we have that

h2�.ui ; ˛/; ui � ˛i D
1

2
h�.˛2/; u2i i Cƒ.˛; ui /:

Thus,

zi C yi D hui ��˛ � 2�.ui ; ˛/; ui � ˛i Cƒ.˛; ui /

D hui ��˛; ui � ˛i �
1

2
h�.˛2/; u2i i

D

D
�˛ � ˛ �

1

2
�.˛2/; u2i

E
D h�.˛/; u2i i: (10)

By (5), we get that h'i ; ui � ˛iD k'ik2. Also, since 'i is orthogonal to ¹u1; : : : ; ukº,
using (7),

�kC1k'ik
2
� h�'i ; 'i i D

D
�iui � ˛ C ˛i �

kX
jD1

�juj � aij ; 'i

E
D wi C �i hui � ˛; 'i i D wi C �ik'ik

2:
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Using the Cauchy–Schwarz inequality and (8),

.�kC1 � �i /jwi j
2
D .�kC1 � �i /

ˇ̌̌D
˛i �

kX
jD1

bij � uj ; 'i

Eˇ̌̌2
� .�kC1 � �i /k'ik

2
�

�
k˛ik

2
�

kX
jD1

jbij j
2
�

� wi �
�
k˛ik

2
�

kX
jD1

jbij j
2
�
:

Thus,

.�kC1 � �i /wi � k˛ik
2
�

kX
jD1

j�i � �j j
2
� jaij j

2: (11)

By (9),

kX
iD1

j�kC1 � �i j
2wi

D

kX
iD1

j�kC1 � �i j
2zi C

kX
i;jD1

j�kC1 � �i j
2.�i � �j /jaij j

2

D

kX
iD1

j�kC1 � �i j
2zi C

1

2

kX
i;jD1

�
j�kC1 � �i j

2
� j�kC1 � �j j

2
�
.�i � �j /jaij j

2

D

kX
iD1

j�kC1 � �i j
2zi �

kX
i;jD1

�
�kC1 �

�i C �j

2

�
j�i � �j j

2
jaij j

2

D

kX
iD1

j�kC1 � �i j
2zi �

kX
i;jD1

.�kC1 � �i /j�i � �j j
2
jaij j

2:

Multiplying (11) by �kC1 � �i and summing over i , we obtain

kX
iD1

j�kC1 � �i j
2zi �

kX
iD1

.�kC1 � �i /k˛ik
2:

The proof is now complete using zi D h�.˛/; u2i i �ƒ.˛; ui / by (10).

Let H be a Hilbert space and ˛WV ! H . The Laplacian is defined as

�˛.x/ D
X
y

P.x; y/.˛.x/ � ˛.y//: (12)
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We extend the definitions of the inner product and of �;ƒ by defining

2�.˛; u/ D
X
y

P.x; y/.u.x/ � u.y// � .˛.x/ � ˛.y//;

2�.˛/.x/ D
X
y

P.x; y/k˛.x/ � ˛.y/k2H ;

h˛; ui D
X
x

�.x/u.x/ � ˛.x/;

k˛k2 D h˛; ˛i D
X
x

�.x/k˛.x/k2H ;

ƒ.˛; u/ D
1

4

X
x;y

c.x; y/ju.x/ � u.y/j2 � k˛.x/ � ˛.y/k2H :

Here uWV !R is any (finitely supported) real valued function. With this notation, we
have the following theorem generalizing Lemma 5.

Theorem 6. Let .V; c/ be a network. Let�� V be a finite subset of size nD j�j. Let
.�i ;ui /

n
iD1 be the Dirichlet system for�. Let H be a Hilbert space and let ˛WV !H .

Then for any k < n,

kX
iD1

j�kC1 � �i j
2
�
�
h�.˛/; u2i i �ƒ.˛; ui /

�
�

kX
iD1

.�kC1 � �i / � kui ��˛ � 2�.˛; ui /k
2:

Note that when H D R this is exactly Lemma 5.

