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Semiclassical estimates for measure potentials on the real line

Andrés Larrain-Hubach and Jacob Shapiro

Abstract. We prove an explicit weighted estimate for the semiclassical Schrédinger operator
P = —h%32 + V(x; h) on L?(R), with V(x;h) a finite signed measure, and where & > 0 is
the semiclassical parameter. The proof is a one-dimensional instance of the spherical energy
method, which has been used to prove Carleman estimates in higher dimensions and in more
complicated geometries. The novelty of our result is that the potential need not be absolutely
continuous with respect to Lebesgue measure. Two consequences of the weighted estimate are
the absence of positive eigenvalues for P, and a limiting absorption resolvent estimate with
sharp h-dependence. The resolvent estimate implies exponential time-decay of the local energy
for solutions to the corresponding wave equation with a compactly supported measure potential,
provided there are no negative eigenvalues and no zero resonance, and provided the initial data
have compact support.

1. Introduction and statement of results

The goal of this note is to study the spectral and scattering theory for the one-dimen-
sional semiclassical Schrédinger operator,

P = P(h):= —h*32 + V(x;h): L*(R) — L*(R), h >0, (1)

with potential V' = V(x; h) a real, finite signed Borel measure on R, which may
depend on the semiclassical parameter 4. Here and below, L2(R) is the usual Hilbert
space of equivalence classes of functions #: R — C which are measurable with respect
to the Lebesgue sigma algebra on R, and for which [ [u|*dx < oo, where dx denotes
Lebesgue measure.

Self-adjointness of singular Sturm—Liouville operators encompassing (1) was sys-
tematically addressed in earlier works [17,27,28]. With the objective of being self-
contained, we proceed in elementary fashion to specify the domain D of P as a
certain dense subspace of L2(R) which is contained in the Sobolev space H!(R).
Recall each u € H'(R) has a (unique) continuous, bounded representative, which we
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denote by u.. Thus, for u € H'(R), we prescribe the product of u and V' to be the
complex Borel measure u.V, and define the expression

Pu = —h*32u +u.V )

in the sense of distributions on R. Using the calculus of functions of bounded variation
(which we review in Section 2), we show in Section 3 that (for all &z > 0) P is self-
adjoint with respect to

D:={uecH'®R):u' € L°R) and Pu € L*(R)}. (3)

The main result of this note, whose proof appears in Section 4, is the following
weighted estimate on L2(R).
Theorem 1.1. Fix§ > 0. For all E = E(h) > 0 (which may depend on h), ¢ € [0, 1],
h >0, andu € D with (|x| + )ATD/2(P — E + ie)u € L2(R),

/(|x| + D) E ) + b |P)dx
R

<C(V, E,h,S)/(IxI + D) |(P — E £ig)ul?dx. 4)
R
Here,
C(V,E.,h,$)
2 4 1 V1?2
_— ,Ci(V,E.h8)( = - C(V,E ,h,5)
= (h+(h2+Eh2(2+2E+ 2 ))e ) )
Ci(V,E. h,8):=25""+ E-V2p~ V|, (©6)

and ||V | := |V|(R), with|V | the total variation of V, defined by
vi=vt4+v-,
where {Vt, V™) is the Jordan decomposition of V (see, e.g., [20, Theorem 3.4]).

Remark 1.2. In the case that £ > 0 is fixed independent of %, and we restrict h €
(0, 1], the constant (5) is bounded from above by the more succinct expression

exp(C(E,8)(1 + ||V )/ h), for some C(E,§) > 0 depending on E and 8.  (7)

Two consequences of Theorem 1.1 are the absence of positive eigenvalues of P,
and a weighted limiting absorption resolvent bound.
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Corollary 1.3. The operator P on L?(R), given by (2) and equipped with domain (3),
has no positive eigenvalues.

Corollary 1.4. Fix § > 0. Then for all E = E(h) > 0 (which may depend on h),
g€ (0,1], and h > 0,

_148 e _148
[(x|+ D™= (P(h)— Exie) (Ix[+ D72 [2m)»r2®)

(C(V, i,h, 5))1/23

where C(V, E, h, §) is as given in (5).

<

®)

Remark 1.5. It is well known that V' € L!(R;R) implies absence of positive eigen-
values. Furthermore, absence of positive eigenvalues was proved, by different meth-
ods, for locally H~! potentials with L!-type decay, see [30, Theorem 1.9]. This
class includes finite signed measures as a special case. Recall also the celebrated
von Neumann—Wigner potential W [32, Section XIII.13], which obeys

8sin(2|x]) _
W(x) = T + 0(]x]™?), as|x| = oo,

and has an eigenvalue at £ = 1.

Remark 1.6. For E > 0 fixed and & € (0, 1], the right side of (8) is bounded from
above by an expression of the form (7). In higher dimensions, resolvent upper bounds
like (7) are usually proved by first establishing a Carleman estimate, which is similar
to (4) but involves an additional weight of the form e®/”, where ¢ is a suitable phase
function (see e.g., [7, Theorem 2.2] and [8, Lemma 2.2]). However, our proof of
Theorem 1.1 in Section 4 shows that in one dimension it is not necessary to use a
phase.

When V' is compactly supported, we prove a simpler weighted estimate away from
the support of V, which yields an improvement to (8) for 4 small.

Theorem 1.7 (Exterior estimate). Fix § > 0 and E > 0. Suppose V is supported in
[—Ro, Ro] (independent of h) for some Ry > 0. Set hg = 271671 (1 + Roy) 8. There
exist C, depending only on Ry, E, and § (see (40) below), so that for all ¢ € (0, 1]
and h € (0, ho),

_ 146 . N—1 _ 148
[(x]+ D72 1spgy (P — E £ie)  Lapy(Ix| + 1) 2 2@y r2R) <

SEe

€))

Here, 1 g, denotes the characteristic function of {|x| > Ro}.

The h-dependencies in (8) and (9) are sharp in general, and were proved previ-
ously for V € L'(R;R) [14]. Thus, the novelty of this work is that Theorem 1.1



A. Larrain-Hubach and J. Shapiro 1036

implies optimal semiclassical resolvent bounds for potentials in one dimension which
may not be absolutely continuous with respect to Lebesgue measure.

When V is smooth, the exponential bound (8) (with different constants) was first
proved by Burq [4, 5], who also considered higher dimensions and more general oper-
ators. Further proofs and generalizations can be found in [7-9,22,24,31,33,37]. In
dimension n > 1, current results require at least V' € L° (R” \ {0}), with sufficient
decay toward infinity, to obtain a semiclassical resolvent estimate. And often, only
weaker versions of (8) are known [10, 23, 29, 38, 39, 45-50], with eC/h replaced by
€/ for some £ > 1.

