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Pauli Hamiltonians with an Aharonov–Bohm flux

William Borrelli, Michele Correggi, and Davide Fermi

Abstract. We study a two-dimensional Pauli operator describing a charged quantum particle
with spin 1=2 moving on a plane in presence of an orthogonal Aharonov–Bohm magnetic flux.
We classify all the admissible self-adjoint realizations and give a complete picture of their spec-
tral and scattering properties. Symmetries of the resulting Hamiltonians are also discussed, as
well as their connection with the Dirac operator perturbed by an Aharonov–Bohm singularity.

1. Introduction

The motion of a charged particle with spin 1=2 on a two-dimensional plane in pres-
ence of an external magnetic field perpendicular to it is described in non-relativistic
quantum mechanics by the Pauli operator

HP D .� � .�ir CA//2;

where, for any xD .x;y/ 2R2, A is a vector potential such that b D curlADr? �A,
r? WD .�@y ; @x/, equals the magnetic field and � D .�1; �2/ is a matrix-valued vector
whose components are the Pauli matrices

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
: (1.1)

For regular magnetic fields, such an operator has already been studied in the litera-
ture and we refer to the recent works [6, 7] and references therein for further details.
A similar analysis on non-simply connected domains is performed in [31], sharing
some analogies with our purpose here (see also [21] for the case of the Dirac opera-
tor).
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We are indeed interested in discussing the properties of the Pauli operator when
the magnetic field b is concentrated at a point, which we choose as the origin without
loss of generality, i.e.,

b.x/ D 2�˛ı.x/; ˛ 2 R:

This ideally corresponds to an infinite solenoid of zero diameter passing through the
origin. In the Coulomb gauge, the associated vector potential reads

A.x/´ ˛
x?

jxj2
; (1.2)

where x? ´ .�y; x/. This setting matches the one of the famous Aharonov–Bohm
(AB) effect [3], where however we are here taking also into account the spin degrees
of freedom.

It is known that the singularity at the origin of the field affects the self-adjointness
of the Hamiltonian operator and, accordingly, different self-adjoint extensions of the
formal expression exist. The analogous subject for the Schrödinger operator, i.e., for
a spinless charged particle, has been thoroughly analyzed in the literature (we refer
to [1, 11–13, 16, 20, 35] for further details; see also [17, 18] and [24, 25] for results
about the related radial operators) and our starting point is a similar classification of
all self-adjoint realizations of the Pauli operator (1) (Section 2.1 and Section 2.2).
Such a question has only been partially addressed in [26, 36, 37], also for more than
one solenoid, yet focusing mainly on the Aharonov–Casher phenomenon about the
existence and number of zero-energy modes. In this connection we also mention [19],
where a distinguished self-adjoint extension is characterized for Pauli operators with
measure-valued magnetic fields.

Our main goal is however a careful description of the spectral and scattering prop-
erties of the self-adjoint realizations of the Pauli operator (Section 2.3): with the
exception of possible embedded eigenvalues, we provide a complete picture of the
spectrum of each self-adjoint extension, including zero-energy resonances, and derive
an explicit expression of the generalized eigenfunctions. Similar results for regular
Pauli operators are contained in [9, 30] and [5, 15] (in the latters some applications to
the Friedrichs realization of the AB Pauli operator are discussed). After proving the
existence and completeness of the wave operators, this in turn allows us to obtain an
expression for the scattering amplitude.

Inspired by the analysis in [22,23] of the physical symmetries of the regular Pauli
operator inherited from quantum field theory, we also investigate such symmetries
(Appendix A) in presence of a singular magnetic field (Section 2.4). Furthermore,
since the Pauli operator can be formally viewed as the square of the Dirac operator
D D � � .�ir C A/, we examine the interplay of this relation with the self-adjoint
extensions mentioned above.
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2. Main Results

As anticipated our first goal is to classify the self-adjoint realizations of the two-
dimensional Pauli operator with an AB magnetic flux at the origin and characterize
their spectral and scattering properties, starting from the formal expression given
in (1). We use polar coordinates .r; #/ 2 .0;C1/ � Œ0; 2�/ and exploit the natu-
ral Hilbert space isomorphism L2.R2IC2/ ' L2.R; rdr/˝ L2.Œ0; 2�/; d#/˝ C2.
Without loss of generality, we assume ˛ 2 .0; 1/. The latter condition can indeed be
realized by means of a unitary transformation: for any ˛ 2 R, let b˛c 2 Z denote the
corresponding integer part, then .U /.r; #/´ e�ib˛c# .r; #/ is a unitary operator
on L2.R2IC2/ fulfilling

UHPU
�1
D .� � .�ir C zA//2; zA´ .˛ � b˛c/

x?

jxj2
:

Let us stress that U is indeed a unitary map, yet not a gauge transformation since the
magnetic fluxes associated to HP and UHPU

�1 are different.
The operator HP is understood as a closable symmetric operator on the dense

domain C1c .R
2 n ¹0ºIC2/ D C1c .R

2 n ¹0º/˝C2. However, it is also easy to verify
that HP is not essentially self-adjoint on such a domain, due to the singularity of A at
the origin. At the algebraic level, the operator (1) can be written as

HP D

�
…�…C 0

0 …C…�

�
; (2.1)

where …˙ ´ .p1 ˙ ip2/ and pj , j D 1; 2, are the components of the vector p´

�ir CA. It is readily seen that…˙ are one the formal adjoint of the other. Passing to
polar coordinates and noting that A.r; #/D ˛

r
.� sin#; cos#/, @x D cos#@r � sin#

r
@#

and @y D sin#@r C cos#
r
@# , by a simple computation we get

…C D e
i#
�
�i@r C

1

r
@# C

i˛

r

�
; …� D e

�i#
�
�i@r �

1

r
@# �

i˛

r

�
:

Then, using the basic relation Œ@# ; e˙i# � D ˙iei# , we find

…�…C D
�
�i@r �

1

r
@# �

i.˛ C 1/

r

��
�i@r C

1

r
@# C

i˛

r

�
D �

1

r
@r.r@r �/C

1

r2
.�i@# C ˛/

2;

…C…� D
�
�i@r C

1

r
@# C

i.˛ � 1/

r

��
�i@r �

1

r
@# �

i˛

r

�
D �

1

r
@r.r@r �/C

1

r2
.�i@# C ˛/

2:
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The above identities show that formally

…�…C D …C…� D HS; (2.2)

where HS D .�ir CA/2 is the AB Schrödinger operator acting on scalar functions.

2.1. Friedrichs extension

We start by discussing the properties of the most natural self-adjoint extension ofHP,
i.e., the Friedrichs one. The simplest way to define it is to consider the quadratic form
associated to HP:

QPŒ �´
X

s2¹";#º

Z
R2

dxj.�ir CA/ sj
2; (2.3)

making sense at least for

 ´

�
 "
 #

�
2 C1c .R

2
n ¹0ºIC2/:

We use the following convention: spinors, i.e., functions from R2! C2, are denoted
by italic bold letters (e.g., ;G , etc.), while regular vectors are denoted by bold letters
(e.g., x;q, etc.). Making reference to the associated norm k kQP ´ k k2 CQPŒ �,
we introduce the Friedrichs realization

DŒQ
.F/
P �´ C1c .R

2 n ¹0º;C2/
k�kQP

; Q
.F/
P Œ �´ QPŒ �:

By a straightforward adaptation of [11, Proposition 1.1] (see also [12, Proposition
1.2]), we get the forthcoming Proposition 2.1. Here and in the sequel we refer to the
angular average hf iWRC ! C of any scalar function f WR2 ! C, given by

hf i.r/ WD
1

2�

2�Z
0

d# f .r; #/:

Proposition 2.1 (Friedrichs realization). Let ˛ 2 .0; 1/. Then,

(i) the quadratic form Q
.F/
P is closed and non-negative on the domain

DŒQ
.F/
P � D ¹ 2 H 1.R2IC2/ j Aj 2 L

2.R2IC2/ for j D 1; 2ºI

(ii) for any  2 DŒQ
.F/
P � and for any s 2 ¹";#º,

lim
r!0C

hj sj
2
i.r/ D 0; lim

r!0C
r2hj@r sj

2
i.r/ D 0I (2.4)
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(iii) the unique self-adjoint operator H .F/
P associated to Q.F/

P is

D.H
.F/
P /´ ¹ 2 DŒQ.F/� j HP 2 L

2.R2IC2/º;

H
.F/
P  ´ HP :

Remark 2.2 (Decomposition of H .F/
P ). Due to the diagonal structure (2.1)–(2.2) of

the Pauli operator HP, from Proposition 2.1 it readily follows that

H
.F/
P D

�
H
.F/
S 0

0 H
.F/
S

�
; (2.5)

where H .F/
S is the Friedrichs realization of the AB Schrödinger operator (2.2) charac-

terized in [11, Proposition 1.1].

2.2. Self-adjoint extensions

As anticipated, our first goal is to classify all the self-adjoint realizations of the opera-
tor HP. To this purpose we will provide a family of quadratic forms inspired by those
associated to the self-adjoint extensions of the AB Schrödinger operatorHS and show
a posteriori that such forms are closed and bounded from below, as well as the fact
that the associated operators exhausts all possible extensions of HP.

Let then g.0/
�
; g
.�1/

�
2 L2.R2IC/ be the unique solutions to the AB Schödinger

defect equation
.HS C �

2/g
.`/

�
D 0 in R2 n ¹0º;

namely (see [34, Section 10.31]),

g
.`/

�
.r; #/ D �j`C˛jKj`C˛j.�r/

ei`#
p
2�
; ` 2 ¹0;�1º: (2.6)

We stress (see next (3.2)) that such functions have a local singularity at the origin
proportional to r�j`C˛j and for this reason they do not belong to the domain of the
Friedrichs realizationH .F/

S . We construct then out these defect functions four indepen-
dent solutions in L2.R2IC2/ of the formal equation .HP C �

2/G� D 0 in R2 n ¹0º,
i.e.,

G
.`/

�;s
´ g

.`/

�

�
ıs;"
ıs;#

�
; s 2 ¹";#º; ` 2 ¹0;�1º: (2.7)

By a heuristic evaluation of the expectation value h jHPj i for spinors of the form

 D �� C
X
s;`

q.`/s G
.`/

�;s
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with �� 2 DŒQ
.F/
P � and q´ .q

.0/

"
; q
.�1/

"
; q
.0/

#
; q
.�1/

#
/ 2 C4, we are lead to consider

the quadratic form

Q
.ˇ/
P Œ �´ Q

.F/
P Œ��� � �

2
k k22 C �

2
k��k

2
2 C q� � ŒL.�/C ˇ�q; (2.8)

where ˇ D .ˇ.``
0/

ss0 /s;s02¹";#º;`;`02¹0;�1º 2 M4;Herm.C/ is any 4 � 4 Hermitian matrix
labeling the extension and

L.�/ D
� ��2j`C˛j
2 sin.�˛/

ıss0ı``0
�
s;s02¹";#º;`;`02¹0;�1º

: (2.9)

Here and below we systematically write
P
s;` to indicate the double sum

P
s2¹";#ºP

`2¹0;�1º. Moreover, we shall refer to the decomposition in angular harmonics, for
fixed s 2 ¹";#º,

 s.r; #/ D
X
`2Z

 .`/s .r/
ei`#
p
2�
:

Theorem 2.3 (Self-adjoint extensions ofHP). Let ˛ 2 .0; 1/ and � > 0. Then, for any
ˇ 2 M4;Herm.C/,

(i) the quadratic form Q
.ˇ/
P is well defined on the domain

DŒQ
.ˇ/
P �D

°
 D��C

X
s;`

q.`/s G
.`/

�;s
2L2.R2IC2/ j�� 2DŒQ

.F/
P �;q2C4

±
;

and it is independent of �, closed and bounded from below;

(ii) the unique self-adjoint operator H .ˇ/
P associated to Q.ˇ/

P is

D.H
.ˇ/
P / D

°
 D �� C

X
s;`

q.`/s G
.`/

�;s
2 DŒQ

.ˇ/
P � j �� 2 D.H

.F/
P /;

Œ.L.�/C ˇ/q�.`/s

D 2j`C˛j�1�.j`C ˛j/ lim
r!0C

1

r j`C˛j
.j`C ˛j C r@r/�

.`/

�;s

±
;

(2.10)

.H
.ˇ/
P C �2/ ´ .H

.F/
P C �2/��I (2.11)

(iii) the family .H .ˇ/
P /ˇ2M4;Herm.C/ exhausts all possible self-adjoint extensions

of the symmetric operator HP given in (1).

