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Spectral structure of the Neumann–Poincaré operator
on axially symmetric functions

Shota Fukushima and Hyeonbae Kang

Abstract. We consider the Neumann–Poincaré operator on a three-dimensional axially sym-
metric domain which is generated by rotating a planar domain around an axis which does not
intersect the planar domain. We investigate its spectral structure when it is restricted to axially
symmetric functions. If the boundary of the domain is smooth, we show that there are infinitely
many axially symmetric eigenfunctions and derive Weyl-type asymptotics of the corresponding
eigenvalues. We also derive the leading order terms of the asymptotic limits of positive and neg-
ative eigenvalues. The coefficients of the leading order terms are related to the convexity and
concavity of the domain. If the boundary of the domain is less regular, we derive decay estimates
of the eigenvalues. The decay rate depends on the regularity of the boundary. We also consider
the domains with corners and prove that the essential spectrum of the Neumann–Poincaré oper-
ator on the axially symmetric three-dimensional domain is non-trivial and contains that of the
planar domain.

1. Introduction

This is a study of the spectral structure of the Neumann–Poincaré operator on axially
symmetric domains when the operator is restricted on the axially symmetric func-
tions. This study is motivated by the search of three-dimensional domains where the
cloaking by anomalous localized resonance takes place.

Let � � Rd (d D 2; 3) be a bounded Lipschitz domain. The Neumann–Poincaré
operator K�

@�
(abbreviated to NP operator) is the integral operator on @� defined by

K�@�Œf �.X/´
1

!d
p:v:

Z
@�

.X � Y / � nX

jX � Y jd
f .Y / d�.Y / .X 2 @�/;

where !d is the area of the unit sphere in Rd , namely, 2� if dD2 and 4� if dD3.
This operator is realized as a self-adjoint operator on H�1=2.@�/ (L2-Sobolev space
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of order �1=2) by introducing an inner product defined in terms of the single layer
potential (see (1.10)). Thus, its spectrum consists of the essential spectrum and eigen-
values of finite multiplicities.

Many significant results on the spectral properties of the NP operator have been
obtained in recent years. When the boundary @� is C 1;˛ for some ˛ > 0, then K�

@�

is compact and the spectrum consists of eigenvalues accumulating at 0. If d D 3 and
@� is C 2;˛ , the Weyl-type asymptotics of the eigenvalue decay is obtained in [24]. In
particular, the decay rate is j�1=2 when eigenvalues ¹�j D �j .K�@�/º are enumerated
in such a way that j�1j � j�2j � � � � . If @� is C1, then the Weyl-type asymptotics
of negative and positive eigenvalues are obtained in [25]. If d D 3 and @� is C 1;˛ ,
the decay rate of j�˛=2C" for any " > 0 is proved in [8]. It is shown in [12, 13] that
some three-dimensional domains with Lipschitz boundaries have nontrivial essential
spectrum. The spectral structure of the NP operator for the two-dimensional case is
quite different from that for the three-dimensional case. It is proved in [8] that if � is
a bounded domain in R2 with C k;˛ boundary, then

j�j .K
�
@�/j D o.j

�kC1�˛C"/ .j !1/ (1.1)

for any " > 0. We emphasize for comparison with the three-dimensional case that the
decay gets faster as k gets larger. It is proved in [27] that if� is a curvilinear polygon
with the interior angle(s) ˛1; : : : ; ˛N 2 .0; 2�/ and

b´ max
°ˇ̌̌1
2
�
˛1

2�

ˇ̌̌
; : : : ;

ˇ̌̌1
2
�
˛N

2�

ˇ̌̌±
; (1.2)

then
�ess.K

�
@�/ D Œ�b; b�: (1.3)

In this paper we deal with the NP operator on the axially symmetric domains
which are generated by rotating a planar domain around an axis which does not inter-
sect the domain. On such domains, the NP operator is decomposed in terms of the
Fourier modes. We investigate the spectral properties of the zeroth mode operator
which is the NP operator restricted to axially symmetric functions.

The investigation of this paper is strongly motivated by the study of the cloaking
by anomalous localized resonance (CALR). To make the presentation short, we do
not include in this paper the mathematical formulation and the physical meaning of
CALR and simply refer to [2,22] for them. It is known that CALR occurs on annuli [2,
20, 23] and ellipses [4] in two dimensions, and it does not occur on balls [2] and
on strictly convex domains in three dimensions [5]. Not a single three-dimensional
domain where CALR occurs has been discovered. The occurrence (and nonoccur-
rence) of CALR is determined by two spectral properties of the NP operator: decay
rate of eigenvalues and localization of surface plasmons which are single layer poten-
tials of eigenfunctions. In three dimensions, the decay rate of NP eigenvalues is j�1=2
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if the boundary of the domain is C 2;˛ as mentioned before. It is proved in [5] that if
the domain is strictly convex, then the single layer potentials of eigenfunctions decays
too fast outside the surface resulting in nonoccurrence of CALR. In the same paper, it
is observed by numerical computations that something different occurs on the torus.
The single layer potentials of axially symmetric eigenfunctions are relatively large and
they show a clear wave pattern outside the domain different from that of non-axially
symmetric eigenfunctions. Motivated by these observations related with CALR on
three dimensions, we investigate, as the starting point of the investigation on the pos-
sibility of CALR on three-dimensional domains, the decay rate or asymptotic behavior
of eigenvalues of the NP operator restricted to axially symmetric functions on tori or
more generally on axially symmetric domains.

After rotation and translation if necessary, we assume with no loss of generality
that the axis of the axially symmetric domain��R3 is x-axis. Then� is of the form

� D ¹.x; y cos'; y sin'/ 2 R3 j .x; y/ 2 †; ' 2 S1º (1.4)

where † � R2 is a bounded domain with the Lipschitz boundary such that † � R �

.0;1/ and S1 D R=2�Z is the circle. For example, if † is a disk, then � is a solid
torus. Figure 1 shows a typical example of the axially symmetric domain.

x

y

z

�

†

'

Figure 1. The axially symmetric domain � generated by rotating †.

We say that a function f on @� is axially symmetric if f .x; y cos '; y sin '/ is
independent of ' 2 S1. We investigate the spectral properties of the NP operator K�

@�

on such functions. We deal with not only domains with smooth boundaries but also
Lipschitz boundaries in relation to the essential spectrum.

The first result of this paper is that there are infinitely many NP eigenvalues with
axially symmetric eigenfunctions if the boundary of the domain is smooth enough as
the following theorem states.
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Theorem 1.1. If @† is C 1;˛ for some ˛ > 0, then K�
@�

has infinitely many real eigen-
values with axially symmetric eigenfunctions in H�1=2.@�/.

We enumerate all eigenvalues ¹�j .K�@�/º
1
jD1 with axially symmetric eigenfunc-

tions in the descending order

j�1.K
�
@�/j � j�2.K

�
@�/j � j�3.K

�
@�/j � � � � ! 0:

Then, we can estimate the decay rate of such eigenvalues from above. The decay rates
are different depending on regularity of the boundary.

Theorem 1.2. The following statements hold.

(i) If @† is C 1;˛ for some ˛ > 0, then

j�j .K
�
@�/j D o.j

�˛C"/ .j !1/ (1.5)

for any " > 0.

(ii) If @† is C 2;˛ for some ˛ > 0, then

j�j .K
�
@�/j D O.j

�1/ .j !1/: (1.6)

The decay rate in (1.5) is like that of the NP eigenvalues on two-dimensional
domains with C 1;˛ boundaries as described in (1.1). This is so because the NP oper-
ator restricted to axially symmetric functions behaves like the NP operator on the
section @† on C 1;˛ domains. In fact, the NP operator restricted to axially symmet-
ric functions is decomposed into three pieces: one is the NP operator on the section
@†, another one is essentially the single layer potential on @†, and the last one is a
remainder term which is smoothing (see (3.7)). On C 1;˛-domain, the integral kernel
of the NP operator on @† has stronger singularity, namely, jp � p0j�1C˛ , than that
of the single layer potential on @†, namely, log jp � p0j. Thus, the NP operator on
@† is responsible for the spectral properties of the NP operator on @� yielding the
decay rate (1.5). If @� is C 2;˛ , this relation becomes opposite and the principal term
for the spectral properties is the single layer potential term. This difference causes the
difference of the decay rates in (1.5) and (1.6).

If @� is C1, then we can improve the decay estimate in (1.6). Moreover, we
can find the leading order terms of the asymptotic behavior of the positive and neg-
ative eigenvalues. We enumerate all positive eigenvalues �Cj .K

�
@�
/ > 0 and negative

eigenvalues ���j .K
�
@�
/ < 0 with axially symmetric eigenfunctions as

�˙1 .K
�
@�/ � �

˙
2 .K

�
@�/ � �

˙
3 .K

�
@�/ � � � � :

The following theorem exhibits the asymptotic behaviors of these eigenvalues. In what
follows, we denote the outward unit normal vector at p 2 @† by Qnp . We then define

vp ´ �Qnp;2 (1.7)
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where Qnp;2 is the second component of Qnp . It is worth mentioning that vp is the first
component of the unit tangential vector with the positive orientation at p 2 @†.