When V' is smooth, the improvement (9) away from the support of V' was first
proved by Cardoso and Vodev [7], refining earlier work of Burq [5], and again anal-
ogous results hold in many settings [7-9,22,31,33,37]. When the dimension n > 1,
Datchev and Jin [11] showed the cutoff 1)~ g, may need to be replaced by 1 > r
with R > Ry, even when V' € C5°(R").

To prove Theorem 1.1, we employ a positive commutator-style argument in the
context of the so-called spherical energy method. This strategy has long been used to
prove Carleman and related estimates [7, 8, 14,22,29,31]. In fact, as we work in one
dimension, it suffices to use the pointwise energy

F(x) = Fxlu](x) := |hu' (1) + Elu(x)|?,

(10
u € D such that (|x| + )T 2(P(h) — E + ie)u € L2(R).

The goal is to construct a suitable weight w(x) having locally bounded varia-
tion, so that, roughly speaking, the distributional derivative of wF is bounded from
above by a term involving 2w Re((P — E =+ ie)ui’), and bounded from below by
w(E|ul? + |hu’'|?) (see (28) for the precise estimate). To attain the upper bound,
V' needs to be reintroduced after differentiation of wF, at the cost of a perturbation
term (see (26), and note V' does not appear in F in the first place because its dis-
tributional derivative may be irregular). This perturbation can be controlled, yielding
the desired the lower bound, by designing w appropriately. In particular, since V
may have discrete part V; (i.e., countably many point masses which are absolutely
summable), we use a family of weights w; (x) depending on a parameter > 0. Each
w, controls a certain Gaussian approximation of |V;| (see (24)). We then show that
the needed estimates hold uniformly as n — 07.

When V' is compactly supported, it is well known that Corollary 1.4 is related to
the distribution of scattering resonances for the operator —8,26 + V. As in [40], we
define the resonances of —32 + V as the poles of the cutoff resolvent

12 +V A L2(R) — D, y e CPR;[0,1]), x = 1on suppV,
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which continues meromorphically from Im A 3> 1 to the complex plane. In Section 6,
we combine (8) with a resolvent identity argument of Vodev [44, Theorem 1.5] to
show

Theorem 1.8. Suppose V is a finite signed Borel measure on R, which is supported
in [=Ro, Ro] for some Ry > 0. Fix y € Cg°(R: [0, 1]) such that y = 1 near [—Ro, Ro),
and fix Ao > 0. There exist C, eg > 0 so that for all |Re A| > Ag, and |ImA| < g,

x93 +V =23 A2 gk < CIReA, k=0, 1(H® = L*(R)), (ID)

and
lx(=07 +V =2yl 20 < C(IReA| + 1), (12)

where D is equipped with the graph norm ||u|| o = (||(—9% + V)u||i2 + ||u||22)1/2.

The existence of resonance free regions below the real axis is a long-studied prob-
lem: [25,26,51] treat the cases V € Lé’(‘)’mp(R), Ve Léomp(R), and V' exponentially
decaying, respectively. More recent articles [12, 13, 34] describe the distribution of
resonances for thin barriers in the semiclassical regime. To the authors’ knowledge,
Theorem 1.8 is the first demonstration of a resonance free strip for a class of potentials
in one dimension that can have singularly continuous part.

Estimates such as (11) and (12) yield regularity and decay results for operators
involving the measure V. As an illustration, in Section 7 we show how (11) implies
an exponential local energy decay rate, modulo negative eigenvalues and a possible

zero-resonance, for the associated wave equation,
(02 - 02 + V(x)w(x,1) =0, (x,1) € R x (0, 00),
w(x,0) = wo(x),
d;w(x,0) = wy(x),
supp wo, suppw; € (—R, R), R > 0.

13)

See Theorem 7.1 for a precise statement. Similar wave decay was previously estab-
lished for V € Lé’g’mp(R; R) ([41] and [16, Theorem 2.9]). We also mention that
exterior estimates like (9) have application to integrated wave decay [11, Lemma 5].
There is an extensive literature on second order operators whose coefficients are
singular. Thus, we will not attempt to give a comprehensive review here. For the
one-dimensional case, we point the reader to [2, 17-19,27,28,35], which develop the
Sturm-Liouville theory for such operators, and investigate topics including boundary
conditions, self-adjoint extensions, and inverse spectral theory. The research mono-
graph [1] gives a comprehensive treatment of point interactions in three and fewer

dimensions. Higher-dimensional studies include [3,21].
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2. Review of BV

To keep the notation concise, for the rest of the article, we use “prime” notation to
denote differentiation with respect to x, e.g., u’ := dyu.

In Section 2, we review the basics of functions of bounded variation (BV), and
collect four well-known propositions concerning their calculus. This material is relied
upon frequently in later Sections. We give the proof of Proposition 2.2, while proofs
of Propositions 2.1, 2.3, and 2.4 may be found in [15, Appendix B].

Let f:R — C be a function of locally bounded variation. For all x € R, put

fEE) = lim f(x —3),
§—0+

FR@x) = lim f(x +96).
§—o0t

FAE) = () + fR(x))/2,

where the limits exist because both the real and imaginary parts of f are a difference
of two increasing functions. Recall that f is differentiable Lebesgue almost every-
where, so f(x) = fL(x) = fR(x) = f4(x) for almost all x € R.

We may decompose [ as

f =t = fr— +ilfi+ — fi-),

where the fo 4, 0 € {r,i}, are increasing functions on R. Each fUR ', uniquely deter-
mines a regular Borel measure pq+ on R satisfying pe,+(x1, x2] = fGRi(xz) —

fRjE (x1), see [20, Theorem 1.16]. We put

0.
df = rt — pr— + (i 4 — hi-),

which is a complex measure when restricted to any bounded Borel subset. For any
a<b,

/ df = fRb) - fR@). / af = fL ) — fR (). (14)
(a,b] (a,b)

Proposition 2.1 (Integration by parts). Let f:R — C have locally BV. For any a < b,
and any continuous ¢ with ¢’ piecewise continuous,

/ odf + / o fdx = fRBIeB) — fR@)pa). (15)
(a,b] (a,b]

Proposition 2.2 (Fundamental theorem of calculus). Let jis,+, 0 € {r, i} be positive
Borel measures on R which are finite on all bounded Borel subsets of R. Suppose
u € D' (R) has distributional derivative equal to L = fr+ — pr— + i (i + — Li—).
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(For example, this will hold for u € D, with u = u.V + gdx for some g € L*>(R).)
Then u is a function of locally BV. For any a € R, u differs by a constant from the
right continuous, locally BV function

f[a,x] du X >a,

(16)
~Jeawyd x <a.

fu(x) = {

Proof. We need to show that the function (16) has distributional derivative w. First, it
is straightforward to check that f,(x2) — fu(x1) = u(x1, x2] for all x; < x,. Hence,
df,, = p. Then (15) implies

—/w’fudx = /wdu, ¢ € Co°(R), a7
R R
where all boundary terms vanish, and the right side of (17) is finite, due to the compact

support of ¢. [

Proposition 2.3 (Product rule). Let f, g: R — C be functions of locally bounded
variation. Then

d(fg) = f4dg + gtdf (18)

as measures on a bounded Borel subset of R.