Proof. Let h 2 H be any non-zero vector. Define the function ˛0W V ! R by
˛0.x/ D h˛.x/; hiH . Plugging this into Lemma 5, we see that we only need to com-
pute �.˛0/;ƒ.˛0; ui /; �.˛0; ui /;�˛0. It is simple to verify that

�˛0 D h�˛; hiH ;

ƒ.˛0; ui / D
1

4

X
x;y

c.x; y/jui .x/ � ui .y/j
2
� jh˛.x/ � ˛.y/; hiH j

2;

2�.˛0/.x/ D
X
y

P.x; y/jh˛.x/ � ˛.y/; hiH j
2;

2�.˛0; ui /.x/ D
X
y

P.x; y/.ui .x/ � ui .y// � h˛.x/ � ˛.y/; hiH :

Summing this over h in an orthonormal basis for H , we have the theorem.
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4. The proof of main results

4.1. Amenable groups

One application of Theorem 6 is for the case of amenable groups. Given a finitely gen-
erated group, there is a natural network one may define. Actually, the initial data are a
finitely generated group G and a probability measure � on G, which is assumed to be
symmetric, i.e., �.x/ D �.x�1/. This measure is used to construct the random walk
onG, which is just the Markov chain with transition matrix P.x;y/D �.x�1y/. This
Markov chain is precisely the reversible Markov chain associated to the network on
G given by conductances c.x; y/D �.x�1y/. We denote this network by .G;�/, and
call it the Cayley network of G with respect to �. (Since � is a probability measure,
in this case �.x/ D 1 for all x.)

For a probability measure � on G, define

�� WD inf
1¤y2supp.�/

�.y/:

Note that � has finite support if and only if �� > 0.
Recall that Kesten’s amenability criterion [36] states that the bottom of the spec-

trum of � is 0 if and only if G is an amenable group.
We are now ready to prove Theorem 3.

Proof of Theorem 3. SinceG is amenable and infinite, it does not have Kazhdan prop-
erty (T). (This is very well known, and an easy exercise following the definitions of
property (T) and amenability. We say that a group G has Kazhdan property (T) if,
for any unitary representation �WG ! U.H / on a complex Hilbert space H without
non-zero invariant vectors, fixed by all g 2 G, there exists a c > 0 and a finite subset
K � G such that for every nonzero v 2 H there exists k 2 K such that

k�.k/v � vk � ckvk:

See e.g., [48, Chapter 7].) It follows from [38, 45] that there exists a Hilbert
space H on which the group G acts by unitary operators, with a harmonic cocycle
˛WG ! H . That is, ˛.xy/ D ˛.x/C x:˛.y/ for all x; y 2 G and �˛ � 0, see (12)
for the definition. (For a short proof see, e.g., [46]. Alternatively, for a proof that uses
only amenability of the group, see [39].)

Since the G-action is unitary, we may compute that

k˛.x/ � ˛.xy/k2H D k˛.y/k
2
H ;

so
2�.˛/.x/ D

X
y

�.y/k˛.y/k2H ;

is a constant function. We will also write �.˛/ as a constant.
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Now, if u is an eigenfunction of unit length, with �u D �u, then

h�.˛/; u2i D �.˛/ �
X
x

�.x/u.x/2 D �.˛/:

Also,

4ƒ.˛; u/ D
X
x;y

c.x; y/ju.x/ � u.y/j2 � k˛.x/ � ˛.y/k2H

D

X
x;y

�.y/ju.x/ � u.xy/j2 � k˛.y/k2H :

Since, for any 1 ¤ y 2 supp.�/,

k˛.y/k2H �
1

��

X
y

�.y/k˛.y/k2H �
1

��
� 2�.˛/;

we get that

4ƒ.˛; u/ �
1

��
� 2�.˛/ �

X
x;y

�.y/ju.x/ � u.xy/j2 D
4

��
�.˛/ � �:

Finally,

2�.˛; u/.x/ D
X
y

�.y/.u.x/ � u.xy// � .˛.x/ � ˛.xy//

D �

X
y

�.y/.u.x/ � u.xy// � x:˛.y/:

Since G acts unitarily on H , we have, by Jensen’s inequality,

k2�.˛; u/k2 D
X
x




X
y

�.y/.u.x/ � u.xy// � ˛.y/



2

H

�

X
x;y

�.y/ju.x/ � u.xy/j2 � k˛.y/k2H D 4ƒ.˛; u/:

Plugging all the above into Theorem 6 we arrive at

kX
iD1

j�kC1 � �i j
2
� �.˛/ �

kX
iD1

.�kC1 � �i / �ƒ.˛; ui / � .4C �kC1 � �i /

�

kX
iD1

.�kC1 � �i /�i �
6

��
� �.˛/;

where we have used that �kC1 � �i � 2. This completes the proof.
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4.2. Groups with Abelian quotients

For general groups with Abelian quotients, we can prove the Yang-type inequality,
analogous to the result in [35].

Theorem 7. Let G be a finitely generated group. Let ˛WG ! Zn be a surjective
homomorphism. Let S D ¹s1; : : : ; sn; k1; : : : ; kmº be a generating set for G so that
.˛.sj //

n
jD1 is the standard basis of Zn, and such that ˛.kj /D 0 for all j D 1; : : : ;m.

Let � be a symmetric measure supported on S [ S�1. Let " D 1 �
Pn
jD1.�.sj /C

�.s�1j //. (e.g., one may take �.kj / D �.k�1j / D "
2n

and �.sj / D �.s�1j / D 1�"
2n

.)
Then, the network .G;�/ satisfies the following: For any finite��G and k < j�j,

kX
iD1

j�kC1 � �i j
2
� .1 � " � �i / � 8max

j
�.sj / �

kX
iD1

.�kC1 � �i / � �i :

Remark 8. When we choose �.kj /D �.k�1j /D "
2n

and �.sj /D �.s�1j /D 1�"
2n

, we
get the Yang-type inequality up to an "-defect, with constant at most 4

n
.

Remark 9. The case G Š Zn was already treated in [35], where the same result was
shown, using similar methods. This is the case " D 0 and �.sj / D �.s�1j / D 1

2n
in

the above theorem.

Proof. The main advantage of ˛ being a homomorphism is that

�.y/˛.y/ D

´
˙�.sj /ej ; y D .sj /

˙1;

0; otherwise.

where ¹ej ºnjD1 is the standard basis of Zn. Thus, for the Euclidean Hilbert space
H D Rn,

2�.˛/.x/ D
X
y

�.y/k˛.x/ � ˛.xy/k2H D

nX
jD1

�
�.sj /C �.s

�1
j /

�
D 1 � ";

for any x 2 G. Also, �˛ � 0. Now, if u is an eigenfunction of unit length, with
�u D �u, then

h�.˛/; u2i D �.˛/ D
1

2
.1 � "/:

We may bound

4ƒ.˛; u/ D
X
x;y

�.y/ju.x/ � u.xy/j2 � k˛.y/k2H

D

X
x

nX
jD1

�.sj /
�
ju.x/ � u.xsj /j

2
C ju.x/ � u.xs�1j /j2

�
�

X
x;y

�.y/ju.x/ � u.xy/j2 D 2�:
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As in the proof of Theorem 3,

2�.˛; u/.x/ D �

nX
jD1

�.sj /.u.x/ � u.xsj / � u.x/C u.xs
�1
j // � ˛.sj /;

k2�.˛; u/k2 D
X
x

nX
jD1

�.sj /
2
ju.xs�1j / � u.xsj /j

2

� 2
X
x

nX
jD1

�.sj /
2.ju.x/ � u.xsj /j

2
C ju.x/ � u.xs�1j /j2/

� 2max
j
�.sj /

X
x;y

�.y/ju.x/ � u.xy/j2 D max
j
�.sj / � 4�:

Plugging all of this into Theorem 6, we arrive at

kX
iD1

j�kC1 � �i j
2
� .1 � " � �i / � 8max

j
�.sj / �

kX
iD1

.�kC1 � �i / � �i :

4.3. Trees

In this section, we prove the Yang-type inequality for d -regular tree Td , d � 3, with
the conductances of the edges c.x; y/ D 1¹x�yº

1
d

.

Proof of Theorem 4. Fix a ray to infinity, and an origin o. Let b be the Busemann
function corresponding to the ray with b.o/ D 0. That is, let o D x0 � x1 � � � � �

xn � xnC1 � � � � be an infinite simple path, so xi ¤ xj for all i ¤ j . Because Td
is a tree, this path is necessarily a geodesic: the distance between xj ; xi in the graph
is always jj � i j. This path is the ray mentioned above. Now, for any j � 0 set
b.xj / WD �j . Furthermore, for any vertex z, let z� be the closest vertex to z from the
above path. Set b.z/ D b.z�/C dist.z; z�/.

The important properties of b are thus: bWTd !Z is a function such that b.o/D 0
and such that every vertex x has d � 1 neighbors y � x with b.y/ D b.x/C 1, and
exactly one neighbor Ex � x with b.Ex/ D b.x/ � 1. One easily sees that

2�.b/.x/ D 1 for all x 2 Td :

It is also simple to check that the function f .x/ D
�

�
p
d�1

�b.x/ satisfies

�f .x/ D f .x/ �
�
1 �

p
d � 1

d
� .� C ��1/

�
:

Hence, if � D 1 � 2
p
d�1
d

(which corresponds to choosing � D 1, maximizing the
above expression) then �f D �f . Coincidentally, this is the bottom of the L2 spec-
trum of �, i.e., �min D 1 �

2
p
d�1
d

.
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For any x let Ex be the unique vertex with b.Ex/ D b.x/ � 1. For a function f let
Ef .x/ WD f .Ex/. Note that as x ranges over the whole graph, the pair .x; Ex/ ranges over

all edges in the graph, each edge counted exactly once in the direction of decreasing
the Busemann function b. Thus,

kf � Ef k2 D
X
x

jf .x/ � f .Ex/j2 D
1

2

X
x�y

jf .x/ � f .y/j2

D
d

2

X
x;y

c.x; y/jf .x/ � f .y/j2 D d h�f; f i:

Also, the map x 7! Ex is a .d � 1/-to-1 map. So,

k Ef k2 D
X
x

jf .Ex/j2 D
X
y

X
xWExDy

jf .y/j2 D .d � 1/kf k2: (13)

Thus,

d h�f; f i D kf � Ef k2 D d � kf k2 � 2hf; Ef i: (14)

Note that the Busemann function satisfies

�b.x/ D
X
y

P.x; y/.b.x/ � b.y// D �
d � 2

d
DW �
;

and also jb.x/ � b.y/j D 1 for any x � y.
Let u be an eigenfunction �u D �u. Note that

h2�.b; u/; ui D
1

2
E.b; u2/ D h�b; u2i D �
kuk2:

Thus,

k2�.b; u/ � u�bk2 D 4k�.b; u/k2 C 
2 � kuk2 C 2
h2�.b; u/; ui

D 4k�.b; u/k2 � 
2 � kuk2: (15)