Theorem 1.3. If @† is C1, then K�
@�

has infinitely many positive and negative
eigenvalues with axially symmetric eigenfunctions. Moreover, the absolute values of
eigenvalues and positive and negative eigenvalues have the asymptotic behaviors

j�j .K
�
@�/j � C0j

�1; �˙j .K
�
@�/ � C

˙
0 j
�1

where C0 and C˙0 are defined by

C˙0 D �
1

4�

Z
¹pD.x;y/2@†j�vp>0º

vp

y
d�.p/ (1.8)

and
C0 D C

C
0 C C

�
0 : (1.9)

To clarify the geometric meaning of C˙0 , let us assume that † is convex. Because
of (1.7), if vp > 0, then Qnp is downward, and hence .x; y cos '; y sin '/ is a concave
point on @�. So,C�0 is the integration over the concave part of†;CC0 over the convex
part. The connection between negative NP eigenvalues and concavity of the domain
has been discovered in [17, 25].

Since C˙0 > 0, we infer that there are infinitely many both positive and negative
NP eigenvalues with axially symmetric eigenfunctions. Existence of infinitely many
negative eigenvalues on tori is proved in [3] by considering non-axially symmetric
functions and employing the stationary phase method for the high oscillation limit
with respect to the '-direction. Theorem 1.3 shows that the NP operator on the axially
symmetric functions, which do not oscillate in the '-direction, have infinitely many
negative eigenvalues. More general sufficient condition for the existence of infinitely
many negative NP eigenvalues is given in [25]: if there has a point on the boundary
where at least one principal curvature is positive, then the NP operator has infinitely
many negative eigenvalues. In fact, our strategy to the proof of Theorem 1.3 follows
that in [25], namely, calculus of pseudodifferential operators and invoking the result
of [6].

It is interesting to observe that the difference C�0 � C
C
0 is the volume of † in the

hyperbolic space H2´ .R� .0;1/; .dx2C dy2/=y2/. In fact, it follows from (1.8)
and the Stokes theorem that

C�0 � C
C
0 D

1

4�

Z
@†

dx

y
D

1

4�

Z
†

dxdy

y2
:

In particular, we have CC0 < C�0 .
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We also consider the case when @† is Lipschitz. In this case, the NP operator
K�
@†

on @† may have a nontrivial essential spectrum. We prove an inclusion relation
of essential spectra of NP operators on @� and @†.

Theorem 1.4. If @† is Lipschitz, then the inclusion relation

�ess.K
�
@†;H

�1=2.@†// � �ess.K
�
@�;H

�1=2.@�//

holds.

Theorem 1.4 gives examples of three-dimensional domains with non-trivial essen-
tial spectra. For instance, we apply Theorem 1.4 together with (1.3) to obtain the
following corollary.

Corollary 1.5. If @† is a C 2-smooth curvilinear polygon with the interior angle(s)
˛1; : : : ; ˛N 2 .0; 2�/ and define b > 0 by (1.2), then

Œ�b; b� � �ess.K
�
@�;H

�1=2.@�//:

A few remarks on the inner product and the symmetrization of the NP operator
are in order. The Sobolev space H�1=2.@�/ is equipped with the inner product

hf; gi�´ �

Z
@�

f .X/�@�Œg�.X/ d�.X/; (1.10)

where �@� is the single layer potential, namely,

�@�Œf �.X/´

Z
@�

�.X � Y /f .Y / d�.Y /; (1.11)

where �.X/ is the fundamental solution to the Laplacian: it is .2�/�1 log jX j if d D
2 and �.4�jX j/�1 if d D 3. In three dimensions, �@� is invertible as acting from
H�1=2.@�/ onto H 1=2.@�/, and hence h�; �i� is actually an inner product. However,
in two dimensions, there is a domain � such that �@� has a non-trivial kernel. But, in
such a case, if we dilate the domain, the single layer potential on dilated domains are
invertible. Since the NP operator is invariant under the dilation of domains, we assume
without loss of generality that h�; �i� is actually an inner product on H�1=2.@�/.

The NP operator K�
@�

on a bounded Lipschitz domain is realized as a self-adjoint
operator onH�1=2.@�/ equipped with the inner product h�; �i�. It is a consequence of
Plemelj’s symmetrization principle

�@�K�@� DK@��@�; (1.12)
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where K@� is L2-adjoint of K�
@�

, namely,

K@�Œf �.X/´ �
1

!d
p:v:

Z
@�

.X � Y / � nY

jX � Y jd
f .Y / d�.Y / .X 2 @�/; (1.13)

(see [19] for example). This operator is also called NP operator.
Finally, we emphasize that the subject of this paper has no intersection with that

of [18] whose title is somewhat similar to this one; there the spectral structure of
m-fold symmetric domains is studied. A two-dimensional domain is m-fold symmet-
ric, where m � 2 is an integer, if it is invariant under the rotation by the angle 2�=m.

This paper is organized as follows. In Section 2, we decompose the NP operator
into Fourier modes. Section 3 is for analysis of the zeroth mode operator which is
the NP operator on axially symmetric functions. In the remaining sections, we prove
theorems presented in the introduction. Is Appendix A, we prove asymptotic formulas
for certain elliptic integrals which appear in the course of proofs.

Throughout this paper, notation A . B means that there exists a constant C > 0

such that A � CB . The meaning of A & B is analogous, and A � B means both
A . B and A & B hold.

2. Decomposition into modes

2.1. Decomposition of the NP operator

Let� be the axially symmetric domain defined by (1.4). Consider the diffeomorphism

‰W @† � S1 ! @�; .p; '/ 7! X D .x; y cos'; y sin'/ .p D .x; y//;

and the linear operator

UŒf �.p; '/´ y1=2f .‰.p; '// .p D .x; y/ 2 @†; ' 2 S1/ (2.1)

for f W @�! C. Since the surface element d�.X/ on @� is given by

d�.X/ D y d�.p/d' .X D ‰.p; '//; (2.2)

where d� in the right-hand side is the line element on @†, the operator UWL2.@�/!

L2.@†�S1/ is a unitary operator, that is, an isomorphism with the isometric propertyZ
@�

f .X/g.X/ d�.X/ D

Z
S1

Z
@†

UŒf �.p; '/UŒg�.p; '/d�.p/d' (2.3)

for all f; g 2 L2.@�/. Moreover, U is a bounded invertible operator from H s.@�/

onto H s.@† � S1/ for all s 2 Œ�1; 1�. This can be seen by direct computations for
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sD 1, by duality for sD�1, and by interpolation for s 2 .�1;1/. Here and throughout
the paper, the circle S1 is identified with Œ��; �/.

We introduce the functions

Ak.ı/´ ı2

�=2Z
0

cos.2k'/
.ı2 C sin2 '/3=2

d';

Bk.ı/´

�=2Z
0

cos.2k'/ sin2 '
.ı2 C sin2 '/3=2

d';

.ı > 0/ (2.4)

for k D 0; 1; 2; : : : , and the distance-like quantity

ı.p; p0/´
jp � p0j

2.yy0/1=2
.p D .x; y/; p0 D .x0; y0/ 2 @†/: (2.5)

We will use the following lemma in the further part of this paper.

Lemma 2.1. For any compact subsetK � R � .0;1/, there exists a constant C > 0

such that the inequality

C�1jı.p; r/ � ı.r; q/j � ı.p; q/ � C.ı.p; r/C ı.r; q// (2.6)

holds for all p; q; r 2 K.

Proof. It suffices to considerK D Œa; b�� Œc; d � (c > 0). Let p D .x;y/, q D .x0; y0/,
r D .x

00

; y
00

/ 2 K. Then we have

ı.p; q/ D
jp � qj

2.yy0/1=2
�
jp � r j

2.yy0/1=2
C
jr � qj

2.yy0/1=2

D

�y 00
y0

�1=2 jp � r j
2.yy

00
/1=2
C

�y 00
y

�1=2 jr � qj
2.y

00
y0/1=2

�

�d
c

�1=2
.ı.p; r/C ı.r; q//;

which proves the second inequality in (2.6).
On the other hand, we have

ı.p; r/ � ı.r; q/ �
jp � qj C jr � qj

2.yy
00
/1=2

�
jr � qj

2.y
00
y0/1=2

�

�d
c

�1=2
ı.p; q/C

1

2c1=2
jr � qj

ˇ̌̌ 1

y1=2
�

1

.y0/1=2

ˇ̌̌
D

�d
c

�1=2
ı.p; q/C

..b � a/2 C .d � c/2/1=2

c1=2.y1=2 C .y0/1=2/

jy � y0j

2.yy0/1=2

�

��d
c

�1=2
C
..b � a/2 C .d � c/2/1=2

2c

�
ı.p; q/:
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By changing roles of p and q, we obtain the same estimate for ı.r; q/ � ı.p; r/ and
hence

jı.p; r/ � ı.r; q/j �
��d
c

�1=2
C
..b � a/2 C .d � c/2/1=2

2c

�
ı.p; q/:

This proves the first inequality in (2.6).

