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Levinson’s theorem for two-dimensional scattering systems:
It was a surprise, it is now topological!

Angus Alexander, Thanh Duc Nguyen, Adam Rennie, and Serge Richard

Abstract. We prove a general Levinson’s theorem for Schrödinger operators in two dimensions
with threshold obstructions at zero energy. Our results confirm and simplify earlier seminal
results of Bollé, Gesztesy et al., while providing an explicit topological interpretation. We
also derive explicit formulas for the wave operators, and so show that they are elements of a
C�-algebra introduced by Cordes. As a consequence of our approach, we provide an evaluation
of the spectral shift function at zero in the presence of p-resonances.

1. Introduction

We re-examine scattering theory for two-dimensional Schrödinger operators, a chal-
lenging subject that has been the focus of many studies. The aim of the present
paper is threefold. We firstly confirm the results obtained in [6] for Levinson’s the-
orem. Secondly, we recast their proof in an updated framework with more powerful
tools. Thirdly, we restore the topological nature of Levinson’s theorem by exhib-
iting it as an index theorem in scattering theory. In doing so, we reach our main
result and recover the analytic formula for the number of bound states stated in [6,
Theorem 6.3], and below in (1.2). Our general approach to index theorems in scat-
tering theory has been described in the review paper [36] and illustrated in several
examples [2, 16, 17, 24–29, 33, 35, 37].

With H0 the free Hamiltonian and V a suitable potential, it is known that the
0-energy behaviour of the self-adjoint operator H D H0 C V is fairly complicated
and plays a crucial role. Namely, the possible coexistence of 0-energy bound states
and of two types of 0-energy resonances has an impact on propagation properties of
the evolution group and on boundedness of the wave operators in various spaces. For
concreteness, let us immediately recall from [21, Theorem 6.2] that for a two-dimen-
sional Schrödinger operator H , a solution ‰ ¤ 0 of the equation H‰ D 0 is an
s-resonance if ‰ 2 L1.R2/ but ‰ 62 Lp.R2/ for any p < 1, ‰ is a p-resonance
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if ‰ 2 Lp.R2/ for any p > 2 but ‰ 62 L2.R2/, and ‰ is an eigenfunction of H if
‰ 2 L2.R2/. Note that, in the case of a spherically symmetric potential V , the attrib-
utes s or p match with the s- or p-orbitals in atomic physics, see also [30, Table 1].
A short review of the corresponding literature is provided below.

The intricate 0-energy behaviour of two-dimensional Schrödinger operators has
also a tremendous impact on the so-called Levinson’s theorem, see (1.2). It was shown
in [7], and later confirmed in [6], that an s-resonance does not play any role in this
context while any p-resonance leads to a contribution of 1, similar to bound states.
These properties are in sharp contrast from the one-dimensional or three-dimensional
situation, in which resonances give a contribution of ˙1

2
, and for that reason it was

announced as a surprise in the first of the two mentioned papers. Unfortunately, the
proofs of the results of [6] are based on double asymptotic expansions of the resolvent,
which make them strenuous to follow. Note that the expression half-bound states for
resonances in dimension 1 and 3 has been coined because of the mentioned contribu-
tion˙1

2
, but this expression is no more meaningful in the present context.

Before presenting our results in more detail, let us provide a brief (and non-
exhaustive) description of the literature related to our work. A decade after the two
surprising papers [6, 7], a renewed interest in the two-dimensional case has been
triggered by the work [48] and then [22] on the Lp-boundedness of the wave operat-
ors. However, these works were conducted under the assumption that 0-energy bound
states and 0-energy resonances are absent (the so-called regular or generic case). The
next breakthrough came with the derivation in [21] of a simplified resolvent expan-
sion, no longer given as a two parameter expansion, but in terms of powers of a
single parameter. Subsequently, numerous works took advantage of this simplified
resolvent expansion, as for example [4, 13, 38, 42] in which the assumption of the
absence 0-energy bound states and 0-energy resonances remains. In other works, it
was assumed that 0-energy bound states and p-resonances are absent, as for example
in [45], or that only the p-resonances are absent, as in [11]. The first results on the
behaviour of the Schrödinger evolution in the general case appeared then in [12].
More recently, two-dimensional Schrödinger operators with point interactions have
been investigated: the boundedness of the wave operators in Lp-spaces in the regular
case has been discussed in [9], while a full picture has been provided in [49]. Simul-
taneously, results on the scattering operator in the general setting have been exhibited
in [40], together with an analysis of the wave operators in the absence of p-reson-
ance. In particular, this paper contains the confirmation of the 0-energy behaviour of
the scattering matrix, namely lim�&0 S.�/ D 1, obtained in [6] based on the double
asymptotic expansion of the resolvent. Finally, building on [49], Lp-boundedness for
more general Schrödinger operators with threshold obstructions has been fully invest-
igated in [50].
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Our approach for obtaining Levinson’s theorem as an index theorem in scattering
theory is based on a detailed study of the wave operators. Let us recall their definition,
and refer to Section 2 for more details. We consider the scattering system given by
the pair of operators .H;H0/, where H0 is the Laplacian in the Hilbert space L2.R2/
and H ´ H0 C V with V a real potential decaying rapidly at infinity. Under quite
general conditions on V it is known that the wave operators

W˙´ s-lim
t!˙1

eitH e�itH0

exist and are complete. In particular, they are Fredholm operators with no kernel
and with a cokernel given by the subspace spanned by the eigenfunctions of H .
This subspace is of finite dimension for sufficiently fast decaying potential. Another
important operator in this context is the scattering operator defined by S ´ W �CW�.
This operator is unitary in L2.R2/. Since S strongly commutes with H0, the operator
S decomposes in the spectral representation ofH0. Thus, if we denote by F0 the unit-
ary map from L2.R2/ to L2.RCI L2.S// satisfying .F0H0f /.�/D �.F0f /.�/ for any
f in the domain of H0, then one has F0SF�0 D ¹S.�/º�2RC , meaning that S is unit-
arily equivalent to a family of unitary operators ¹S.�/º�2RC in L2.S/. For historical
reasons, the operator S.�/ is called the scattering matrix at energy �, even though it
acts on an infinite-dimensional Hilbert space L2.S/µ h.

By using the stationary representation of the wave operators, our first result is a
new formula for the wave operator W�. More precisely, for V decaying fast enough,
we show that the following equality holds:

F0.W� � 1/F
�
0 D

�1
2
.1 � tanh.�AC//˝ 1h

�
.S.L/ � 1/ �N2„B CK;

whereAC corresponds to the generator of the dilation group in L2.RC/, S.L/ denotes
the operator of multiplication by the function � 7! S.�/, and K is a compact oper-
ator. So far, the product N2„B of three bounded operators is not really meaningful,
but let us stress that this term is non-compact whenever H admits one or two p-res-
onances at 0. The precise definitions of these three operators are given in (3.4), (3.10),
and (3.12); for now, it is enough to mention that N2 and B are operator valued mul-
tiplication operators. Let us emphasise that this formula for W� is at the root of the
topological version of Levinson’s theorem, and similar formulas have been obtained
in several contexts, see for example [5, 15, 18, 19, 32, 34, 39, 43].

In order to get a better understanding of the new termN2„B , a new representation
is better suited. By conjugation with a suitable unitary rescaling, the wave operator
W� can be realised on L2.RIL2.S//, and by the decomposition into even and odd func-
tions on R, we end up studying the wave operator in the Hilbert space L2.RCIL2.S//2.
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In this representation, the operator W� takes the form�
1 0
0 1

�
C
1

2

�
1 tanh.�2

p
��N/�.AC/

N�.AC/ tanh.�2
p
��N/ 1

��
zSe.L/�1 zSo.L/
zSo.L/ zSe.L/�1

�
C

�
. zN2/e.L/ . zN2/o.L/

. zN2/o.L/ . zN2/e.L/

�� 2
1Ci2AC

0

0 2
1Ci2AC

��
zBe.L/ zBo.L/
zBo.L/ zBe.L/

�
CK; (1.1)

with �.AC/´ � tanh.�AC/C i cosh.�AC/�1, the indices e and o for the even or
odd part of a function defined on R, and the tilde functions meaning a rescaling, as
for example zS.x/´ S.e�2x/ for any x 2 R. Again, the operator K is a compact
operator. Let us emphasise some of the specific features of the previous formulas. It
involves functions of three natural operators acting on L2.RC/, namely the Neumann
Laplacian ��N, the operator L of multiplication by the variable, and the generator
AC of the unitary dilation group. In addition, it is shown in the following sections that
all functions involved in this expression are continuous functions having limits either
at˙1, or at 0 andC1.

Obtaining formula (1.1) involves purely analytical tools, starting from the asymp-
totic expansion of the resolvent provided by [21], and using various analytical tricks
for studying the stationary formula for the wave operators. Note that some of these
tricks have been suggested by [50], even if the aims and the methods are different.
These investigations are presented in Section 3 and in the first half of Section 4. The
next key observation is that a C �-algebra E generated by functions of the three gen-
erators mentioned above has been thoroughly studied in [8, Chapter 5]. In particular,
a precise description of the quotient of this algebra by the set of compact operators
is provided: the quotient consists of continuous functions defined on the edges of
a hexagon (this hexagon is illustrated in Section 5). By considering M2.E/, the set
of 2 � 2 matrices with values in E, enlarging this algebra by a tensor product with
K.L2.S//, and adding a unit, one ends up with a C �-algebra in which the expres-
sion (1.1) for the wave operator is natural.

Once in this framework, the rest of the investigation is more algebraic, and is
presented in the second half of Section 4 and in Section 5. It firstly consists in com-
puting the image of (1.1) in the quotient algebra. Since W� is a Fredholm operator,
this image is given by a continuous function � defined on the edges of the hexagon
and taking unitary values in CCM2.K.L2.S///. This function is provided in Propos-
ition 4.4 and in Lemma 4.7. The operators zN2 and zB take a much more explicit and
interesting form in the quotient algebra: together they are the image of a projection Pp
which is directly linked with the p-resonance of H , see (4.9) for a precise definition
of Pp and Remark 4.6 for a discussion about the specific form of this projection.