Remark 2.4 (Friedrichs and Krein extensions). The Friedrichs Hamiltonian H .F/
P is

formally recovered taking ˇ D “1”1, i.e., setting all the charges q equal to zero.
Another notable extension is the Krein’s one, i.e., the smallest positive extension
in form sense. Here, it is easier to identify it as the unique extension besides the
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Friedrichs’ one which is homogeneous of degree�2 under scaling, namely, the exten-
sion H .0/

P with extension parameter ˇ D 0.

Remark 2.5 (von Neumann parameterization). Given the solutions of the defect equa-
tion, it is possible to parameterize the self-adjoint extensions of HP via the von Neu-
mann theory. Denoting by xHP the closure of the symmetric operator (1), there exists
a 4-parameter family of self-adjoint extensions given, for any 4 � 4 unitary matrix
U 2 M4;Unit.C/, by

D.H
.U /
P / D ¹ D f C GCcC GCU c 2 L2.R2IC2/ j f 2 D. xHP/; c 2 C4

º;

H
.U /
P  D HPf C iGCc � iGCU c;

where we put

G˙WC
4
! L2.R2;C2/; G˙c ´

X
s;`

c.`/s G
.`/
˙;s

ı
kG

.`/
˙;sk2;

with

G
.`/
˙;s D g

.`/
˙

�
ıs;"
ıs;#

�
; s 2 ¹";#º; ` 2 ¹0;�1º;

g
.`/
˙
.r; #/ D e

�i
�
4
j`C˛j

r
4

�
cos
��
2
j˛ C `j

� ei`#
p
2�

Kj`C˛j.e
�i�=4r/;

for `2 ¹0;�1º. Of course, there is a one-to-one correspondence between such a family
and the family of operators introduced in Theorem 2.3, which can be made explicit
by deriving a relation U D U.ˇ/ (see next proosition 2.8 and Remark 2.10).

2.3. Spectral and scattering properties

In order to investigate the spectral and scattering properties of the self-adjoint oper-
ators H .ˇ/

P , we exploit general resolvent arguments using the Birman–Krein–Vishik
theory of self-adjoint extensions to write the resolvent operator. We are going to refer
to the general theory described in [38, 41].

Let us first notice that the Friedrichs Hamiltonian H .F/
P is positive semi-definite

and consider the associated resolvent operator

R
.F/
P .z/´ .H

.F/
P � z/�1WL2.R2IC2/! D.H

.F/
P /; for z 2 C nRC.

Taking into account the diagonal structure (2.5) of the Friedrichs Hamiltonian
H
.F/
P we readily get

R
.F/
P .z/ D

�
R
.F/
S .z/ 0

0 R
.F/
S .z/

�
; (2.12)
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where R.F/S .z/ D .H
.F/
S � z/�1 is the resolvent operator for the Friedrichs realization

of the AB Schrödinger operator, acting as an integral operator with kernel [1, equa-
tion (3.2)]

R
.F/
S .zIx;x0/ D

X
`2Z

Ij`C˛j.�i
p
z.r ^ r 0//Kj`C˛j.�i

p
z.r _ r 0//

ei`.#�#
0/

2�
: (2.13)

Notice that the kernel in (2.13) is slightly different, compared to [1], as we write
it using the modified Bessel functions of second kind I� ; K� in place of the Bessel
and Hankel functions J� ; H

.1/
� (this is obtained using the connection formulas [34,

equations (10.27.6) and (10.27.8)]). Here and in the sequel we refer to the determina-
tion of the square root with =

p
z > 0 for all z 2 C n RC, ensuring in particular that

<. � i
p
z/ > 0.

In view of the boundary conditions appearing in (2.10), we further introduce the
trace operator

� D
M
s;`

� .`/s W D.H
.F/
P /! C4;

� .`/s �´ 2j`C˛j�1�.j`C ˛j/ lim
r!0C

1

r j`C˛j
.j`C ˛j C r@r/�

.`/
s : (2.14)

For any z 2 C nRC, we put

{G .z/´ �R
.F/
P .z/WL2.R2IC2/! C4; (2.15)

and define the corresponding single layer operator as

G .z/´ .{G .z�//�WC4
! L2.R2IC2/: (2.16)

The Weyl operator then reads

ƒ.z/´ �.G .�1/ � G .z//WC4
! C4; (2.17)

where we have chosen as a reference spectral point z0 D �1. The first result we state
is precisely about the resolvent of the self-adjoint realizations of HP.

Theorem 2.6 (Resolvent of the self-adjoint extensions of HP). Let ‚ 2 M4;Herm.C/.
There exists a non-empty open set Z � C nR, such that, for any z 2 Z, the bounded
operator

R
.‚/
P .z/´ R

.F/
P .z/C G .z/Œƒ.z/C‚��1 {G .z/ (2.18)

is the resolvent of a self-adjoint operator H .‚/
P coinciding with H .F/

P on ker.�/ and
defined by

D.H
.‚/
P /´ ¹ 2 L2.R2IC2/ j D 'z C G .z/q;'z 2 D.H

.F/
P /;

q 2 C4; �'z D Œƒ.z/C‚�qº;

.H
.‚/
P � z/ D .H

.F/
P � z/'z : (2.19)
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Remark 2.7 (Range of validity of (2.18)). The set Z � C nRC consists of points z
in the complex plane for which the 4 � 4 matrix ‚Cƒ.z/ is invertible, and it is not
difficult to see that such a set is certainly non-empty (see next (3.8)). In fact, by [10,
Theorem 2.19], the defining identity (2.18) extends to any z 2 �.H .F/

P / \ �.H
.‚/
P /,

where �.H .F/
P / and �.H .‚/

P / are the resolvent sets of H .F/
P and H .‚/

P , respectively.

Of course, the above Theorem 2.6 provides yet another parametrizion of the fam-
ily of self-adjoint extensions of HP. In fact, this parametrization comprises all such
realizations by general arguments and therefore there must be a one-to-one correspon-
dence with the family in Theorem 2.3.

Proposition 2.8 (Equivalence of parametrizations). There is a one-to-one correspon-
dence between the families ¹H .‚/

P º‚2M4;Herm.C/ and ¹H .ˇ/
P ºˇ2M4;Herm.C/ given by

‚ D ‚.ˇ/ D L.1/C ˇ; (2.20)

where L.�/ is defined in (2.9).

Remark 2.9 (Friedrichs and Krein extensions). Also in this case it appears that the
Friedrichs Hamiltonian H .F/

P is formally recovered for ‚ D “1”1, while the Krein’s
one is simply identified by ‚ D L.1/.

Remark 2.10 (von Neumann and Krein parametrizations). The one-to-one corre-
spondence between the von Neumann and Krein families of self-adjoint realizations
is realized explicitly by (see, e.g., [39, Theorem 4.1 and Theorem 4.3] and [41, Theo-
rem 3.1])

‚ D ‚.U / D �i {G .Ci/. yU � yU�/. yU C yU�/
�1G .�i/;

where yU is a unitary operator on the defect space span¹GCcº, c 2 C4, acting as
yUGCc´ G�U c, and yU�´ .H

.F/
P � i/R

.F/
P .�i/ is the restriction of the Cayley trans-

form of H .F/
P to the same subspace. Of course, the family H .U /

P , U 2 M4;Unit.C/,
comprises the Friedrichs and Krein realizations, which are respectively recovered for

U .F/ D �1; U .K/ D .�ei�j˛C`jıss0ı``0/:

Let us continue the investigation of the spectral and scattering properties of the
Pauli Hamiltonians characterized in Section 2.2 as distinct self-adjoint realizations
in L2.R2IC2/ of the differential operator HP. For convenience, we start by dealing
with the Friedrichs extension and study its scattering properties with respect to the
(self-adjoint) free Pauli operator

��P ´

�
�� 0

0 ��

�
;
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with domain H 2.R2IC2/. Notice that �.��P/ D �ac.��P/ D RC, so the projector
onto the subspace of absolute continuity of ��P satisfies Pac.��P/ D 1. More in
general, for any ‚ 2 M4;Herm.C/, we define the wave operators

�
.‚/
˙
� �˙.H

.‚/
P ;��P/´ s-lim

t!˙1
eitH

.‚/
P e�it.��P/:

For later convenience, we refer here to the family H .‚/
P , ‚ 2 M4;Herm.C/, described

in Theorem 2.6 (understanding ‚ D 11 for the Friedrichs Hamiltonian H .F/
P , see

Theorem 2.9). We recall that, whenever they exist, the wave operators are said to be
complete if [42, p. 19]

ran�.‚/C D ran�.‚/� D ranPac.H
.‚/
P /;

where Pac.H
.‚/
P / is the spectral projector onto the absolute continuity subspace of

L2.R2IC2/ associated to H .‚/
P . Asymptotic completeness further requires that one

has �sc.H
.‚/
P / D ¿. Assuming that the wave operators exist, a fact we shall actually

prove in the subsequent Theorem 2.11 and Theorem 2.15, we proceed to introduce
the scattering operator

S.‚/´ .�
.‚/
C /��.‚/� :

Notice that S.‚/ is a unitary operator on ranPac.H
.‚/
P / as soon as the wave operator

�
.‚/
˙

are complete.
Finally, we introduce the following definition of zero-energy resonances of Pauli

operators. We adopt an analogous definition for the zero-energy resonances of the
Dirac operator (see next Proposition 2.23 and Proposition 2.25).

Definition 2.1 (Zero-energy resonance). A zero-energy resonance  of H .‚/
P is a

distributional solution of the equation HP D 0 in L2loc.R
2/ n L2.R2/, which fulfills

the boundary condition at xD 0 encoded in D.H
.‚/
P / and remains bounded at infinity.

As anticipated, we start by analyzing the Friedrichs realization.

Theorem 2.11 (Scattering for H .F/
P ). The wave operators �.F/

˙
exist and are asymp-

totically complete. Moreover, the scattering operator S.F/ exists and is unitary on
L2.R2IC2/.

A straightforward consequence of the above result is the spectral characterization
of H .F/

P .

Corollary 2.12 (Spectrum of H .F/
P ). The spectrum of the Friedrichs Hamiltonian

H
.F/
P satisfies

�.H
.F/
P / D �ac.H

.F/
P / D Œ0;C1/;

and, in particular, �pp.H
.F/
P / D �sc.H

.F/
P / D ¿.
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To investigate further the scattering and spectrum of H .F/
P , we provide an explicit

expression of the scattering matrix and amplitude, together with the scattering cross
section. To proceed, let us refer to the plane waves (for s 2 ¹";#º and k 2 R2)

'.s;k/.x/´
1

2�
eik�x

�
ıs;"
ıs;#

�
D

1

2�

X
`

ei`.#�!/Ci
�
2 j`jJj`j.kr/

�
ıs;"
ıs;#

�
;

where x D .r; #/ 2 RC � S1, k D .k; !/ 2 RC � S1 and we used [27, equation
(8.511.4)] and [34, equation (10.4.1)]. Notice that, in the sense of distributions,

��P'.s;k/ D k
2'.s;k/:

Analogously, the generalized eigenfunctions .'.F;˙/
.s;k/

/.s;k/2¹";#º�R2 corresponding to

�ac.H
.F/
P / are the distributional solutions of the eigenvalue problem

HP'
.F;˙/
.s;k/

D k2'
.F;˙/
.s;k/

;

fulfilling the local Friedrichs conditions r'.F;˙/
.s;k/

; Aj'
.F;˙/
.s;k/

2 L2loc.R
2IC2/ for j D

1;2 (see Proposition 2.1), and the incoming (C) or outgoing (�) Sommerfeld radiation
conditions

lim
r!C1

r1=2.Ox � r ˙ ik/Œ'
.F;˙/
.s;k/

.x/ � '.s;k/.x/� D 0: (2.21)

Correspondingly, we introduce the Fourier transform

FWL2.R2IC2/! L2.R2IC2/

defined as

.F /s.k/´
X

s02¹";#º

Z
R2

dx.'.s;k/.x//
�
s0 s0.x/ D

1

2�

Z
R2

dxe�ik�x s.x/;

and the associated unitary map [8, Section 4.5.1]

F WL2.R2IC2/!