For a function f .p/ on @† and a function �.'/ on S1, we define the tensor product

f ˝ �W @† � S1 ! C

by
.f ˝ �/.p; '/´ f .p/�.'/:

Also, we define a function
ek.'/´ eik'

for k 2 Z and ' 2 S1. Then, for each k 2 Z and s 2 Œ�1; 1�, there are constants ck;s;
Ck;s such that

ck;skf kH s.@†/ � kf ˝ ekkH s.@�/ � Ck;skf kH s.@†/ (2.7)

for all f 2 H s.@†/.
We denote the integral kernel of the two-dimensional NP operator on @† by

K�
@†
.p; p0/, namely,

K�@†.p; p
0/´

1

2�

.p � p0/ � Qnp

jp � p0j2
:

Proposition 2.2. For f 2 H�1=2.@†/ and k 2 Z, we have

UK�@�U�1Œf ˝ ek� DK�k Œf �˝ ek (2.8)

where K�
k

is the integral operator of the form

K�k Œf �.p/´

Z
@†

K�k .p; p
0/f .p0/ d�.p0/

with
K�k .p; p

0/ D K�@†.p; p
0/Ak.ı.p; p

0// �
vp

4�y
Bk.ı.p; p

0//: (2.9)

Similarly, for the NP operator K@� (see (1.13)), we have

UK@�U�1Œf ˝ ek�.p; '/ DKkŒf �˝ ek (2.10)

where
KkŒf �.p/´

Z
@†

K�k .p
0; p/f .p0/ d�.p0/:
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Proof. Let g be a function on @† � S1. For X;X 0 2 @�, let X D ‰.p; '/ and X 0 D
‰.p0; '0/. Thanks to (2.2), we have

UK�@�U�1Œg�.p; '/

D
y1=2

4�

Z
@�

.‰.p; '/ �X 0/ � n‰.p;'/

j‰.p; '/ �X 0j3
U�1Œg�.X 0/d�.X 0/

D
1

4�

Z
@†�S1

.‰.p; '/ �‰.p0; '0// � n‰.p;'/

j‰.p; '/ �‰.p0; '0/j3
.yy0/1=2g.p0; '0/ d�.p0/d'0:

Straight-forward calculations yield

j‰.p; '/ �‰.p0; '0/j2 D jp � p0j2 C 4yy0 sin2
' � '0

2
: (2.11)

If we denote the outward normal vector at p 2 @† by Qnp D .np;1; np;2/ as before, then

n‰.p;'/ D .np;1; np;2 cos'; np;2 sin'/;

and hence

.‰.p; '/ �‰.p0; '0// � n‰.p;'/ D .p � p
0/ � Qnp C 2np;2y

0 sin2
' � '0

2
:

Since np;2 D �vp , we have

UK�@�U�1Œg�.p; '/

D
1

4�

Z
@†�S1

.p � p0/ � Qnp � 2vpy
0 sin2 '�'

0

2�
jp � p0j2 C 4yy0 sin2 '�'

0

2

�3=2 .yy0/1=2g.p0; '0/ d�.p0/d'0:
If we set g D f ˝ ek , that is,

g.p; '/ D f .p/eik' ;

then we have

UK�@�U�1Œf ˝ ek�.p; '/

D
1

4�

Z
@†

d�.p0/ f .p0/.yy0/1=2
Z
S1

d'0
.p � p0/ � Qnp � 2vpy

0 sin2 '�'
0

2

.jp � p0j2 C 4yy0 sin2 '�'
0

2
/3=2

eik'
0

D
1

4�
eik'

Z
@†

d�.p0/ f .p0/.yy0/1=2
Z
S1

d'0
.p � p0/ � Qnp � 2vpy

0 sin2 '
0

2

.jp � p0j2 C 4yy0 sin2 '
0

2
/3=2

eik'
0

:
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Now, we define

K�k .p; p
0/´

.yy0/1=2

4�

Z
S1

.p � p0/ � Qnp � 2vpy
0 sin2 '

0

2

.jp � p0j2 C 4yy0 sin2 '
0

2
/3=2

eik'
0

d'0 (2.12)

so that

UK�@�U�1Œf ˝ ek�.p; '/ D e
ik'

Z
@†

K�k .p; p
0/f .p0/ d�.p0/:

It remains to prove (2.9). Since sin2.'0=2/ is an even function, we can reduce
(2.12) to

K�k .p; p
0/ D

.yy0/1=2

�

�=2Z
0

cos.2k'0/
.p � p0/ � Qnp � 2vpy

0 sin2 '0

.jp � p0j2 C 4yy0 sin2 '0/3=2
d'0: (2.13)

We abbreviate ı.p; p0/ to ı. Since

.jp � p0j2 C 4yy0 sin2 '0/3=2 D .4yy0/3=2.ı2 C sin2 '0/3=2

D 2ı�2.yy0/1=2jp � p0j2.ı2 C sin2 '0/3=2;

it follows from (2.13) that

K�k .p; p
0/ D

.yy0/1=2

�

� �=2Z
0

cos.2k'0/
ı2.p � p0/ � Qnp

2.yy0/1=2jp � p0j2.ı2 C sin2 '0/3=2
d'0

�

�=2Z
0

cos.2k'0/
2vpy

0 sin2 '0

.4yy0/3=2.ı2 C sin2 '0/3=2
d'0

�

D
ı2

2�

.p � p0/ � Qnp

jp � p0j2

�=2Z
0

cos.2k'0/
.ı2 C sin2 '0/3=2

d'0 �
vp

4�y

�=2Z
0

cos.2k'0/ sin2 '0

.ı2 C sin2 '0/3=2
d'0

DK�@†.p; p
0/Ak.ı/ �

vp

4�y
Bk.ı/;

which is the desired formula.
Relation (2.10) is an immediate consequence of the duality of K@� and K�

@�
.

One can easily see from (2.7) and Proposition 2.2 that the following corollary
holds.

Corollary 2.3. For k 2 Z, the operator K�
k

is a bounded operator on L2.@†/ and
on H�1=2.@†/.
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2.2. Decomposition of the single layer potential

Similarly to the NP operator K�
@�

, the single layer potential �@� is decomposed into
Fourier modes.

Proposition 2.4. For f 2 H�1=2.@†/ and k 2 Z, the identity

U�@�U�1Œf ˝ ek� D �kŒf �˝ ek

holds where
�kŒf �.p/ D

Z
@†

Sk.p; p
0/f .p0/ d�.p0/

with

Sk.p; p
0/´ �

1

2�

�=2Z
0

cos.2k'0/
.ı.p; p0/2 C sin2 '0/1=2

d'0:

Proof. We see from (2.11) that

j‰.p; '/ �‰.p0; '0/j2 D 2yy0
�
ı.p; p0/2 C sin2

' � '0

2

�
:

Thus, we have

U�@�U�1Œf ˝ ek�.p; '/

D �
1

4�

Z
@†

d�.p0/

Z
S1

d'0
1

2.yy0/1=2
.yy0/1=2f .p0/eik'

0

.ı.p; p0/2 C sin2..' � '0/=2//1=2

D �
1

2�
eik'

Z
@†

d�.p0/ f .p0/

�=2Z
0

d'0
cos.2k'0/

.ı.p; p0/2 C sin2 '0/1=2

D eik'�kŒf �.p/;

as desired.

For k 2 Z, we set
hf; gik ´ �h�kŒf �; gi@†;

where h�; �i@† is the dual pairing ofH 1=2.@†/ andH�1=2.@†/. Then, Proposition 2.4
together with (2.7) immediately yields the following corollary.

Corollary 2.5. The following statements hold.

(i) For k 2 Z, the operator �k is an invertible operator from H�1=2.@†/ onto
H 1=2.@†/.
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(ii) For f; g 2 H�1=2.@†/ and k 2 Z, we have

hf; gik D hU
�1Œf ˝ ek�;U

�1Œg ˝ ek�i�:

In particular, h�; �ik defines an inner product on H�1=2.@†/ which induces the norm
equivalent to the Sobolev norm on H�1=2.@†/.

Combining Proposition 2.2, Proposition 2.4, and Plemelj’s symmetrization prin-
ciple (1.12), we have the following result.

Proposition 2.6. If @† is Lipschitz, then we have

�kK�k DKk�k (2.14)

on H�1=2.@†/ for each k 2 Z. In particular, K�
k

is a bounded self-adjoint operator
onH�1=2.@†/ equipped with the inner product h�; �ik . Furthermore, if @† is C 1;˛ for
some ˛ > 0, then the operator K�

k
is compact on H�1=2.@†/.

2.3. Proof of Theorem 1.1

By virtue of Proposition 2.6, the operator K�0 is a compact self-adjoint operator on
H�1=2.@†/ with the inner product h�; �i0. Thus, K�0 has infinitely many real eigen-
values. Let ¹fj º1jD1 be an orthonormal system of eigenfunctions of K�0 . Then the
function ¹U�1Œfj ˝ 1�º1jD1 forms an orthogonal system of axially symmetric NP
eigenfunctions in H�1=2.@�/ by Proposition 2.2.

3. The zeroth mode NP operator

In this section and sections to follow, we deal with the spectral properties of the zeroth
mode operator K�0 appearing in Theorem 2.2. It is the operator K�

@�
restricted to the

axially symmetric functions. In this section, we show that the integral kernels of the
zeroth modes of the NP operator and the single layer potential are represented in terms
of elliptic integrals. We use these representations to investigate the singularity of the
integral kernels.

