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Sharp Hardy’s inequalities in Hilbert spaces

Dimitar K. Dimitrov, Ivan Gadjev, and Mourad E. H. Ismail

Abstract. We study the behavior of the smallest possible constants d.a; b/ and dn in Hardy’s
inequalities
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The exact constant d.a; b/ and the precise rate of convergence of dn are established and the
extremal function and the “almost extremal” sequence are found.

1. Introduction and statement of the results

In the series of papers [3–5], Hardy proved the following two inequalities. Let p > 1.
If f .x/ � 0 and f p is integrable over .0;1/, then the inequality
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holds. This is the original Hardy’s integral inequality. The discrete version of Hardy’s
inequality reads as
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Initially, Hardy proved (1.2) with the constant .p2=.p � 1//p . Later, Landau, in the
letter [9], which was officially published in [10], established the exact constant
.p=.p � 1//p , in the sense that there is no smaller one for which (1.2) holds for
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every sequence of non-negative numbers ak . Moreover, Landau observed that equal-
ity in (1.2) occurs only for the trivial sequence, that is, when ak D 0 for every k 2 N.
Similarly, the equality in (1.1) occurs if and only if f .x/ � 0 almost everywhere.

Inequality (1.1) has been extended to what is nowadays called the general Hardy
integral inequality:
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For a fixed n 2 N, it is natural to study the inequality
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and ask for the smallest possible dn;p for which it holds.
When p is a positive even integer, the assumption for non-negativity of f .x/ and

¹akº can be dropped. In particular, when p D 2 inequalities (1.3) and (1.4) become
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There are many papers investigating different generalizations and applications of
Hardy’s inequality; see for instance [7] and the bibliography in the book [8].

In the present paper we establish the sharp inequality (1.5) in the sense that we
determine the exact constant d.a; b/ in (1.5) as well as an extremal function f for
which equality is attained. Our main result reads as follows.

Theorem 1.1. Let a and b be any fixed numbers with 0 < a < b < 1. Then the
inequality

bZ
a

�
1

x

xZ
a

f .t/dt

�2
dx �

4

1C 4˛2

bZ
a

Œf .x/�2 dx; (1.7)

where ˛ is the only solution of the equation
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holds for every f 2 L2Œa; b�. Moreover, the equality in (1.7) is attained for
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Corollary 1.2. When either of the limits relations a! 0, b !1, or both hold, i.e.,
log b

a
!1, then

d.a; b/ � 4 �
c

Œlog b
a
�2
:

In other words, there exist absolute constants c1 > 0 and c2 > 0, such that
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Since the function fa;b defined above obeys
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it is obvious that fa;b converges uniformly to g.x/ � 0 when b !1.
We remark that an important well-known fact is that (1.1) is the prototype of

the Hardy–Littlewood inequality for the maximal function. Therefore, it is natural to
consider the inequality
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which is equivalent, by change of variables, to
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Then, Corollary 1.2 implies that d.b/ D 4 and the only function f for which the
equality is attained is the one which vanishes almost everywhere.

Inequality (1.6) has been studied by many authors. Based on ideas of Widom [13]
and his previous joint work with Widom himself [14], and with N. de Bruijn [1], on
Hilbert’s inequality, Herbert Wilf [15] established the following asymptotic expres-
sion for dn:

dn D 4 �
16�2

log2 n
CO

� log logn
log3 n

�
; n!1: (1.8)

The ideas developed in [2] and an important observation of the third-named author of
the present note, yielded an explicit representation of dn in terms of the smallest zero
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of a continuous dual Hahn polynomial of degree n, for a specific choice of the para-
meters, in terms of which these polynomials are defined; see Theorem A below. More
recently, F. Stampach [12] studied in details the asymptotics of dn, again employing
its relation to these zeros and proved that

dn D 4 �
16�2

log2 n
C
32�2. C 6 log 2/

log3 n
CO

� log logn
log4 n

�
; n!1; (1.9)

where  is the Euler constant. Another formula involving few more terms and an
algorithm for calculating the further ones in the asymptotic expansion of dn in terms
of negative powers of logn was suggested in [12].