Z
�.��P/

d�.L2.R2IC2//�;

.F /�;s.!/´ .F /s.
p
�; !/ 2 .L2.R2IC2//�;

providing a direct integral decomposition of L2.R2IC2/ with respect to the spectral
measure of ��P. Taking into account that S.‚/ commutes with the free Pauli oper-
ator ��P [42, p. 74], we proceed to define the scattering matrix as the fiber-wise
restriction to .L2.R2IC2//� � L

2.S1IC2/ of the scattering operator S.‚/, namely,

S.‚/.�/u� D F S.‚/F �u�: (2.22)
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We shall typically refer to the associated integral kernel S.F/ss0.�I!;!
0/, fulfilling

.S.‚/.�/u�/s.!/ D
X
s0

2�Z
0

d!0S.F/ss0.�I!;!
0/u�;s0.!

0/

for s 2 ¹";#º and ! 2 S1. Following [29, 43], we define the scattering amplitude

f
.‚/
ss0 .�I!;!

0/´
� 2�
i
p
�

�1=2
.S.‚/ss0 .�I!;!

0/ � ıss0ı.! � !
0//; (2.23)

and the differential cross section

d� .‚/ss0

d!
.�; !/´ jf

.‚/
ss0 .�I!; 0/j

2: (2.24)

Theorem 2.13 (Generalized eigenfunctions and scattering matrix of H .F/
P ). The gen-

eralized eigenfunctions of H .F/
P are

'
.F;˙/
.s;k/

.x/ D
1

2�

X
`2Z

ei`.#�!˙/˙i
�
2 j`C˛jJj`C˛j.kr/

�
ıs;"
ıs;#

�
; (2.25)

where !C D ! and !� D ! C � . The integral kernel associated to the scattering
matrix S.F/.�/ is given by

S.F/ss0.�I!;!
0/ D

1

2�

X
`2Z

ei�.`�j`C˛j/Ci`.!�!
0/ıss0

D

h
cos.�˛/ı.! � !0/C

i

�
sin.�˛/p:v:

� 1

ei.!�!
0/ � 1

�i
ıss0 ;

(2.26)

where s; s0 2 ¹"; #º, !; !0 2 Œ0; 2�/ and p:v: indicates the Cauchy principal value.
Furthermore, the scattering amplitude is given by

f
.F/
ss0 .�I!;!

0/ D
� 2�
i
p
�

�1=2h
.cos.�˛/ � 1/ı.! � !0/

C
i

�
sin.�˛/p:v:

� 1

ei.!�!
0/ � 1

�i
ıss0 ; (2.27)

and the differential cross section for ! ¤ 0 is

d� .F/ss0
d!

.�; !/ D
1

2�
p
�

sin2.�˛/
sin2.!=2/

ıss0 : (2.28)

Remark 2.14 (Pauli and AB Schrödinger operators). In accordance with the fact that
H
.F/
P is just the direct sum of two copies of the Friedrichs AB Schrödinger Hamil-

tonian H .F/
S , see (2.5), the scattering operator and the scattering matrix also coincide

with the direct sums of two copies of the analogous quantities related to the scalar
case.
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The analogue of Theorem 2.11 about the scattering for the self-adjoint extensions
is the following.

Theorem 2.15 (Scattering for H .‚/
P ). For any ‚ 2 M4;Herm.C/, the wave operators

�
.‚/
˙

exist and are asymptotically complete. Moreover, the scattering operator S.‚/

exists and is unitary on L2.R2IC2/.

The spectrum of the self-adjoint extensionsH .‚/
P is on the other hand much richer

than the one of H .F/
P .

Theorem 2.16 (Spectrum of H .‚/
P ). Let ‚ 2 M4;Herm.C/. Then, the spectrum of the

Hamiltonian H .‚/
P is

�.H
.‚/
P / D �ac.H

.‚/
P / [ �pp.H

.‚/
P /;

where

�ac.H
.‚/
P / D RC; ¹ � � 2 R� j detŒƒ.��/C‚� D 0º � �pp.H

.‚/
P /;

and, in particular, �sc.H
.‚/
P / D ¿. Furthermore, the eigenfunction associated to any

negative eigenvalue �� 2 �pp.H
.‚/
P / is given by G .��/q with q 2 kerŒƒ.��/C‚�.

Remark 2.17 (Negative point spectrum of a specific extension). As an example, let us
discuss the occurrence of negative eigenvalues for the extension with‚D 0. It can be
checked by direct inspection that the condition detŒƒ.��/� D 0, � 2 RC, is fulfilled
if and only if � D 1 (see the explicit expression (3.8) reported in the forthcoming
Lemma 3.1 for ƒ.z/). Moreover, ƒ.�1/ D 0 so that kerŒƒ.�1/� D C4. Accordingly,
�1 2 �pp.H

.0/
P / is a fourthly degenerate eigenvalue of the Krein Hamiltonian and the

associated eigenspace is spanned by

G
.`/
1;s D Kj`C˛j.r/

ei`#
p
2�

�
ıs;"
ıs;#

�
; s 2 ¹";#º; ` 2 ¹0;�1º;

see (3.7) below, together with (2.7) and (2.6).

Remark 2.18 (Embedded eigenvalues). We do not discuss here the presence of eigen-
values embedded in the continuous spectrum. These would be exactly the exceptional
points forming the set e.‚/C identified next in Proposition 3.3. Such a question has been
investigated for regular magnetic fields in [5, 28].

We now proceed to characterize the (incoming and outgoing) generalized eigen-
functions'.‚;˙/

.s;k/
related to �ac.H

.‚/
P /. The result below also allows to compute explic-

itly the scattering matrix and the differential cross-section but we omit the details for
the sake of brevity.
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Proposition 2.19 (Generalized eigenfunctions of H .‚/
P ). The generalized eigenfunc-

tions of H .‚/
P have the form

'
.‚;˙/

.s;k/
D '

.F;˙/

.s;k/
C G˙.k

2/Œƒ˙.k
2/C‚��1�'

.F;˙/

.s;k/
; (2.29)

where '.F;˙/
.s;k/

are the Friedrichs eigenfunctions (2.25), while ƒ˙.�/ and G˙.�/ are
defined, respectively, as

ƒ˙.�/´ lim
"!0C

ƒ.�˙ i"/; G˙.�/´ lim
"!0C

G .�˙ i"/:

Furthermore, the following asymptotics holds as r !C1:

.'
.‚;˙/

.s;k/
/s0.x/ D

1

2�
eik�xıss0 C

1

r1=2
f
.‚;˙/

.s;s0/;k
e�ikr CO

� 1

r3=2

�
;

where

f
.‚;˙/

.s;s0/;k
´

e˙i
�
4

.2�/3=2
p
k

X
`2Z

.e˙i�j`C˛j � e˙i�j`j/ei`.#�!˙/ıss0

C
i�e˙i

�
4

.2�/3=2
p
k

X
`;`02¹0;�1º

¹Œƒ˙.k
2/C‚��1º

`0;`
s0;se

i.`0#�`!˙/.˙ik/j`C˛jCj`
0C˛j:

Zero-energy resonances are discussed in the next result.

Proposition 2.20 (Zero-energy resonances for H .F/
P and H

.‚/
P ). The Friedrichs

Hamiltonian H .F/
P has no zero-energy resonances. On the other hand, for any ‚ 2

M4;Herm.C/, the HamiltonianH .‚/
P has zero-energy resonances if and only ifƒ.0/C

‚ is singular. More precisely, any zero-energy resonance  0 has the form

 0 D

�
 "
 #

�
;  s.r; #/ D

X
`2¹0;�1º

q.`/s
2j`C˛j�1�.j`C ˛j/

r j`C˛j
ei`#
p
2�
;

with q 2 kerŒƒ.0/C‚�.

Remark 2.21 (Alternative parametrization). Making reference to the quadratic form
parametrization H .ˇ/

P of the Pauli Hamiltonian, using the bijection in Proposition 2.8
and noting that L.1/ D �ƒ.0/ (see (2.9) and (3.8)), we get

ƒ.0/C‚ D ˇ:

According to Proposition 2.20, H .ˇ/
P possesses zero-energy resonances whenever

detˇ D 0.
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2.4. Symmetries and connection with the Dirac operator

We investigate here the symmetries of the Pauli operator and of its self-adjoint real-
izations, as well as the connection with its “square root”, i.e., the Dirac operator.

Let then W WL2.R2IC2/! L2.R2IC2/ be any unitary or anti-unitary operator.
We say that W is a symmetry of the differential operator HP � HP.A/ if

WHP.A/W
�1
D HP.zA/;

for some zA such that, in distributional sense,

Qb´ curl zA D 2�˛ı0:

Let us denote by �3 the third Pauli matrix, namely,

�3 D

�
1 0

0 �1

�
:

In view of the algebraic properties reported in Appendix A for Pauli operators with
smooth vector potentials and since the differential operator of interest here is invariant
under rotations around xD 0, the only admissible symmetries ofHP are described by
the following operators.

(i) Linear transformations:

U.S; T /WL2.R2IC2/! L2.R2IC2/;

.U /.x/ D S.x/ .T �1x/; (2.30)

where (see (A.15))´
T 2 SO.2;R/;

S D e�i�01�i�3�3 ; for some �0 2 C 1.R2/; �3 2 R:
(2.31)

(ii) Anti-linear transformations:

V.S; T /WL2.R2IC2/! L2.R2IC2/;

.V /.x/ D S.x/ �.T �1x/; (2.32)

where (see (A.21))´
T 2 O.2;R/ n SO.2;R/;

S D e�i�01�i�3�3 ; for some �0 2 C 1.R2/; �3 2 R:
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By the above arguments, we deduce that the full symmetry group is

U loc
em .1/ � Uax.1/ � Urot.1/ � CP :

Among the symmetries described above, there is the very well-known U loc
em .1/-gauge

symmetry A 7!ACr�0 typical of the electromagnetic field, which is recovered when
T D 1 and �3 D 0 in (2.31). The two remaining continuous symmetries are given
by the axial gauge and the rotational symmetries of the model. Lastly, the discrete
CP-symmetry is the charge conjugation combined with parity.

We aim at investigating the extensions that are left invariant by the above sym-
metries (2.30) and (2.32). To that purpose, we keep track of the dependence on the
magnetic potential and denote H .ˇ/

P � H
.ˇ/
P .A/. However, since we are interested

in Pauli Hamiltonians with fixed magnetic potential, we only consider global gauge
transformations, that is, we take �0 2 R in (2.30) and (2.32). Notice that this means
that the magnetic potential is unchanged, while we may act on the spinor in a non-
trivial way. This corresponds to determining the matrices ˇ in (2.10) such that

WH
.ˇ/
P .A/W�1 D H

.ˇ/
P .A/;

or, equivalently,

WD.H
.ˇ/
P .A// D D.H

.ˇ/
P .A//;

W.H
.ˇ/
P .A/C �2/W�1 z D .H

.ˇ/
P .A/C �2/z ;

For all z 2WD.H
.ˇ/
P .A//, first for all the transformations W DU of the form (2.30)

and then for those W D V of the form (2.32). Here and in what follows, we always
assume � > 0.

Proposition 2.22 (Symmetries). Let �0 2R. Then, transformations of the form (2.30)
or (2.32) are symmetries of the self-adjoint extensionH .ˇ/

P for any �3 2R, if and only
if ˇ is a diagonal matrix.

Concerning the connection with the Dirac operator, we first have to define it in
presence of an AB magnetic potential, mostly referring to [37]. We start from the
symmetric Dirac operator with domain C1c .R

2 n ¹0ºIC2/, acting as

HD D � � .�ir CA/ ;

where A D A.x/ is the AB potential (1.2). Notice that, on C1c .R
2 n ¹0ºIC2/, there

holds
HP D H

2
D :

We are going to determine the self-adjoint extensions of HD using the von Neumann
approach. To this avail, we first have to take the closure of C1c .R

2 n ¹0ºIC2/ with
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respect to the graph norm  7!
p
k k2 C kHD k2. If  2 C1c .R

2 n ¹0ºIC2/, it is
immediate to see that

kHD k
2
D h jHPj i D Q

.F/
P . /;

so that
D. xHD/ D DŒQ

.F/
P �:

Moreover, the operator xHD has defect indices .1; 1/, and the defect spaces �˙ ´
ker. xH�D � i/ are spanned by the functions

�˙.r; #/ D

�
K1�˛.r/e

�i#

˙K˛.r/

�
: (2.33)

We thus have a one-parameter family of self-adjoint extensions ofHD, parameterized
by the unitary operators mapping �C into ��.