Secondly, using a K-theoretic argument, the function � can be linked to the pro-
jection Ep.H/ on the subspace spanned by the eigenvectors of H . This construction
is presented in Section 5 and is based on a description of the index map borrowed
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from [41, Proposition 9.2.4.(ii)]. Thirdly, by applying traces, one infers a numerical
equality. This equality involves the index of a Fredholm operator WS defined by

WS � 1 D
�1
2
.1 � tanh.�AC//˝ 1h

�
.S.L/ � 1/;

and the operator trace of the bound state projection Ep.H/. It results in the following
equality:

Index.WS /C dim.Pp/ D � #�p.H/;

where #�p.H/ corresponds to the cardinality of the set of eigenvalues ofH , multipli-
city counted. Note that the dimension of Pp corresponds to the number of p-reson-
ances, and is 0, 1, or 2. By taking care of the high energy behaviour of the scattering
matrix, one finally deduces our main result:

1

2�i

1Z
0

tr.S.�/�S 0.�// d�C
1

4�

Z
R2

V.x/ dx C dim.Pp/ D � #�p.H/: (1.2)

Simultaneously, we also determine the value of the spectral shift function at zero in
the presence of p-resonances. We refer to Section 5 for more precise statements.

Equality (1.2) confirms that each p-resonance provides a contribution of 1 to
Levinson’s theorem, while the s-resonance does not provide any contribution. For
comparison, let us recall the version of Levinson’s theorem obtained in [6, The-
orem 6.3] under the assumption of exponential decay of the potential and the conditionR

R2 V.x/ dx ¤ 0. In the framework of [6], Levinson’s theorem is expressed as

1Z
0

Im..H � �� i0/�1 � .H0 � �� i0/�1/ d�D��N�C���1;�1 �
1

4

Z
R2

V.x/ dx;

(1.3)
whereN� is the number of strictly negative eigenvalues ofH and���1;�1 is equal to
the number of 0-energy eigenvalues and p-resonances. Taking into account the formal
identity [6, equation (6.45)],

Im tr..H � � � i0/�1 � .H0 � � � i0/�1/ D �
i

2

d
d�

tr.ln.S.�///;

it follows that (1.3) corresponds to (1.2).
Let us finally mention one main difference between (1.2) and (1.3): the contribu-

tion of the p-resonance is not on the same side of the equality, and the same remark
holds for the expression involving the integral of V . Our right-hand side term con-
tains only (minus) the trace of Ep.H/, which corresponds to the Fredholm index of
W�. In our approach, the contribution of the p-resonance projection Pp is coming
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from the function � mentioned above, which describes the image of the wave oper-
ator W� under the quotient map. In that respect, the p-resonance data has to stay on
the same side as the scattering operator, which is also coming from � . On the other
hand, the term involving the integral of V is due to a regularization process for the
computation of Index.WS /. For that reason, it also has to stay on the left-hand side
of equality (1.2). Altogether, these contributions coming from scattering theory are
equal to the contribution due to index theory, namely (minus) the trace on Ep.H/.
Even though dim.Pp/ is an integer, moving it to the other side of the equality sign
would remove the topological character of this equality. As said in the title: it was a
surprise, it is now topological!

Notations. N ´ ¹0; 1; 2; : : :º is the set of natural numbers, S the Schwartz space
on R2, RC´ .0;1/, and h�i ´

p
1C j � j2. The sets Hs

t are the weighted Sobolev
spaces over R2 with index s 2 R for derivatives and index t 2 R for decay at infinity
[3, Section 4.1], and with shorthand notations Hs´Hs

0, Ht´H0
t , and H´H0

0 D

L2.R2/. For any s; t 2 R, the 2-dimensional Fourier transform F is a topological
isomorphism of Hs

t onto Ht
s , and the scalar product h�; �iH (antilinear in the first

argument) extends continuously to a duality h�; �iHs
t ;H
�s
�t

between Hs
t and H�s�t . Given

two Banach spaces G1 and G2, B.G1;G2/ (resp. K.G1;G2/) denotes the set of bounded
(resp. compact) operators from G1 to G2, with shorthand notation B.G1/´B.G1;G1/

(resp. K.G1/´K.G1;G1/). Finally,˝ stands for the closed tensor product of Hilbert
spaces or the spatial tensor product of operators.

2. Preliminaries

In this section, we briefly recall some notations and preliminary results introduced in
[40, Section 2].

2.1. Free operator

Set h´ L2.S/ and H ´ L2.RCIh/, and letH0 be the (positive) self-adjoint operator
in H D L2.R2/ given by minus the Laplacian �� on R2. Then, the unitary operator
F0WH! H defined by

..F0f /.�//.!/ D 2
�1=2.Ff /.

p
�!/; f 2 S; � 2 RC; ! 2 S; (2.1)

is a spectral transformation for H0 in the sense that

.F0H0f /.�/ D �.F0f /.�/ D .LF0f /.�/; f 2 H2, a.e. � 2 RC,

with L the maximal multiplication operator by the variable � 2 RC in H . Moreover,
for each � 2 RC, the operator F0.�/ W S! h given by F0.�/f ´ .F0f /.�/ extends
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to an element of B.Hs
t ; h/ for any s 2 R and t > 1=2, and the function RC 3 � 7!

F0.�/ 2 B.Hs
t ; h/ is continuous.

The asymptotic expansion of F0.�/ as �& 0 plays an important role. By expand-
ing the exponential e�i

p
�!�x in a Taylor series, one gets

F0.�/ D 0 C
p
�1 C �2 C o.�/; � 2 RC; (2.2)

with j W S! h (j D 0; 1; 2) the operator given by

.jf /.!/´
.�i/j

23=2�.j Š/

Z
R2

dx.! � x/jf .x/; f 2 S; ! 2 S:

The operator j extends to an element of B.Hs
t ; h/ for any s 2 R and t > j C 1,

which implies that the expansion (2.2) holds in B.Hs
t ;h/ as �& 0 for any s 2 R and

t > 3. We shall sometimes use the abbreviated notation 2.�/, or O.�/, for the sum
�2 C o.�/ in (2.2).

2.2. Perturbed operator

Let us now consider a potential V 2 L1.R2IR/ satisfying for some � > 1 the bound

jV.x/j � Const:hxi��; a.e. x 2 R2. (2.3)

Then, the perturbed Hamiltonian H ´ H0 C V is a short range perturbation of H0,
and it is known that the corresponding wave operators

W˙´ s-lim
t!˙1

eitH e�itH0 (2.4)

exist and are complete. As a consequence, the scattering operator S ´ W �CW� is
unitary in H. Now, define for z 2 C nR the resolvents of H0 and H

R0.z/´ .H0 � z/
�1 and R.z/´ .H � z/�1:

In order to recall properties of R0.z/ and R.z/ as z approaches the real axis, it is
convenient to decompose the potential V according to the following rule: for a.e.
x 2 R2 set

v.x/´ jV.x/j1=2 and u.x/´

´
C1 if V.x/ � 0,

�1 if V.x/ < 0,
(2.5)

so that u is self-adjoint and unitary and V D uv2. Then, using the fact thatH does not
have any positive eigenvalues [23, Section 1] and that a limiting absorption principle
holds for H0 and H [1, Theorem 4.2], we infer that the limits

vR0.�˙ i0/v´ lim
"&0

vR0.�˙ i"/v and vR.�˙ i0/v´ lim
"&0

vR.�˙ i"/v;
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exist in B.H/ and are continuous in the variable � 2 RC. This, together with the
relation

u � uvR.�˙ i"/vu D .uC vR0.�˙ i"/v/
�1; � 2 RC; " > 0;

implies the existence and the continuity of the function RC 3 � 7! .u C vR0.� ˙

i0/v/�1 2B.H/. Furthermore, one has lim�!1.uC vR0.�˙ i0/v/
�1D u in B.H/,

since lim�!1 vR0.�C i0/v D 0 in B.H/ [47, Proposition 7.1.2]. On the other hand,
the existence in B.H/ of the limits lim�&0.u C vR0.� ˙ i0/v/

�1 depends on the
presence or absence of eigenvalues or resonances at 0-energy. This problem has been
studied in detail in [21] in dimensions 1 and 2. We recall here the main result in
dimension 2 [21, Theorem 6.2 (ii)]. Take � 2 C� with Re.�/ � 0, let �´ 1= ln.�/
(with ln the principal value of the complex logarithm), and set

M.�/´ uC vR0.��
2/v:

Then, if V satisfies (2.3) with � > 11 and if 0 < j�j < �0 with �0 > 0 small enough,
the operator M.�/�1 admits an expansion

M.�/�1 D I1.�/ � g.�/I2.�/ �
g.�/�

�2
I3.�/; (2.6)

with

I1.�/´ .M.�/C S1/�1;

I2.�/´ .M.�/C S1/�1S1.M1.�/C S2/
�1S1.M.�/C S1/�1;

I3.�/´ .M.�/C S1/�1S1.M1.�/C S2/
�1

� S2
�
T3m.�/

�1T3 � T3m.�/
�1b.�/d.�/�1S3 � S3d.�/

�1c.�/m.�/�1T3

C S3d.�/
�1c.�/m.�/�1b.�/d.�/�1S3 C S3d.�/

�1S3
�
S2

� .M1.�/C S2/
�1S1.M.�/C S1/�1;

and where S1 � S2 � S3 are finite-dimensional orthogonal projections in H, T3 ´
S2 � S3, gWC!C satisfies g.�/DO.��1/ for 0 < j�j< �0,mWC!B.H/ satisfies
m.�/ D O.��1/ for 0 < j�j < �0, and all other factors are operator-valued functions
having limits in B.H/ as � ! 0. As proved in [21, Theorem 6.2], the dimension of
T2´ S1 � S2 is at most 1 and this projection is related to s-resonance, the dimension
of T3 is at most 2 and this projection is related to p-resonances, and the projection
S3 is related to the possible 0-energy bound state(s) with its dimension equal to the
number of linearly independent 0-energy eigenfunctions.