3.1. Representation by elliptic integrals

We set k D 0 in (2.4) to see

A0.ı/ D ı
2

�=2Z
0

d'

.ı2 C sin2 '/3=2
; B0.ı/ D

�=2Z
0

sin2 '
.ı2 C sin2 '/3=2

d';
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and
K�0 .p; p

0/ D K�@†.p; p
0/A0.ı.p; p

0// �
vp

4�y
B0.ı.p; p

0//:

We relate the functions A0 and B0 with the classical elliptic integrals. Let K.z/

and E.z/ be the complete elliptic integrals of the first and the second kinds, namely,

K.z/´

�=2Z
0

d'p
1 � z2 sin2 '

and E.z/´

�=2Z
0

q
1 � z2 sin2 ' d'

for z 2 C n ..�1;�1� [ Œ1;1//.

Lemma 3.1. The following relations hold:

A0.ı/ D
ıE.iı�1/

1C ı2
; B0.ı/ D ı

�1K.iı�1/ �
ıE.iı�1/

1C ı2
for ı > 0. (3.1)

Proof. We easily obtain the following two relations:

1

.ı2 C sin2 '/3=2
D

1

ı.1C ı2/

q
1C ı�2 sin2 ' �

1

2.1C ı2/

d

d'

sin.2'/p
1C ı�2 sin2 '

and
sin2 '

.ı2 C sin2 '/3=2
D

1

ı
p
1C ı�2 sin2 '

�
ı

1C ı2

q
1C ı�2 sin2 '

�
1

2ı.1C ı2/

d

d'

sin.2'/p
1C ı�2 sin2 '

for ı > 0. Integrating these relations in ' 2 Œ0; �=2�, we obtain (3.1).

In order to investigate the asymptotic behavior of A0.ı/ and B0.ı/, we obtain the
following proposition whose proof is presented in Appendix A.

Proposition 3.2. The following identities hold for ı 2 .0; 1/:

K.iı�1/ D �
2ı log ı
�

K.iı/C 2ı log 2C ı3f .ı/; (3.2)

E.iı�1/ D
2.E.iı/ � .1C ı2/K.iı//

�ı
log ı C

1

ı
C ıg.ı/; (3.3)

where f .z/ and g.z/ are holomorphic functions in jzj < 1.

Let us look into the singularity of the integral kernel K�0 .p; p
0/ roughly. When

ı D ı.p; p0/ < 1, we obtain the following formulas by substituting (3.2) and (3.3)
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to (3.1):

A0.ı/ D 1C
2.E.iı/ � .1C ı2/K.iı//

�.1C ı2/
log ı C

ı2.g.ı/ � 1/

1C ı2
;

B0.ı/ D �
2E.iı/

�.1C ı2/
log ı C 2 log 2 � 1C ı2

�
f .ı/ �

g.ı/ � 1

1C ı2

�
:

In particular, we have the asymptotic behaviors

A0.ı/ D 1CO.ı
2 log ı/; B0.ı/ D � log ı CO.1/ (3.4)

as ı ! 0. We then infer from (2.5) and (2.9) that

K�0 .p; p
0/ D K�@†.p; p

0/C
vp

4�y
log jp � p0j CO.1/ (3.5)

as jp � p0j ! 0.
Inspired by (3.5), we set

R�.p; p0/´ K�0 .p; p
0/ �K�@†.p; p

0/ �
vp

4�y
log jp � p0j; (3.6)

and define the operator R� by

R�Œf �.p/´

Z
@†

R�.p; p0/f .p0/ d�.p0/:

Then, the following relation holds:

K�0 DK�@† C
vp

2y
�@† CR� (3.7)

where �@† is the single layer potential on @† (see (1.11)). We shall investigate the
integral kernel R�.p; p0/ in a precise way depending on the regularity of @†.

3.2. Regularity of the remainder term

We now investigate regularity properties of R�.p; p0/. We begin by proving that it is
bounded.

Lemma 3.3. If @† is Lipschitz, then R� 2 L1.@† � @†/.

Proof. By (3.4), we have

R�.p; p0/ D K�@†.p; p
0/ �O.ı2 log ı/ �

vp

4�y
.� log ı CO.1/C log jp � p0j/:
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SinceK�
@†
.p;p0/DO.jp � p0j�1/DO.ı�1/ as ı! 0 and � log ıC log jp � p0j D

log 2.yy0/1=2, we infer that

R�.p; p0/ D O.1/

as ı D ı.p; p0/! 0, as desired.

We will use the following lemma to prove the C 0;1 regularity of R� (Proposi-
tion 3.5).

Lemma 3.4. If @† is Lipschitz, then

jR�.p; p0/ �R�.p; q0/j

jp0 � q0j
. 1C j log jp � p0jj C j log jp � q0jj

for all distinct points p; q; q0 2 @†.

Proof. By (2.9) and (3.6), we have

R�.p; p0/ D K�@†.p; p
0/.A0.ı.p; p

0// � 1/ �
vp

4�y
.B0.ı.p; p

0//C log jp � p0j/

µ Q1.p; p
0/CQ2.p; p

0/:

It suffices to prove the estimates

jQ1.p; p
0/ �Q1.p; q

0/j

jp0 � q0j
. 1C j log jp � p0jj C j log jp � q0jj; (3.8)

jQ2.p; p
0/ �Q2.p; q

0/j

jp0 � q0j
. 1 (3.9)

for distinct points p; p0; q0 2 @†.
First we prove (3.8). We set

Q11.p; p
0/´ ı.p; p0/2K�@†.p; p

0/ D �
.p � p0/ � Qnp

8�yy0

and
Q12.p; p

0/´ ı.p; p0/�2.A0.ı.p; p
0// � 1/

so that
Q1.p; p

0/ D Q11.p; p
0/Q12.p; p

0/:

Then we have

jQ1.p; p
0/ �Q1.p; q

0/j

jp0 � q0j
�
jQ11.p; p

0/ �Q11.p; q
0/jjQ12.p; p

0/j

jp0 � q0j

C
jQ11.p; q

0/jjQ12.p; p
0/ �Q12.p; q

0/j

jp0 � q0j

µ J1 C J2:
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We claim that the estimates

J1 . 1C j log jp � p0jj; (3.10)

J2 . 1C j log jp � p0jj C j log jp � q0jj (3.11)

hold for all distinct points p; p0; q0 2 @†, which immediately yield (3.8). We easily
obtain

jQ11.p; p
0/ �Q11.p; q

0/j . jp0 � q0j:

By (3.4), we have

jQ12.p; p
0/j . j log ı.p; p0/j . 1C j log jp � p0jj:

Combining these estimates, we obtain (3.10). Next, we prove (3.11). We easily obtain

jQ11.p; q
0/j . jp � q0j

by the definition of Q11. Since

d

dı

A0.ı/ � 1

ı2
D �

2.1C 2ı2/

ı2.1C ı2/2
E.iı�1/C

K.iı�1/

ı2.1C ı2/
C
2

ı3
D O.ı�1/

as ı ! 0 by Lemma 3.1 and Proposition 3.2, we have

jQ12.p; p
0/ �Q12.p; q

0/j .
ˇ̌̌
log

ı.p; p0/

ı.p; q0/

ˇ̌̌
:

Thus, J2 is estimated as

J2 .
ı.p; q0/

ı.p0; q0/

ˇ̌̌
log

ı.p; p0/

ı.p; q0/

ˇ̌̌
:

It follows from Lemma 2.1 that

J2 .
ı.p; p0/C ı.p0; q0/

ı.p0; q0/
.j log ı.p; p0/j C j log ı.p; q0/j/

. j log ı.p; p0/j C j log ı.p; q0/j

if ı.p; p0/ < ı.p0; q0/, and that

J2 .
ı.p; q0/

ı.p0; q0/

ˇ̌̌̌
log

ı.p; p0/

ı.p; q0/

ˇ̌̌̌
�
ı.p; q0/

ı.p0; q0/

jı.p; p0/ � ı.p; q0/j

min¹ı.p; p0/; ı.p; q0/º

. ı.p; q0/
� 1

ı.p; p0/
C

1

ı.p; q0/

�
D
ı.p; q0/

ı.p; p0/
C 1 .

ı.p; p0/C ı.p0; q0/

ı.p; p0/
C 1 � 3
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if ı.p; p0/ � ı.p0; q0/. Thus, we have

J2 . j log ı.p; p0/j C j log ı.p; q0/j C 1 . 1C j log jp � p0jj C j log jp � q0jj

for all distinct points p; p0; q0 2 @†. This completes the proof of (3.11).
As the final step, we prove estimate (3.9). Since

Q2.p; p
0/ D B0.ı.p; p

0//C log ı.p; p0/C
1

2
log.4yy0/;

we have

jQ2.p; p
0/ �Q2.p; q

0/j

jp0 � q0j

. 1C
jB0.ı.p; p

0//C log ı.p; p0/ � B0.ı.p; q0// � log ı.p; q0/j
jp0 � q0j

:

By Lemma 3.1 and Proposition 3.2, we have

d

dı
.B0.ı/C log ı/ D �

1 � ı2

.1C ı2/2
E.iı�1/ �

K.iı�1/

1C ı2
C
1

ı

D O.ı log ı/ D O.1/

as ı ! 0, and hence

jQ2.p; p
0/ �Q2.p; q

0/j

jp0 � q0j
. 1C

jı.p; p0/ � ı.p; q0/j

jp0 � q0j
. 1

by Lemma 2.1. This completes the proof of (3.9).