Proposition 2.23 (Self-adjoint extensions of HD). For any ˛ 2 .0; 1/, the symmetric
operator HD admits a one-parameter family of self-adjoint extensions H .
/

D , param-
eterized by 
 2 Œ0; 2�/ and given by

D.H
.
/
D / D ¹ D �C �.�C C e

i
��/j� 2 DŒQ
.F/
P �; � 2 Cº;

H
.
/
D  D HD�C i�.�C � i��/:

Alternatively, as illustrated in [37], the domain of the extensions H .
/
D can be

described in terms of boundary conditions at the origin, as follows: given 
 2 Œ0; 2�/,
one can define the linear functionals c";#�˛ , c";#˛�1 on D.H

.
/
D / as

cs�˛. / D lim
r!0C

r˛h si D
1

2�
lim
r!0C

r˛
2�Z
0

d# s.r; #/; (2.34)

cs˛�1. / D lim
r!0C

r1�˛hei# si D
1

2�
lim
r!0C

r1�˛
2�Z
0

d#ei# s.r; #/;

for s 2 ¹"; #º. Observe that, for a given  2 D.H
.
/
D /, we have a decomposition

 D �C�.�CC e
i
��/ as in Proposition 2.23, so that � vanishes at the origin, thus

having zero boundary value. The asymptotics of Bessel functionsK� at the origin [27]
then easily give

c"�˛. / D 0; c
"

˛�1. / D �.1C e
i
 /2�˛�.1 � ˛/;

c
#

˛�1. / D 0; c#�˛. / D �.1 � e
i
 /2�.1�˛/�.˛/;
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where �.z/ is the Euler gamma function. We can then equivalently describe the
domain of H .
/

D as

D.H
.
/
D / D

°
 2 L2.R2IC2/jHD 2 L

2.R2IC2/;

c
"

˛�1. / D i cot.
=2/
21�2˛�.1 � ˛/

�.˛/
c#�˛. /;

c"�˛. / D 0; c
#

˛�1. / D 0
±
: (2.35)

We have already observed that the symmetric operators HP and HD defined on
C1c .R

2 n ¹0ºIC2/, are such that H 2
D D HP. Now, we investigate whether the same

property holds for the respective self-adjoint extensions. More precisely, we aim at
determining which extension H .ˇ/

P is the square of an extension H .
/
D , if any. It turns

out that the answer to this question is actually trivial, since the square of all self-
adjoint realizations of the Dirac operator coincides with the Friedrichs extension of
HP. As a byproduct of the proof, we are also able to classify all the extensions H .ˇ/

P

such that D.H .ˇ/
P / � D.H

.
/
D / for some 
 2 Œ0; 2�/, i.e., both the first and second

order operators are simultaneously well posed, although in general the latter is not the
square of the former.

Proposition 2.24 (Dirac and Pauli operators). For any 
 2 Œ0; 2�/, there holds

.H
.
/
D /2 D H

.F/
P :

Furthermore, D.H .ˇ/
P / � D.H

.
/
D /, for some 
 2 Œ0; 2�/, if and only if, for all � > 0

large enough,´
ˇ
`;0
s;"
D ˇ

`;�1
s;#
D1;

Œ.L.�/C ˇ/�1�
�1;`
";s
D i cot.
=2/Œ.L.�/C ˇ/�1�0;`

#;s
;

for any ` 2 ¹�1; 0º; s 2 ¹";#º.

In passing, we point out the following result which has its own interest: unlike
Pauli operators with an AB flux, any self-adjoint realization of the Dirac operator
with an AB flux admits a zero-energy resonance.

Proposition 2.25 (Zero-energy resonances for H 

D ). For any 
 2 Œ0; 2�/, the Dirac

Hamiltonian H 

D has a zero-energy resonance  0 given by

 0.r; #/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�
i cot.
=2/2

1�2˛�.1�˛/
�.˛/

e�i#r�.1�˛/

r�˛

�
for 
 ¤ 0;�

e�i#r�.1�˛/

0

�
for 
 D 0:
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Remark 2.26 (Resonances for Dirac and Pauli operators). The above result is con-
sistent with the identity .H .
/

D /2 D H
.F/
P , stated in Proposition 2.24, and with the fact

that H .F/
P has no zero-energy resonance (see Proposition 2.20). Indeed, for any given


 2 Œ0; 2�/, even if the spinor  0 found in Proposition 2.25 does satisfy the dis-
tributional equation HP 0 D .H



D /
2 0 D 0, it is not a resonance for the Friedrichs

extensionH .F/
P . This is due to the singular behavior at the origin, making it impossible

to satisfy the boundary conditions encoded in D.H
.F/
P / (see item i i/ in Proposition 2.1

and Definition 2.1).

3. Proofs

This section is devoted to the proofs of the results previously stated. The first result
we prove is the classification of self-adjoint extensions: we start by addressing the
quadratic forms (2.8) in Section 3.1 and then apply Krein’s theory in Section 3.2 to get
an alternative parametrization of the family, through the expression of the resolvents.
The latter are also going to be used to investigate spectral and scattering properties in
Section 3.3. Finally, in Section 3.4 and Section 3.5 we study the symmetry properties
of the extensions and the relation with the self-adjoint realization of the Dirac operator
with an AB flux, respectively.

3.1. Quadratic forms

By studying the quadratic forms introduced in (2.8), we prove Theorem 2.3 (i) and (ii).
Preliminarily, we observe that (see [27, equation (6.521.3)])

kg
.`/

�
k
2
2 D

�j`C ˛j

2 sin.�˛/
�2j`C˛j�2; (3.1)

and

g
.`/

�
.r; #/ D

h�.j`C ˛j/
21�j`C˛j

1

r j`C˛j
C
�. � j`C ˛j/

21Cj`C˛j
�2j`C˛jr j`C˛j

CO.r2�j`C˛j/
i ei`#
p
2�
; for r ! 0C: (3.2)

For later reference, let us also remark that (3.1) and (2.7) imply

hG
.`/

�;s
j G

.`0/

�;s0
i D

�j`C ˛j

2 sin.�˛/
�2j`C˛j�2ıss0ı``0 : (3.3)

Proof of Theorem 2.3. (i) Let us first prove that the form Q
.ˇ/
P is independent of the

spectral parameter � > 0. To this avail, let �1 ¤ �2 and consider the two alternative
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representations

 D ��1 C
X
s;`

q.`/s G
.`/

�1;s
;  D ��2 C

X
s;`

q.`/s G
.`/

�2;s
:

In particular, noting that G .`/

�1;s
�G

.`/

�2;s
2DŒQ

.F/
P � for any s 2 ¹";#º and ` 2 ¹0;�1º,

we have
��1 D ��2 C

X
s;`

q.`/s .G
.`/

�2;s
�G

.`/

�1;s
/:

Recalling the explicit expression (2.8) of the quadratic form, keeping in mind that
G
.`/

�1;s
;G

.`/

�2;s
are defect functions for the Pauli operator and using the identity (3.3),

via some integrations by parts we infer

Q
.ˇ/
P

h
��1 C

X
s;`

q.`/s G
.`/

�1;s

i
�Q

.ˇ/
P

h
��2 C

X
s;`

q.`/s G
.`/

�2;s

i
D �2<

X
s;`

q.`/s lim
r!0C

Z
@Br .0/

d†r���2 � @r.G
.`/

�2;s
�G

.`/

�1;s
/

�

X
s;`

jq.`/s j
2 lim
r!0C

Z
@Br .0/

d†r.G
.`/

�2;s
�G

.`/

�1;s
/� � @r.G

.`/

�2;s
�G

.`/

�1;s
/

C

X
s;`

jq.`/s j
2

�
�

2 sin.�˛/
.�
2j`C˛j
1 � �

2j`C˛j
2 /

C lim
r!0C

Z
@Br .0/

d†r..G
.`/

�2;s
/� � @rG

.`/

�1;s
� .@rG

.`/

�2;s
/� �G

.`/

�1;s
/

�
:

Using equation (2.4) for ��2 2 DŒQ
.F/
P � and the asymptotic expansion given in (3.2),

by Cauchy–Schwarz inequality, we getˇ̌̌̌ Z
@Br .0/

d†r���2 � @r.G
.`/

�1;s
�G

.`/

�2;s
/

ˇ̌̌̌
6 Cr j`C˛j

q
hj��2j2i ����!

r!0C
0I

ˇ̌̌̌ Z
@Br .0/

d†r.G
.`/

�1;s
�G

.`/

�2;s
/� � @r.G

.`/

�1;s
�G

.`/

�2;s
/

ˇ̌̌̌
6 Cr2j`C˛j ����!

r!0C
0:

On the other hand, using again (3.2), we infer

.G
.`/

�2;s
/� � @rG

.`/

�1;s
� .@rG

.`/

�2;s
/� �G

.`/

�1;s
D
�
2j`C˛j
2 � �

2j`C˛j
1

4 sin.�˛/r
CO.r1�2j`C˛j/;
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which entails

lim
r!0C

Z
@Br .0/

d†r..G
.`/

�2;s
/� � @rG

.`/

�1;s
� .@rG

.`/

�2;s
/� �G

.`/

�1;s
/

D
�

2 sin.�˛/
.�
2j`C˛j
2 � �

2j`C˛j
1 /:

Summing up, we obtain

Q
.ˇ/
P

h
��1 C

X
s;`

q.`/s G
.`/

�1;s

i
�Q

.ˇ/
P

h
��2 C

X
s;`

q.`/s G
.`/

�2;s

i
D 0;

which proves that the form is independent of the spectral parameter.
Next, let us point out that, for � > 0 large enough, L.�/ C ˇ > c�min¹˛;1�˛º1,

with c > 0 and 1 being the identity operator, so that

Q
.ˇ/
P Œ �C �2k k22 > Q

.F/
P Œ���C �

2
k��k

2
2 C c�

min¹˛;1�˛º
jqj2: (3.4)

SinceQ.F/
P Œ��� is non-negative, the above relation ensures thatQ.ˇ/

P is bounded from
below. The closedness of Q.ˇ/

P can be then deduced by standard arguments starting
from (3.4), as in [14, Theorem 2.4] (see also [45]).

(ii) Let us consider the sesquilinear form defined by polarization of (2.8), for

 1 D �1;� C
X
s;`

q
.`/
1;sG

.`/

�;s
and  2 D �2;� C

X
s;`

q
.`/
2;sG

.`/

�;s
;

we get

Q
.ˇ/
P Œ 1; 2� DQ

.F/
P Œ�1;�;�2;�� � �

2
h 1 j  2i C �

2
h�1;� j �2;�i

C q�1 � .L.�/C ˇ/q2:

Fixing q1 D 0, we get Q.ˇ/
P Œ�1;�; 2� D Q

.F/
P Œ�1;�; �2;�� � �

2h�1;�j 2 � �2;�i.
Therefore, in order to have thatQ.ˇ/Œ�1;�; 2�D h�1;�j�i for some �µH

.ˇ/
P  2 2

L2.R2IC2/, we must assume that �2;� 2 D.H
.F/
P / and set

� D H
.F/
P �2;� � �

2
X
s;`

q
.`/
2;sG

.`/

�;s
2 L2.R2IC2/:

Taking this into account and imposing Q.ˇ/
P Œ 1; 2� D h 1 j H

.ˇ/
P  2i for q1 ¤ 0,

via integration by parts, we deduce

q�1 � .L.�/C ˇ/q2 D
X
s;`

.q
.`/
1;s/
�
hG

.`/

�;s
j .H

.F/
P C �2/�2;�i

D

X
s;`

.q
.`/
1;s/
� lim
r!0C

Z
@Br .0/

d†r..G
.`/

�;s
/� � @r�2;� � .@rG

.`/

�;s
/� � �2;�/;
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which, in view of (2.7), (3.2), and of the arbitrariness of q1, ultimately accounts for
the boundary condition in (2.10).