Proposition 2.4 (Chain rule). Let f:R — R be continuous and have locally bounded
variation. Then, as measures on a bounded Borel set of R,

d(e’) = e’ df. (19)

3. Self-adjointness for V' a measure

The goal of this section is to use the tools of Section 2 to show (P, D) is self-adjoint
on L2(R), where O is given by (3). This strategy sets the stage for several steps in
the proof of Theorem 1.1 in Section 4. We demonstrate that (P, D) is merely the
self-adjoint operator naturally associated to the quadratic form

q(u,v) = /hzﬁ’v’dx —I—/LchcV, u, ve H'(R). (20)

As mentioned in Section 1, self-adjointness was addressed in greater generality else-
where [17,27,28].

Lemma 3.1. Let V = V(x; h) be a real, finite signed Borel measure on R. Then D
specified by (3) is dense in L*>(R). The operator P: L>(R) — L?*(R) given by (2)
with domain D is self-adjoint.
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Proof. Throughout the proof, we work with u € L?(R) that have locally integrable
distributional derivative u’. Such u have a (unique, locally absolutely) continuous
representative 1., hence we can define the product u.V as a distribution on R, since
it is a complex measure when restricted to bounded Borel subsets of R.

Let Dmax 2 D be the set of all u € L2(R) such that v’ € L] (R) and Pu :=
—h*u” 4+ u.V € L?*(R). By Proposition 2.2, for any u € Dpax, We may fix a repre-
sentative uy, for u’ that has locally bounded variation. If necessary, we redefine uy,
on a set of Lebesgue measure zero so that u; (x) = (ugv)A(x) for all x € R (this
updated uj still has locally BV).

In the computations to follow, we always work with the representatives u, and
uy,, but we drop subscripts to keep notation concise. This convention ensures that
expressions like u'V are well defined as complex Borel measures (on bounded Borel
subsets), since locally BV functions are Borel measurable. It also simplifies some
calculations that involve (14) or (18).

Our first step is to prove Dmax € D. Since the reverse containment is trivial, we
will conclude Dy = D. Indeed, for u € Dy, and any a > 0,

/|u/|2dx = /u’d(ﬁ)

(—a,a) (—a,a)
= /d(u/ﬁ)—ﬁd(u’)
(—a,a)
= (W'it)(a) — (u'ii)(—a) +h_2/ﬁPudx—h_2/ﬁuV
(—a,a) (—a,a)

<2 sup [u'| sup [ul +h 2|V sup [ul® +h7>| Pulp2|ulLe.
(—a,a) (—a,a) (—a,a) (21)

where ||V := |V|(R), with |V the total variation of V. The second line of (21)
follows from (18) and u = u4, u’ = (u’)4; the third line follows from the fact that
—h?d(u’) = Pu —uV as Borel measures, which is a consequence of (17).

Since u is locally absolutely continuous,

(—a,a) x€(—a,a)

1/2
|u(0)|2+2( / |u’|2dx) 2.

(—a,a)

X
sup [u|?> = sup (|u(0)|2—|—2Re/u’ﬁdx)
0

IA
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Furthermore, if x € (0, @), then by (14), (18), and u’ = (u')4,

(i) (x)
= (u'u')(0) + /d(u/ft’)
(0,x]
= |u'|2(0) —2h™2 Re( /ﬁ’Pudx —/ﬁ’uV)

(0,x] (0,x]

1/2
< [W'|?(0) + 2h72||V|| sup |u| sup Iu’|+2h_2||Pu||L2( /Iu'IZdX) ,

(—a,a) (—a,a) (cu.d)

while if x € (—a, 0), we similarly find
('it) (x)
= (u'u')(0) —/d(u’ﬁ’)

(x,0]

1/2
< |u'[2(0) + 207 2|| V| sup |u| sup |u'] + 2h_2||Pu||Lz( / |u/|2dx) .
(—a,a) (—a,a)
(~a,a)

We thus arrive at a system of inequalities of the form x? < 2yz 4+ Ay? + B, y? <
C + Dx,z2 < E + Fyz + Gx, where x := (f(_a’a) lu'[2dx)V/2, y = SUP(_g.q) [,
and z := Sup(_, 4) |u’|. After using the second inequality to eliminate y, we obtain a
system in x and z with quadratic left-hand sides and subquadratic right-hand sides.
Hence, x, y, and z are each bounded in terms of A4, B, ..., G. Letting a — oo, we
conclude that u’ € L?(R) and u, u’ € L*®(R). Hence, Dpmax < D as desired.

Next, we equip P with the domain Dy,.x = D, and show that P is symmetric.
Let u,v € D, and take {¢g )72, € C5°(R) converging to v in H'(R). Using the
distributional definition of Pu,

(Pu,v);2 = lim (Pu, )2
k—o00

= lim [ @(-h*g})dx + / iV

k—o0

= lim /hzﬁ’gal/cdx—k/ﬁgokV

k—o0
= / h2a'v'dx + / vV, (22)

where the last equal sign follows since | V| is finite and || w||? oo < [|w]||z2[lw'[|z> for
any w € H'(R). Approximating u € H'(R) by C§°(R)-functions, we similarly have
(u, Pv)2 = [h?>u'v'dx + [uvV.Thus, P is symmetric.
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The last step is to establish that (P, D) is densely defined and P* C P. For this,
define on H!(R) the quadratic form (20). Since, for any y > 0,

‘/V|u|2

2
< IV [HlellZo0

< IV el2 N2
1 2 Y112
< VI (5, el + S1'1E2).
setting y = h?/|| V| yields

e
2h?

V2
2h?

2 h2 2 2 3h2 2
lelZ2 + 172 < qew) < S uliz + = 117

We thus conclude ¢ is semibounded and closed.
By Friedrichs’ result [42, Theorem 2.14], there is a unique (densely defined) self-
adjoint operator (A4, ;) with
D; = {u € H'(R) : there exists 7 € L?
with q(u,v) = (i, v),2 forallv € H'(R)}, Au = ii.

