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Spectral asymptotics and metastability
for the linear relaxation Boltzmann equation

Thomas Normand

Abstract. We consider the linear relaxation Boltzmann equation in a semiclassical framework.
We construct a family of sharp quasimodes for the associated operator which yields sharp
spectral asymptotics for its small spectrum in the low temperature regime. We deduce some
information on the long time behavior of the solutions with a sharp estimate on the return to
equilibrium as well as a quantitative metastability result. The main novelty is that the collision
operator is a pseudo-differential operator in the critical class S1=2 and that its action on the
Gaussian quasimodes yields a superposition of exponentials.

1. Introduction

1.1. Motivations

We are interested in the linear Boltzmann equation´
h@tuC v � h@xu � @xV � h@vuCQH .h; u/ D 0;

ujtD0 D u0;
(1.1)

in a semiclassical framework (i.e., in the limit h ! 0), where h is a semiclassical
parameter and corresponds to the temperature of the system. Here for shortness we
denoted by @x and @v the partial gradients with respect to x and v. This equation is
used to model the evolution of a system of charged particles in a gas on which acts an
electrical force associated to the real valued potential V that only depends on the space
variable x. The operator QH is called collision operator and models the interactions
between the particles. Here the unknown is the function uWRC ! L1.R2d / giving
the probability density of the system of particles at time t 2 RC, position x 2 Rd

and velocity v 2 Rd . For our purpose, we introduce the square roots of the usual
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Maxwellian distributions

�h.v/ D
e�

v2

4h

.2�h/d=4
and Mh D e�

V
2h �h: (1.2)

This paper is devoted to the study of the linear BGK model for which the collision
operator is

QH .h; u/ D h

�
u �

Z
v02Rd

u.x; v0/ d v0�2h

�
(1.3)

and corresponds to a simple relaxation towards the Maxwellian. Denoting byQ�
H
.h; �/

the formal adjoint of QH .h; �/, one can easily compute

QH .h;M
2
h/ D 0 and Q�H .h; 1/ D 0I (1.4)

so, in particular, M2
h

is a stable state of (1.1) andQH features the local conservation of
mass. In order to do a perturbative study of the time independent operator associated
to (1.1) near M2

h
, we introduce the natural Hilbert space

H D ¹u 2 D 0 WM�1h u 2 L2.R2d /º:

It is clear from the Cauchy–Schwarz inequality that H is indeed a subset of L1.R2d /
provided that e�

V
2h 2 L2.Rdx /. In view of (1.4) and the definition of H , it is more

convenient to work with the new unknown

f DM�1h uWRC ! L2.R2d /

for which the new equation becomes´
h@tf C v � h@xf � @xV � h@vf CQh.f / D 0;

fjtD0 D f0;
(1.5)

where

Qh DM�1h ıQH .h; �/ ıMh: (1.6)

With the notation (1.2), denoting by

…hWL
2.R2d /! L2.R2d /;

the orthogonal projection on �hL2.Rdx /, we have, by (1.3) and (1.6),

Qh D h.Id�…h/: (1.7)
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Our study will be focused on the spectral properties of the new time independent
operator

Ph D v � h@x � @xV � h@v C h.Id�…h/ D X
h
0 CQh

where the notation Xh0 will stand for the operator v � h@x � @xV � h@v , but also for the
vector field .x; v/ 7! h.v;�@xV.x//.

This type of questions has recently known some major progress on the impulse of
microlocal methods. The operator Ph was already studied in 2016 in [13], where the
use of hypocoercive techniques enabled to get some resolvent estimates and establish
a rough localization of its small spectrum which consists of exponentially small eigen-
values in correspondance with the minima of the potential V . This type of result is
similar to the one obtained for example for the Witten Laplacian by Helffer and Sjös-
trand in [5] in the 1980’s. Such a localization already leads to return to equilibrium
and metastability results which can be improved as the description of the small spec-
trum becomes more precise. For example, sharp asymptotics of the small eigenvalues
of the Witten Laplacian were obtained later in the 2000’s in [2, 4], and later again
for Kramers–Fokker–Planck-type operators by Hérau et al. in [6]. In these papers, the
idea was to exhibit a supersymmetric structure for the operator and then study both
the derivative acting from 0-forms into 1-forms and its adjoint with the help of basic
quasimodes. However, these methods do not apply to the Boltzmann equation as in
that case the matrix appearing in the modification of the inner product does not obey
good estimates with respect to the semiclassical parameter h (see for instance [12] for
the case of the mild relaxation collision operator).