3.2. Krein’s theory

For later convenience, we first point out the following inequalities, valid for any
r; r 0 > 0 and =

p
z > 0 (see [34, equations (10.32.2) and (10.32.8)]):

jIj`C˛j. � i
p
z.r ^ r 0//j 6

�p
jzj

=
p
z

�j`C˛j
Ij`C˛j.=

p
z.r ^ r 0//I (3.5)

jKj`C˛j. � i
p
z.r _ r 0//j 6 Kj`C˛j.=

p
z.r _ r 0//: (3.6)

We also recall the definition of ƒ.z/ in (2.17), and notice that general arguments (see
[38, Lemma 2.2] and following discussion) ensure that it is well defined and also
entail the following identities, for all z; w 2 C nRC:

ƒ.z/ �ƒ.w/ D .w � z/{G .z/G .w/; .ƒ.z//� D ƒ.z�/:

Proof of Theorem 2.6. Recalling once more that H .F/
N is positive semi-definite, the

result follows from [38, Theorem 2.1] and [41, Theorem 3.1 and Corollary 3.2].

Once the form of the resolvent operator for each of the self-adjoint extensions is
known, as given by Krein’s theory, it is natural to investigate the relations between
those extensions and those obtained in (2.10) and (2.11). We start by proving the
following.

Lemma 3.1. For any z 2 C nRC and for all q 2 C4, there holds

G .z/q D
X
s;`

G
.`/

�i
p
z;s
q.`/s : (3.7)

Moreover, for all s; s0 2 ¹";#º, `; `0 2 ¹0;�1º there holds

ƒ
.``0/
ss0 .z/ D

�

2 sin.�˛/
Œ. � i

p
z/2j`C˛j � 1�ıss0ı``0 : (3.8)

Proof. To begin with, from (2.12), (2.13), and (2.14) (see also [34, Sections 10.27 and
10.29 (ii)]), we deduce that

� .`/s R
.F/
S .z�/ 

D lim
r!0C

2j`C˛j�1�.j`C ˛j/

r j`C˛j
.j`C ˛j C r@r/

�

1Z
0

dr 0r 0Ij`C˛j. � i
p
z�.r ^ r 0//Kj`C˛j. � i

p
z�.r _ r 0// .`/s .r 0/
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D 2j`C˛j�1�.j`C ˛j/i
p
z�

� lim
r!0C

r1�j`C˛j
�
Kj`C˛j�1. � i

p
z�r/

rZ
0

dr 0r 0Ij`C˛j. � i
p
z�r 0/ .`/s .r 0/

� Ij`C˛j�1. � i
p
z�r/

1Z
r

dr 0r 0Kj`C˛j. � i
p
z�r 0/ .`/s .r 0/

�
:

Exploiting the asymptotic behavior and normalization properties of the Bessel func-
tions (see, e.g., [34, Section 10.30 (i)] and [27, equations (6.521.3)], together with the
basic inequalities (3.5)–(3.6)), for ` 2 ¹0;�1º and r ! 0C, we infer

r1�j`C˛jKj`C˛j�1. � i
p
z�r/ D

�.1 � j`C ˛j/

2j`C˛j.�i
p
z�/1�j`C˛j

CO.r2�2j`C˛j/;

r1�j`C˛jIj`C˛j�1. � i
p
z�r/ D

21�j`C˛j

�.j`C ˛j/.�i
p
z�/1�j`C˛j

CO.r2/;

and ˇ̌̌̌ rZ
0

dr 0r 0Ij`C˛j. � i
p
z�r 0/ .`/s .r 0/

ˇ̌̌̌

6 k .`/s kL2.RC;rdr/
� rZ
0

dr 0r 0jIj`C˛j. � i
p
z�r 0/j2

�1=2

6
� p
jzj

=
p
z�

�j`C˛j
k .`/s kL2.RC;rdr/

� rZ
0

dr 0r 0I 2
j`C˛j.=

p
z�.r ^ r 0//

�1=2
6 Ck k2r

1Cj`C˛j
����!
r!0C

0;ˇ̌̌̌ C1Z
r

dr 0r 0Kj`C˛j. � i
p
z�r 0/ .`/s .r 0/

ˇ̌̌̌

6 k .`/s kL2.RC;rdr/

� C1Z
r

dr 0r 0jKj`C˛j. � i
p
z�r 0/j2

�1=2

6 k .`/s kL2.RC;rdr/

� C1Z
r

dr 0r 0K2
j`C˛j.=

p
z�r 0/

�1=2

6 C

� C1Z
0

dr 0r 0jKj`C˛j.=
p
z�r 0/j2

�1=2
k k2 < C1:
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In view of the above considerations, by dominated convergence, we obtain

� .`/s R
.F/
S .z�/ D

1Z
0

dr 0r 0
2�Z
0

d# 0. � i
p
z�/j`C˛jKj`C˛j. � i

p
z�r 0/ s.r

0; # 0/
e�i`#

0

p
2�

:

The identity (3.7) then follows by simple duality arguments, recalling the defini-
tion (2.16) of G .z/ and the explicit expression for G .`/

�;s
given by (2.6) and (2.7).

Notice also that .K�.w//� D K�.w�/ for all � > 0, w 2 C [34, equation (10.34.7)]
and . � i

p
z�/� D �i

p
z.

On the other side, exploiting again basic features of the Bessel functions, it can be
checked that G .`/

1;s �G
.`/

�i
p
z;s
2 D.H

.F/
P /. Then, a direct computation yields

Œƒ.z/q�.`/s D
X
s0;`0

q
.`0/
s0 �

.`/
s .G

.`0/
1;s0 �G

.`0/

�i
p
z;s0
/

D

X
s0;`0

q
.`0/
s0 2

j`C˛j�1�.j`C ˛j/ıss0ı``0

� lim
r!0C

1

r j`C˛j
.j`C ˛j C r@r/ŒG

.`0/
1;s0 �G

.`0/

�i
p
z;s0
�.`/s

D
�

2 sin.�j`C ˛j/
Œ. � i

p
z/2j`C˛j � 1�q.`/s ;

which ultimately accounts for (3.8).

Proof of Proposition 2.8. Fixing z D ��2, with � > 0, a direct comparison makes
evident that the self-adjoint extensionsH .ˇ/

P andH .‚/
P do indeed coincide if and only

if �� D '��2 2 D.H
.F/
P / and, accordingly,

ŒL.�/C ˇ�q D Œƒ.��2/C‚�q; for all q 2 C4: (3.9)

On account of the explicit expressions for L.�/ and ƒ.��2/ reported respectively
in (2.9) and (3.8), it appears that the above condition (3.9) is actually equivalent
to (2.20).

Finally, we can complete the proof of the classification of self-adjoint extensions.

Proof of Theorem 2.3 (iii). The exhaustiveness of Krein’s classification, combined
with the one-to-one correspondence provided by Proposition 2.8 yield the result.

3.3. Spectral and scattering properties

Let us mention that many of the results on scattering described in the sequel rely on
the Limiting Absorption Principle (LAP) for resolvent operators. In this connection,
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we refer to the weighted spaces

L2u.R
2
IC2/´ L2.R2; .1C jxj2/u=2dx/˝C2;

with u 2 R, and to the associated Banach spaces of bounded operators

B.u; u0/´ B.L2u.R
2
IC2/IL2u0.R

2
IC2//:

Any resolvent R.‚/P .z/ is said to enjoy LAP if the limits

R
.‚/
P;˙.�/´ lim

"!0C
R
.‚/
P .�˙ i"/

exist in B.u; �u/ for some u > 0 and for all � 2 �ac.H
.‚/
P / n eC.H

.‚/
P /, where

eC.H
.‚/
P / is the (possibly empty) discrete set of eigenvalues embedded in the abso-

lutely continuous spectrum.
We start by considering the Friedrichs Hamiltonian.

Proposition 3.2 (LAP for H .F/
P ). For any � 2 RC, the limits

R
.F/
P;˙.�/´ lim

"!0C
R
.F/
P .�˙ i"/

exist in B.u;�u/ for any u > 1 and the convergence is locally uniform.

Proof. The thesis is a straightforward consequence of [29, Proposition 7.3] and of the
diagonal structure of the Friedrichs Hamiltonian, see (2.5).

The action of R.F/P;˙.�/ can be deduced from the explicit representation (2.13) for
the corresponding Schrödinger resolvent operator and reads, for s 2 ¹";#º,

.R
.F/
P;˙.�/ /s.r; #/

D

1Z
0

dr 0r 0
2�Z
0

d# 0
X
`2Z

Ij`C˛j.�i
p
�.r ^ r 0//

�Kj`C˛j.�i
p
�.r _ r 0// s.r

0; # 0/
ei`.#�#

0/

2�

D
i

4

1Z
0

dr 0r 0
2�Z
0

d# 0
X
`2Z

Jj`C˛j.˙
p
�.r ^ r 0//H

.1/

j`C˛j
.˙
p
�.r _ r 0//

�  s.r
0; # 0/ei`.#�#

0/:

In the second line we have used the connection formulas reported in [34, equations
(10.27.6) and (10.27.8)].
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Proof of Theorem 2.11. Also in this case, the thesis follows from classical results on
the Schrödinger Hamiltonian, see [43] and [29, Proposition 7.4]. The absence of sin-
gular continuous spectrum is ensured by the LAP established in Proposition 3.2 for
R
.F/
P .z/ (see, e.g., [2, Theorem 6.1] and [33, Corollary 4.7]). The stated properties of

the scattering operator ultimately follow by standard arguments.

Proof of Corollary 2.12. Since the Friedrichs quadratic form is non-negative (see
equation (2.3)), it appears that �.H .F/

P / � RC. We already noticed that Proposi-
tion 3.2 ensures the absence of singular continuous spectrum. Moreover, the existence
and completeness of the wave operators established in Theorem 2.11 grants that
�ac.H

.F/
P / D �ac.��P/ D RC. Finally, it can be checked by direct inspection that

H
.F/
P has no eigenvalue (see also [15, Theorem 3.3]).

We address the explicit form of the generalized eigenfunction of the Friedrichs
Hamiltonian.

Proof of Theorem 2.13. By decomposition in angular harmonics and some explicit
computations, one obtains formula (2.25) (see also [4, 43, 44]). Notice that, despite
solving the radial eigenvalue problem, the Bessel functions Yj`C˛j do not appear
in (2.25) since they do not satisfy the proper local behavior close to x D 0. Let us
further remark that the coefficients in the expansion (2.25) have been fixed so as
to fulfill the radiation conditions (2.21). Indeed, using the known asymptotic expan-
sion of the Bessel functions [34, equation (10.7.8)], it can be checked that there exist
f
.F;˙/

k 2 L2.S1IC/ such that

'
.F;˙/
.s;k/

.x/ D
heik�x
2�
C f

.F;˙/
k

e�i jkjjxj

jxj1=2
CO

� 1

jxj3=2

�i�ıs;"
ıs;#

�
; for jxj ! C1.

(3.10)
More precisely, one has

f
.F;˙/

k .#/ D
e˙i

�
4

.2�/3=2
p
k

X
`2Z

.e˙i�j`C˛j � e˙i�j`j/ei`.#�!˙/: (3.11)

Incidentally, we notice that the above expansion shows that '.F;˙/
.s;k/

2L2�u.R
2IC2/ for

any u > 2.
Keeping in mind thatH .F/

P has purely absolutely continuous spectrum (see Corol-
lary 2.12), we define the modified Fourier transforms

F
.F/
˙
WL2.R2IC2/! L2.R2IC2/;

.F
.F/
˙
 /s.k/´

X
s02¹";#º

Z
R2

dx.'
.F;˙/
.s;k/

.x//s0 s0.x/: (3.12)
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Let us now return to the wave operators �.F/
˙

, whose existence and asymptotic com-
pleteness have been established in Theorem 2.11. These are known to fulfill the
identity (see, e.g., [33, Theorem 5.5])

�
.F/
˙
D .F

.F/
˙
/�F:

Accordingly, the unitary scattering operator is given by

S.F/ D F�F
.F/
C .F

.F/
� /
�F: (3.13)

Recalling the definition (2.22) of the scattering matrix S.F/.�/ and making reference
to (2.25), (3.12), and (3.13), we get (2.26) by distributional computations (see [43,
equation (4.8)] and [29, p. 315]). In particular, let us mention that an elementary
calculation yieldsX

s00

Z
R2

dx.'
.F;C/
.s;k/

/�s00.x/.'
.F;�/
.s0;k0/

/s00.x/

D
1

2�

X
`2Z

ei`.!�!
0C�/�i�j`C˛j

1Z
0

drrJj`C˛j.kr/Jj`C˛j.k0r/ıss0 :

By means of [27, equation (6.541)] and [34, equations (10.40.1) and (10.40.2)], it can
be checked that in the sense of distributions there holds

1Z
0

drrJj`C˛j.kr/Jj`C˛j.k0r/

D lim
�!C1

1Z
0

dr
�2r

�2 C r2
Jj`C˛j.kr/Jj`C˛j.k

0r/

D lim
�!C1

�2Ij`C˛j.�.k ^ k
0//Kj`C˛j.�.k _ k

0//

D
1

2k
ı.k0 � k/ D ı..k0/2 � k2/:

As a consequence, we obtainX
s00

Z
R2

dx.'
.F;C/
.s;k/

.x//�s00.'
.F;�/
.s0;k0/

.x//s00

D
1

2�

X
`2Z

ei`.!�!
0/Ci�.`�j`C˛j/ı..k0/2 � k2/ıss0 ;

which is a key ingredient for the derivation of the first equality in (2.26). For the
second equality we refer to [29, equation (4.8)]. Finally, on account of (2.23), (2.24),
and (2.26) one readily infers (2.27) and (2.28).
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We now deal with the other self-adjoint realizations, starting with the following
analogue of Proposition 3.2.