We consider the L2-adjoint R of R�:

RŒf �.p/´

Z
@†

R.p; p0/f .p0/ d�.p0/

where

R.p; p0/´ R�.p0; p/ D K0.p; p
0/ �K@†.p; p

0/ �
vp0

4�y0
log jp � p0j:

By Lemma 3.3 and 3.4, we obtain the following proposition.

Proposition 3.5. For any " > 0, the operator R is bounded as acting from L1C".@†/

into C 0;1.@†/.
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Proof. By Lemma 3.3, the operator R is bounded as acting from L1.@†/ into
L1.@†/. By Lemma 3.4 and the Hölder inequality, we have

jRŒf �.p/ �RŒf �.q/j

jp � qj
.
Z
@†

.1C j log jp � p0jj C j log jq � p0jj/jf .p0/j d�.p0/

. kf kL1C".@†/

for all " > 0. Thus, we have

kRŒf �kC0;1.@†/

D kRŒf �kL1.@†/ C sup
p;q2@†
p¤q

jRŒf �.p/ �RŒf �.q/j

jp � qj

. kf kL1C".@†/;

which is the desired estimate.

We recall a characterization of the Sobolev space. Since dim@†D 1, the norm on
the Sobolev space H �.@†/ for � 2 .0; 1/ is equivalent to the norm

kf kH� ´

�
kf k2

L2.@†/
C

Z
@†�@†

jf .p/ � f .q/j2

jp � qj2�C1
d�.p/d�.q/

�1=2
: (3.12)

(See [9] for example.) Then, we can observe that the space C 0;1.@†/ is continuously
embedded in the Sobolev space H 1�".@†/ for all " > 0. Thus, we can prove the
following corollary.

Corollary 3.6. If @† is Lipschitz, then the operators R and R� are compact opera-
tors on H 1=2.@†/ and H�1=2.@†/ respectively.

Proof. Since the embedding C 0;1.@†/ ,! H 1=2.@†/ is continuous, we infer from
Proposition 3.5 that the operator RW L2.@†/ ! H 1=2.@†/ is bounded. Since the
embedding H 1=2.@†/ ,! L2.@†/ is compact by the Rellich–Kondrachov theorem,
the operator R is compact on H 1=2.@†/. Then, by the duality, the operator R� is
compact on H�1=2.@†/.

We will also employ the Sobolev space of functions with two variables. For
�; � � 0, we denote the Sobolev space for functions with two variables on @† of
order � and � in the first and second variable respectively by H�;�.@† � @†/. For
more details of definition, see [7]. In this paper, we only employ the case when
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� D 0. In this case, H 0;�.@† � @†/ D L2p.@†;H
�
p0.@†// and any function A.p; p0/

in H 0;�.@† � @†/ is characterized by the finiteness of the following quantity:�Z
@†

kA.p; �/k2H� d�.p/

�1=2
D

�
kAk2

L2.@†�@†/
C

Z
.@†/3

jA.p; p0/ � A.p; q0/j2

jp0 � q0j2�C1
d�.p/d�.p0/d�.q0/

�1=2
:

(3.13)

The following proposition plays a crucial role in investigating decay rate of eigen-
values.

Proposition 3.7. If @† is Lipschitz, thenR�.p;p0/ 2H 0;1�".@†� @†/ for all " > 0.

Proof. By Lemma 3.3, we have R� 2 L2.@† � @†/. By Lemma 3.4, we haveZ
.@†/3

jR�.p; p0/ �R�.p; q0/j2

jp0 � q0j3�2"
d�.p/d�.p0/d�.q0/

.
Z

.@†/3

.1C j log jp � p0jj C j log jp � q0jj/2

jp0 � q0j1�2"
d�.p/d�.p0/d�.q0/ <1:

Thus, we have R� 2 H 0;1�".@† � @†/.

4. Proof of Theorem 1.2

4.1. Schatten class

For a separable Hilbert space H , we denote the p-th Schatten class on H by �p.H /.
More explicitly, if we denote the j -th singular value of a compact linear operator A

by sj D sj .A/ D sj .A;H / in the descending order

s1.A/ � s2.A/ � s3.A/ � � � � .! 0/;

then the p-th Schatten class �p.H / is the collection of all compact operators such
that

1X
jD1

sj .A/
p <1:

In particular, the class �2.H / is called the Hilbert–Schmidt class and �1.H / is called
the trace class.



Spectral structure of the Neumann–Poincaré operator on axially symmetric functions 1129

We will work on the singular values of K�0 on L2.@†/, not on H�1=2.@†/. We
will connect the singular value asymptotics on L2.@†/ and the eigenvalue asymp-
totics onH�1=2.@†/ as follows. First, we derive an eigenvalue asymptotics onL2.@†/
from the singular value asymptotics on the same space (Lemma 4.6). Then, we employ
the equivalence between the eigenvalue problems for K�

@�
on H�1=2.@�/ and on

L2.@�/ when @† is C 1;˛ for some ˛ > 0, in the sense that every eigenfunction
of K�

@�
in H�1=2.@�/ with nonzero eigenvalue actually belongs to L2.@�/ (see

[8, Corollary A.3] for example). By restricting the axially symmetric eigenfunctions,
we obtain the equivalence between the eigenvalue problems of K�0 on H�1=2.@†/
and on L2.@†/.

Now, we recall the following general result of Delgado and Ruzhansky.

Theorem 4.1 ([7, Theorem 3.6]). LetM be a C1-smooth closed manifold of dimen-
sion n equipped with a C1-smooth density d�.x/. (For example, equip M with a
Riemannian metric and consider the volume form associated with the Riemannian
metric.) If K.x; y/ belongs to the Sobolev space H 0;s.M �M/´ L2x.M;H

s
y .M//

for some order s > 0, then the linear operator

T Œf �.x/´

Z
M

K.x; y/f .y/ d�.y/

belongs to the p-th Schatten class �p.L2.M// with

p >
2n

nC 2s
:

Here we make a remark in order to avoid possible confusion (this remark applies
to Theorem 4.4 as well). The C1-smooth manifold does not mean that it is the
boundary of a domain with the smooth boundary. It means that '˛ ı '�1ˇ is smooth,
where '˛; 'ˇ are coordinate charts. As we explain below, the Lipschitz continu-
ous boundary in the Euclidean space can be realized as a smooth manifold such
that each coordinate chart 'ˇ WUˇ � @†! Vˇ � Rdim @† is a bi-Lipschitz mapping:
C�1jx � yj � j'ˇ .x/� 'ˇ .y/j � C jx � yj for some C � 1 uniformly in x; y 2 Uˇ .
Thus, the Sobolev norm (3.12) and that defined by the smooth atlas as in Theorem 4.1
are equivalent.

We briefly describe a construction of such atlas. If @† � Rd (d � 2) is Lipschitz,
its boundary is locally represented as a graph of some Lipschitz continuous func-
tion  ˇ WVˇ � Rd�1 ! R after suitable rotation and translation. We can take a finite
collection ¹ ˇ W Vˇ ! Rºˇ consisting of such functions so that it covers the whole
@†. Then, it is proved in [26] that there is a C1 domain D � Rd such that @D is
represented by a collection of C1 functions ¹ Q ˇ W Vˇ ! Rºˇ and there is a homeo-
morphism f W@D! @† such that C�1jx � yj � jf .x/� f .y/j � C jx � yj for some
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C � 1 uniformly in x; y 2 @†. Denoting by z‰ˇ WVˇ ! @D the smooth parametriza-
tion associated with the function Q ˇ WVˇ ! R, we define Uˇ ´ .f ı z‰ˇ /.Vˇ / � @†

and 'ˇ ´ .f ı z‰ˇ /
�1WUˇ ! Vˇ . Obviously, 'ˇ is a bi-Lipschitz mapping. One can

directly check that the collection ¹'ˇ WUˇ ! Vˇ ºˇ forms a C1 atlas on @†.
If @† is C k;˛ for some k 2 N [ ¹0º and ˛ 2 .0; 1� with k C ˛ � 1, then the same

argument proves that the C1 atlas ¹'ˇ ºˇ can be taken so that '�1
ˇ

is a C k;˛ mapping
for all ˇ. This case will appear in the proof of Proposition 4.5.

Now, we can combine Proposition 3.7 with Theorem 4.1 to obtain the following
proposition.

Proposition 4.2. If @† is Lipschitz, then R� 2 �2=3C".L2.@†// for all " > 0.

We recall the following result on the Schatten class to which the NP operator on
the two-dimensional domain belongs depending on the regularity of the boundary.

Proposition 4.3 ([8]). If † is a bounded domain in R2 with C k;˛ boundary @†
for some positive integer k and ˛ 2 .0; 1�, then K�

@†
2 �p.L2.@†// for all p >

1=.k C ˛ � 1/.

4.2. Pseudodifferential operators

We now look into the decay rate of the singular values of the operator .vp=2y/�@†. To
do so, we invoke a result of Grubb [11]. We first prepare ourselves with basic notion
of pseudodifferential operators (abbreviated to ‰DOs). In what follows, we use the
notation in [11] except for the space C �Sm.Rd � .Rd n ¹0º//, which will be defined
later. We further refer to [16, 21, 30] for the basics of ‰DOs.