This is why our goal in this paper will be to give precise spectral asymptotics for
the operator Ph through a more recent approach which consists in directly construct-
ing a family of accurate Gaussian quasimodes for our operator in the spirit of [1,8] for
Fokker–Planck-type differential operators and [11] for the mild relaxation Boltzmann
equation. Here the first difficulty is that like in [11], the operator that we consider is
non-local and hence it is harder to compute its action on the constructed quasimodes.
This will be overcome thanks to the factorization result stated in Proposition 2.2. The
second and main difficulty is that, unlike in [11], the bad microlocal properties of Qh
are such that its action on a Gaussian quasimode as used in [1, 8, 11] does not yield a
precise exponential, but rather a superposition of exponentials (see Lemma 2.4) wich
will lead to the introduction of some new quasimodes given by a superposition of
“usual” Gaussian quasimodes. The result that we manage to establish is similar to
the one from [4] for the Witten Laplacian as well as the ones from [6, 7] with recent
improvements by Bony et al. in [1] for the Fokker–Planck equation.
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1.2. Setting and main results

For d 0 2 N� and Z 2 Cd 0 , we use the standard notation hZi D .1C jZj2/1=2. Let us
introduce a few notations of semiclassical microlocal analysis which will be used in
all this paper. These are mainly extracted from [14, Chapter 4]. For our purpose, it is
sufficient to consider pseudo-differential operators acting only in the variable v. We
will denote � 2 Rd the dual variable of v and use the semiclassical Fourier transform

Fh.f /.�/ D

Z
Rd

e�
i
h
v�� f .v/ d v:

We consider the space of semiclassical symbols

S�.h.v; �/ik/ D ¹ah 2 C1.R2d / W for all ˛ 2 N2d there exists C˛ > 0 such that

j@˛ah.v; �/j � C˛h
��j˛j
h.v; �/ikº

where k 2 R and � 2
�
0; 1
2

�
. Given a symbol ah 2 S�.h.v; �/ik/, we define the asso-

ciated semiclassical pseudo-differential operator for the Weyl quantization acting on
functions u 2 �.Rd / by

Oph.ah/u.v/ D .2�h/
�d

Z
Rd

Z
Rd

e
i
h
.v�v0/�� ah

�v C v0
2

; �
�
u.v0/ d v0 d �

where the integrals may have to be interpreted as oscillating integrals. We will denote
by ‰�.h.v; �/ik/ the set of such operators. Note that the operator Oph.ah/ admits the
distributional kernel

Kh.v; v
0/ D F �1h

�
ah

�v C v0
2

; �
��
.v � v0/:

Conversely, if an operator Oph.ah/ 2 ‰
�.h.v; �/ik/ admits the distributional kernel

Kh.v; v
0/, then its symbol is given by

ah.v; �/ D Fh..Kh ı A/.v; �//.�/ (1.8)

where A denotes the change of variables

A.v; v0/ D
�
v C

v0

2
; v �

v0

2

�
:

We will also make a few confining assumptions on the function V , assuring for
instance that the bottom spectrum of the associated Witten Laplacian is discrete. In
particular, our potential will satisfy [8, Assumption 2] and [13, Hypothesis 1.1].
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Hypothesis 1.1. The potential V is a smooth Morse function depending only on the
space variable x 2 Rd with values in R which is bounded from below and such that

j@xV.x/j �
1

C
for jxj > C:

Moreover, for all ˛ 2 Nd with j˛j � 2, there exists C˛ such that

j@˛xV j � C˛:

In particular, for every 0 � k � d , the set of critical points of index k of V that
we denote U.k/ is finite and we set

n0 D #U.0/: (1.9)

Finally, we will suppose that n0 � 2.