Revisiting the calculation (22), we see that for any u € Dy, it = —h?*u” 4+ uV in the
distributional sense. Thus, (A4, 1) C (P, Dyax), S0 P* C A* = A C P. Since we
already showed P C P* (symmetricity), we conclude P* = P as desired. ]

4. Weighted estimate

The purpose of this section is to prove Theorem 1.1. As discussed in Section 1, we do
so by means of a positive commutator argument that leverages the energy method.

Proof of Theorem 1.1. Our starting point is the pointwise energy F given by (10). As
in the proof of Lemma 3.1, we fix with a continuous representative of u € D, and
fix a representative of u’ € L2(R) N L% (R) that has locally bounded variation and
w4 = (thus FA = F).

Since the measure V' = V(x; h) is finite, it can have only countably many point
masses {x; };, and moreover ZJ- |V;| < oo, where V; := V({x;}). Let us decompose

V=Vet+Va. Va=)_ Vb,
J
into its discrete and continuous parts. Here, Sx‘ ; denotes the Dirac measure concen-
trated at x;. A key technical feature of the ensuing calculations is our use of the weight
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function
w = wy(x)
X
o 1 1 / ’ —1-6§ /
= exp(/[m|vc|+(mvd,n(x)+(|x|+1) ) dx'), 1>0,

%0 (23)
where |V, | denotes the total variation of V,, and

V() =7 2yt 37 Wylem(Cmx/n”, (24)
J

The exponent of w is a continuous function, thus we may compute dw using (19).
Nearing the end of the argument, we manage to control a term involving |V,;| by
sending 7 — 0%, essentially using that 7 ~'/25~! 2.1V |e_(()‘_)‘f')/’7)2 — > 1Viléx;
in the distribution sense. We note also that

sup [wy (x)] < eC1VERS), (25)
R

with C1(V, E, h, §) given by (6).
From (18) and ut = u, (u’)A = u’, we find, in the sense of measures on R,
dF = 2h?Re(it’d(u')) + 2E Re(uit’)
= —2Re(((P — E £ ig)u)u’) F 2eIm(uu') + 2Re(uu'V),

where, to get the second line, we used that —h2d(u’) = Pu — uV as Borel measures.
Using (18) again, this time to expand d(wF),
dwF) = Fdw + wdF
= |h|>dw + Eul*dw
—2wRe(((P — E £ie)u)u') F 2ew Im(ui') + 2Re w(uu'V)
> —2wRe(((P — E £ig)u)u’) F 2ew Im(uu’)
+ (|h|* + Eu*)dw

— h T wE P+ BT ) (1Vel + 31V 18, ) (26)
J

By (19) and (23),
dwy = W, (E72)1|

+ BTV 2N |y e G (x| + 1) P dx).
J 27
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Plugging (27) into the fifth line of (26) implies,
d(wF) > —2wRe(((P — E ie)u)u’) F 2ew Im(uur’)
+ w(|x| + D7 Eu)? + b [P)dx
+ Zh—lw(El/2|u|2 + E—l/2|hu/|2)
J . |Vj|(n—le—l/Ze—((x—xj)/ﬂ)zdx _ ng) (28)
Next, we note there exist sequences {a;- }oo, tending to 00, along which F (af) =
FR(ani) = FL(af) — 0. This is because F(x) € L'(R) and is continuous off of a

countable set. So, we integrate both sides of (28) over (a,,, a,‘f ] and send n — oo.
By (14), the left side of (28) becomes zero. Hence, from (25) and w > 1,

/ (x] + D3 Euf + [ ]P)dx

+ 20| f w(E 2l + E7V2 ! Yot a2 G0 g 5,
J

1
< C1RERD (/ S D'FUP — E £ iepul” + (x| + )70 P
+ 28/ |uu’|dx), v, h > 0. (29)

The goal of the following calculations is to show that the second line of (29) is
nonnegative in the limit as n — 0. First notice that as n — 07,

Xj (xj—x¢)/n :

’ r_ _—1/2 —(x)? g1 V.
/Vd,,,(x)dx =723V / e~ dx —>2|Vj|+Z|Vg|,
—00 ¢ —o0 Xg<Xj

xj+nx St
/ Vag(dx' =n712 3" |y / e~ gy
% ¢ AN
R
L2y / e ax + YV,
—00 Xp<Xj
This implies
; Vil
wn(xj)_)eF(E,h,J)eXp(2E1]/2h>,

e
- V: /
wy(x; +nx) — el (E-h1) eXp((T[lls)]J/zh e ™ )zdx/)7
—00



Semiclassical estimates for measure potentials on the real line 1045

where
Xj
) 1 1
I'(E,h,j) ._ ’ —1-8 7./
TR = exp(—El/zh S+ [ [ Vel + 01+ 071 ]).
xg<xj —o0
Therefore,

B [ g BVl + B2 s,

= WV lwn () (EY 2 u(x))? + E7V2 | (x)[%)

oy U202 12t 2T (E ) Vil )
= hHVIE 2 lue)? + E72 b () e b5 72y )
while

7] / wy (B2 uf? + E72 I P)e (0% dx

=i [y + ) BVt + o

+ ETV2 ) (xj + nx) e dx,
— (E2u(x))|> + E7V2 | (x;)[})e" B

X
V‘ ’
. h_ln_1/2|1/j| / exp ((L‘% e_(x )de/)e_xzdx
T
—0Q

_ , \A
= EV2(E () + E7 2 () Pye " E D (exp( o) 1)

In summary, we have shown that the second line of (29), upon sending n — 07,
converges to

D (EluCep)? + [ (xp)2)el 40

J

14 14 14
: (exp(El/zh) ~1- i exp(zEl/Zh)) > 0. (30)
The nonnegativity follows from the fact that e¥ — 1 — xe*/2 > 0 for all x > 0.