Here, we combine an idea similar to the one we use for the proof of Theorem 1.1
with the result in [2, Theorem 1.1] concerning the relation between dn and the zeros
of the continuous dual Hahn polynomial, and a recent one, due to W-G. Long, D. Dai,
Y-T. Li, and X-S. Wang [11], about the asymptotic behaviour of those zeros. We
establish sharp lower and upper bounds for dn and obtain its full asymptotic expan-
sion, thus extending the results of Wilf (1.8) and Stampach (1.9) to the largest possible
generality.

Theorem 1.3. Let
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dn � 4 �
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: (1.12)

Combining the above mentioned results with the latter, we obtain the exact rate
of convergence of ¹dnº as well as very sharp estimates for dn for every fixed n, we
obtain the following result.
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Theorem 1.4. The inequalities
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hold for every natural n � 3.
Moreover,
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where  is the Euler constant, and the following full asymptotic expansion of dn in
terms of the negative powers of logn holds. For every fixed m 2 N, m � 2,
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where Uk�2 denotes the Chebyshev polynomial of the second kind of degree k � 2.

Needless to say, the first few coefficients ck , k D 2; 3; 4; 5, in (1.16) coincide with
those obtained by Wilf and Stampach.

The lower bound in (1.13), obtained as a consequence of Theorem 1.3, is amaz-
ingly close to the asymptotic value for dn in (1.14), which is derived via [2, Theorem
1.1] and [11]. Indeed, it is not difficult to verify that for their difference one has�
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The function h.x/, defined in (1.10), obeys

0 < h.x/ < x�1=2.2˛ C ˛ log x/ <
�

log.nC 1/
x�1=2.2C log x/:

Then it is obvious, as Landau pointed in his letter to Hardy, that if we let n!1, then
the almost extremal sequence ak; k D 1; 2; : : : ; defined in the Theorem 1.3, goes to
the zero sequence, i.e., to the sequence ak D 0 for all k.
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2. Proof of Theorem 1.1

By simple changes of variables t D au; x D av in the left-hand side and x D au in
the right-hand side, we write inequality (1.7) in the following way:
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It is obvious (by changing the notations), that it suffices to prove Theorem 1.1 for the
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consequently
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Now, we minimize
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On the other hand, by changing the order of integration, we can rewrite the left-
hand side of (1.7), with a D 1, in the following way:
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Consequently, for the function fa;b.x/ D h.x/ we have
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The proof of Theorem 1.1 is complete.

3. Proof of Theorem 1.3

By changing the order of summation in the left-hand side of (1.11), we obtain
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For the function h.x/ defined in (1.10), we have
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sin.˛ log x/:

Obviously, h0.x/ < 0 for 1 < x � .nC 1/, that is, h.x/ is decreasing. Since one has
h.nC 1/ D 0, it follows that h.x/ > 0.

We shall prove that the sequence
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is an “almost extremal” sequence for Hardy’s inequality (1.6), i.e., that inequality
(1.11) holds. Since the function h.x/ is continuous there exists a point �i 2 Œi; iC1�
such that ai D h.�i /.

We have
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and
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The proof of Theorem 1.3 is complete.

4. Hardy’s inequality (1.6), the zeros of continuous dual Hahn
polynomials and the proof of Theorem 1.4

In this section we prove Theorem 1.4. Recall that the lower bound in (1.13) is nothing
but (1.12), while the upper one was proved in [2, Theorem 1.1]. In what follows, we
deal with the asymptotics of dn.
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The continuous dual Hahn polynomials are defined by (see [6, Section 1.3])

Sn.x
2I a; b; c/

.aC b/n.aC c/n
D 3F2

�
�n; aC ix; a � ix

aC b; aC c
I 1

�
D

nX
�D0

.�n/�.aC ix/�.a � ix/�

�Š.aC b/�.aC c/�
;

where Pochhammer’s symbol is given by .˛/� D ˛.˛ C 1/ � � � � � .˛ C � � 1/, � � 1,
and .˛/0 ´ 1. It is clear that each Sn.x2I a; b; c/ is a polynomial of degree 2n with
leading coefficient .�1/n. Moreover, when the parameters a, b, and c are positive real
numbers, Sn.x2Ia;b;c/ are orthogonal with respect to an absolutely continuous Borel
measure (see [6, (1.3.2) on p. 29]). Hence, the smallest positive zeros xn;1.a; b; c/ of
Sn.x

2I a; b; c/ converge to zero when n goes to infinity. The following is one of the
statements in [2, Theorem 1.1].