One of the initial tasks in [40] has been to provide the expansion near 0 of an
operator related to M.�/ which plays an important role for the stationary expression
of the wave operators. The statement is recalled below, with the convention that �> 0,
� ´ �i

p
� which means that � D 1

ln.�/=2�i�=2 .
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Theorem 2.1 (Theorem 4.7 of [40]). If V satisfies (2.3) with � > 11, then one has as
�& 0

.uC vR0.�C i0/v/
�1vF0.�/

�

D
g.�/�
p
�

�
T3 � S3d.�/

�1c.�/
�
m.�/�1T3v

�
1 C

1

�
S3O.1/CO.1/

D
�
p
�
S2
�
T3 � S3d.�/

�1c.�/
�
g.�/m.�/�1T3v

�
1 C

1

�
S3O.1/CO.1/

D S2

� �
p
�
.T3 � S3d.�/

�1c.�//g.�/m.�/�1T3v
�
1 C

1

�
S3O.1/CO.1/

�
C S?2 O.1/; (2.7)

where S3O.1/ denotes a family of bounded operators with their range in the subspace
defined by the projection S3, and similarly for S2O.1/ and S?2 O.1/.

In part of the analysis performed in [40] the assumption T3 D 0 was imposed.
In this case, the main singularity in this expansion disappears, and only the milder
singular term 1

�
S3O.1/ C O.1/ remains. Note that the factor S3 is associated with

0-energy bound states, while the projection T3 is related to the so-called p-resonances.
In the sequel, we shall remove the assumption that T3 D 0.

3. Stationary expression for the wave operators

In this section, we start by recalling the stationary expression for the wave operator
W�. We then decompose this expression into smaller pieces, which will be analysed
separately. This analysis is taking place in the spectral representation of H0, namely
in the space H .

Since the subsequent developments are based on the asymptotic expansions
provided in (2.6) and in (2.7), which hold under the assumption (2.3) with � > 11,
we shall assume this decay in the rest of the paper, without repeating it. Under this
assumption, the wave operators (2.4) obtained by the time-dependent approach and
those described by the time-independent approach coincide [46, Theorem 5.3.6]. For
suitable '; 2 H D L2.RCI h/, we recall the stationary expression for W�, namely

hF0.W� � 1/F
�
0'; iH

D �

Z
R

d� lim
"&0

1Z
0

d�
˝
F0.�/v1.uC vR0.�C i"/v/�1vF�0ı".L � �/';

.� � �C i"/�1 .�/
˛
h
; (3.1)
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where
ı".L � �/´

"

�
.L � �C i"/�1.L � � � i"/�1:

Note that we have artificially inserted an identity operator 1 in the above expres-
sion. Indeed, this identity operator can be rewritten as

1 D S2 C S?2 ;

which then provides two expressions from (3.1). The one with S?2 does not contain
any singularity at 0-energy, and has been thoroughly studied in [40].

We shall now carefully decouple the low energy and the high energy parts of this
expression. For that purpose, let us fix % 2 C.RCI Œ0; 1�/ with

%.�/ D

´
0; � < 1

4
;

1; � > 3
4
:

(3.2)

The function 1 � %WRC ! Œ0; 1� is denoted by %?. We shall also use two auxiliary
functions %1 2 C.RCI Œ0; 1�/ and %0 2 C.RCI Œ0; 1�/ with

%1.�/ D

´
0; � < 1

8
;

1; � > 1
4
;

and %0.�/ D

´
1; � < 3

4
;

0; � > 7
8
:

(3.3)

As a consequence, %%1 D % and that %?%0 D %?. Finally, for ' 2 H and " > 0 we
also set

Q'".�/´ S2.uC vR0.�C i"/v/
�1vF�0ı".L � �/%

?.L/':

Then the term with the factor S2 can be rewritten asZ
R

d� lim
"&0

1Z
0

d�hF0.�/v.� � � � i"/�1S2.uC vR0.�C i"/v/�1

� vF�0ı".L � �/';  .�/ih

D

1Z
0

d� lim
"&0

1Z
0

d�hF0.�/vS2.� � � � i"/�1S2.uC vR0.�C i"/v/�1

� vF�0ı".L � �/%.L/';  .�/ih

C

1Z
0

d� lim
"&0

1Z
0

d�hF0.�/vS2%?.�/
1
p
�
.
p
� �
p
�C
p
�/

� .� � � � i"/�1 Q'".�/;  .�/ih

C

1Z
0

d� lim
"&0

1Z
0

d�hF0.�/vS2%.�/
1

�
.� � �C �/

� .� � � � i"/�1 Q'".�/;  .�/ih

D R0 CR1 CR2 CR3 CR4
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where

R0´

1Z
0

d� lim
"&0

1Z
0

d�hF0.�/vS2.� � � � i"/�1S2
�
uC vR0.�C i"/v

��1
� vF�0ı".L � �/%.L/';  .�/ih;

R1´

1Z
0

d� lim
"&0

1Z
0

d�hF0.�/vS2%?.�/
1
p
�
.
p
� �
p
�/

� .� � � � i"/�1 Q'".�/;  .�/ih;

R2´

1Z
0

d� lim
"&0

1Z
0

d�hF0.�/vS2%?.�/
1
p
�
.� � � � i"/�1

p
� Q'".�/;  .�/ih;

R3´

1Z
0

d� lim
"&0

1Z
0

d�hF0.�/vS2%.�/
1

�
.� � �/.� � � � i"/�1 Q'".�/;  .�/ih;

R4´

1Z
0

d� lim
"&0

1Z
0

d�hF0.�/vS2%.�/
1

�
.� � � � i"/�1� Q'".�/;  .�/ih:

These various terms will be treated below. For now, let us observe that for any
' 2 Cc.RCI h/ and any � > 0, the following limit exists in H, as a consequence of
[39, Lemma 2.3]:

s-lim
"&0

Q'".�/ D %
?.�/S2

�
uC vR0.�C i0/v

��1
vF0.�/

�'.�/:

It is then natural to consider the subsequent operator-valued function of � and study
its behaviour for � & 0. The following statement is mainly a consequence of the
expansion (2.7) and the properties of the function %?.

Lemma 3.1. The following map is continuous and bounded:

RC 3 � 7! B.�/´ %?.�/
p
� ln.�/S2Œ.uC vR0.�C i0/v/�1vF0.�/�� 2 K.h;H/:

(3.4)
The multiplication operator

BWCc.RCI h/! L2.RCIH/

given, for ' 2 Cc.RCI h/ and � 2 RC, by

.B'/.�/´ B.�/'.�/

extends continuously to an element of B.H ; L2.RCIH//.
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Proof. The continuity of the functions � 7!B.�/ follows from the continuities already
mentioned in Section 2. For the behavior of this function near 0, we can use The-
orem 2.1 and replace the term inside the square bracket by the right-hand side of (2.7).
Then, by recalling that g.�/D O.��1/ andm.�/�1 D O.�/ as �& 0, one infers that
the first term behaves as O..

p
� ln.�//�1/ in the limit �& 0. The factor

p
� ln.�/

makes this product bounded in the limit �& 0. For � > 3
4

, the function � 7! B.�/

vanishes, since the factor %?.�/ has this property. The rest of the statement is a direct
consequence of boundedness of the map � 7! B.�/.

Let us now provide the analysis of the terms R0 to R4 which appear in our study
of the stationary expression for the wave operator W�. An important role is played
by the generator of dilations, which we now describe. We recall that the dilation
group ¹UCt ºt2R in L2.RC/, with self-adjoint generator AC, is given by .UCt '/.�/´
et=2 '.et �/ for ' 2 Cc.RC/, � 2RC and t 2R. Then, by standard functional calculus
for unitary groups one has

Œ'.AC/f �.x/ D .2�/
� 12

1Z
�1

.F�1'/.t/ŒU
C
t f �.x/ dt ; (3.5)

with F1 the usual Fourier transform on L2.R/ and '; f 2 C1c .R/. We shall also use
the function # WR! R given for any s 2 R by

#.s/´
1

2
.1 � tanh.�s//: (3.6)

Lemma 3.2. The termR0 can be rewritten as h2�iN0.#.AC/˝ 1H/B0'; iH , with
N0 and B0 defined below in (3.7) and in (3.8) respectively.

Proof. Let us firstly define the map

RC 3 � 7! N0.�/´ F0.�/vS2 2 K.H; h/: (3.7)

It is easy to check that this function is continuous, admits a limit as � & 0, and
vanishes as �!1, see [40, Lemma 4.9 (a)] and its proof for a similar statement.
The multiplication operator

N0WCc.RCIH/! H

given, for � 2 Cc.RCIH/ and � 2 RC, by

.N0�/.�/´ N0.�/�.�/

extends then continuously to an element of B.L2.RCIH/;H /.
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Secondly, similar arguments to those of Lemma 3.1 show that the map

RC 3 � 7! B0.�/´ %.�/S2
�
uC vR0.�C i0/v

��1
vF0.�/

�
2 K.h;H/ (3.8)

is continuous and bounded. As a consequence, the multiplication operator

B0WCc.RCI h/! L2.RCIH/

given, for ' 2 Cc.RCI h/ and � 2 RC, by

.B0'/.�/´ B0.�/'.�/

extends continuously to an element of B.H ; L2.RCIH//.
Then, by considering ';  2 C1c .RC/ ˇ C.S/, we can prove as in [38, The-

orem 2.5] that the expression R0 given by

1Z
0

d� lim
"&0

1Z
0

d�hF0.�/vS2.� � � � i"/�1S2.uC vR0.�C i"/v/�1

� vF�0ı".L � �/%.L/';  .�/ih

reduces to
h2�iN0.#.AC/˝ 1H/B0'; iH :

Note that the key argument in the proof is an application of Lebesgue’s dominated
convergence theorem, as shown in the proof of [38, Theorem 2.5].

For the next statement, recall that % is a localization near1 while %0 is a localiz-
ation near 0, see (3.2) and (3.3).

Lemma 3.3. The term R3 can be rewritten as hK'; iH , with K 2 K.H /.