Returning to (29), we fix y = 27 1= CIV.EhS) g4 that we may absorb the first
term in line three into the left side, and invoke (30), implying

1
/(|x| +1)719 (E|u|2 + §|hu’|2)dx

5) ( 26C1V-E18) s
< ¢C10LE R, )(—2[(|x| + D[P — E Lie)ul?dx

h
+28/ |uu’|dx), h>0. 1)
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For the term in (31) having the factor of ¢,
/ 1 2 1 712
2 | |luuldx < 7 |u|“dx + 7 |hu'|“dx, h >0, (32)

and

/lhu/|2dx = Re/((P — E *ie)u)udx + E[ lul>dx + / %

1 1
< —/|(P—Eii8)u|2dx+ (—+E /|u|2dx+ IV Ml 2l || 2
2 IVII

<- /|(P E +ieu| dx+( FE+ g /| 2dx
+5||V||/|hu/|2dx, v, h>0. (33)

Fixing y = ||V|~! in (33) implies

V 2
/|hu |2dx </|(P Ej:zg)u|2dx+(1+2E+ 14s ” /| *dx, h>0.
(34
Now, replace [ |hu’|>dx in (32) by the right side of (34). From this, we get a bound
for 2 [ [uu’|dx, which we insert into the in the last line of (31). We conclude

1
/(|x| + )N E ) + 5|hu’|2)a,'x
20C1(V.E,h.8)

< ¢C (V,E,h,8)(( h2

1) /(|x| + )P — E £ ie)uldx

3 4§ 2
+E(2—|—2E—|— - )/|u| dx), ee0,1, h>0. (35

We absorb the last term of (35) into the left side by estimating

8||u||22 =FIm{((P — E Lie)u,u)2
-1
y 148 . y _148
= Sollxf+ D= (P —E Eio)ulf, + SIdxl+ 1= ul72, (36)

and then choosing y = Eh™1(2 4+ 2E + h™2|V|?)" e C1(V:E-20) We then have
E 1
/(|x| + 7Sl + Sl ) dx

2eC1(V,E,h,5) 1

! i
< ,Ci (V,E,h,s)( - (2 2E ) C (V,E,h,S))
<e 2 + A + =0 SER2 + + 2

-/(|x| + D'(P—E +ie)u|?dx, e€(0,1],h>0,

which implies (4). [ ]
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5. Exterior estimate

Proof of Theorem 1.7. We again start from (10), considering the case ¢ € (0, 1] and
putting
f=(P(h)—E £ie) " (x| + 1)~ /2y,

This time, we pair F' with a much simpler weight w. In particular, we take w to be
the continuous, odd function vanishing on [— Ry, Ro], and obeying

(14 Ro)?
(1+x)3°
= dw = w'(x) = §(1 + Ro)*(1 + [x) 7' P 15g,.

w(x) =1-— > Ro

Note that the same w was used in the proof of [14, Theorem 2]. Since wV = 0, we
find, proceeding as in (26),

d(wF) = —2wARe((P — E + ie)u)it’) F 2ew? Im(uit')
+ |hd'|*dw + E|u)*dw,

and thus

5(1+ Ro)’ / (x| + D3 Euf? + ' P)

R\[-Ro,Ro]
1
< e /|f|2 + y/(|x| + 1) )? —|—2£/w|uu’|, v, h > 0. (37)
R\[=Ro,Ro] R\[=Ro,Ro] R\[=Ro,Ro]

Taking y = 2718(1 4+ Ry)®, we absorb the second term on the right side of (37) into
the left side. To handle the term involving ¢, we proceed to find

2/w|uu/| < % /|u|2 +llz /w2|hu’|2, h >0, (38)
R\[—Rg,Ro] R\[—Ro,R0] R\[—Rg,Ro]
and
/w2|hu’|2
R\[—Rg,Ro]
= 2h? Re/ ww'u'ii + Re/ w2 (—h*u" )i < §(1 + 1e0)8h/(|u|2 + w?|hu'|?)
R\[—Ro,R0] R\[—Ro,Ro] R\[—Ro,R0]

—|—Re/w2((P—E:I:is)u)ft—i—E/|u|2

R\[-Ro,R0] R\[-Ro,Ro]
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<3 /|f|2 +E+8(1 +R0)5 /|u|2

R\[-Ro,Ro] R\[-Ro,Ro]

+68(1+ Ro)’h / wh'|?, h>0. (39)
R\[-Ro,Ro]

Putting 1o := 271871 (1 + Ro)~® and restricting & € (0, ho] in (39) allows us to bound
fR\[—RO Ro] w?|hu'|? in (38) by twice the fourth line of (39). Inserting the resulting

estimate for 2 fR\[—RO Rol w|ui’| into the right side of (37) yields, for ¢ € (0, 1] and
h € (0, hol,

2 1
1 —1-6 2 < / 2
/(|x| +1 el < (82E(1 + Ro)?3 h? + ES8(1 + R0)5h> /]
R\[-Ro,R0] R\[-Ro,Ro]

342E ,
40
“ES(+ Ro)h /lul “0)
R\[-Ro,R0]

The last term in line two of (40) may be estimated in manner similar (36), leading
to (9). ]

6. Uniform resolvent estimate and resonance free strips

In this section, we prove Theorem 1.8 as an application of Corollary 1.4. We are
concerned with the self-adjoint operator

=32 +V:D — L*(R),

where V' remains a finite signed Borel measure, and has support in [—Rg, Ro] for
some Ry > 0.

In this situation, H is a black box Hamiltonian in the sense of Sjostrand and
Zworski [40], as defined in [16, Definition 4.1]. More precisely, in our setting this
means the following. First, if u € D, then u|r\[-Rry.R] € H*(R \ [~Ro, Ro)).
Second, for any u € D, we have (Hu)|r\[-Ry,Ro] = —(U|R\[~Ro,R,])”- Third, any
u € H?(R) which vanishes on a neighborhood of [—Ry, Ro] is also in . Fourth,
1Ry, Ro)(H + i)~! is compact on J#; this last condition follows from the fact that
D < H'(R).

Then, by the analytic Fredholm theorem (see [16, Theorem 4.4]), we have the fol-
lowing. In Im A > 0, the resolvent (H — A2)~! is meromorphic L2(R) — D; A is a
pole of (H — A?)7!, if and only if A% < 0 is an eigenvalue of H. Furthermore, for
1 € CC(R; [0, 1]) with x = 1 near [~ Ry, Ry], the cutoff resolvent y(H — %)~y
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continues meromorphically L2(R) — O from Im A > 0 to C. The poles of the con-
tinuation are known as its resonances.

Proof of Theorem 1.8. Throughout the proof, we use C(||V||, A¢) to denote a positive
constant which may depend on || V| and A¢, and whose value may change from line
to line, but is always independent of A.