Proposition 3.3 (LAP forH .‚/
P ). Let‚ 2M4;Herm.C/. Then, there exists a (possibly

empty) discrete set e.‚/C , with #Œe.‚/C � 6 4, such that for any � 2 RC n e.‚/C the limits

R
.‚/
P;˙.�/´ lim

"!0C
R
.‚/
P .�˙ i"/

exist in B.u;�u/ for any u > 1 and the convergence is locally uniform. Moreover,
there holds

R
.‚/
P;˙.�/ D R

.F/
P;˙.�/C G˙.�/Œƒ˙.�/C‚�

�1 {G˙.�/;

where

ƒ˙.�/´ lim
"!0C

ƒ.�˙ i"/ 2 M4;Herm.C/;

G˙.�/´ lim
"!0C

G .�˙ i"/ 2 B.C4
IL2�u.R

2
IC2//I

{G˙.�/´ lim
"!0C

�R
.F/
P .�� i"/ 2 B.L2u.R

2
IC2/IC4/: (3.14)

Proof. Let us refer to the Krein formula (2.18) for the resolvent operatorR.‚/P .z/. We
firstly recall that the Friedrichs resolvent R.F/P .z/ enjoys LAP in B.u;�u/ for any
u > 1, see Proposition 3.2. On the other hand, using the explicit expression (3.8) for
ƒ.z/, we obtain

.ƒ˙.�//
.``0/
ss0 D lim

"!0C
ƒ
.``0/
ss0 .�˙ i"/

D
�

2 sin.�j`C ˛j/
Œe�i�j`C˛j�j`C˛j � 1�ıss0ı``0 : (3.15)

From here we deduce that, depending on the specific choice of ‚, the matrices
ƒ˙.�/C‚ 2M4;Herm.C/ can indeed become singular for suitable values of � 2RC.
We indicate with eC.H

.‚/
P / the collection of such exceptional points and notice that

its cardinality is at most 4. It is evident that the convergence in (3.15) is uniform
on any compact subset of RC n eC.H

.‚/
P /, so the same can be said for the inverses

Œƒ˙.�/C‚�
�1.

To say more, using (2.6), (2.7), and (3.7), together with the Bessel connection
formula [34, equation (10.27.8)], for any q 2 C4, we infer

.G˙.�/q/s.r; #/ D lim
"!0C

.G .�˙ i"/q/s.r; #/

D
i�

2

X
`

q.`/s .�
p
�/j`C˛jH

.1/

j`C˛j
.�
p
�r/

ei`#
p
2�
: (3.16)
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Taking into account the regularity of the Hankel function H .1/
� and its asymptotic

expansions for small and large arguments [34, equations (10.7.7) and (10.17.5)], by
an elementary change of variable it can be checked that

kG˙.�/qk
2

L2�u.R2IC2/
6 C�j`C˛j�1

X
`2¹0;�1º

� 1Z
0

d�
1

�2j`C˛j�1
C �u=2

1Z
1

d�
1

�u

�
jqj2:

The above estimate shows that G˙.�/, with �> 0, are bounded operators from C4 into
L2�u.R

2IC2/ for any u > 1. On top of that, using a known integral representation for
the Bessel functions [27, equation (8.421.9)] it can be checked that the limit in (3.16)
is attained uniformly on any compact subset of RC. Since {G .z/ is the adjoint of G .z�/,
see (2.15) and (2.16), by elementary duality considerations the above arguments also
prove that the limits {G˙.�/ defined in (3.14) identify a pair of bounded operators from
.L2�u.R

2IC2//0 ' L2u.R
2IC2/ to .C4/0 ' C4 for any u > 1.

Proof of Theorem 2.15. Let us first remark that the resolvent operator associated to
H
.‚/
P is a finite rank perturbation of the resolvent related to the Friedrichs Hamil-

tonian H .F/
P . This suffices to infer that the wave operators �˙.H

.‚/
P ; H

.F/
P / exist

and are complete [42, Theorem XI.9]. On the other hand, recall that existence and
completeness of the wave operators �˙.H

.F/
P ;��P/ has already been established

in Theorem 2.11. Then, existence and completeness of �.‚/
˙

follows readily from
the chain rule for wave operators [42, Chapter XI, p. 18, Proposition 2]. Finally, we
deduce asymptotic completeness noting that the LAP established in Proposition 3.3
for R.‚/P .z/ ensures the absence of singular continuous spectrum.

Proof of Theorem 2.16. On one side, the existence and asymptotic completeness of
the wave operators �˙.H

.‚/
P ;��P/ ensure that �ac.H

.‚/
P / D �ac.��P/ D RC and

the absence of singular continuous spectrum. On the other side, from [40, Theorem
3.4] it follows that the map q 7! G .��/q is a bijection from kerŒƒ.��/ C ‚� to
ker.H .‚/

P C �/, which proves the part of the thesis regarding �pp.H
.‚/
P /.

Proof of Proposition 2.19. We deduce the expression in (2.29) by a straightforward
adaptation of [33, Theorem 5.1]. Using (2.25) and the Bessel function asymptotics
[34, equation (10.7.3)] we get that

�
.`/
s0 '

.F;˙/

.s;k/
D 2j`C˛j�1�.j`C ˛j/ lim

r!0C

1

r j`C˛j
.j`C ˛j C r@r/.'

.F;˙/

.s;k/
/
.`/
s0

D ıss0
2j`C˛j�1
p
2�

�.j`C ˛j/e˙i
�
2 j`C˛j�i`!˙

� lim
r!0C

1

r j`C˛j
.j`C ˛j C r@r/Jj`C˛j.kr/ D .˙ik/

j`C˛j e
�i`!˙

p
2�

ıss0 :
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Recalling the explicit expressions (3.15) and (3.16), we obtain

.'
.‚;˙/

.s;k/
/s0.r; #/ D

1

2�

X
`2Z

ei`.#�!˙/˙i
�
2 j`C˛jJj`C˛j.kr/ıss0

C
i

4

X
`;`02¹0;�1º

¹Œƒ˙.k
2/C‚��1º

`0;`
s0;se

i.`0#�`!˙/

� .˙ik/j`C˛j.�k/j`
0C˛jH

.1/

j`0C˛j
.�kr/:

To say more, in view of (3.10) and (3.11), by means of [34, equation (10.17.5)] we
deduce the following, for jxj ! C1,

f
.‚;˙/

.s;s0/;k
D

e˙i
�
4

.2�/3=2
p
k

X
`2Z

.e˙i�j`C˛j � e˙i�j`j/ei`.#�!˙/ıss0

C
i�e˙i

�
4

.2�/3=2
p
k

X
`;`02¹0;�1º

¹Œƒ˙.k
2/C‚��1º

`0;`
s0;se

i.`0#�`!˙/.˙ik/j`C˛jCj`
0C˛j:

This confirms that '.‚;C/
.s;k/

and '.‚;�/
.s;k/

fulfill, respectively, the incoming and outgoing
Sommerfeld radiation conditions.

Proof of Proposition 2.20. By decomposition in angular harmonics and an explicit
calculation, it can be checked that the only distributional solutions of the zero-energy
equation HP D 0 are of the form

 s.r; #/ D
X
`2Z

ei`#
p
2�
Œc.`/s r�j`C˛j C d .`/s r j`C˛j�;

with suitable coefficients c; d 2 C4 and for s 2 ¹"; #º. The condition of uniform
boundedness at infinity forces us to fix d D 0. On one hand, the local Friedrichs
conditions r�0; Aj�0 2 L2loc.R

2;C2/ demand that c D 0. On the other hand, for
a general extension, to exhibit the proper singular behavior at x D 0 encoded in
D.H

.‚/
P /, the above solutions must be locally of the form  D �0 C G .0/q with

��0 D Œƒ.0/C‚�q, see (2.19). Given that there is no regular part, namely �0 D 0,
this requirement can be fulfilled only if

c.`/s D

8<:
�.j`C ˛j/

21�j`C˛j
q.`/s for ` 2 ¹0;�1º,

0 for ` 2 Z n ¹0;�1º,
for some q 2 kerŒƒ.0/C‚�,

which yields the thesis.
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3.4. Symmetries

Proof of Proposition 2.22. Consider the transformations (2.30), as the case (2.32) is
completely analogous. Then,

.U /.x/ D e�i�0�i�3�3 .T �1x/; T 2 SO.2;R/; �0; �3 2 R:

Concerning the Friedrichs realization, the computations in Appendix A show that

UH
.F/
P .A/U�1 D H

.F/
P .A/: (3.17)

We now consider a generic self-adjoint extensionH .ˇ/
P , ˇ 2M4;Herm.C/, belong-

ing to the family characterized in Theorem 2.3. Notice that, in order to prove the
invariance of the domain, it suffices to prove the inclusion

UD.H
.ˇ/
P .A// � D.H

.ˇ/
P .A//:

Given  2 D.H
.ˇ/
P .A//, such an element decomposes as in (2.10) and then

U D U�� C
X
s;`

q.`/sUG
.`/

�;s
:

Thus, one needs to rewrite the last terms in the above formula as in (2.10), defining a
new charge zq, and then proceed to check the boundary conditions. To this aim, since
the multiplicative factor e�i�0 drops in the latter, in order to simplify the computations
we can take �0 D 0, so that we actually consider

.U /.x/ D e�i�3�3 .T �1x/:

Writing the rotation matrix T as

T D

�
cos & � sin &
sin & cos &

�
; & 2 Œ0; 2�/;

and using (2.6) and (2.7) one finds

UG
.`/

�;"
D e�i.�3C&`/G

.`/

�;"
; UG

.`/

�;#
D ei.�3�&`/G

.`/

�;#
:

Then, z ´ U can be rewritten as

z D z�� C
X
s;`

Qq.`/s G
.`/

�;s
;

with z��´ U�� and the new charges

Qq
.`/

"
D e�i.�3C&`/q

.`/

"
; Qq

.`/

#
D ei.�3�&`/q

.`/

#
:
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Notice that
z��.x/ D .U��/.x/ D

�
e�i�3��;".T

�1x/

ei�3��;#.T
�1x/

�
:

Simple calculations give the following results for the Fourier coefficients involved

Q�
.`/

�;"
D e�i.�3C&`/�

.`/

�;"
; Q�

.`/

�;#
D ei.�3�&`/�

.`/

�;#
:

Let us now examine the boundary conditions in (2.10). After some long but straight-
forward algebraic computations one sees that the following conditions must be ful-
filled:

.L.�/C ˇ/
.``0/

""
.ei&.`�`

0/
� 1/ D 0;

.L.�/C ˇ/
.``0/

"#
.e2i�3Ci&.`�`

0/
� 1/ D 0;

.L.�/C ˇ/
.``0/

#"
.e�2i�3Ci&.`�`

0/
� 1/ D 0;

.L.�/C ˇ/
.``0/

##
.ei&.`�`

0/
� 1/ D 0:

Notice that the second and third equations are indeed equivalent, since L.�/; ˇ are
Hermitian. Therefore, for generic values of �3; & , since L.�/ is diagonal, ˇ must be a
diagonal matrix too.