Proof. For �; � > 0 and " > 0 we consider the kernel

‚".�; �/´ %.�/
1

�
.� � �/.� � � � i"/�1

1
p
� ln.�/

%0.�/:

This function defines a Hilbert–Schmidt operator in L2.RC/ with Hilbert–Schmidt
norm satisfying

k‚"k
2
HS D

1Z
0

d�

1Z
0

d�j‚".�; �/j2

�

1Z
1
4

d�
�%.�/
�

�2 7
8Z
0

d�
� %0.�/
p
� ln.�/

�2
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with an upper bound independent of ". By an application of the dominated conver-
gence theorem, one then infers that ‚" converges in the Hilbert–Schmidt norm to ‚0
defined for �; � > 0 by ‚0.�; �/´

%.�/
�

%0.�/p
� ln.�/

.
By an application of the Lebesgue dominated convergence theorem, one obtains

as in the previous proof that for ';  2 C1c .RC/ˇ C.S/, the expression R3 given
by

1Z
0

d� lim
"&0

1Z
0

d�
D
F0.�/vS2%.�/

1

�
.� � �/.� � � � i"/�1 Q'".�/;  .�/

E
h

reduces to
hN0.1L2.RC/ ˝ S2/.‚0 ˝ 1H/B'; iH ;

with N0 defined in (3.7) and with B defined in (3.4). As S2 is finite rank, the product
.1L2.RC/˝ S2/.‚0˝ 1H/ corresponds to a compact operator on L2.RCIH/. By mul-
tiplying this factor by the bounded operators B on the right and N0 on the left, one
obtains an element of K.H /.

Lemma 3.4. The term R4 can be rewritten as

h2�iN4.#.AC/˝ 1H/.M4 ˝ 1H/B'; iH ;

with B defined in (3.4), and M4 and N4 bounded multiplication operators defined in
proof.

Proof. For � > 0 we set

N4.�/´ N0.�/%.�/
1

�
: (3.9)

This operator valued function is bounded, vanishes as �& 0, and satisfies the limit
lim�!1N4.�/ D 0: For � > 0 let us also set

M4.�/´ %0.�/
p
�

1

ln.�/
:

This scalar function is bounded, vanishes for � > 7
8

, and satisfies lim�&0 N4.�/ D

0: The corresponding bounded multiplication operators are denoted by N4 and M4,
respectively.

Then, by considering ';  2 C1c .RC/ ˇ C.S/, we can prove as in [38, The-
orem 2.5] that the expressions R4 given by

1Z
0

d� lim
"&0

1Z
0

d�
D
F0.�/vS2%.�/

1

�
.� � � � i"/�1� Q'".�/;  .�/

E
h
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reduces to
h2�iN4.#.AC/˝ 1H/.M4 ˝ 1H/B'; iH ;

with B defined in (3.4).

Lemma 3.5. The term R2 can be rewritten as

h2�iN2.#.AC/˝ 1H/.M2 ˝ 1H/B'; iH

with B defined in (3.4), and M2 and N2 bounded multiplication operators defined in
proof.

Proof. For � > 0, let us set M2.�/ ´ %0.�/
1

ln.�/ . This scalar function is clearly
bounded, vanishes for � > 7

8
, and satisfies lim�&0M2.�/ D 0. The corresponding

bounded multiplication operator in L2.RC/ are denoted by M2. Let us also define the
map

RC 3 � 7! N2.�/´ F0.�/%
?.�/

1
p
�
vS2 2 B.H; h/: (3.10)

Clearly, this map vanishes as �!1. By the expansion (2.2) together with the algeb-
raic cancellation 0vS2 D 0, as shown in [40, Lemma 3.2 (b)], one infers that this
map admits a limit as �& 0. As a consequence, the operator valued multiplication
operatorN2WCc.RCIH/!H given by .N2�/.�/´ N2.�/�.�/ for � 2 Cc.RCIH/

and � 2 RC, extends then continuously to an element of B.L2.RCIH/;H /.
Then, by considering ';  2 C1c .RC/ ˇ C.S/, we can prove as in [38, The-

orem 2.5] that the expressions R2 given by

1Z
0

d� lim
"&0

1Z
0

d�
D
F0.�/vS2%

?.�/
1
p
�
.� � � � i"/�1

p
� Q'".�/;  .�/

E
h

reduces to
h2�iN2.#.AC/˝ 1H/.M2 ˝ 1H/B'; iH

with B defined in (3.4).

For the study of the term R1 we need some preparatory results. For that purpose,
let us consider the unitary transformation UWL2.RC/! L2.R/ defined for f 2 L2.RC/
and x 2 R by

ŒUf �.x/´
p
2 e�x f .e�2x/: (3.11)

We also introduce the integral operator „W L2.RC/! L2.RC/ with kernel given by

„.�; �/´ %0.�/
1

p
�C
p
�

1
p
� ln.�/

%0.�/: (3.12)

We can then express „ in terms of dilations and position operators.
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Lemma 3.6. The following equality holds in L2.R/:

U„U� D �%0.e�2X /
2

1C i2A
%0.e�2X /CK1

with A the generator of dilation in L2.R/, X the operator by multiplication by the
variable in L2.R/, with remainder K1 2 K.L2.R//.

Proof. By a direct computation on any f 2 L2.R/ one has

ŒU„U�f�.x/ D � %0.e�2x/
Z
R

dy
y

1

1C ex�y
%0.e�2y/f.y/

D � %0.e�2x/
Z
R

dy
y

h 1

1C ex�y
� ��.x � y/

i
%0.e�2y/f.y/ (3.13)

� %0.e�2x/
Z
R

dy
y
��.x � y/%0.e�2y/f.y/; (3.14)

where �� denotes the characteristic function on R�. Observe now that the function

R 3 s 7!
1

1C es
� ��.s/ 2 R

belongs to L1.R/. Then, since the function aWR 3 x 7! %0.e�2x/ 2 R belongs to
C0..�1;1�/ and since the function cWR 3 y 7! 1

y
%0.e�2y/ 2 R belongs to C0.R/,

one infers that (3.13) defines a compact operatorK1 of the form a.X/b.D/c.X/, with
b 2 C0.R/ and where .X;D/ are the canonically conjugate position and momentum
operators on L2.R/.

For (3.14), observe that for x > 0 one has

� %0.e�2x/
Z
R

dy
y
��.x � y/%0.e�2y/f.y/

D �%0.e�2x/

1Z
x

dy
y
Œ%0.e�2X /f�.y/

D �%0.e�2x/

1Z
0

dsŒ%0.e�2X /f�.es x/

D �%0.e�2x/
Z
R

ds�C.s/ e�s=2.UsŒ%0.e�2X /f�/.x/;

where �C denotes the characteristic function of RC and ¹Usºs2R corresponds to the
dilation group in L2.R/. Note that we have assumed x > 0 in the above computation,
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since for x < 0 the factor %0.e�2x/ already vanishes. Now, since the function hWR 3
s 7! �C.s/ e�s=2 2 R belongs to L1.R/, one infers that (3.14) defines an operator of
the form a.X/b.A/a.X/, with the function a introduced above, with the function b
also belonging to C0.R/, and with A the generator of dilation in L2.R/. In fact, the
function b can be explicitly computed by taking the Fourier transform of h and using
an analogue of (3.5), from which we obtain b.s/´ 2

1Ci2s
.

We now consider the term R1.

Lemma 3.7. The term R1 can be rewritten as h.N2„B CK/';  iH with N2 intro-
duced in (3.10), „ introduced in (3.12), B introduced in (3.4), and K 2 K.H /.

Proof. First, we show that for a dense set of '; 2 H and for a.e. � 2 RC we have

lim
"&0

1Z
0

d�h Q'".�/; .
p
� �
p
�/.� � �C i"/�1N2.�/

� .�/iH

D

1Z
0

d�
D
%?.�/S2.uC vR0.�C i0/v/

�1vF0.�/
�'.�/;

1
p
�C
p
�
N2.�/

� .�/
E
H

where N2.�/ has been defined in (3.10). This can be obtained by a straightforward
application of Lebesgue’s dominated convergence theorem by choosing two functions
'; 2 Cc.RCI h/, and by observing that

jh Q'".�/; .
p
� �
p
�/.� � �C i"/�1N2.�/

� .�/iHj

� k Q'".�/kH

ˇ̌̌ p� �p�
� � �C i"

ˇ̌̌
kN2.�/

� .�/kH

� Const:.�/
1

p
�C
p
�
kkN2.�/

� .�/kHk1�supp .�/;

which is clearly L1.RC/ as a function of �. Note that we have used the strong conver-
gence of the map " 7! Q'".�/ in H to infer the uniform bound on k Q'".�/kH.

The rest of the proof is straightforward. Only for the term K it is necessary to
observe that this term is compact since U�K1U˝ S2 2 K.L2.RC/˝H/ with K1 2
K.L2.R// obtained from Lemma 3.6.

Let us now consider the final term R5, namely the one with the factor S?2 inserted
in (3.1). For that purpose, we introduce the map

RC 3 � 7! N5.�/´ F0.�/vS
?
2 2 B.H; h/; (3.15)
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which is continuous, admits a limit as �& 0, and vanishes as �!1, see for example
[40, Lemma 4.8]. The corresponding multiplication operator in B.L2.RCIH/;H / is
denoted by N5. Similarly, we define the map

RC 3 � 7! B5.�/´ S?2 .uC vR0.�C i0/v/
�1vF0.�/

�
2 B.h;H/:

This map is continuous, bounded as �& 0 thanks to the expansion provided in The-
orem 2.1, and vanishes as � ! 1. The corresponding multiplication operator in
B.H ; L2.RCIH// is denoted by B5.

Lemma 3.8. The term

R5´

Z
R

d� lim
"&0

1Z
0

d�
D
F0.�/vS

?
2 .uC vR0.�C i"/v/

�1vF�0ı".L � �/';

.� � �C i"/�1 .�/
E
h

can be rewritten as h2�iN5.#.AC/˝ 1H/B5'; iH .

The proof of this Lemma is very similar to the one of Lemma 3.2 and involves
only an application of Lebesgue’s dominated convergence theorem, as shown in the
proof of [38, Theorem 2.5].

4. Various representations

In this section we provide two new representations for the expressions obtained above.
These representations will be useful for considering Levinson’s theorem as an index
theorem. The first task is to perform some commutations with the function #.AC/
from (3.6) which has appeared several times, The first statement provides the neces-
sary information for these commutations.

Lemma 4.1. Let # be the function introduced in (3.6). Then, for j 2 ¹0; 2; 4; 5º the
following inclusion holds:

Nj .#.AC/˝ 1H/ � .#.AC/˝ 1h/Nj 2 K.L2.RCIH/;H /;

with N0 introduced in (3.7), N2 in (3.10), N4 in (3.9), and N5 in (3.15).