Also,

2�.b; u/.x/ D
X
y

c.x; y/.b.x/ � b.y//.u.x/ � u.y//

D �

X
y¤Ex

c.x; y/.u.x/ � u.y//C c.x; Ex/.u.x/ � u.Ex//

D ��u.x/C
2

d
.u.x/ � u.Ex// D

� 2
d
� �

�
u.x/ �

2

d
Eu.x/;
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so using (13) and (14), assuming that kuk D 1,

k2�.b; u/k2 D .1 � � � 
/2kuk2 C
4

d2
kEuk2 �

4

d
.1 � � � 
/hu; Eui

D .1 � �/2 C 
2 � 2
.1 � �/C
4

d2
.d � 1/ � 2.1 � � � 
/.1 � �/

D 
2 C .1 � �min/
2
� .1 � �/2: (16)

Finally,

4ƒ.b; u/ D
X
x;y

c.x; y/jb.x/ � b.y/j2 � ju.x/ � u.y/j2 D 2�:

Combining this with (15), (16), and plugging into Lemma 5, we have that

kX
iD1

j�kC1 � �i j
2
� .1 � �i / � 2

kX
iD1

.�kC1 � �i / � .�i � �min/ � .1 � �i C 1 � �min/

�
8
p
d � 1

d
�

kX
iD1

.�kC1 � �i / � .�i � �min/;

where we used �i � �min D 1 �
2
p
d�1
d

.

5. Applications of Yang-type inequalities

In this section, we derive some applications of the Yang-type inequality on graphs. Let
.V; c/ be the network with the bottom of the spectrum �min. For any finite subset �,
let ¹�iº

j�j
iD1 be the Dirichlet eigenvalues of the Laplace on �. Set

�i ´ �i � �min � 0; 1 � i � j�j: (17)

By the trace of the Laplacian,
j�jX
iD1

�i � j�j:

Hence, for any 1 � k � j�j,
kX
iD1

.1 � �i / � 0:

Corollary 10. Suppose that the network .V; c/ satisfies the Yang-type inequality (3).
Then for any finite subset �,

�2 � �min �

� CYT

1 � �1
C 1

�
.�1 � �min/:
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Proof. This follows from the Yang-type inequality (3) for k D 1.

We prove the following consequences for the Yang-type inequality.

Corollary 11. Suppose that the network .V; c/ satisfies the Yang-type inequality (3).
Then for any finite subset�, if �k � 1CCYT for some 1 � k < j�j, then we have the
following:

�kC1 � �min �

Pk
iD1.�i � �min/.1C CYT � �i /Pk

iD1.1 � �i /
I(i)

kX
iD1

�i � �min

�kC1 � �i
�

1

CYT

kX
iD1

.1 � �i /I(ii)

�kC1 � �k � CYT

Pk
iD1.�i � �min/Pk
iD1.1 � �i /

:(iii)

We remark that (i), (ii), and (iii) are discrete analogs of Yang’s second inequality,
the Hile–Protter inequality, and the Payne–Pólya–Weinberger inequality, respectively.

Proof. Let C D CYT. For assertion (i), without loss of generality, we may assume that
�kC1 > �1, otherwise the result is trivial. By the Yang-type inequality (3),

1

k

X
i

.�kC1 � �i /Œ.�kC1 � �i /.1 � �i � �min/ � C�i � � 0;

where ¹�iºi is defined in (17) and C D CYT. Set ai ´ �kC1 � �i and

bi ´ .�kC1 � �i /.1 � �i � �min/ � C�i :

Note that the function

f .x/´ .�kC1 � x/.1 � x � �min/ � Cx

is non-increasing in
�
�1; 1

2
.1CC C�kC1 ��min/

�
. Moreover, the assumption �k �

1C C yields that

�i �
1

2
.1C C C �kC1 � �min/;

which implies that bi is non-increasing. Using Chebyshev’s inequality, i.e.,X
i

aibi �
1

k

X
i

ai
X
i

bi ;

we have�
�kC1 �

1

k

kX
iD1

�i

�h
�kC1 �

1

k

kX
iD1

.1 � �i / �
1

k

kX
iD1

�i .1C C � �i /
i
� 0:



B. Hua and A. Yadin 952

Note that by �kC1 > �1,

�kC1 >
1

k

kX
iD1

�i :