We denote the Schwartz class (of all rapidly decreasing functions) on Rd by
S.Rd / and the space of all tempered distributions on Rd by S0.Rd / (continuous dual
of S.Rd /). For a 2 S0.R2d / and u 2 S.Rd /, we define

a.x;D/u.x/´
1

.2�/d

Z
Rd

a.x; �/ei��x Ou.�/ d� 2 S0.Rd /

and call a.x;D/ the ‰DO with the symbol a.x; �/. Here

Ou.�/´

Z
Rd

u.x/e�i��x dx 2 S.Rd /

is the Fourier transform of u.x/ 2 S.Rd /. We say that a tempered distribution a.x; �/
on R2d belongs to C �Sm1;0.R

2d / if a belongs to C1
�
.Rd ; C �x .R

d // and

k@
ˇ

�
a.�; �/kC� .Rd / D O..1C j�j/

m�jˇ j/ .j�j ! 1/
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for any ˇ 2 .N [ ¹0º/d where we employed the standard multiindex notation

@
ˇ

�
´ @

ˇ1
�1
� � � @

ˇd
�d
; jˇj ´ ˇ1 C � � � C ˇd :

We say that a 2 S0.R2d / belongs to C �Sm.R2d / (� > 0, m 2 R) if there exists a
family of functions ¹am�j WR2d !Cº1jD0 such that am�j 2 C �S

m�j
1;0 .R2d / is homo-

geneous of degreem� j for � with j�j � 1 and a �
PJ
jD0 am�j 2 C

�Sm�J�11;0 .R2d /

for all J 2 N. We say that a 2 S0.R2d / belongs to C �Sm.Rd � .Rd n ¹0º// if
.1 � �.�//a.x; �/ 2 C �Sm.R2d / for any function � 2 C1c .R

d / with �.�/ D 1 near
� D 0.

Next, we consider ‰DOs on a compact d -dimensional manifold M . We denote
its cotangent bundle by T �M . Take a finite covering ¹Uj ºNjD1 of M such that, for
any pair .j; k/ with j ¤ k and Uj \ Uk ¤ ¿, there exists a coordinate neighborhood
Ujk � M such that Uj \ Uk � Ujk . Let 'jk WUjk ! Vjk (Vjk is an open subset of
Rd ) be the coordinate chart and Q'jk WT �Ujk ! Vjk �Rd be the associated canonical
coordinates, namely,

Q'jk

�
x;

dX
lD1

�l dxl jx

�
´ .'jk.x/; �1; : : : ; �d /;

where dx1jx; : : : ; dxd jx be the local basis of T �x Ujk associated with the coordinate
chart 'jk . Fix a partition of unity ¹�j ºNjD1 subordinate to the open covering ¹Uj ºNjD1.
We say that a 2D0.T �M/, where D0.T �M/ is the space of all distributions on T �M
(see [15] for example), is locally in C �Sm.Rd � .Rd n ¹0º// if we can take an atlas
described above such that �.x/ Q'jk�a.x; �/ 2 C �Sm.Rd � .Rd n ¹0º// for any func-
tion � 2 C1c .Vjk/ where Q'jk�a.x; �/´ a. Q'�1

jk
.x; �// (.x; �/ 2 Vjk �Rd ). Then, for

a function a 2 D0.T �M/ which is locally in C �Sm.Rd � .Rd n ¹0º//, we define

Op.a/u.x/´
NX

j;kD1
Uj\Uk¤¿

�j .x/. Q'jk�a/.x;D/Œ�k.u ı 'jk/�.x/ (4.1)

for u 2 C1.M/. We remark that each summand makes sense since

�j Q'jk�a 2 C
�Sm.Rd � .Rd n ¹0º//:

Finally, for an operator ADOp.a/with the symbol a which is locally inC �Sm.Rd �
.Rd n ¹0º//, we define the principal symbol apr 2 D0.T �M/ of A, which is also
locally in C �Sm.Rd � .Rd n ¹0º//, by the following procedure. For .x0; �0/ 2 T �M
with � ¤ 0, we find a coordinate neighborhood Ujk containing x. Then take a cut-
off functions �1.x/ 2 C1c .Vjk/ and �2.�/ 2 C1c .R

d / such that �1.x/ D 1 near
x0, �2.�/ D 1 near � D 0 and �2.�/ D 0 near � D �0. Then we can take ajk;m 2
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C �Sm.R2d / such that �1.x/.1� �2.�// Q'jk�a.x; �/� ajk;m.x; �/ 2 C �Sm�11;0 .R2d /.
Then we define apr.x0; �0/´ ajk;m. Q'

�1
jk
.x0; �0//. This definition of the principal

symbol is actually independent of the choice of the coordinate chart 'jk WUjk ! Vjk
and the cutoff functions �1.x/ and �2.�/. We also denote the principal symbol of A

by �pr.A/ when there is no possibility of confusion.
Now, we state the following theorem which is the one-dimensional case of the

result in [11].

Theorem 4.4 ([11, Theorem 2.5]). If A D Op.a/ is a ‰DO of order �1 with the
symbol a.x; �/ and the principal symbol apr.x; �/ which are locally in C �S�1.R �
.R n ¹0º// for some � > 0 on a C1-smooth one-dimensional compact manifold M
and g be a C 0;˛-Riemannian metric on M for some ˛ > 0, then the singular values
of A on L2.M; d�/ where d� is the measure associated with the Riemannian metric
g has the asymptotics

sj .A/ � C0j
�1; C0 D

1

2�

Z
M

.japr.x; �.x//j C japr.x;��.x//j/ d�.x/;

where �WM ! T �M is a continuous global section such that j�.x/j D 1 for all x 2M
with respect to the metric g.

If @† is C1, it is well known that �@� itself is a ‰DO and its principal symbol
is given by �1=2j�j (see [1] for example). Thus, we can directly apply Theorem 4.4
to the operator .vp=2y/�@†. However, when the boundary is merely C 1;˛ for some
˛ 2 .0; 1/ as in this section, the operator �@† may not be a ‰DO. In this case, we
decompose the operator .vp=2y/�@† into the sum of a ‰DO and a Schatten class
operator as in the following proposition.

Proposition 4.5. If @† is C 1;˛ for some ˛ 2 .0; 1/, then the operator .vp=2y/�@† is
decomposed as

vp

2y
�@† D Op

�
�

vp

4yj�j

�
CL; (4.2)

where L 2 �2=.1C2˛/C".L2.@†// for all " > 0.

Proof. We begin by recalling a well-known formula [29, p. 132]

1log jt j.�/ D �
�

j� j
� 2�ı.�/; (4.3)

where  is the Euler–Mascheroni constant and ı.�/ is the delta function. Recalling
the remark on the C1 atlas on @† in Section 4.1, let U be a coordinate neighborhood
in @† and 'WU � @†! V � R be a bi-Lipschitz coordinate chart whose inverse
'�1W V ! U is C 1;˛-regular as a function from V � R into R2. Let �1; �2W @†!
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Œ0;1/ be cutoff functions supported in U such that the compositions �1 ı '�1 and
�2 ı '

�1 are C1-smooth. Since ' is bi-Lipschitz, the functions �1 and �2 are at
least Lipschitz. Then a direct calculation by the Taylor theorem and the formula (4.3)
proves

�1�@†Œ�2f �.p/ D �

p
jˆ.t/j

2
�1.p/'

�
� 1

jDj
Œ'�.�2f /�

�
.p/C zLŒf �.p/ (4.4)

for f 2 C 1.@†/, where ˆ.t/´ d'�1.t/=dt 2 R2,� 1

jDj

�
Œu�.t/´ .2�/�1

Z
R

j� j�1ei� t Ou.�/ d�

is the ‰DO with the symbol j� j�1 2 S0.R/, and the operator zL is defined by

zLŒf �.p/´
�1.p/

2�

Z
@†

L.'.p/; '.q//j'�ˆ.q/j�1�2.q/f .q/ d�.q/

where

L.t; s/´ .jˆ.s/j � jˆ.t/j/ log js � t j C jˆ.s/j log jˆ.t/C„.t; s/j � 2� (4.5)

and

„.t; s/´

1Z
0

.ˆ.t C �.s � t // �ˆ.t// d� 2 R2:

It suffices to prove zL 2 �2=.1C2˛/C".L2.@†// for all " > 0. In fact, the desired
decomposition (4.2) and the operator L there are obtained by taking a finite atlas and
a partition of unity as we described in the beginning of this subsection and summing
up (4.4) over the index of the atlas following the definition (4.1) of the ‰DO. This
delocalization procedure and the multiplication by vp=2y 2L1.@†/ does not change
the Schatten class property of zL.