Theorem A. Let dn be the smallest possible constant such that inequality (1.6) holds.
Then,

dn D 4
�
1 �

4
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1
2
; 1
2
; 1
2

��2�; (4.1)

where xn;1.1=2; 1=2; 1=2/ is the smallest positive zero of Sn.x2I 1=2; 1=2; 1=2/.

The precise uniform asymptotics for the continuous dual Hahn polynomials was
obtained very recently in [11]. Set

A.z/ D
�.a � z/�.b � z/�.c � z/

�.1 � 2z/
:

According to [11, (80)],
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x
p
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; n!1; (4.2)

wherew.x/ is defined in [11] and it is always positive. Therefore, we need to calculate
the argument of A.ix/ for small values of x when a D b D c D 1

2
. Obviously,

argA.ix/ D arg
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��3
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�
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1
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t�1=2e�t sin.�x log t / dtˇ̌
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1
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Since the expansion

1Z
0

t�1=2e�t sin.�x log t / dt D
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�
1
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�
.2k C 1/Š

x2kC1

certainly holds for x 2 .�1=2; 1=2/, because the radius of convergence of the series
is exactly 1=2, then
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�
�
�
1
2
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��ˇ̌
�
�
1
2
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�ˇ̌ � �� 0�12�
�
�
1
2

� x D . C log 4/ x

for all sufficiently small x. Thus,

arg
�
�
�1
2
� ix

��
� arcsin.. C log 4/x/ � . C log 4/x as x ! 0:

Similar reasonings show that

arg .�.1 � 2ix// D arcsin
Im .�.1 � 2ix//

j�.1 � 2ix/j
D arcsin
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0
e�t sin.�2x log t / dt
j�.1 � 2ix/j

;

1Z
0

e�t sin.�2x log t / dt D
1X
kD0

.�1/kC1�.2kC1/.1/

.2k C 1/Š
.2x/2kC1;

and

arg .�.1 � 2ix// �
�� 0.1/

�.1/
.2x/ D 2x as x ! 0:

Hence,

argA.ix/ � 3. C log 4/x � 2x D . C log 64/x; x ! 0:

Since we are interested in the smallest zero, then indeed xn;1.1=2; 1=2; 1=2/ con-
verges to zero when n goes to infinity. Therefore, we use the latter approximation of
argA.ix/. Thus, for the argument u.x/ of the cosine in (4.2), we obtain

u.x/ D x lognC . C log 64/x �
�

2
;

so we see that xn;1.1=2; 1=2; 1=2/ is asymptotically equal to the smallest positive
zero of cosu.x/ D 0, that is, to the solution of u.x/ D �=2. In other words,

xn;1

�1
2
;
1

2
;
1

2

�
�

�

 C log 64C logn
; as n!1:
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The latter, together with (4.1), yields

dn � 4 �
16�2

4�2 C . C log 64C logn/2
; as n!1;

which is exactly (1.14).
The explicit form of the coefficients ck in (1.16) follows immediately after

straightforward manipulations with the error term on the right-hand side of the latter
expression and the generating function of the Chebyshev polynomials of the second
kind

1

1 � 2ty C y2
D

1X
jD0

Uj .t/y
j :

Indeed, setting

yn D
.4�2 C . C 6 log 2/2/1=2

logn
and Qt D �

 C 6 log 2
.4�2 C . C 6 log 2/2/1=2

;

the error term of (1.14) becomes

16�2

4�2 C . C log 64C logn/2
D

16�2

Œlogn�2
1

1 � 2Qtyn C y2n
D

16�2

Œlogn�2

1X
jD0

Uj .Qt /y
j
n :

Since jQt j < 1 and all Chebyshev polynomials of the second kind obey the inequal-
ity jUj .t/j � .1 � t2/�1=2 for t 2 .�1; 1/, the latter series is absolutely convergent
for jynj < 1. The same argument shows that the error term in (1.15) is indeed
O..logn/�m�1/.
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