Proof. This type of result has already been proved in [39, Lemma 2.7] and is based on
an argument of Cordes, see for instance [3, Theorem 4.1.10]. The key element is that
the functions � 7! Nj .�/ have limits at 0 and at1, and that the function s 7! #.s/

has a limit at �1 and at 1. For # is property is clear, and for Nj these properties
have been discussed when these functions have been introduced.
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For the next statement, recall that the scattering operator is defined by S ´
W �CW�, and that its representation in the spectral representation of H0 is denoted
by S.L/, namely S.L/´ F0SF

�
0

Corollary 4.2. The following equality holds:

R0 CR2 CR3 CR4 CR5 D �h.#.AC/˝ 1h/.S.L/ � 1/ iH C hK'; iH ;

with K 2 K.H /.

Proof. Let us firstly observe that for any � > 0 one has

N0.�/B0.�/CN2.�/B.�/CN4.�/N4.�/CN5.�/B5.�/

D F0.�/v
h
S2%.�/C S2%

?.�/
1
p
�
� %0.�/

1

ln.�/
� %?.�/

p
� ln.�/

C S2%.�/
1

�
� %0.�/

p
�

1

ln.�/
� %?.�/

p
� ln.�/C S?2

i
�
�
uC vR0.�C i0/v

��1
vF0.�/

�

D F0.�/v
�
S2
�
%.�/C %?.�/2 C %?.�/%.�/

�
C S?2

�
�
�
uC vR0.�C i0/v

��1
vF0.�/

�

D F0.�/v
�
uC vR0.�C i0/v

��1
vF0.�/

�

D
1

�2�i
.S.�/ � 1/

where S.�/ denotes the scattering matrix at energy �. The last equality can be found
for example in [47, Theorem 1.8.1]. It remains then to collect the formulas obtained
in Lemmas 3.2, 3.3, 3.4, 3.5, 3.8, together with Lemma 4.1 to obtain the result.

Collecting the results obtained so far, we have obtained the equality

F0.W� � 1/F
�
0 D

�1
2
.1 � tanh.�AC//˝ 1h

�
.S.L/ � 1/ �N2„B CK; (4.1)

with K 2 K.H /. This equality holds in H D L2.RCI h/.
As suggested by the analysis of the operator „ in Lemma 3.6, we shall firstly

look at this equality in the Hilbert space L2.RI h/ by using the unitary map U defined
in (3.11). The image of „ in this representation has been computed in Lemma 3.6.
For any multiplication operator M defined by RC 3 � 7!M.�/, it is easily seen that
for any f 2 L2.RI h/ one has

ŒUMU�f�.x/ DM.e�2x/f.x/ � ŒM.e�2X /f�.x/:
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Finally, if we consider the dilation group ¹UCt ºt2R we obtain by a straightforward
computation that

ŒUUCt U�f�.x/ D f
�
x �

1

2
t
�
D Œe�it

1
2D f�.x/;

where D D �i d
dx . Summing up this information we find in L2.RI h/ the equality

UF0.W� � 1/F
�
0U
�
D

�1
2

�
1 � tanh

��
2
D
��
˝ 1h

�
. zS.X/ � 1/

C fN2.X/ 2

1C i2A
zB.X/CK; (4.2)

with K 2 K.L2.R; h// and with the tilde functions given by rescaling the arguments.
More precisely, we set zS.X/´ S.e�2X /, fN2.X/´ N2.e�2X /, zB.X/´ B.e�2X /.
As clearly visible in this formula, the three generators X;D; A are involved in this
expression, namely the position operator, the generator of translation, and the gener-
ator of dilations. For completeness, let us recall the formal commutations relations
between these three generators, namely ŒiD;X�D 1, ŒiD;A�DD and ŒiX;A�D�X .

It turns out that a C �-algebra generated by continuous functions of 3 generators
has been introduced and studied in [8, Chapter 5]. The algebra is constructed on the
Hilbert space L2.RC/ while the above expression is taking place on L2.R/. In order
to fit into the framework of Cordes, we need to consider one more unitary transform-
ation, namely the decomposition into even and odd functions on L2.R/.

Let us consider VW L2.R/! L2.RCIC2/ given by

Vf ´
p
2
�

fe
fo

�
and

h
V�
�

f1
f2

�i
.x/´ 1p

2
Œf1.jxj/C sgn.x/f2.jxj/�;

for f 2 L2.R/,
�

f1
f2

�
2 L2.RCIC2/, and x 2 R. Here fe; fo denote the even and the

odd part of f . Then, one observes that if m is a function on R

Vm.X/V� D
�
me.L/ mo.L/
mo.L/ me.L/

�
(4.3)

while

Vm.A/V� D
�
m.AC/ 0

0 m.AC/

�
: (4.4)

In order to consider Vm.D/V�, let us denote by F1 the usual unitary Fourier trans-
form in L2.R/, and let FN, FD be the unitary cosine and sine transforms on L2.RC/,
respectively. The subscripts N and D are related to the Neumann Laplacian and the
Dirichlet Laplacian in L2.RC/, which are diagonalised by FN and FD, respectively.
Note also that these operators correspond to their own inverse. It is then easily checked
that

VF1V
�
D

�
FN 0
0 iFD

�
:
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In addition, by a straightforward computation one gets

Vm.D/V� D VF�1m.X/F1V
�
D

�
FNme.L/FN �iFNmo.L/FD
iFDmo.L/FN FDme.L/FD

�
:

For the final step, let us recall that the Neumann Laplacian satisfies��N´ FNL
2FN,

and that
iFNFD D � tanh.�AC/C i cosh.�AC/�1µ �.AC/:

We refer for example to [10, Proposition 4.13] for a proof of the above equality. Then,
we end up with

Vm.D/V� D VF�1m.X/F1V
�
D

�
me.
p
��N/ �mo.

p
��N/�.AC/

� N�.AC/mo.
p
��N/ N�.AC/me.

p
��N/�.AC/

�
: (4.5)

Thus, the three equalities (4.3), (4.4), and (4.5) allow us to compute the image of (4.2)
into L2.RCI h/2.

Lemma 4.3. The expression VUF0W�F
�
0U
�V� is given by�

1 0
0 1

�
C
1

2

�
1 tanh.�2

p
��N/�.AC/

N�.AC/ tanh.�2
p
��N/ 1

��
zSe.L/�1 zSo.L/
zSo.L/ zSe.L/�1

�
C

�
. zN2/e.L/ . zN2/o.L/

. zN2/o.L/ . zN2/e.L/

�� 2
1Ci2AC

0

0 2
1Ci2AC

��
zBe.L/ zBo.L/
zBo.L/ zBe.L/

�
CK (4.6)

with K 2 K.L2.RCI h/2/.

Let us now recall the already mentioned construction of Cordes. In [8, Section
V.7], the following C �-subalgebra of B.L2.RC// is introduced:

E´ C �
�
ai .AC/bi .L/ci .��N/

ˇ̌
ai 2 C.Œ�1;C1�/; bi ; ci 2 C.Œ0;C1�/

�
:

It is then shown in [8, Theorem V.7.3] that the quotient algebra E=K.L2.RC// is iso-
morphic to C.7/, the set of continuous functions defined on the edges of a hexagon;
see Figure 1. For an operator of the form a.AC/b.L/c.

p
��N/ 2 E, its image in the

quotient algebra takes the form

�1.s/´ a.s/b.0/c.C1/; s 2 Œ�1;C1�; (4.7a)

�2.`/´ a.C1/b.`/c.C1/; ` 2 Œ0;C1�; (4.7b)

�3.�/´ a.C1/b.C1/c.�/; � 2 ŒC1; 0�; (4.7c)

�4.s/´ a.s/b.C1/c.0/; s 2 ŒC1;�1�; (4.7d)

�5.�/´ a.�1/b.C1/c.�/; � 2 Œ0;C1�; (4.7e)

�6.`/´ a.�1/b.`/c.C1/; ` 2 ŒC1; 0�: (4.7f)
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Observe that we gave an orientation on the interval on which these functions are
defined. As a result, the concatenation map

� � .�1; �2; �3; �4; �5; �6/´ 7! C

is continuous, even at the vertices of the hexagon.
Our interest in the construction of Cordes comes from the similarity between the

elements of E and the formula (4.6). Indeed, the functions of the three operators L,
AC, �� are continuous, and have limits either at �1 and C1, or at 0 and C1
(we shall recall these limits below). The only difference is that we have to consider
the unital C �-algebra .M2.E/˝K.h//C, the 2 � 2 matrices with values in E tensor
product with the compact operators on h, and C times the identity added. Clearly, this
algebra contains the ideal M2.K.L2.RC///˝K.h/, and one has

.M2.E/˝K.h//C
ı
M2.K.L2.RC///˝K.h/ D .M2.C.7//˝K.h//C:

One can thus look at the image of (4.6) through the quotient map

q´ .M2.E/˝K.h//C ! .M2.C.7//˝K.h//C

with kernel M2.K.L2.RC///˝ K.h/. In the next statement we provide this image,
keeping the convention provided in (4.7) for the enumeration of the 6 components.