We first show (11) fork = 0,ImA > 0, and |[Re A| > A¢. In this case, let us expand

x(H =21y = (@2 +V —(Red)*> + (ImA)* —i2Re X -ImA) 'y
= (Red) ?x((ReA) 7?02 + (ReA) >V — 1 + (ImA)*(Re )2
—i2(Red) ' mA) "'y, A1)

IfImA > |Re A|/2, then by the spectral theorem for self-adjoint operators,
lx(H =A%) gll2 2 < [ReA[™ < A5 [ReA| ™,

ferImA > |ReA|/2, |[ReA| > Ao. If ImA < |Re A|/2, we apply (8) to (41) (the nota-
tional correspondenceis§ =1, E =1 — (ImA)?(ReA)™2>3/4,e =2|ReA| "' ImA €
(0,1], h = |ReA|™!, and V(x, h) = h?V). Therefore,

Ix(H =A%) gllz2mp2 < C(IVIL A0) [ ReAI™", ImA > 0. [ReA| = Ao. (42)
Next, we adapt the proof of [6, Proposition 2.5] to show
Ix(H = 2% 2t < CUAVILA0). 0<ImA <1, [ReA|=Ao. (43)
We employ the notation
(H-2)u=yxf 0<ImA<1,|ReA|>2Ao fel?R), uecd, (44
and make use of additional cutoffs
X1, x2 € Cg°(R;[0,1]), x1=1on suppy, 2= 1on suppy;. (45)
Observe
I (H =22 0 f e < lxulle + 10 12 < Clxaulizs + ln'll22),

where here and below, C is a positive constant, which may depend on ||V and the
derivatives of the cutoffs, and which may change between lines, but stays independent
of A. So, by (42) it suffices to show

Ixu'll7> < C((IReA| + D[ x2ull7> + lx2/1172)- (46)
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Multiplying (44) by x3u and integrating gives
/x?xfﬁdx = /x?lu’lzdx +2/x’1ﬁxlu’dx +/x?|u|2V—12/x%|u|2dx,
where (22) was used, and consequently
[ e < [ igxsaax <2 [ ianla - 1l Ga L
+ (|Re A + 1)2/)(f|u|2dx
< C(lxaf I + (Rea |+ D2gauls) + 5 [ 3Pdx. 1)

Absorbing the last term on the right side into the left side confirms (46).
With (42) and (43), for0 < ImA < 1, |[ReA| > A, and f € L%(R),

lx(H=2)"xfllo < lx(H =23 xf e + [ Hx(H =A%) 1 f 12
<|llx(H =27 3 f 2 + =02 xlxn(H = Ay fll2
+ X ((H =A%) + A2 (H = A*) " g fll2
<lx(H =272 2+ 1 f 2
+ =02, i (H = A" 1 f 22
+ (IRe Al + D?[lx(H =237 1 f 12
<C(IV],A0)(IRe A| + D[ fL2-

This implies (12) for0 <ImA < 1, |ReA| > Ao, and that continued resolvent L2(R) —
D has no poles in R \ {0} (since A¢ > O is arbitrary).

Now, we turn to showing (12) in strips in the lower half plane. For this, we
use a resolvent identity argument due to Vodev [44, Theorem 1.5], adapted to the
non-semiclassical case. It yields holomorphicity of y(H — A?)~!y: L>(R) — D in
|[ReA| > Ao, —g0 < ImA < 0 (g9 > 0 sufficiently small), with bounds in these strips
of the form (11) and (12).

Fix y € Cg°(R; [0, 1]) such that y = 1 near [-Ro, Ro] and y = 1 near supp y. We
are going to develop several resolvent identities, and let us work initially with A, u
such that ImA, Imu > 0, | Re A|, | Re u| > Ao (before sending these parameters into
the lower half plane). By the first resolvent identity,

(H=A)"'—(H =)™ = W = p®)(H =27 (H — p*)7!
== p)(H - F2-DH - pH)™!
+ A2 = p ) (H =271 = 2 (H - )7
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As operators on H?(R),

(1= D03 =22 = (H =2 (1 = ) = [-93. 7]
= (H-2)7 1= - 1= -7
= (H — 27103 1(=0% =227,

X

while as operators on D,

(=2 — (1 —7) — (A= DH —p?) =[02. 7]
= (1-pH-p» ' =2 -1 -7)
= (=02 — > [2 FI(H — )"

Using y = 1 on supp j and the three previous calculations,

X(H =22y = x(H — )7y
=W =) xH -2 i@ = HH — )y
+ A=) (=07 = A7 + (H = A7 =02, 71(=03 — A7)
(=)A= )+ (3 = u) TR AIH — 1))y
=AW =) (H =)y qQ—px(H —p>) 7y
+ (1= 7= x(H =22 x[0%, 1) (x (=92 = Ay — x(=0% — )" x)
(1= 7+ [0, 71x(H — )~ y). (48)

To get the equality sign in line four of (48), we expanded the terms appearing in lines
two and three, and repeatedly applied the first resolvent identity to (A> — u?)(—92 —
227N (=02 - )

Before proceeding to use (48) to estimate || y(H — A2)~! x| 2_. o in the lower
half plane, we quote a well-known estimate for the difference of continued free resol-
vents (see [44, Section 5] or [36, Section 3.2]):

Ix (=02 — 23 x — x(=0% — 1> xllgrr o gk
< C(ho)lA —pu| sup |N[Fe7Fr=t, (49)

/VEF,’\'M

for k1 € {0,1}, k» € {0,1,2}, |ReA|, |Re | = Ao, ImA,Im p > —1, where I ,,
denotes the line segment connecting A and u.

Identity (48) continues to hold after meromorphically continuing both
sides (L?> = D) to A, u € C. Now, fix u € R with || > Ao; Assume A in the
lower half plane is not a pole of the continued cutoff resolvent, and obeys |A — u| <
min(1,9/2,), for suitable 0 < y < 1 to be chosen. Then ||y (H — ) Y x|l 20 gk <
CUVIL A1 k=0, 1, [ x(H = )" Al 20 < CUIV I, o) 1l (48), and (49)
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imply

Ix(H =A%) yll2ss o
< C>IV I, Ao) (Il + 1A% = (1l ~HIx (H = 22) " Al 20
1= Dx(R2% =27 = (03 = 1D Wt o
+ (203 =27 = (02 = ) )t s
X (H =2 ll2s 0
+ |l HX((_hzai — AT = (=9 - /’Lz)_l)XHL2—>L2
N H =27 ll2s )
< C>IVIL Ao) (Uil + ylx(H =27 rll 2o 0)- (50)
Fixing y small enough (depending on A¢) allows us to absorb the term involving
lx(H — A*)" Y x|l.2_p on the right side of (50) into the left side. This precludes
resonances in the region ImA < 0, [A — u| < min(1, A¢/2, y), and in this region we
have || x(H =A%) Xl 2 = CUVI. A0)|l-
Starting from (48), we use the same strategy to show (11) in strips in the lower
half plane. Thanks to (42), (43), and (49), more negative powers of || appear while

making an estimate similar to (50), since now we need only use operator norms
L?*(R) — L%(R) or L>(R) — H'(R). ]

To conclude this section, we consider the two by two matrix operator

G o= —i (_‘; (1)) D@ L2(R) > L*(R) ® L*(R).

which arises naturally from rewriting (13) as a first order system. A short computation
yields

G+ =

( “A(H =227 —i(H - AZ)—I) 1)

iAV2(H—=A2)"14+i —AH -1

when Im A > 0 and (H — A?)~! exists.
The following corollary of Theorem 1.8 is essentially well known, and is an
important input to the proof of Theorem 7.1 in Section 7.