The last assumption comes from the fact that when n0 D 1, the so-called small
spectrum of the operator Ph (i.e., its eigenvalues with exponentially small modulus)
is trivial, so there is nothing to study. It is shown in [9, Lemma 3.14] that, for a
function V satisfying Hypothesis 1.1, we have V.x/ � jxj

C
outside of a compact. In

particular, under Hypothesis 1.1, it holds e�V=2h 2 L2.Rdx /. Moreover, in our setting,
Xh0 is a smooth vector field whose differential is bounded on R2d , so the operator Xh0
endowed with the domain

D D ¹u 2 L2.R2d / W Xh0 u 2 L
2.R2d /º

is skew-adjoint on L2.R2d / and the set �.R2d / is a core for this operator. Since
moreover the collision operator Qh defined in (1.7) is bounded and self-adjoint, we
have .Ph;D/� D .�Xh0 CQh;D/ and .Ph;D/ is m-accretive on L2.R2d /.

For an operator such as Ph, which is not for instance self-adjoint with compact
resolvent, we do not have any information a priori on its spectrum (except here that
it is contained in ¹z 2 C W Re z � 0º). In [13], the use of hypocoercive techniques
enabled to establish a first description of the spectrum of Ph near 0 which, in the spirit
of the case of other non-self-adjoint operators studied in [6], appears in particular to
be discrete. More precisely, the following result is shown in [13].

Theorem 1.2. Assume that Hypothesis 1.1 is satisfied and recall the notation (1.9).
Then the operator .Ph; D/ admits 0 as a simple eigenvalue. Moreover, there exists
c > 0 and h0 > 0 such that, for all 0 < h � h0, the low lying spectrum Spec.Ph/ \
¹Re z � chº consists of exactly n0 eigenvalues (counted with algebraic multiplicity)
which are real and exponentially small with respect to 1

h
. Finally, for all 0 < Qc � c,

the resolvent estimate
.Ph � z/

�1
D O.h�1/

holds uniformly in ¹Re z � chºnB.0; Qch/.
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In order to study the long time behavior of the solutions of (1.5), we need a pre-
cise description of the small spectrum of Ph. To this aim, we construct in Section 3
a family of accurate quasimodes localized around the minima of V that enables us
to establish sharp asymptotics of the small eigenvalues of Ph. This will lead to the
following theorem which is the main result of this paper. Before we can state it, let us
introduce a few notations that we will use throughout the paper. We denote by

W.x; v/ D
V.x/

2
C
v2

4
(1.10)

the global potential on R2d and, for x 2 Rd , by

Vx (resp. Wx) the Hessian of V at x (resp. the Hessian of W at .x; 0/). (1.11)

When s 2 Rd is a saddle point of V (i.e., s 2 U.1/), we also denote by

�s the only negative eigenvalue of Vs: (1.12)

For the sake of simplicity, we will make in the statement of the theorem an additional
assumption (Hypothesis 2.8) on the topology of the potential V that could actually be
omitted (see [10] or [1]). It implies in particular that V has a unique global minimum
that we denote by

S
m.

According to Theorem 1.2, we can associate to each m 2 U.0/n¹
S
mº a non-zero

exponentially small eigenvalue of Ph that we denote by �.m; h/.

Theorem 1.3. Suppose that Hypotheses 1.1 and 2.8 are satisfied and recall the nota-
tions (1.11)–(1.12).

The exponentially small eigenvalues of Ph satisfy the following equivalent in the
limit h! 0:

�.m; h/ � h%.m/ e
�2S.m/

h

with

%.m/ D
1

�

X
s2j.m/

�2Cp2
2 �
p
2

� 1p
j�sj
� det Vm

j det Vsj

�1=2
�

Z
1�z�<1

ks
0./k

s
0.z/ ln

�
2
.1C z/.1C /

1C 3z C 3 C z

�
d z d 

where

ks
0.z/ D

2
p
2p

j�sj.z � 2/2

�z � 1
z � 2

� 1

2
p
j�sj
�1

; 1 D �3C 2
p
2; 2 D �3 � 2

p
2;

and the maps S and j are defined in Definition 2.7.
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In this theorem, we provide an Eyring–Kramers formula for the operatorPh which
looks quite unusual, or at least quite different from the ones established in [11] for the
mild relaxation Boltzmann operator, or in [1] in the case of Fokker–Planck-type differ-
ential operators. Indeed, here the prefactor %.m/ obeys the above complicated integral
formula and we do not provide a complete asymptotic expansion of the eigenvalues.
Actually, these two remarks are both a consequence of the fact that the action of the
collision operator Qh on a Gaussian quasimode differs from the one of the operators
from [1, 11] (see Lemma 2.4) and makes the whole analysis noticeably harder.