In order to prove zL 2 �2=.1C2˛/C".L2.@†// for any " > 0, it suffices to prove

L.'.p/; '.q//j'�ˆ.q/j�1�1.p/�2.q/ 2 H
0;˛�".@† � @†/

for all " > 0 by virtue of Theorem 4.1. It is easy to prove that the second and third
terms in the right-hand side of (4.5) belong to the Sobolev space H 0;˛�".@† � @†/

for all " > 0 by directly checking the condition (3.13) using the C 1;˛-regularity of
'�1WV ! U � @† � R2. Thus, it suffices to proveZ

I3

jL1.t; s/ � L1.t; s
0/j2

js � s0j1C2.˛�"/
dtdsds0 <1 (4.6)
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for any " > 0, where

L1.t; s/´ .jˆ.t/j � jˆ.s/j/ log jt � sj;

I ´ supp'��1 [ supp'��2 � R:

We introduce a subset

S ´ ¹.t; s; s0/ 2 I 3 j 2js � s0j < jt � sjº

and decompose the integral (4.6) into those over S and over I 3 n S .
Since jt � s0j � jt � sj=2 on S , one can prove the inequality

j log jt � sj � log jt � s0jj �
2js � s0j

jt � sj

on S n ¹t D sº by the mean value theorem. Thus, since jt � s0j � 3jt � sj on S , we
have the estimateZ

S

jL1.t; s/ � L1.t; s
0/j2

js � s0j1C2.˛�"/
dtdsds0

.
Z
S

�
jˆ.s/ �ˆ.s0/j2j log jt � sjj2

js � s0j1C2.˛�"/

C
jˆ.t/ �ˆ.s0/j2j log jt � sj � log jt � s0jj2

js � s0j1C2.˛�"/

�
dtdsds0

.
Z
S

�
j log jt � sjj2

js � s0j1�2"
C

1

js � s0j2.˛�"/�1jt � sj2�2˛

�
dtdsds0

.
Z
I2

.jt � sj2"j log jt � sjj2 C jt � sj2"/ dtds <1:

On the other hand, since jL1.t; s/j . jt � sj˛j log jt � sjj and jt � s0j � 3js � s0j
on I 3 n S , we obtain the estimateZ

I3nS

jL1.t; s/ � L1.t; s
0/j2

js � s0j1C2.˛�"/
dtdsds0

.
Z

I3nS

jt � sj2˛j log jt � sjj2

js � s0j1C2.˛�"/
dtdsds0

C

Z
I3;jt�s0j�3js�s0j

jt � s0j2˛j log jt � s0jj2

js � s0j1C2.˛�"/
dtdsds0
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.
Z
I2

jt � sj2"j log jt � sjj2dtds C
Z
I2

jt � s0j2"j log jt � s0jj2dtds0 <1:

This completes the proof of (4.6).

4.3. Proof of Theorem 1.2

To prove Theorem 1.2, we invoke two well-known results. The first result is a classical
one whose proof can be found in [10, Corollary 3.2, p. 41, and (7.12), p. 95].

Lemma 4.6. Let p > 0, A be a compact operator on a Hilbert space H , and �j .A/
be eigenvalues of A in the descending modulus order.

(i) If A belongs to the Schatten class �p.H /, then we have

j�j .A/j D o.j
�1=p/ as j !1.

(ii) If A has the singular value asymptotics sj .A/D O.j�p/ as j !1 and it
has infinitely many eigenvalues, then

j�j .A/j D O.j
�p/ as j !1.

The second one is the Ky Fan theorem whose proof can be found in [10, p. 32].

Theorem 4.7 (Ky Fan theorem). If two compact operators A and B on a same
Hilbert space satisfy sj .A/� Cj�p and sj .B/D o.j�p/ for some C > 0 and p > 0,
then

sj .ACB/ � Cj�p:

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let �j .K�0 / be eigenvalues of the zeroth mode operator K�0
enumerated in the descending order. Then, they are eigenvalues whose eigenfunctions
are axially symmetric, namely, �j .K�0 / D �j .K

�
@�
/.

We recall the decomposition (4.2) in Proposition 4.5. Taking a continuous global
section �W @†! T �@† such that j�.p/j D 1 for all p 2 @†, we have

1

2�

Z
@†

�ˇ̌̌
�

vp

4yj�.p/j

ˇ̌̌
C

ˇ̌̌
�

vp

4yj � �.p/j

ˇ̌̌�
d�.p/ D

1

2�

Z
@†

jvpj

2y
d�.p/ D C0:

Thus, by Theorem 4.4, we obtain

sj

�
Op
�
�

vp

4yj�j

��
� C0j

�1 .j !1/: (4.7)
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Now, we turn into the proof of the assertions (i) and (ii).
(i) Suppose @† is C 1;˛ for some ˛ 2 .0; 1/. Then, by Proposition 4.5 and (4.7),

we obtain .vp=2y/�@† 2 �1=˛.@†/. Now, we apply Propositions 4.2 and 4.3 to the
other terms in the decomposition (3.7). Then we obtain K�0 2 �1=˛C".L2.@†// for
all " > 0. We then infer from Lemma 4.6 (i) that j�j .K�0 ; L

2.@†//j D o.j�˛C"/ for
all " > 0. This proves (1.5) since �j .K�0 ; L

2.@†// D �j .K
�
0 ; H

�1=2.@†// as we
remarked in Section 4.1.

(ii) Suppose @† is C 2;˛ for some ˛ 2 .0; 1/. We first prove

sj .K
�
0 / � C0j

�1 (4.8)

as j !1. Here C0 is the positive constant defined by (1.9). By Propositions 4.2, 4.3
and 4.5, we have

K�0 � Op
�
�

vp

4yj�j

�
DK�@† CLCR� 2 �1.L2.@†//:

Hence, we have sj .K�0 � Op.�.vp=4yj�j/// D o.j�1/. Now, we apply Theorem 4.7
and (4.7) to obtain (4.8).

We now apply Lemma 4.6 (ii) to obtain j�j .K�0 /j D O.j
�1/ as j !1.

5. Proof of Theorem 1.3

5.1. Principal symbol of the NP operator

Throughout this section, we assume that @� is C1. We do so since we employ the
symbol calculus of ‰DOs for the proof of Theorem 1.3.

We abbreviate ı.p; p0/ to ı. According to Proposition 3.2, the integral kernels
K�0 .p; p

0/ and S0.p; p0/ of the zeroth mode NP operator and the zeroth mode single
layer potential are expanded in ı D ı.p; p0/ < 1 as

K�0 .p; p
0/ DK�@†.p; p

0/
�
1C

2.E.iı/ � .1C ı2/K.iı//

�.1C ı2/
log ı C

ı2.g.ı/ � 1/

1C ı2

�
�

vp

4�y

�
�

2E.iı/

�.1C ı2/
log ı C 2 log 2 � 1C ı2

�
f .ı/ �

g.ı/ � 1

1C ı2

��
and

S0.p; p
0/ D

K.iı/

�2
log ı �

log 2
�
�
ı2f .ı/

2�

where f .z/ and g.z/ are holomorphic functions. We observe that, if we define F �

L1..0; 1// as

F ´ ¹h1.ı/ log ı C h2.ı/ j h1.z/; h2.z/ are holomorphic functions in jzj < 1º;
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then K�0 .p; p
0/ and S0.p; p0/ are of the form

K�0 .p; p
0/ D K�@†.p; p

0/f1.ı.p; p
0// �

vp

4�y
f2.ı.p; p

0//

and
S0.p; p

0/ D f3.ı.p; p
0//

where fj 2 F (j D 1; 2; 3). This implies that the operators K�0 and �0 can be repre-
sented as ‰DOs.

Proposition 5.1. If @� is C1, then the principal symbol �pr.K0/.x; �/ of the oper-
ator K0 is

�pr.K0/.p; �/ D �
vp

4yj�j
:

Proof. If @� is C1, then the integral kernel of K�
@†

belongs to C1.@† � @†/
(see [8]). Thus, by Proposition 3.2 and (3.7), the principal symbol �pr.K0/ of K�0
is calculated as

�pr.K�0 /.p; �/ D �
pr
� vp
2y

�@†

�
.p; �/ D �

vp

4yj�j
;

as desired.

5.2. Proof of Theorem 1.3

Since��0 is a positive definite self-adjoint operator onL2.@†/, it admits the complex
power .��0/

z for z 2 C. Moreover, since �0 is a ‰DO, the complex power .��0/
z is

also a ‰DO with principal symbol �pr..��0/
z/ D �pr.��0/

z D .2j�j/�z by Propo-
sition 5.1. In particular, .��0/

1=2 is a unitary operator from H�1=2.@†/ to L2.@†/
and its inverse is .��0/

�1=2. Let

yK0´ .��0/
1=2K�0 .��0/

�1=2:

Proposition 5.2. Assume that @† is C1. Then the operator yK0 is self-adjoint on
L2.@†/ and we have

�. yK0; L
2.@†// D �.K�0 ;H

�1=2.@†//:

Proof. One can easily see from (2.14) that

.��0/
1=2K�0 .��0/

�1=2
D .��0/

�1=2K0.��0/
1=2
D ..��0/

1=2K�0 .��0/
�1=2/�:

This means that the yK0 is self-adjoint. Since K�0 and yK0 are unitarily equivalent,
their spectra coincide.
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We also recall the following Weyl asymptotics by Birman and Solomjak (recall
the terminologies in Section 4.2).

Theorem 5.3 ([6], see also [28, Section 6]). LetM be aC1-smooth one-dimensional
compact manifold and A D Op.a/ be a compact self-adjoint ‰DO with the principal
symbol apr.x; �/ which is locally in C �S�1.R� .R n ¹0º// for some � > 0. We denote
the positive and negative eigenvalues of A as �Cj .A/ and ���j .A/ respectively and
enumerate them in the descending order

�˙1 .A/ � �
˙
2 .A/ � � � �

as long as they exist. Then

�˙j .A/ �
1

2�j

Z
M

.apr.x; �.x//˙ C a
pr.x;��.x//˙/ d�.x/;

where �WM ! T �M is a continuous global section such that j�.x/j D 1 for all x 2M
with respect to the metric g and

t˙´

´
jt j if ˙ t � 0;

0 if ˙ t � 0;

for t 2 R.