Corollary 6.1. Let y € Cg°(R; [0, 1]) be identically one near [—Rg, Ro). The operator
(G + V)1 L2(R) @ L?*(R) - D @ L*(R)
given by

iM2y(H =AYy +ix? —Ayx(H—-A»)"1y
(52)

G+ 1) a(G+ 1)y = ( —Ax(H =A%)~y —ix(H —12)_1)()
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continues meromorphically from Im A > 0 to C, without poles on R \ {0}. For any
Ao > 0, there exist C, Lo, g9 > 0 so that

Ix(G + M) fllm ®eor2® - ®oL2® < C. |ReA|> Ao, |ImA| <&. (53)

If x(G + X)Ly has a pole at A = 0, it is a simple pole. More precisely, if wgy €
H'(R) and w, € L*(R), then

. _ —i limy_o Ay(H — A?)"Lyw,

lim Ax(G +2) g "0) = (T 0

Jlim A%(G +4) x(wl 0

_ ((X”o,w(;)w)(uo) (54)

for some real valued ug € H! (R) N H2.(R \ [-Ro, Ro]) with Huo = 0 in the sense
of distributions.

Proof. By the blackbox formalism (see [16, Definition 4.1 and Theorem 4.4]) and
Theorem 1.8, y(H — A?)~ ' y: L>(R) — D continues meromorphically from Im A > 0
to C, and has no poles in R \ {0}. This implies that each entry of (52) continues
meromorphically as an operator between the appropriate spaces, again without poles
in R\ {0}.

With (11) already in hand, to establish (53), we need to show for any Ao > 0, there
exist C, g9 > 0 so that

12 0(H =2y + Pllgisre = lxHH = A yllgiop2 <C0 (55)
IAx(H =22 xllg1 g1 < C. (56)

for |Re A| > A¢ and |Im A| < g. First, we first prove (55) for |[Re A| > Ay and
0 <ImA < g, and then handle the remaining cases.
Let us use the notation

u=H-21)"yfed, feH'R),|ReA|>Apand ImA>0. (57)

Let y1 € C5°(R) with 1 = 1 near supp y. As we showed in the proof of Lemma 3.1,
the form domain of (H, D) is H'(R), so there exists a sequence f; € O converging
to £ in H'(R), and corresponding functions uy := (H — A?)~ 1y fx converging to u
in (D, ] - lp)- Since Huy = (H — 2*)~ y1 H x fie,

IxHull2 = lim || yHug|p2 < lim [|xi(H =A%) yoHy fill 2. (58)
k—o0 k—o0

Furthermore, by (22), there exists C(||V||) > 0 depending on ||V || so that for any
v € L2(R),
[ (H =27 i Hy fieov)2l = [(H  fi xi(H = (037 ) 2
< CUVIDIxfilar i (H = (=0 vl g
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Since (11) gives [ x1(H — (1))~ x1vllg1 < C(IV]. Xo)||vllz2 (provided Im A is
small), we conclude || y1(H —A?) "Y1 H x fill.2 < CUIV ||, o)l xfx |l r1 - Returning
to (58), we now find

xHul 2 = C(IIVII,)to)kli)ngo IxSfillgr = CUAVIL AN S e
with |[ReA| > Ap, 0 < ImA < gp. In turn,

1A x(H = A2 gl sp2 = IXHH = A" = Pllaisre < CUVIL Ao),
(59)
with |[ReA| > Ao and 0 < ImA < gy, whichis (55) for |[ReA| > Ag and 0 < Im A < &.
Next, with u as in (57), we slightly modify the method of estimation in (47), this
time finding

/X?Iu'lzdx < C(IVIL20)(IRe Al + D72 x2f 172 + (IRe Al + D[l x2ul72),

and where we recall from (45) that y, = 1 on supp y;. Combining this with (59)
establishes (56) when |[Re A| > Agand 0 < Im A < g

To show that (56) and (55) hold for |Re A| > Ap and —gp < Im A < 0, we
revisit (48) and multiply by the appropriate power of A. We then perform an esti-
mate similar to (50). As needed, we invoke (49) and ||u?y(H — u?) Y xll g1 12,
lux(H = )" Xl < C (€ R, 1] = Ao).

Finally, to show (54), we proceed as in the proof of [16, Theorem 2.7]. We
omit the details, but take care to note that this argument does require that, for each
X0 € R\ [—Ryp, Ro] and a, b € C, there is a unique solution f to Hf = 0 satis-
fying f(x0) = a and f'(x¢) = b; Even though V is only a measure in our setting,
such well-posedness still holds for the initial value problem, see [19, Theorem 3.1].
(In general, it is not necessary to prescribe the initial conditions outside the support
of the measure, but this is sufficient for our purpose). The result is that near A = 0,

_ i
X(H =27 ywy = X(X”Oawl)LZXMO + AM)wr,  wy € L*(R),
where A(A): L?(R) — D is holomorphic near zero, and for some u¢ € H (R) N

HZ.(R\ [-Ro, Ro]) with Huo = 0 in the sense of distributions. Hence, we have (54).
]

7. Wave decay

In this section, we combine Corollary 6.1 with an argument similar to those appearing
in [43, Section 3] and [15, Section 4]. We establish exponential local energy decay,
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modulo negative eigenvalues and a possible zero resonance, for solutions of the wave
equation (13).

First, we represent the solution to (13) via the spectral theorem of for self-adjoint
operators. Additionally, we use that the proof of Lemma 3.1 shows the form domain of
(H, D) (i.e., the domain of | H|'/?) is H'(R). Thus, given initial conditions wy € D,
w; € H'(R), the unique function w € C2((0, 00), #) with w(0) = wy, 9, w(0) = wy,
w(t) € D(H) forallt > 0, and 2w (1) + Hw(t) = 0, is

W(t) = w('v t) = IZO(H)w('vt) + 1<0(H)W(‘,Z), (603)
: H 1/2

Lao(Hw( 1) = Lzo(H)(cos(t| H|'/2)wo + % ), (60b)
. it H 1/2

teo(H ) 1) = o) (costt 1112y + S0 D). (600

Theorem 7.1. Suppose wy € D, wy € H'(R), and supp wy, suppw; < (=R, R) for
some R > 0. Let w(t) be given by (60). For any R; > 0, there exist C,c > 0 so that
[1s0(H)w(:, 1) — Woo (X) | g1 (=R, R,y T 10 50(H)WC Dl 12(=R, ,R))

< Ce™"(Jlwoll g wy + lwillz2w)). > 0.