1`0

0

�
1

0 ` 1
1

�

0

�1

s

1

1

s

�1

Figure 1. Representation of the quotient algebra, with orientation indicated on the edges. The
starting point of �1 is located on the lower left corner.
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Proposition 4.4. The operator provided in (4.6) belongs to .M2.E/˝K.h//C, and
its image through the quotient map q consists in the following 6 operator-valued func-
tions:

�1.s/´
�
1 0
0 1

�
C
1

2
.S.1/ � 1/

�
1 �.s/
N�.s/ 1

�
; s 2 Œ�1;C1�;

�2.`/´
�
1 0
0 1

�
C
1

2
.S.e2`/ � 1/

�
1 �1
�1 1

�
; ` 2 Œ0;C1�;

�3.�/´
�
1 0
0 1

�
; � 2 ŒC1; 0�;

�4.s/´
�
1 0
0 1

�
C
1

2

2

1C i2s
N2.0/B.0/

�
1 1
1 1

�
; s 2 ŒC1;�1�;

�5.�/´
�
1 0
0 1

�
; � 2 Œ0;C1�;

�6.`/´
�
1 0
0 1

�
C
1

2
.S.e�2`/ � 1/

�
1 1
1 1

�
; ` 2 ŒC1; 0�:

Proof. When the various factors of (4.6) were introduced, their continuity proper-
ties and the existence of their limits at endpoints have been discussed. The only
missing information is about S.�/ � 1. It is known that for any � > 0, one has
S.�/ � 1 2 K.h/, and that the map � 7! S.�/ � 1 is continuous, see for example
[47, Proposition 8.1.5]. In addition, it has been shown in [40, Theorem 1.1] that
lim�&0 S.�/D 1. Since lim�!1 S.�/D 1, with the limit taken in B.h/, the function
� 7! S.�/ � 1 belongs to C0.RC;K.h//. By inspection of the various factors, one
can now infer that the operator provided in (4.6) belongs to .M2.E/˝K.h//C.

Let us move to the image of this operator in the quotient algebra. By using the
formulas proposed in (4.7), the computations are rather straightforward. For �1, it
is necessary to observe that zSe.0/ D S.1/ while zSo.0/ D 0. In addition, we have
lim�!C1 tanh.�

2
�/ D 1. Because of the localization function %?, one also observes

that zN2.0/ D 0 and zB.0/ D 0. For �2, note that lims!C1 �.s/ D �1, and then the
expression �

1 0
0 1

�
C
1

2

�
1 �1
�1 1

�� zSe.`/�1 zSo.`/
zSo.`/ zSe.`/�1

�
leads directly to the result. The computation for �6 is very similar, once the equal-
ity lims!�1 �.s/ D 1 is taken into account. For �3 and for �5, it is sufficient to
remember that lim�&0 S.�/ D 1 and that lim�!1 S.�/ D 1. These equalities imply
that lim�!˙1

zSe.`/ D 1 while lim�!˙1
zSo.`/ D 0, with these limits taken in B.h/.

Finally, for �4, it is necessary to observe that lim`!1
zN2.`/DN2.0/, lim`!1

zB.`/D

B.0/, and then we have

lim
`!1

. zN2/e.`/ D
1

2
N2.0/ D lim

`!1
. zN2/o.`/;



A. Alexander, T. D. Nguyen, A. Rennie, and S. Richard 1014

and

lim
`!1

. zB/e.`/ D
1

2
B.0/ D lim

`!1
. zB/o.`/:

This leads us directly to the statement.

In order to fully exploit the previous result, it remains to compute the terms
appearing in �4. So, we first determine the expression B.0/´ lim�&0 B.�/ expli-
citly by using the results of [21, Theorem 6.1 and Theorem 6.2]. We denote by Xj
the multiplication operator by xj in L2.R2/, and recall from [21, Theorem 6.2 (i)] that
Ran.T3/ is spanned by

Qj D S2Xj v

for j D 1; 2. Note that one or both of the Qj may vanish or they may be linearly
dependent, in which case the dimension of Ran.T3/ is strictly smaller than 2.

Lemma 4.5. The following equality holds:

B.0/ D 2.T3 � S3d.0/
�1c.0//

�
�
1

4�

2X
jD1

hQj ; �iQj

��1
T3v

�
1

D 2.T3 � S3d.0/
�1c.0//

�
�
1

4�

2X
jD1

jQj ihQj j
��1

T3v
�
1 ;

where the standard bra-ket notation has been introduced for the last expression.

Proof. We begin by recalling some facts about the function g.�/ and the operator
m.�/. Firstly, by [21, equation (6.30)] the scalar-valued function g satisfies

g.�/ D ��1
�
�
kvk2

2�
C �h.�/

�
where h is bounded near zero. Secondly, by [21, equation (6.42)], the operator valued
function m satisfies

m.�/ D ��1
kvk2

8�2

dX
jD1

hQj ; �iQj C f .�/

where f is bounded. Then one may write

g.�/m.�/�1 D g.�/
�
��1
kvk2

8�2

2X
jD1

hQj ; �iQj C f .�/
��1

D

�
��1g.�/�1

kvk2

8�2

2X
jD1

hQj ; �iQj C g.�/
�1f .�/

��1
;
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and observe that

lim
�!0

g.�/�1f .�/ D lim
�!0

�
�
�
kvk2

2�
C �h.�/

��1
f .�/ D 0;

since f is bounded and �! 0 as � ! 0. We also have the limit

lim
�!0

��1g.�/�1 D lim
�!0

�
�
kvk2

2�
C �h.�/

��1
D �

2�

kvk2
;

since h is bounded and �! 0 as � ! 0. Thus, we find

lim
�!0

g.�/m.�/�1 D lim
�!0

�
��1g.�/�1

kvk2

8�2

2X
jD1

hQj ; �iQj C g.�/
�1f .�/

��1
D

�
�
1

4�

2X
jD1

hQj ; �iQj

��1
:

It finally remains to insert the expansion (2.7) into the expression for B.�/ and we
obtain

B.0/ D lim
�&0

B.�/ D lim
�&0

%?.�/
p
� ln.�/S2Œ.uC vR0.�C i0/v/�1vF0.�/��

D lim
�&0

ln.�/�S2.T3 � S3d.�/�1c.�//g.�/m.�/�1T3v�1

D2.T3 � S3d.0/
�1c.0//

�
�
1

4�

2X
jD1

hQj ; �iQj

��1
T3v

�
1

which leads to the claim.

Let us compute still more explicitly these expressions. Recall firstly that

Œ1f �.!/´
�i

23=2�

Z
R2

dx.! � x/f .x/

for suitable f 2 L2.R2/. Let us also define �˙1 2 h with �˙1.�/´ 1p
2�

e˙i� and
k�˙1kh D 1. As a consequence, for any � 2 h one has

Œ�1 ��.x/ D
i

23=2�

Z
S

d!.x � !/�.!/

D
i

23=2�

2�Z
0

d�.x1 cos.�/C x2 sin.�//�..cos.�/; sin.�//
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D
i

4
p
�

2�Z
0

d�
�
x1
�
�1.�/C ��1.�/

�
� ix2

�
�1.�/ � ��1.�/

��
� �..cos.�/; sin.�//

D
i

4
p
�

�
x1
�
h��1j C h�1j

�
� ix2

�
h��1j � h�1j

��
�;

where h�˙1j� ´
R 2�
0

d��˙1.�/�..cos.�/; sin.�//. Since S3v�1 D 0, one infers that

T3v
�
1 D S2v

�
1 D

i

4
p
�
S2v

�
X1
�
h��1j C h�1j

�
� iX2

�
h��1j � h�1j

��
D

i

4
p
�
ŒjQ1ih��1 C �1j � i jQ2ih��1 � �1j�

D
i

4
p
�
ŒjQ1 � iQ2ih��1j C jQ1 C iQ2ih�1j�: (4.8)

With these expressions at hand, we can finally compute the expression for term
�4 of Proposition 4.4. For this, we define an orthogonal projection Pp as follows.

• If dim.T3/ D 0, then
Pp ´ 0I

• if dim.T3/ D 1, then

– if Q1 D 0,

Pp ´
ˇ̌̌ 1
p
2
.��1 � �1/

E D 1
p
2
.��1 � �1/

ˇ̌̌
; (4.9a)

– if Q2 D 0,

Pp ´
ˇ̌̌ 1
p
2
.��1 C �1/

E D 1
p
2
.��1 C �1/

ˇ̌̌
; (4.9b)

– if Q2 D ˛Q1,

Pp ´
ˇ̌̌ 1p
2.1C j˛j2/

..1C i N̨ /��1 C .1 � i N̨ /�1/
E

�

D 1p
2.1C j˛j2/

..1C i N̨ /��1 C .1 � i N̨ /�1/
ˇ̌̌
I (4.9c)

• if dim.T3/ D 2, then

Pp ´ .j��1ih��1j C j�1ih�1j/:

Remark 4.6. Observe that the projection Pp corresponds to an orthogonal projection
in L2.S/, but the exact form of this projection is independent of V . The V -depend-
ence appears only in the conditions Q1 D 0, Q2 D 0, or Q2 D ˛Q1. A quite similar
feature was already observed for Schrödinger operators in R3, for which a 0-energy
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resonance affects the 0-energy scattering matrix S.0/ only in the subspace of spher-
ically symmetric functions of L2.S2/, see [20, Theorems 5.2 and 5.4]. In particular,
let us stress that these projections are not linked to any symmetry of the potential V ,
since no such requirement is imposed.

Lemma 4.7. For any s 2 ŒC1;�1�, one has

�4.s/ D
�
1 0
0 1

�
�
1

2

2

1C i2s
Pp
�
1 1
1 1

�
D

 
1 � 1

1Ci2s
Pp �

1
1Ci2s

Pp

�
1

1Ci2s
Pp 1 � 1

1Ci2s
Pp

!
:

Proof. First of all, observe that

N2.0/B.0/ D 1vS2B.0/

D 21v.T3 C S3/.T3 � S3d.0/
�1c.0//

�
�
1

4�

2X
jD1

jQj ihQj j
��1

T3v
�
1

D 21vT3

�
�
1

4�

2X
jD1

jQj ihQj j
��1

T3v
�
1

where the algebraic equality 1vS3 D 0 has been taken into account, see [40, Lemma
3.2 (c)].

Then, by using the expression (4.8) for T3v�1 and for its adjoint, one infers that
the following equality holds:

21vT3

�
�
1

4�

2X
jD1

jQj ihQj j
��1

T3v
�
1

D �
1

2
Œj��1ihQ1 � iQ2j C j�1ihQ1 C iQ2j�T3

� 2X
jD1

jQj ihQj j
��1

T3

� ŒjQ1 � iQ2ih��1j C jQ1 C iQ2ih�1j�: (4.10)

By a direct computation, one gets that (4.10) is equal to �Pp , as defined above. Note
that for the case dim.T3/ D 2, we have used a convenient result due to Parra about
the inversion of a matrix on its range. This statement and its proof are gathered in
Appendix A.