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We denote the j -th positive and negative eigenvalue of K�0 by
�Cj .K

�
0 / and ���j .K

�
0 /, respectively. Since K�0 is the restriction of the NP operator

K�
@�

to axially symmetric functions, we have

�˙j .K
�
@�/ D �

˙
j .K

�
0 / D �

˙
j .
yK0/

by Proposition 5.2.
Similarly, we denote the j -th eigenvalue of K�0 by �j .K�0 / in the sense of order-

ing
j�1.K

�
0 /j � j�2.K

�
0 /j � � � � :

Then we have
j�j .K

�
@�/j D j�j .K

�
0 /j D j�j .

yK0/j:

By the definition of yK0, Proposition 5.2 and the symbol calculus, yK0 is a self-
adjoint ‰DO of order �1 which has the same principal symbol

apr.p; �/´ �
vp

4yj�j
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as the operator K�0 . Thus, we can employ Theorem 5.3 and obtain

�˙j .
yK0/ � C

˙
0 j
�1; j�j . yK0/j � C0j

�1

where

C˙0 ´
1

2�

Z
@†

.apr.p; �.p//˙ C a
pr.p;��.p//˙/ d�.p/ D �

1

4�

Z
�vp�0

vp

y
d�.p/

and

C0´
1

4�

Z
@†

jvpj

y
d�.p/:

Thus, we have (1.8) and (1.9).

6. Proof of Theorem 1.4

We compare the essential spectra of K�
@†

and K�0 . Since K�
@†

and K�0 are realized as
self-adjoint operators with respect to the inner products h�; �i� D h�; �i�;@† and h�; �i0
respectively, we introduce the notation

H�@†´ .H�1=2.@†/; h�; �i�/; H�0 ´ .H�1=2.@†/; h�; �i0/

in order to avoid possible confusion. Let k�k� and k�k0 respectively denote norms on
H�
@†

and H�0 . We emphasize that both are equivalent to the H�1=2.@†/-norm.
We obtain the following theorem.

Theorem 6.1. If @† is Lipschitz, then it holds that

�ess.K
�
@†;H

�
@†/ D �ess.K

�
0 ;H

�
0 /:

Actually, this is an immediate consequence of the following variant of the Weyl
theorem.

Proposition 6.2. Let H be a Banach space and h�; �i1 and h�; �i2 be inner products
on H which induce norms equivalent to the original norm on H and thus both of
H1D .H ; h�; �i1/ and H2D .H ; h�; �i2/ are Hilbert spaces. If A1 and A2 are bounded
linear operators on H such that

• A1 and A2 are self-adjoint operators on H1 and H2, respectively,

• A1 �A2 is compact on H ,

then
�ess.A1;H1/ D �ess.A2;H2/:
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Proof. Let k'kj ´ h'; 'i
1=2
j be the norm induced by the inner product h�; �ij .

Let � 2 �ess.A1;H1/ and let ¹'nº1nD1 be the Weyl sequence of � and A1, that
is, k'nk1 D 1 for all n, 'n weakly converges to 0, and kA1Œ'n� � �'nk1 ! 0. Let
 n ´ 'n=k'nk2. We show that a subsequence of  n makes a Weyl sequence of �
and A2, and hence � 2 �ess.A2;H2/.

It is obvious by the definition that k nk2 D 1 for all n. Let ' 2 H . By the
Riesz representation theorem, there exists the unique BŒ'� 2 H such that h ; 'i2 D
h ;BŒ'�i1 for all  2 H , and

kBŒ'�k1 D sup
 2Hn¹0º

jh ; 'i2j

k k1
� k'k2 � k'k1:

In particular, B is a bounded invertible operator on H . Thus, for any ' 2H , we have

jh n; 'i2j D
jh'n;BŒ'�i1j

k'nk2
� jh'n;BŒ'�i1j ! 0

as n!1.
Since A1 �A2 is compact and 'n weakly converges to 0, there is a subsequence

of 'n, which we still denote by 'n, such that .A1 �A2/Œ'n� converges to 0. We then
see kA2Œ n� � � nk2 ! 0 as n!1 from the inequality

kA2Œ n� � � nk2 � k.A1 �A2/Œ n�k2 C kA1Œ n� � � nk2

� k.A1 �A2/Œ'n�k1 C kA1Œ'n� � �'nk1:

Thus,  n is a Weyl sequence of � and A2.
So far, we proved that �ess.A1;H1/ � �ess.A2;H2/. By changing the roles of A1

and A2, we can prove the opposite inclusion relation.

Now, we prove Theorem 6.1.

Proof of Theorem 6.1. We already observed that the operator K�0 and K�
@†

are self-
adjoint on H�0 and H�

@†
, respectively, and that the norms on Hilbert spaces H�0 and

H�
@†

are equivalent. We claim that the operator K�0 �K�
@†

is compact onH�1=2.@†/
in order to apply Lemma 6.2. In fact, since R� is compact on H�1=2.@†/ (Corol-
lary 3.6) and the composition

f 2 H�1=2.@†/! �@†Œf � 2 H
1=2.@†/!

vp

4�y
�@†Œf � 2 L

2.@†/

,!
vp

4�y
�@†Œf � 2 H

�1=2.@†/

is compact by the Rellich–Kondrachov embedding theorem, the decomposition (3.6)
shows that K�0 �K�

@†
is compact on H�1=2.@†/.

Now, we apply Lemma 6.2 and obtain the conclusion.
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Proof of Theorem 1.4. According to Theorem 6.1, it suffices to prove the inclusion

�ess.K
�
0 ;H

�
0 / � �ess.K

�
@�;H

�1=2.@�//:

Let UWH�1=2.@�/!H�1=2.@†� S1/ be the operator defined in (2.1). Assume
� 2 �ess.K

�
0 ;H

�
0 / and let ¹fnº1nD1 be a Weyl sequence of � and K�0 . We show that

gn ´ U�1Œfn� 2 H
�1=2.@�/ yields a Weyl sequence of � and K�

@�
. In fact, by

Corollary 2.5 (ii), we have

kU�1Œfn�k� D kfnk0 D 1:

Let h 2 H�1=2.@�/. It follows from (2.3) and Proposition 2.4 that

hgn; hi� D �h�@�U�1Œfn�; hi@�

D �hU�1�0Œfn�; hi@� D �h�0Œfn�;UŒh�i@†�S1 :

Note that
R
S1

UŒh�.�; '/ d' 2 H�1=2.@†/ and hence

�h�0Œfn�;UŒh�i@†�S1 D

�
fn;

Z
S1

UŒh�.�; '/ d'

�
0

! 0

as n!1. Thus, ¹gnº1nD1 weakly converges to 0 in H�1=2.@�/.
By (2.8) and Corollary 2.5 (ii), we have

k.K�@� � �I/Œgn�k
2
� D kU

�1.K�0 � �I/Œfn�k
2
� D k.K

�
0 � �I/Œfn�k

2
0 ! 0

as n!1. Thus, ¹gnº1nD1 is a Weyl sequence of � and K�
@�

. This implies

� 2 �ess.K
�
@�;H

�1=2.@�//:

A. Proof of Proposition 3.2

As preliminaries, we introduce the digamma function

 .z/´
� 0.z/

�.z/

where �.z/ is the Gamma function

�.z/´

1Z
0

tz�1e�t dt

for Re z > 0.
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We introduce the power series

f .z/´

1X
nD1

� .2n � 1/ŠŠ
.2n/ŠŠ

�2�
 .nC 1/ �  

�
nC

1

2

��
.�1/nz2n�2 (A.1)

for z 2 C with jzj < 1, which converges by virtue of the inequality

lim sup
n!1

j .nC a/j1=n � 1

for any a 2 C, which is proved by the identity  .z C 1/ D  .z/ C 1=z for any
z 2 C n ¹0º [14, (5.5.2)].

Proof of Proposition 3.2. The identity (3.2) with f .z/ defined by (A.1) is obtained by
combining the Gauss hypergeometric series representation of the elliptic integral [14,
(19.5.1)], a formula of the Gauss hypergeometric series with the reciprocal argument
[14, (15.8.8)], and special values and the reflection formula of the digamma function
[14, (5.4.12), (5.4.13) and (5.5.4)].

We define

g.z/´ 1C .1C z2/
�2K.iz/=� � 1

z2
� zf 0.z/ � 2f .z/

�
for z 2 C with jzj < 1. The Taylor expansion of K.z/ at z D 0 implies that z D 0 is
a removable singularity of g.z/. Then, by [14, (19.4.1)],

E.z/ D .1 � z2/K.z/C z.1 � z2/
d

dz
K.z/ (A.2)

for z 2 C n ..�1;�1� [ Œ1;1// and (3.2), we obtain

E.iı�1/ D
1C ı2

ı2
K.iı�1/C

i.1C ı2/

ı3
dK

dz

ˇ̌̌̌
zDiı�1

D
1C ı2

ı2
K.iı�1/ �

1C ı2

ı

d

dı
ŒK.iı�1/�

D
2.1C ı2/ log ı

�

d

dı
ŒK.iı/�C

1

ı
C ıg.ı/:

We employ (A.2) for dK.iı/=dı to obtain (3.3).
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