Furthermore, if x € Cg°(R; [0, 1]) is identically one near [—Ri, R1] U [-Ro, Ro] U
[—R, R), then the function Weo(X) may be written as

Woo(X) = 2 (Ot0(x) / Jtowr,
R

for some real valued ug € H,\ (R) N HZ.(R \ [-Ro, Ro]) with Huo = 0 in the sense
of distributions (and if the continued operator (52) does not have a pole at A = 0, we
may take uy = 0.)

Proof. Choose y € Cg°(R; [0, 1]) such that y = 1 near the interval [-Ry, R;] U
[—R, R] U [Ro, Ro] (where as before supp V' C [— Ry, Ro]). From Corollary 6.1, for
any Ag > 0, there exist C, g9 > 0 such that

Ix(G+2)"xfl =ClfI (61)

whenever | Re A| > A¢ and | Im A| < &9, where here and for the rest of this section, all
norms are H!(R) @ L?(R) unless otherwise specified.
We have
Loo(H)w(t) = 1so(H)(cos(t| H|"/)wo + sin(t| H|"/?)| H| 2wy,
3 1s0(H)w(t) = 1so(H)(— sin(¢| H|"?)|H|"?wo + cos(t|H|'*)wy),
2 1z0(H)w(t) = —H1so(H)w(?).
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Consequently, after defining

[ wo o 1zo(H)w(2)
/= (wl)’ vins = (atlzom)w(r))’
we have
U@ <CA+DIfI, 0:U@)f =iGU@) f, U@Us)f =Ul +s)f,

(62)
for all real ¢ and s, and for some C > 0 independent of ¢ and f.
Take ¢ € C*°(R; [0, 1]) which is O near (—oo, 1] and 1 near [2, c0) and put

W) f = )U@) f =/e"”W(A)d)L, W(A) := %/ei“W(s)fds, g>0.
ImA=¢ R

We compute 3, W(t) f = ¢’ ()U(t) f +iGW(t) f, and therefore find

W) f = [ eG4+ 1) i Uy (M) dA, &> 0. (63)
ImA=¢

Since wg, wy, and V have compact support, finite propagation speeds holds for
the solution (60). Therefore, increasing R > 0 if necessary, we have that x — U(t) f
is supported in (—R, R) for all ¢ € [0, 2]. By continuity of integration, the same is
true of x — (i¢'Uf)’(A) for every A. Hence, A — (i¢’Uf)"(A) is entire and rapidly
decaying as | Re A| — oo with | Im A| remaining bounded and further (i¢’Uf)"(A) =
xG@'Uf) Q).

By (61), there exists & > 0 small enough so that, within the strip |Im A| < 2¢,
either y(G + 1)~y has no poles, or just a pole at A = 0. Deforming the contour
in (63), by the residue theorem, we find

AW(@t) f = —2mi Res j—o(e " x(G + 1) x(i@'US) (V)

+ / e (G + V) (i@’ UF) (M)dA.

ImA=—c¢
= 1im 22(G + 1)y / ¢/ ($)U(s) f ds
R
+ [ e (G + 1) (i@’ UF) (M)dA.
ImA=—c¢

To simplify this, use (54) and put

o0

Wi(t) f = [ R R(G 4 A —ie) g UFY (A — i) dA.

—0oQ
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to obtain

WO = (Xuo Je s x(x)uou())w’(s)asw(s,x)dsdx) W) f

To simplify the first term, we integrate by parts in s, using ¢’ = —(1 — ¢)’, to obtain

2
//X(X)Mo(X)tp'(S)asw(s,x)dsdx
R 0

2
= [ yuow; + x(X)(1 — @(s))%w(s, x) ds dx.
[rne]]

R

Now, observe that 8§w =—Huw, yup € D, so

(xuo, Hw(s)) 2 = (H yuo, w(s))r2
= (([H, x] + H)uo,w(s));2 =0, fors e [0,2],
the last equality following from y = 1 near [-R, R] and supp w(s) € (—R, R) for
€ [0, 2]. Thus,

oo g = (0 ) e

It now suffices to show that
IWi () f1I < Ce* 2| £

To prove this, we first use Plancherel’s theorem, along with the fact that by (62),
the operator norm || U(t) || g1 (ry@r2(R)—H! R)®L2(R) 1S Uniformly bounded for all
t € R, as well as the fact that by Corollary 6.1, the operator norm ||y(G + A —
ie) " xllg ®yoL2®)— H! ®R)®L2(R) IS uniformly bounded for all A € R, to obtain

/ Wi fIP di = C / 12(G + A —ie)  x(@UFY h—ie)| dA
<c, / I@USY O —ie)]]? d
_¢ / P (OUW) 1P dit < Coll £ (64)

Next, let y € C5°(R; [0, 1]) with ¥ = 1 on supp y. Observe that

Gr(G+AM) 'y =[G. G +A+ie) " Fx—2x( G+ y+ x> (65
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holds initially for ImA >> 1 by (51), and continues meromorphically to C by (52).
In particular, decreasing ¢ if necessary, (53) implies that (65) holds for everywhere in
|Im A| < 2¢, except possibly at A = 0. Therefore, setting,

W)/ = / G 1 A — i) Fi U (A — i) dA,

we have
@ —iG)Wi(0) f
= —i[G. (IW1() f +eWr (1) f —i /e_“(ifﬂ/Uf)v(l—iS) dA =: Wa(1) f.
Integrating both sides of

(Ut =)W1 (s) ) = =iGU(t =)W1 (s) f + U(t = 5)(iGWi(s) f + Wa(s) f)
=U@ —s)Wa(s) f

froms = 0tos = ¢ gives
W) f = UOWO)f + U() / Us)Wa(s)  ds.
Thus, 0
w1 < ca 011+ / (14902001 s

0
3 p 1/2
<c(+ t)(||f|| 1 (% +2 4 z)l/z(/ ||W2(s)f||2ds) )
0

Now, check that, since ||[G, X]Wl(t)fn <C ||I7171(t)f||, calculating as in (64), we
obtain [ |Wa(s) f||> ds < C| f||, and hence

W@ fll < ca+2) 1|

as desired. n
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