It only remains to observe that

�4.s/ D
�
1 0
0 1

�
C
1

2

2

1C i2s
N2.0/B.0/

�
1 1
1 1

�
D
�
1 0
0 1

�
�
1

2

2

1C i2s
Pp
�
1 1
1 1

�
;

which gives us the statement.
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5. Topological Levinson’s theorem

In this section, we briefly recall the C �-algebraic framework leading to a topological
version of Levinson’s theorem, and show that our current investigations fit into this
framework. We refer to the survey paper [36] for additional information on this pro-
gram and for the presentation of several examples.

It has already been shown that the unital C �-algebra .M2.E/˝K.h//C plays the
important role of containing the wave operator W�, once suitable unitary conjuga-
tions are applied. In addition, this algebra contains the idealM2.K.L2.RC///˝K.h/

which is nothing but the algebra K.L2.RCI h/2/ of compact operators on this Hilbert
space. Then, as a consequence of Cordes’ result, one has the short exact sequence of
C �-algebras

0! K.L2.RCI h/2/! .M2.E/˝K.h//C
q
! .M2.C.7//˝K.h//C ! 0

and the corresponding 6 terms exact sequence for the K-theory of these algebras. In
particular, one has K0.K.L2.RCI h/2// Š Z and K1..M2.C.7//˝K.h//C/ Š Z.

Since the operator-valued function � D .�1; �2; �3; �4; �5; �6/ exhibited in Pro-
position 4.4 belongs to .M2.C.7//˝K.h//C and is invertible, it defines an element
Œ��1 in theK1-group of this algebra. In addition, sinceW� 2 .M2.E/˝K.h//C is an
isometry and a lift for � , one directly infers from [41, Proposition 9.2.4.(ii)] that

ind.Œ��1/ D Œ1 �W ��W��0 � Œ1 �W�W
�
� �0 D �ŒEp.H/�0; (5.1)

with Ep.H/ the projection on the subspace spanned by the eigenfunctions of H .
Let us emphasise that the equality (5.1) corresponds to the topological version of
Levinson’s theorem: it is a relation (by the index map) between the equivalence class
in K1 of quantities related to scattering theory, and the equivalence class in K0 of
the projection on the bound states of H . Note that the operator � contains the scat-
tering operator in its components �2 and �6, but also a new contribution related to
p-resonance in its component �4.

The standard formulation of Levinson’s theorem is an equality between numbers.
Thus, our last task is to extract a numerical equality from (5.1). In a more general
setting, we might pair the K1 class of the scattering matrix with the Chern char-
acter of a suitable spectral triple, as in [2]. For this specific case, we proceed in a
more elementary way by using the determinant and winding number directly. Thus,
on K.L2.RCI h/2/, one uses the usual trace (on finite-dimensional projections), and
on

.M2.C.7//˝K.h//C Š .C.7IM2.K.h////
C

the winding number of the pointwise determinant is the correct notion to be used.



Levinson’s theorem for two-dimensional scattering systems 1019

Remark 5.1. When computing the winding number, and pairing the equality (5.1)
with traces, a few conventions about signs have to be taken. As introduced in [36, Sec-
tion 2], we shall turn around the hexagon clockwise, and the increase in the winding
number is also counted clockwise. The convention about the path is illustrated in
Figure 1, with the starting point of �1 located on the lower left corner. With this con-
vention, the multiplicative factor n, which relates the winding number computed on �
and the trace applied to�Ep.H/, is equal to�1, see [36, Theorem 4.4] for the details.

For the computation of the pointwise determinant of the components of � , let
us recall from [47, Corollary 8.1.7] that S.�/ � 1 is trace class, and that the map
� 7! det.S.�// is continuous. Then, based on the following lemma, it will be possible
to get simpler expressions for �1, �2, and �6.

Lemma 5.2. Let H be a complex Hilbert space and let c be a complex number with
jcj D 1. For a unitary operator U 2 B.H/ with U � 1 trace class, define the operator
B 2 B.H˚H/ by

B D
�
1 0
0 1

�
C
1

2
.U � 1/

�
1 c
Nc 1

�
:

Then �.B/ n ¹1º D �.U / n ¹1º, multiplicity counted, and det.U / D det.B/.

Proof. Let � be an eigenvalue of B , with non zero eigenvector
�
�
�

�
, namely B

�
�
�

�
D

�
�
�
�

�
. This equation is equivalent to the two equations

1

2
.U � 1/.� C c�/ D .� � 1/�;

1

2
.U � 1/. Nc� C �/ D .� � 1/�:

By multiplying the second line by c, we infer the relation .� � 1/� D .� � 1/c�. For
� ¤ 1, it follows that � D Nc�. By inserting this in the first equation, we get

1

2
.U � 1/.� C c�/ D .U � 1/� D .� � 1/�;

implying that U� D ��. Note that � ¤ 0, otherwise the eigenvector of B would be the
0 vector.

Conversely, if � ¤ 0 satisfies U� D ��, then one easily checks that the vector�
�
Nc�

�
is an eigenvector of B associated with the eigenvalue �.

Corollary 5.3. One has

det.�1.s// D det.S.1//;

det.�2.`// D det.S.e2`//;

det.�6.`// D det.S.e�2`//:
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Since one trivially gets det.�3.�//D 1 for any � 2 ŒC1;0�, and det.�5.�//D 1 for
any � 2 Œ0;C1�, it only remains to compute det.�4.s// for s 2 ŒC1;�1�. However,
based on the content of Lemma 4.7 and since Pp is a finite-dimensional projection,
this computation is easy. By using again Lemma 5.2, one infers that

det.�4.s// D
� i2s � 1
i2s C 1

�dim.Pp/
: (5.2)

Before the explicit computation of the winding number of the pointwise determ-
inant, it is useful to divide the computation of the Fredholm index of W� into two
contributions. For that purpose, we define the operator WS 2 B.H / by the equality

WS � 1´
�1
2

�
1 � tanh.�AC/

�
˝ 1h

�
.S.L/ � 1/: (5.3)

We then directly obtain its main properties.

Lemma 5.4. The operator WS is a Fredholm operator.

Proof. It is sufficient to observe that the operator WS� defines an inverse for WS ,
up to compact operators. Indeed, this can be easily checked by firstly recalling that
Œ#.AC/ ˝ 1h; S.L/� 2 K.L2.RCI h//, with # defined in (3.6). In addition, since
S.0/ D lim�!1 S.1/ D 1 and since # � #2 vanishes at˙1, operators of the form

.#.AC/˝ 1h � #
2.AC/˝ 1h/.S.L/ � 1/

or
.#.AC/˝ 1h � #

2.AC/˝ 1h/.S
�.L/ � 1/

belong to K.L2.RCI h//.

For a Fredholm operator W , let us denote by Index.W / its Fredholm index. Then
the following statement holds.

Proposition 5.5. If V satisfies (2.3) with � > 11, then the following equality holds:

Index.WS /C dim.Pp/ D � #�p.H/:

Proof. Let WS be as in (5.3) and define Wp ´ 1 �N2‚B . It follows from (4.1) that

F0W�F
�
0 D WS C .Wp � 1/CK

for a compact operator K. By construction, both the operator VUWSU�V� and the
operator VU.Wp � 1/U�V� belong to .M2.E/ ˝ K.h//C. For j 2 ¹1; 2; 3; 4; 5; 6º
let �S;j and �p;j respectively denote the components of the images q.VUWSU�V�/
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and q.VU.Wp � 1/U�V�/ in the quotient algebra. Then a proof similar to Proposi-
tion 4.4 and Lemma 4.7 leads to

�S;1.s/´
�
1 0
0 1

�
C
1

2
.S.1/ � 1/

�
1 �.s/
N�.s/ 1

�
; s 2 Œ�1;C1�;

�S;2.`/´
�
1 0
0 1

�
C
1

2
.S.e2`/ � 1/

�
1 �1
�1 1

�
; ` 2 Œ0;C1�;

�S;3.�/´
�
1 0
0 1

�
; � 2 ŒC1; 0�;

�S;4.s/´
�
1 0
0 1

�
; s 2 ŒC1;�1�;

�S;5.�/´
�
1 0
0 1

�
; � 2 Œ0;C1�;

�S;6.`/´
�
1 0
0 1

�
C
1

2
.S.e�2`/ � 1/

�
1 1
1 1

�
; ` 2 ŒC1; 0�;

and to

�p;j ´
�
0 0
0 0

�
; j 2 ¹1; 2; 3; 5; 6º;

�p;4.s/´ �
1

2

2

1C i2s
Pp
�
1 1
1 1

�
; s 2 ŒC1;�1�:

Explicit computation shows that ��S;j�p;j D �p;j D 0 for j ¤ 4 and ��S;4�p;4 D
�p;4. Thus, we find q.VUW �S .Wp � 1/U

�V�/ D q.VU.Wp � 1/U
�V�/. Since their

image under the quotient map agrees, we have 1CW �S .Wp � 1/DWp CK for some
compact operator K. Now, we note the equalities

F0W�F
�
0 D WS C .Wp � 1/CK D WS .1CW

�
S .Wp � 1//CK

0;

for some compact operators K and K 0, which lead to

Index.W�/ D Index.WS /C Index.1CW �S .Wp � 1// D Index.WS /C Index.Wp/:

Clearly, one has Index.W�/D �#�p.H/. On the other hand, the value Index.Wp/
can be computed with the winding number of the pointwise determinant of 1C �p;4,
as mentioned in Remark 5.1. More precisely, one has

Index.Wp/ D �Wind.det.1C �p;4// D �Wind.det.�4//

with det.�4/ provided in (5.2). However, since s 7! det.�4.s// has to be computed
fromC1 to�1, and that on this path the increase of the argument is anti-clockwise,
one gets Index.Wp/ D dim.Pp/, leading directly to the statement.

Our next aim is to compute Index.W�/ in terms of �S , as introduced in the proof
of Proposition 5.5. Due to the high energy behaviour of the scattering matrix, some
regularization is necessary to obtain an analytic formula. Indeed, even though the map
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� 7! S.�/ converges to 1 in the norm on B.h/ as �!1, the map � 7! det.S.�// does
not converge to 1 as �!1. A more precise statement is provided in Lemma 5.9.

For � 2 RC, we define the self-adjoint operator A.�/ in B.h/ by

A.�/ D 4 tan�1.�/F0.�/V F0.�/
�:

The main properties of this operator are gathered in the following statement.