Concerning the action of the operator, thanks to (3.17) there holds

U.H
.ˇ/
P C �2/U�1.U / D U.H

.ˇ/
P C �2/ D U.H

.F/
P C �2/ 

D U.H
.F/
P C �2/U�1.U / D .H

.F/
P C �2/.U /

D .H
.ˇ/
P C �2/.U /:

3.5. Comparison with the Dirac operator

Proof of Proposition 2.24. Consider any of the self-adjoint extensionsH .ˇ/
P , and take

 2 D.H
.ˇ/
P / as in (2.10). We first prove that if we additionally require that  2

D.H
.
/
D /2/, for some 
 2 Œ0; 2�/, then we must have  2 D.H

.F/
P /. In other words,

our aim is to prove that

D.H
.ˇ/
P / \D..H

.
/
D /2/ � D.H

.F/
P /:

By inspection of the proof below, we actually prove a stronger result (see (3.20)
and (3.23)), that is,

D.H
.F/
P / � D..H

.
/
D /2/; for any 
 2 Œ0; 2�/. (3.18)

To this aim, we need to show that q D 0, referring to the decomposition in (2.10).
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This will be achieved by imposing

 2 D.H
.
/
D /; H

.
/
D  2 D.H

.
/
D /: (3.19)

We fix the first condition exploiting the characterization of the domain through bound-
ary conditions at the origin, as in (2.35). Recalling (2.6) and (2.7), we observe that,
since �� 2 DŒQ

.F/
P �, the spinor vanishes at the origin, so that, for s 2 ¹";#º,

cs�˛.��/ D 0; cs˛�1.��/ D 0: (3.20)

Then, thanks to the asymptotics (3.2), it is not hard to see that

0 D c"�˛. / D 2
�.1�˛/�.˛/q

.0/

"
H) q

.0/

"
D 0:

Similarly, there holds

0 D c
#

˛�1. / D 2
�˛�.1 � ˛/q

.�1/

#
H) q

.�1/

#
D 0:

Moreover, imposing

c
"

˛�1. / D i cot.
=2/
21�2˛�.1 � ˛/

�.˛/
c#�˛. /;

and using again (3.2), we get

q
.�1/

"
D i cot.
=2/q.0/

#
: (3.21)

We now need to impose the second condition in (3.19), namelyH .
/
D  2D.H

.
/
D /.

We preliminarily observe that �� can be rewritten as

�� D R
.F/.��2/f ; for some f D

�
f "

f #

�
2 L2.R2IC2/, (3.22)

where R.F/.��2/ is the resolvent of the Friedrichs extension H .F/
P . Building on this

fact and exploiting (2.13), we want to prove that we also have

cs�˛.HD��/ D 0; cs˛�1.HD��/ D 0; (3.23)

and thus we only need to impose boundary conditions on the singular part of the wave
function, in order to find further restrictions on the charges q.�1/

"
; q
.0/

#
. Recall that, in

polar coordinates, HD reads

HD D

�
0 e�i#.�i@r �

@#Ci˛
r

/

ei#.�i@r C
@#Ci˛
r

/ 0

�
:
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Moreover, by (2.13) and (3.22), we get

.HD��/" D
X
k2Z

h�
�i@r � i

.k C ˛/

r

�
KjkC˛j.�r/

i
�

rZ
0

dr 0r 0IjkC˛j.�r 0/f k# .r
0/
ei.k�1/#
p
2�

C

X
k2Z

h�
�i@r � i

.k C ˛/

r

�
IjkC˛j.�r/

i
�

C1Z
r

dr 0r 0KjkC˛j.�r 0/f k# .r
0/
ei.k�1/#
p
2�

; (3.24)

and

.HD��/# D
X
k2Z

h�
�i@r C i

.k C ˛/

r

�
KjkC˛j.�r/

i
�

rZ
0

dr 0r 0IjkC˛j.�r 0/f k" .r
0/
ei.kC1/#
p
2�

C

X
k2Z

h�
�i@r C i

.k C ˛/

r

�
IjkC˛j.�r/

i
�

C1Z
r

dr 0r 0KjkC˛j.�r 0/f k" .r
0/
ei.kC1/#
p
2�

: (3.25)

Notice that in the above formula boundary terms coming from the r-dependent
extremes of integration cancel out. Recall that the verification of the boundary condi-
tions require the evaluation of the linear functionals (2.34). Let us prove that

c"�˛.HD��/ D 0; (3.26)

the other conditions in (3.23) being treated similarly. Taking the angular average and
using basic properties of Bessel functions, we find

h.HD��/"i.r/ D i�.K˛.r/

rZ
0

dr 0r 0I1C˛.�r 0/f 1# .r
0/

� I˛.r/

C1Z
r

dr 0r 0K1C˛.�r 0/f 1# .r
0//:
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We are now led to analyze the asymptotic behavior of the last term on the right-hand
side of the above formula, as r ! 0C. To this aim, recall the asymptotics of Bessel
functions I�.t/ � t� and K�.t/ � t�� as t ! 0C. Then, there holdsˇ̌̌̌ rZ

0

dr 0r 0I1C˛.�r 0/f 1# .r
0/

ˇ̌̌̌
6 kf#k2

� rZ
0

dr 0r 0.I1C˛.�r 0//2
�1=2

6 Cr2C˛;

where C > 0 is a constant independent of r . Moreover, we getˇ̌̌̌ C1Z
r

dr 0r 0K1C˛.�r 0/f 1# .r
0/

ˇ̌̌̌
6 kf#k2

� C1Z
r

dr 0r 0.K1C˛.�r 0//2
�1=2

6 Cr�˛:

Combining the above observations, we find

h.HD��/"i.r/ D O.1/; as r ! 0C;

and then
c"�˛.HD��/ D lim

r!0C
r˛h.HD��/"i.r/ D 0:

As already remarked, the other conditions in (3.23) follow by similar arguments.
Now, observe that

HD D HD�� C q
.�1/

"
HDG

.�1/

�;"
C q

.0/

#
HDG

.0/

�;#

D HD�� C i�.q
.�1/

"
G
.0/

�;#
C q

.0/

#
G
.�1/

�;"
/;

as we have

G
.0/

�;"
.r/ D

�1�˛

2
p
2�
.�C.�r/C ��.�r//; G

.0/

�;#
.r/ D

�1�˛

2
p
2�
.�C.�r/ � ��.�r//;

with the �˙ as in (2.33). By the previous remarks, checking that H .
/
D  2 D.H

.
/
D /

leads to
c"�˛.H

.
/
D  / D 0; c

#

˛�1.H
.
/
D  / D 0;

c
"

˛�1. / D i cot.
=2/
21�2˛�.1 � ˛/

�.˛/
c#�˛. / H) q

.�1/

"
D �i tan.
=2/q.0/

#
:

Combining the above conditions with (3.21), we get

q
.�1/

"
D q

.0/

#
D 0:

Thus, we conclude that  D �� 2 D.H
.F/
P /.
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On the other hand, as already remarked, the above arguments actually yields the
inclusion (3.18), so that in order to conclude proof we only need to show that

.H
.
/
D /2j

D.H
.F/
P /
D H

.F/
P ;

and thus since H .F/
P and .H .
/

D /2 are both self-adjoint, they must coincide. To this
aim, it is useful to recall the following properties of Bessel functions [27, equation
(8.486)] � d

dr
˙
�

r

�
I�.r/ D I��1.r/;

� d
dr
˙
�

r

�
K�.r/ D �K��1.r/:

Indeed, using those properties in (3.24) and (3.25), and arguing as in the proof of (3.26)
it is not hard to see that, given � 2D.H .F/

P /,HD�DO.1/, as r! 0C, i.e., it is regular
at the origin. Then we conclude that

.H
.
/
D /2� D H 2

D� D HP� D H
.F/
P �;

where we have used the fact that, as differential operators, H 2
D D HP, and the claim

is proved.

Proof of Proposition 2.25. Proceeding as in the proof of Proposition 2.20, it can be
checked that the only distributional solutions of the zero-energy equation HD D 0

are of the form

 .r; #/ D

� P
`2Z d

.`/

"

ei`#p
2�
r`C˛P

`2Z d
.`/

#

ei`#p
2�
r�.`C˛/

�
;

with suitable coefficients d 2 C4. The condition of uniform boundedness at infinity
forces us to fix d .`/

"
D 0 for ` > 0 and d .`/

#
D 0 for ` 6 �1. On the other hand, the

condition 2 L2loc.R
2/ entails d .`/

"
D 0 for ` 6 �2 and d .`/

#
D 0 for ` > 1. Summing

up, the only admissible zero-energy resonances have the form

 .r; #/ D

�d .�1/
"

e�i#p
2�

1
r1�˛

d
.0/

#

1p
2�

1
r˛

�
:

Then, it can be easily checked that the boundary conditions associated to D.H
.
/
D /,

see (2.35), are verified if and only if

d
.�1/

"
D i cot.
=2/

21�2˛�.1 � ˛/

�.˛/
d
.0/

#
;

which concludes the proof.
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A. Symmetries of 2D Pauli and Dirac operators

We consider here generic Pauli and Dirac operators of the form

HP.A/´ .� � .�ir CA//2 D �j�`.�i@j C Aj /.�i@` C A`/; (A.1)

HD.A/´ � � .�ir CA/ D �j .�i@j C Aj /; (A.2)

where A D .A1; A2/ is any vector-valued distribution in R2 and we are using Ein-
stein’s convention to sum over the repeated indices j; ` 2 ¹1; 2º. Let us stress that
here we are uniquely concerned with the algebraic features of HP.A/ and HD.A/.
Accordingly, we neglect all domain and self-adjointness issues.

We henceforth proceed to classify the transformations which leave the structure
ofHP.A/ andHD.A/ invariant. More precisely, we consider (anti-)linear transforma-
tions involving both spin and coordinate degrees of freedom of the form

U.S; T;x0/WL
2.R2IC2/! L2.R2IC2/;

.U /.x/ D S.x/ .T �1x � x0/I (A.3)

V.S; T;x0/WL
2.R2IC2/! L2.R2IC2/;

.V /.x/ D S.x/ �.T �1x � x0/: (A.4)

Here S.x/WR2 ! GL.2;C/ is any smooth section of the trivial fiber bundle R2 �

GL.2;C/, T 2 GL.2;R/ is any constant matrix, and x0 2 R2 is any fixed vector. In
the forthcoming Sections A.1 and A.2 we identify all (anti-)unitary operators W of the
form (A.3) or (A.4) fulfilling the following identities, for some suitable vector-valued
distribution zA D . zA1; zA2/:

WHP.A/W
�1
D HP.zA/; (A.5)

WHD.A/W
�1
D HD.zA/: (A.6)

Note that local coordinates transformations always modify the structure of the dif-
ferential operators HP.A/ and HD.A/. In fact, non-affine transformations always
introduce non-trivial curvature contributions. For this reason we restrict the atten-
tion to transformations which are affine in the space coordinates and local in the spin
degree of freedom.

Remark A.1 (Symmetries). We say that a (anti-)unitary operator W is a (physical)
symmetry of the differential operators HP.A/ and HD.A/ if the associated magnetic
field b´ curlA D @1A2 � @2A1 remains invariant, namely,

Qb D curlzA D curlA D b:
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A.1. Symmetries of the Pauli Hamiltonian

Let us first focus on the Pauli operator (A.1) and classify all transformations of the
form (A.3) and (A.4) fulfilling (A.5).