The plan of the proof is thus the following. In Section 2, we study the structure of
the operator Qh and show that its action on a Gaussian quasimode yields a integral
superposition of exponentials. In Section 3, we therefore introduce some new quasi-
modes given by an integral superposition of Gaussian quasimodes, for which we show
that the actions of the transport term and the collision term are of the same nature.
This allows us to optimize the choice of our quasimodes in order to get the best possi-
ble compensations between these two terms. Section 4 is devoted to the computation
of the approximated eigenvalues which is also made harder by the integral form of
our optimized quasimodes and from which the expression of %.m/ will result; while
in Section 5 we prove that the true eigenvalues are equivalent when h ! 0 to the
approximated ones.

Finally, following [13], we use the sharp localization obtained in Theorem 1.3
in order to discuss the phenomena of return to equilibrium and metastability for the
solutions of (1.5). More precisely, we are able to give a sharp rate of convergence
of the semigroup e�tPh=h towards P1, the orthogonal projector on KerPh: denoting
by �� the smallest non-zero eigenvalue of Ph, we establish that the rate of return to
equilibrium is essentially given by ��

h
.

Corollary 1.4. Under the assumptions of Theorem 1.3, there exists h0 > 0 such that
for all 0 < h � h0 and t � 0,

k e�tPh=h�P1k � C e�t�
�=h :

Besides, in the spirit of [1, 11], we also show the metastable behavior of the solu-
tions of (1.5).

Corollary 1.5. Suppose that the assumptions of Theorem 1.3 hold true. Let us con-
sider some local minima m1 D

S
m;m2; : : : ;mp such that

S.U.0// D ¹C1 D S.m1/ > S.m2/ > � � � > S.mp/º

for the map S from Definition 2.7. For 2� k � p, denote by Pk the spectral projection
(which is not necessarily orthogonal) associated to the eigenvalues of Ph that are
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O.e�2
S.mk/

h /. Then, for any times .t˙
k
/1�k�p satisfying

t�p � j ln.h
1/j and t�k � j ln.h

1/j e2
S.mkC1/

h for k D 1; : : : ; p � 1;

as well as

tC1 D C1 and tC
k
D O.h1 e2

S.mk/

h / for k D 2; : : : ; p;

one has
e�tPh=h D Pk CO.h

1/ on Œt�k ; t
C

k
�:

In other words, we have shown the existence of timescales on which, during its
convergence towards the global equilibrium, the solution of (1.5) will essentially visit
the metastable spaces associated to the small eigenvalues of Ph.

Another perspective would then be to study the case of collision operators satisfy-
ing the local conservation laws of physics, such as the full linear Boltzmann operator

QFL
h D h.Id�…FL

h /

with …FL
h

the orthogonal projector on the collision invariants subspace

VectRdv ¹e
� v

2

4h ; v1 e�
v2

4h ; : : : ; vd e�
v2

4h ; v2 e�
v2

4h ºL2.Rdx /;

which was recently studied in [3] at fixed temperature.

2. Preliminaries

From now on, the letter r will denote a small universal positive constant whose value
may decrease as we progress in this paper (one can think of r as 1

C
).

2.1. Naive approach

In order to investigate a first natural approach to our problem, consisting in trying to
reproduce the method from [11] which was itself inspired by [1, 8], let us make for
simplicity and for this subsection only an additional assumption.

Hypothesis 2.1. The potential V has exactly one saddle point s.