Lemma 5.6. For each � 2 RC, the operator A.�/ is self-adjoint and trace class.

Proof. Since V is real-valued, the self-adjointness property is clear. Based on the
definition of F0 given in (2.1), we can write explicitly the integral kernel of A.�/ as

A.�; !; !0/ D 2 tan�1.�/.2�/�2
Z

R2

e�i
p
�.!�!0/�xV.x/ dx:

Integrating along the diagonal shows that the trace of A.�/ is

tr.A.�// D
1

�
tan�1.�/

Z
R2

V.x/ dx: (5.4)

The computation is justified by writing

4 tan�1.�/F0.�/vuvF0.�/� (5.5)

with u; v introduced in (2.5), and by observing that (5.5) contains two factors which
are Hilbert–Schmidt.

By the properties of the map � 7! F0.�/ exhibited in [40, Lemma 4.8], one infers
that the operator-valued map � 7! A.�/ 2 B.h/ is continuous and has norm limits
lim�&0A.�/D 0 and lim�!1A.�/D 0. As a consequence of (5.4), one also observes
that the map � 7! tr.A.�// is continuous on RC and satisfies lim�&0 tr.A.�// D 0
and lim�!1 tr.A.�// D 1

2

R
R2 V.x/ dx.

Based on these observations, let us now define the unitary operator in B.h/

ˇ.�/´ exp.iA.�//

which clearly satisfies det.ˇ.�// D ei tr.A.�// for all � 2 RC. We also define the oper-
ator Wˇ 2 B.H / by the equality

Wˇ � 1 D
�1
2

�
1 � tanh.�AC/

�
˝ 1h

�
.ˇ.L/ � 1/:

Our main interest for this operator is related to the properties shown in the next state-
ment.
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Lemma 5.7. The operator Wˇ is a Fredholm operator satisfying Index.Wˇ / D 0.

Proof. Observe firstly that we have lim�&0 ˇ.�/ D 1 and that lim�!1 ˇ.�/ D 1,
both limits in the norm sense. Thus, by the same argument provided in the proof of
Lemma 5.4 one gets that the operator Wˇ� defines an inverse for Wˇ , up to compact
operators. It directly follows that Wˇ is a Fredholm operator.

It remains to show that Index.Wˇ /D 0. To see this we consider, for fixed � 2RC,
the map Œ0; 1� 3 t 7! At .�/ with At .�/ defined by

At .�/ D 4 tan�1..1 � t /�/F0.�/V F0.�/
�:

The map At .�/ defines a norm continuous path in B.h/ from A.�/ to 0. Defining
the path At D At .L/ 2 B.H / we then obtain a norm continuous path in B.H / from
A to 0. As a consequence, ˇt D exp.iAt / defines a norm continuous path of unitary
operators in B.H / from ˇ to 1. Hence, the path Wˇt defines a norm continuous path
in B.H / fromWˇ to the identity, along which the Fredholm index is constant, and so
equal to 0.

Lemma 5.8. The Fredholm operators WS and Wˇ satisfy WSWˇ �WSˇ 2 K.H /

and
Index.WS / D Index.WSˇ /:

Proof. The equality WSWˇ D WSˇ up to compact operators follows from one more
commutator computation as provided in the proof of Lemmas 5.4 and 5.7. The index
claim follows from the fact that Index.Wˇ /D 0 and the composition rule for Fredholm
index.

The next statement shows that the operator ˇ provides the correct regularization
for the operator S , and consequently Wˇ will provide the correct regularization to
the operator WS . The proof is using some properties of the spectral shift function
developed in [47, Chapter 9].

Lemma 5.9. The map � 7! det.S.�// det.ˇ.�// satisfies

lim
�&0

det.S.�// det.ˇ.�// D 1

and
lim
�!1

det.S.�// det.ˇ.�// D 1:

Proof. Let us firstly recall the Birman–Kreı̆n formula linking the scattering oper-
ator and the spectral shift function, namely det.S.�// D e�2�i�.�/. By [47, The-
orem 9.1.14], there exists a continuous function �2 (the regularised spectral shift
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function) such that

�.�/ D �2.�/C
1

4�

Z
R2

V.x/ dx;

with lim�!1 �2.�/D 0. In addition, since S.0/D 1, it follows that lim�&0 �.�/ 2Z.
We can thus consider the function � 7! f .�/ with

f .�/´ �2�i�.�/C i tr.A.�//

D �2�i

�
�2.�/C

1

4�

�
1 �

2

�
tan�1.�/

� Z
R2

V.x/ dx
�
;

which satisfies lim�!1 f .�/ D 0 and lim�&0 f .�/ 2 .�2�i/Z. It finally remains to
observe that

det.S.�// det.ˇ.�// D e�2�i�.�/ ei tr.A.�//
D ef .�/

and so the map � 7! det.S.�// det.ˇ.�// satisfies the properties stated.

We finally recall from [47, equation (9.1.22)] that the spectral shift function �
satisfies for � > 0 the equality

tr.S.�/�S 0.�// D �2�i� 0.�/; (5.6)

with the differentiability of � being guaranteed by [47, Theorem 9.1.18]. We can thus
state the main result of this section.

Proposition 5.10. The following equality holds:

Index.WS / D
1

2�i

1Z
0

tr.S.�/�S 0.�// d�C
1

4�

Z
R2

V.x/ dx:

Proof. By Lemma 5.8, one has Index.WS / D Index.WSˇ /. Note that, by [44, The-
orem 3.5 (a)], we have det.Sˇ/ D det.S/ det.ˇ/. By Lemma 5.9, det.Sˇ/ defines a
loop, and using Gohberg–Kreı̆n theory (cf. [14] and [31, Theorem 4.9]) we can com-
pute the index of WSˇ as

Index.WSˇ / DWind.det.Sˇ//

D
1

2�i

1Z
0

d
d� Œdet.S.�// det.ˇ.�//�

det.S.�// det.ˇ.�//
d�

D
1

2�i

1Z
0

d
d�
.�2�i�.�/C i tr.A.�/// d�
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D
1

2�i

1Z
0

.�2�i� 0.�// d�C
1

2�
Œtr.A.1// � tr.A.0//�

D
1

2�i

1Z
0

tr.S.�/�S 0.�// d�C
1

4�

Z
R2

V.x/ dx;

as claimed.

By collecting the content of Proposition 5.5 and of Proposition 5.10, we can now
confirm the statement of [6, Theorem 6.3].

Theorem 5.11. If V satisfies (2.3) with � > 11, then the following equality holds:

1

2�i

1Z
0

tr.S.�/�S 0.�// d�C
1

4�

Z
R2

V.x/ dx C dim.Pp/ D �#�p.H/:

We can then complement the content of [47, Theorem 9.1.14] about the spectral
shift function.

Corollary 5.12. If V satisfies (2.3) with � > 11, then the spectral shift function for
the pair .H;H0/ satisfies

lim
"&0

�."/ D �#�p.H/ � dim.Pp/:

Proof. By [47, Theorem 9.1.14] we have

�.1/ D
1

4�

Z
R2

V.x/ dx:

By taking the equality (5.6) into account, we observe that

lim
"&0

�."/ D �

1Z
0

� 0.�/ d�C �.1/

D
1

2�i

1Z
0

tr.S.�/�S 0.�// d�C
1

4�

Z
R2

V.x/ dx:

The result now follows from Theorem 5.11.
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A. Appendix

In the following statement, the standard bra-ket notation is freely used.

Lemma A.1. Let H be a complex Hilbert space, and let ';  2 H be linearly inde-
pendent. Consider c 2 C with jcj D 1, define T WH! H by

T ´ j'ih'j C cj ih j;

and set
k´ k'k2k k2 � jh'; ij2 > 0:

Then, the operator T � defined by

T �´
1

ck2

��
ck k4 C jh'; ij2

�
j'ih'j �

�
ck k2h'; i C k'k2h'; i

�
j'ih j

�
�
ck k2h ; 'i C k'k2h ; 'i

�
j ih'j C

�
k'k4 C cjh'; ij2

�
j ih j

�
satisfies T T � D T �T D PRan.T /, the projection on the range of T . Furthermore, the
following equalities hold:

h'; T �'i D 1; h ; T � i D Nc; h'; T � i D 0; h ; T �'i D 0:

Proof. We first observe that

T ' D k'k2' C ch ; 'i ; T D h'; i' C ck k2 :

We can also compute

T �' D
1

ck2

���
ck k4 C jh'; ij2

�
k'k2 �

�
ck k2h'; i C k'k2h'; i

�
h ; 'i

�
'

C
�
�
�
ck k2h ; 'i C k'k2h ; 'i

�
k'k2

C
�
k'k4 C cjh'; ij2

�
h ; 'i

�
 
�

D
1

ck2

�
ck k2

�
k k2k'k2 � jh ; 'ij2

�
' C ch ; 'i

�
jh'; ij2 � k k2k'k2

�
 
�

D
1

k
Œk k2' � h ; 'i �;

and similarly one gets

T � D
1

ck2

���
ck k4 C jh'; ij2

�
h'; i �

�
ck k2h'; i C k'k2h'; i

�
k k2

�
'

C
�
�
�
ck k2h ; 'i C k'k2h ; 'i

�
h'; i

C
�
k'k4 C cjh'; ij2

�
k k2

�
 
�

D
1

ck2

�
h'; i

�
jh'; ij2 � k k2k'k2

�
' C k'k2

�
k k2k'k2 � jh ; 'ij2

�
 
�

D
1

ck
Œ�h'; i' C k'k2 �:



Levinson’s theorem for two-dimensional scattering systems 1027

From these we obtain that

T �T ' D k'k2T �' C ch ; 'iT � 

D
k'k2

k
Œk k2' � h ; 'i �C

ch ; 'i

ck
Œ�h'; i' C k'k2 � D ';

and

T T �' D
1

k
Œk k2T ' � h ; 'iT �

D
1

k

�
k k2

�
k'k2' C ch ; 'i 

�
� h ; 'i

�
h'; i' C ck k2 

��
D ':

By a similar computation, one also gets T �T D  and T T � D  . The remaining
equalities can also be obtained straightforwardly.
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