Thus,

�kC1 �

Pk
iD1 �i .1C C � �i /Pk

iD1.1 � �i /
;

which proves the result (i).
For assertion (ii), without loss of generality, we assume that �k < �kC1. Let C D

CYT. Set g.x/´ x
�kC1�x

, which is convex in x 2 .�1; �kC1/. Hence,

1

k

kX
iD1

�i � �min

�kC1 � �i
D
1

k

kX
iD1

�i

�kC1 � �i
D
1

k

X
i

g.�i /

� g
� 1
k

X
i

�i

�
D

1
k

P
i �i

�kC1 �
1
k

P
i �i

; (18)

where we used Jensen’s inequality for g.x/. By assertion (i),

�kC1 �

Pk
iD1 �i .1C C � �i /Pk

iD1.1 � �i /

D
C
Pk
iD1 �iPk

iD1.1 � �i /
C

Pk
iD1 �i .1 � �i /Pk
iD1.1 � �i /

�
C
Pk
iD1 �iPk

iD1.1 � �i /
C
1

k

kX
iD1

�i ;

where we used Chebyshev’s inequality in the last line. By plugging it into (18), we
prove the result (ii).

For assertion (iii), we assume that �k < �kC1. By assertion (ii),Pk
iD1.�i � �min/

�kC1 � �k
�

kX
iD1

�i � �min

�kC1 � �i
�

1

CYT

kX
iD1

.1 � �i /;

which yields the result.

We remark that for amenable groups, groups with Abelian quotients, and d -trees,
the discrete analogs of the Payne–Pólya–Weinberger inequality and the Hile–Protter
inequality as in Corollary 11 without the assumption that �k � 1CCYT for some 1 �
k < j�j, can be derived using same arguments in [35, Theorem 1.1 and Theorem 1.3].

We recall a recursion formula proved by Cheng and Yang [22], see also [35, The-
orem 4.2] and [3, Lemma 8.9].
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Proposition 12. Let a1 � a2 � � � � � akC1 be any positive numbers and � > 0 such
that

kX
iD1

.akC1 � ai /
2
� �

kX
iD1

ai .akC1 � ai /:

Define

Fk D
�
1C

�

2

�� 1
k

kX
iD1

ai

�2
�
1

k

kX
iD1

a2i :

Then we have

FkC1 �
�k C 1

k

��
Fk :

Now, we prove an upper bound estimate for �k .

Corollary 13. Suppose that the network .V; c/ satisfies the Yang-type inequality (3).
Then for any finite subset �, if �k � 1 � ı for some ı > 0, then

�kC1 � �min � .1C �/k
�
2 .�1 � �min/;

where � D 1
ı
CYT.

Proof. Let �i ´ �i � �min. By the Yang-type inequality (3), we have

kX
iD1

.�kC1 � �i /
2.1 � �i / � C �

kX
iD1

.�kC1 � �i /�i ;

where C D CYT. Since �k � 1 � ı, 1 � �i � ı for any 1 � i � k. This yields that

kX
iD1

.�kC1 � �i /
2
� � �

kX
iD1

.�kC1 � �i /�i ; (19)

where � D C
ı

. By the recursion formula in Proposition 12, setting ai D �i ,

FkC1 �
�k C 1

k

��
Fk :

Since the above result holds for all small k, we have

FkC1

.k C 1/�
�
Fk

k�
� � � � � F1 D

�

2
a21:

By (19), for Ak D 1
k

P
i ai ; Bk D

1
k

P
i a
2
i ;�

akC1 �
�
1C

�

2

�
Ak

�2
�

�
1C

�

2

�2
A2k � .1C �/Bk

D .1C �/Fk �
�

2

�
1C

�

2

�
A2k :
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Hence,

a2kC1 �
2.1C �/2

�
Fk � .1C �/

2k�a21:

This proves the result.
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