A.1.1. Linear transformations. For any map U of the form (A.3), by a direct cal-
culation we obtain

UHP.A/U
�1
D S.x/�j�`S

�1.x/ThjTm`

� .�i@h � iS.x/@hS
�1.x/C T �1kh Ak.T

�1x � x0//

� .�i@m � iS.x/@mS
�1.x/C T �1mnAm.T

�1x � x0//:

This shows that UHP.A/U
�1 is itself a Pauli operator of the form (A.1), if and only

if the following two conditions are simultaneously fulfilled, for some suitable vector
potential zA:

S.x/�j�`S
�1.x/ThjTm` D �h�mI (A.7)

T �1kh Ak.T
�1x � x0/1 � iS.x/@hS

�1.x/ D zAh.x/1: (A.8)

Using the basic algebraic identities ¹�h; �mº D 2ıhm1 and Œ�h; �m� D 2i"hmr�r ,
from (A.7) we deduce ThjTmj D ıhm and S.x/�PS

�1.x/"j`pThjTm` D "hmr�r .
These are equivalent to

T T t D 1; (A.9)

S.x/�3S
�1.x/ D . detT �1/�3: (A.10)

Recalling that we are assuming T 2 GL.2;R/, (A.9) clearly entails T 2 O.2;R/. As
a consequence, we see that U is unitary in L2.R2IC2/ only if S D S.x/ is a smooth
section of R2 � U.2;C/. Notice that by a trivial application of Stone’s theorem we
have U.2;C/ D ¹e�i.�01C�1�1C�2�2C�3�3/ j �0; �1; �2; �3 2 Rº. Keeping in mind
that det T �1 D det T D ˙1 and using elementary algebraic properties of the Pauli
matrices, we then infer that (A.10) can be fulfilled only if either of the following two
alternatives occurs:

T 2 SO.2;R/; S D e�i�01�i�3�3 ; (A.11)

for some �0; �3 2 C1.R2/, or

T 2 O.2;R/ n SO.2;R/; S D e�i�01�i�1�1�i�2�2 ; (A.12)

for some �0; �1; �2 2 C1.R2/, such thatq
�21.x/C �

2
2.x/ D

�

2
;
3�

2
;
5�

2
; : : : : (A.13)
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On the other hand, matching the condition (A.8) requires that

S.x/@hS
�1.x/ D sh.x/1; (A.14)

for some scalar function sh 2 C1.R2/. Taking (A.11) and (A.12) into account, in can
be checked that (A.14) can be fulfilled only if either �3 or �1; �2 are constant, respec-
tively. Summing up, the only transformations U of the form (A.3) satisfying (A.5),
for some suitable zA, correspond to

T 2 SO.2;R/; S D e�i�01�i�3�3 ; (A.15)

for some �0 2 C1.R2/; �3 2 R, or

T 2 O.2;R/ n SO.2;R/; S D e�i�01�i�1�1�i�2�2 ; (A.16)

for some �0 2 C1.R2/ and �1; �2 2 R satisfying (A.13).

Remark A.2 (Special symmetries). In both cases (A.15) and (A.16), identity (A.8)
reduces to

zA.x/ D TA.T �1x � x0/Cr�0.x/;

which implies, in turn,

Qb.x/ D .detT /b.T �1x � x0/:

This shows that, in general, U is a symmetry of HP.A/ only if T D 1, x0 D 0 and,
in compliance with (A.15), S D e�i�01�i�3�3 for some �0 2 C1.R2/, �3 2 R. Of
course, whenever the magnetic field exhibits specific features, the class of symmetries
of the model could comprise additional transformations. For instance, it appears that
a uniform magnetic field b D const. is left invariant by any transformation U of the
form (A.3) with T , S as in (A.15) and x0 2 R2.

Example A.3. For S D e�i�0 with �0 2 C1.R2/, T D 1 and x0 D 0, U is the
standard (local) U.1/ electromagnetic gauge transformation. In this case, we have
zA D ACr�0.

Example A.4. For S D e�i�3�3 with �3 2 R, T D 1 and x0 D 0, U is the U.1/
(global) axial gauge transformation. In this case, we have zA D A.

Example A.5. For S D 1, T 2 SO.2;R/ and x0 D 0, U is a simple rotation of
the coordinate system. In this case, we have zA.x/ D TA.T �1x � x0/ and Qb.x/ D
b.T �1x/. Of course, any such transformation is a symmetry of the Hamiltonian
HP.A/ whenever the magnetic field is radial, i.e., b.x/ D b.jxj/.
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A.1.2. Anti-linear transformations. For any map V as in (A.4), taking into account
that both the vector potential A D .A1; A2/ and the matrix elements Tjh are real, we
get

VHP.A/V
�1
D S.x/�j

��`
�S�1.x/ThjTm`�

� .�i@h � iS.x/@hS
�1.x/ � T �1kh Ak.T

�1x � x0//�

� .�i@m � iS.x/@mS
�1.x/ � T �1mnAm.T

�1x � x0//:

Therefore, for VHP.A/V
�1 to fulfill (A.5), it is necessary and sufficient that the fol-

lowing conditions are both verified, for some vector-valued distribution zAD . zA1; zA2/:

S.x/��j �
�
` S�1.x/ThjTm` D �h�m; (A.17)

T �1kh Ak.T
�1x � x0/1C iS.x/@hS

�1.x/ D � zAh.x/1: (A.18)

Using again basic commutation relations for the Pauli matrices and noting that �3 D
��3 , from (A.17) we deduce

T T t D 1;

S.x/�3S
�1.x/ D �. detT �1/�3: (A.19)

In particular, we have T 2O.2;R/. So, jdetT jD1 and V is anti-unitary inL2.R2;C2/

only if S D S.x/ is a smooth section of R2 � U.2;C/. Taking this into account, by
arguments similar to those outlined in the previous subsection, we deduce that (A.19)
can be fulfilled if and only if either one of the following two alternatives happens:

T 2 SO.2;R/; S D e�i�01�i�1�1�i�2�2 ; (A.20)

for some �0 2 C1.R2/; �1; �2 2 R, such that (A.13) holds, or

T 2 O.2;R/ n SO.2;R/; S D e�i�01�i�3�3 ; (A.21)

for some �0 2 C1.R2/; �3 2 R.

Remark A.6 (Special symmetries). In both cases (A.20) and (A.21), condition (A.18)
reduces to

zA.x/ D �TA.T �1x � x0/Cr�0.x/;

which yields

Qb.x/ D �.detT /b.T �1x � x0/:

This makes evident that, in general, none of the admissible anti-unitary transforma-
tions (A.4) leaves the magnetic field invariant. Nevertheless, V can be a symmetry
if b possesses specific features. For example, if the magnetic field is radial, namely
b.x/ D b.jxj/, then any transformation V of the form (A.4) with T; S as in (A.21)
and x0 D 0 is indeed a symmetry.
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Example A.7. For S D �1, T D 1, and x0 D 0, V is the so-called spin-flip transfor-
mation. In this case, zA.x/ D �A.x/ and Qb.x/ D �b.x/, showing that V coincides
with the charge conjugation as well.

Example A.8. For S D �2, T D�12 SO.2;R/ (notice that this choice of T describes
a rotation of an angle � in the plane), and x0 D 0, V is the so-called Kramers map
(see, e.g., [32]). In this case, zA.x/ D �A.�x/ and Qb.x/ D �b.�x/.

Example A.9. For S D 1, T DP 2O.2;R/ n SO.2;R/with P.x;y/D .�x;y/, and
x0 D 0, V is the CP-transformation. In this case, zA.x/ D .A1.�x; y/;�A2.�x; y//
and Qb.x; y/ D b.�x; y/.

A.2. Symmetries of Dirac Hamiltonians

We now consider the Dirac operator (A.2) and characterize all transformations of the
form (A.3) and (A.4) fulfilling (A.6). Since ŒHD.A/�

2 D HP.A/ at the pure algebraic
level, it appears that any admissible symmetry of HD.A/ must also be a symmetry
of HP.A/. Accordingly, in the sequel we shall restrict the attention to the family of
transformations classified before in (A.15)–(A.16) and (A.20)–(A.21). For later ref-
erence let us recall the well-known Rodrigues’ rotation formula, holding for arbitrary
� D .�1; �2; �3/ 2 R3 n ¹0º with �´ j�j:

e�i���� ei��� D cos.2�/� �
1

�
sin.2�/� ^ � C

1

�2
.1 � cos.2�//.� � � /�: (A.22)

A.2.1. Linear transformations. We first notice that, for any map U of the form
(A.3), there holds

UHD.A/U
�1
DS.x/�jS

�1.x/Thj .�i@h � iS.x/@hS
�1.x/CT �1kh Ak.T

�1x�x0//:

Therefore, UHD.A/U
�1 is itself a Dirac Hamiltonian of the form (A.2) if and only

if, for some suitable zA D . zA1; zA2/, (A.8) is verified and

S.x/�jS
�1.x/Thj D �h: (A.23)

Let us stress that (A.23) implies (A.7). We also recall that the only admissible maps U

fulfilling (A.5) certainly belong to either of the two families characterized in (A.15)
and (A.16).

On one side, consider any choice of T and S as in (A.15). Making reference to
the parametrization

T D

�
cos & � sin &
sin & cos &

�
; with & 2 Œ0; 2�/,
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and using (A.22), by a trivial relabeling of the indexes from (A.23) we infer, for
j 2 ¹1; 2º,

cos.2�3/�j C sin.2�3/"3j`�` D e�i�3�3�j ei�3�3 D T tj`�`

D .cos &/�j C .sin &/"3j`�`:

Clearly, this chain of identities can be fulfilled only if & D 2�3 mod 2� .
On the other side, let us fix T and S as in (A.16). Using the parametrization

T D

�
cos & sin &
sin & � cos &

�
; with & 2 Œ0; 2�/,

by arguments similar to those outlined above, from (A.23) we deduce

��j C
2�j�`

�2
�` D e

�i.�1�1C�2�2/�j e
i.�1�1C�2�2/ D T tj`�`

D .sin &/�j C .cos &/"3j`�`:

Keeping in mind that �1 is real and �2 is imaginary, it can be checked by direct
inspection that there is no admissible choice of & and �1; �2 compatible with (A.16)
fulfilling the latter chain of identities.

Summing up, the only linear transformations U of the form (A.3) fulfilling (A.6),
for some suitable zA, are given by

T D

�
cos.2�3/ � sin.2�3/
sin.2�3/ cos.2�3/

�
; S D e�i�01�i�3�3 ;

for some �0 2 C1.R2/; �3 2 R. Notice that these maps describe simultaneous rota-
tions of the space coordinates in the plane R2 and of the spin degree of freedom,
together with the usual U.1/ electromagnetic local gauge transformation.

A.2.2. Anti-linear transformation. We first notice that, for any map V of the form
(A.4), there holds

VHD.A/V
�1
D�S.x/��j S

�1.x/Thj .�i@h�iS.x/@hS
�1.x/�T �1kh Ak.T

�1x�x0//:

This makes evident that VHD.A/V
�1 is itself a Dirac Hamiltonian of the form (A.2)

(cf. (A.6)) if and only if, for some suitable zA D . zA1; zA2/, (A.18) is verified and

S.x/��j S
�1.x/Thj D ��h: (A.24)

Notice that (A.17) is indeed a consequence of (A.24). To proceed, let us point out
that (A.24) can be equivalently rephrased as

S�1.x/�hS.x/ D �Thj�
�
j ;
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and notice that S�1.x/ D ei.�01C��� / for all S.x/ D e�i.�01C��� /. Moreover, recall
once more that �1 is real and �2 is imaginary.

On one hand, by arguments similar to those described in Section A.2.1 we deduce
that the only transformations V of the form (A.4) with T and S as in (A.20), fulfill-
ing (A.6) for some zA, are

T D

0B@ �2
2
��2
1

�2
1
C�2

2

2�1�2
�2
1
C�2

2

�
2�1�2
�2
1
C�2

2

�2
2
��2
1

�2
1
C�2

2

1CA ; S D e�i�01�i�1�1�i�2�2 ;

for some �0 2 C1.R2/ and �1; �2 2R, such that (A.13) holds. On the other hand, the
only maps V of the form (A.4) with T and S as in (A.21), fulfilling (A.6) for some zA,
are given by

T D

�
cos.�

4
C k�/ sin.�

4
C k�/

sin.�
4
C k�/ � cos.�

4
C k�/

�
; S D e�i�01�i. 5�8 C

�k
2 /�3 ;

for some �0 2 C1.R2/; k 2 Z.
Summarizing and changing slightly the parametrization, we infer that the only

anti-linear transformations V of the form (A.4) fulfilling (A.6), for some suitable zA,
are given by

T D

�
cos.2�/ � sin.2�/
sin.2�/ cos.2�/

�
; S D e�i�01.�1 sin � � �2 cos �/;

or

T D

�
1=
p
2 1=

p
2

1=
p
2 �1=

p
2

�
; S D ˙e�i�01�i 5�8 �3 ;

or

T D

�
�1=
p
2 �1=

p
2

�1=
p
2 1=

p
2

�
; S D ˙e�i�01�i �8 �3 ;

with �0 2 C1.R2/ and � 2 Œ0; 2�/.
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