Roughly speaking, this approach consists in introducing a linear form `.x; v/ D

`x � .x � s/C `v � v in the variables .x � s; v/ as well as a Gaussian cut-off � which
is essentially given by

�.x; v/ D

`.x;v/Z
0

e�
s2

2h d s:
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With the notation (1.10), the idea is then to introduce the so-called Gaussian quasi-
mode

'.x; v/ D �.x; v/ e�
W.x;v/
h

and compute Ph' in order to then choose the linear form ` minimizing the norm of
Ph'. We already know from [11, proof of Proposition 3.13] that

Xh0 '.x; v/ D hp`.x; v/ e�
1
h
.W.x;v/C 12 `

2.x;v//.1CO.h//; jx � sj; jvj < r (2.1)

with p` D OL1.1/. It is also shown that the collision operator studied in this refer-
ence, that we denote by QS0

h
, satisfies a similar result:

QS0

h '.x; v/ D h q`.x; v/ e�
1
h
.W.x;v/C 12 `

2.x;v//.1CO.h//; jx � sj; jvj < r (2.2)

with q` D OL1.1/, and it is then sufficient in that case to choose ` so that p` D �q`.
In our case, although Qh may appear as a quite simple operator as it is just an

orthogonal projection, in order to perform a computation similar to (2.2), it will be
more convenient to adopt a microlocal point of view. This is the point of the two
following results which are proven in Appendix A.

Proposition 2.2. Let us set

bh D h@v C
v

2
:

There exists a symbol mh 2 S1=2.hv; �i�2/ given by

mh.v; �/ D 2

1Z
0

.y C 1/d�2 e�
y
h
. v
2

2 C2�
2/ dy

such that
Qh D b

�
h ı Oph.mh Id/ ı bh:

Corollary 2.3. One has
Qh D Oph.gh/ ı bh

with

gh.v; �/ D

1Z
0

.y C 1/d�1 e�
y
h
. v
2

2 C2�
2/ dy .�2i�T C vT/ 2 S1=2.hv; �i�1/:

We are now in position to establish the following fundamental computation which
shows that the balancing obtained between Xh0 ' and QS0

h
' cannot happen between

Xh0 ' and Qh'. This will motivate the introduction of some new quasimodes later on.
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Lemma 2.4. Assume for simplicity that Hypothesis 2.1 holds true and let ` a linear
form in the variables .x � s; v/. We have

Qh'.x; v/ D �h

1Z
0

@y.Ly/ e�
W.x;v/C 1

2
L2y.x;v/

h dy �
�
x � s

v

�
where, with a slight abuse of notations, Ly denotes both the linear form

Ly.x; v/ D
.1C y/`x � .x � s/C .1 � y/`v � v

.4y`2v C .y C 1/
2/1=2

and the vector representing it. Moreover, setting

my;h.v; �/ D 2.y C 1/
d�2 e�

y
h
. v
2

2 C2�
2/; (2.3)

we have

Oph.my;h/ ı bh'.x; v/ D 2h.2�h/
�d=2 e�

V.x/
2h

.y C 1/d�2

.4y/
d
2

�

Z
v02Rd

e�
1
h
. v
02

4 C
y
8 .vCv

0/2C .v�v
0/2

8y C 12 `
2.x;v0// d v0`v: (2.4)

Proof. According to Corollary 2.3, we have

Qh'.x; v/

D Oph.gh/Œh@v� e�W=h�.x; v/

D hOph.gh/Œe
� 1
h
.WC 12 `

2/ `v�.x; v/

D h.2�h/�d
Z

v02Rd

Z
�2Rd

e
i
h
.v�v0/�� gh

�v C v0
2

; �
�

e�
1
h
.W.x;v0/C 12 `

2.x;v0// d v0 d �`v:

Let us now compute the integral in � with the expression of gh from Corollary 2.3:Z
�2Rd

e
i
h
.v�v0/�� gh

�v C v0
2

; �
�

d �

D

1Z
0

.y C 1/d�1 e�
y.vCv0/2

8h

�
.v C v0/T

2

Z
�2Rd

e
i
h
.v�v0/�� e�

2y�2

h d �

� 2i

Z
�2Rd

�T e
i
h
.v�v0/�� e�

2y�2

h d �
�

dy
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D

1Z
0

.y C 1/d�1 e�
y.vCv0/2

8h

h .v C v0/T
2

C
.v � v0/T

2y

i Z
�2Rd

e
i
h
.v�v0/�� e�

2y�2

h d � dy

D 2.2�h/d=2
1Z
0

.y C 1/d�1

.4y/
d
2C1

�
.v C v0/y C v � v0

�T e�
1
8h
.y.vCv0/2C .v�v

0/2

y / dy:

Hence, we get

Qh'.x; v/ D 2h.2�h/
�d=2 e�

V.x/
2h

1Z
0

.y C 1/d�1

.4y/
d
2C1

Z
v02Rd

..v C v0/y C v � v0/

� e�
1
h
. v
02

4 C
y
8 .vCv

0/2C .v�v
0/2

8y C 12 `
2.x;v0// d v0 dy � `v (2.5)

and (2.4) is now a straightforward adaptation of (2.5) withmy;h instead of gh. Denot-
ing xs D x � s,

My D
1

2
IdC`v`Tv C

y2 C 1

4y
Id; and uy.xs; v/ D `x � xs `v C

y2 � 1

4y
v;

(2.5) becomes, by the change of variables w D v0 CM�1y uy.xs; v/,

Qh'.x; v/

D 2h.2�h/�d=2 e�
V.x/
2h

1Z
0

.y C 1/d�1

.4y/
d
2C1

exp
h
�1

2h

�
`x`

T
xxs � xs C

y2 C 1

4y
v2

�M�1y uy.xs; v/ � uy.xs; v/
�i

�

Z
w2Rd

��
v �M�1y uy.xs; v/

�
y C v CM�1y uy.xs; v/

�
e�

Myw�w

2h dw dy � `v

D 2h e�
V.x/
2h

1Z
0

.y C 1/d�1

.4y/
d
2C1

det.My/
�1=2

�
.1C y/v C .1 � y/M�1y uy.xs; v/

�
� `v

� exp
h
�1

2h

�
`x`

T
xxs � xs C

y2 C 1

4y
v2 �M�1y uy.xs; v/ � uy.xs; v/

�i
dy: (2.6)

Now,
.y C 1/d�1

.4y/
d
2C1

det.My/
�1=2
D

1

4y.4y`2v C .y C 1/
2/1=2

;

while

M�1y `v D
4y

4y`2v C .y C 1/
2
`v (2.7)
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so the prefactor in the integral from (2.6) becomes

1

4y.4y`2v C .y C 1/
2/1=2

h 4y.1 � y/`2v
4y`2v C .y C 1/

2
`x � xs

C

�
.1C y/C

.1 � y/.y2 � 1/

4y`2v C .y C 1/
2

�
`v � v

i
;

which is further equal to

.1 � y/`2v`x � xs C .1C y/.1C `
2
v/`v � v

.4y`2v C .y C 1/
2/3=2

D �
1

2
@y.Ly/ �

�
xs

v

�
: (2.8)

Thus, it only remains to show that the exponentials coincide, i.e.,

`x`
T
xxs � xs C

y2 C 1

4y
v2 �M�1y uy.xs; v/ � uy.xs; v/ D

v2

2
C L2y.x; v/

or equivalently

`x`
T
xxs � xs C

.y � 1/2

4y
v2 �M�1y uy.xs; v/ � uy.xs; v/

D
..1C y/`x � xs C .1 � y/`v � v/

2

4y`2v C .y C 1/
2

: (2.9)

Using (2.7), we already obtain

M�1y uy.xs; v/ � uy.xs; v/ D
4y`2v

4y`2v C .y C 1/
2
`x`

T
xxs � xs

C 2
y2 � 1

4y`2v C .y C 1/
2
`x � xs`v � v

C
.y2 � 1/2

16y2
M�1y v � v

so the left-hand side of (2.9) becomes

.1C y/2

4y`2v C .y C 1/
2
.`x � xs/

2
C 2

1 � y2

4y`2v C .y C 1/
2
`x � xs`v � v

C

� .y � 1/2
4y

�
.y2 � 1/2

16y2
M�1y

�
v � v: (2.10)

Finally, still using (2.7), one can easily check that

.y � 1/2

4y
�
.y2 � 1/2

16y2
M�1y D

.1 � y/2

4y`2v C .y C 1/
2
`v`

T
v;

so (2.10) equals the right-hand side of (2.9), and the proof is complete.
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This result shows that, unlike in the case of some S0 collisions operators as studied
in [11] (or even in the case of differential operators [1, 8]), here the action of Qh on
the quasimode ' does not yield a precise exponential, but rather a superposition of
exponentials with the linear form in the phase varying. This suggests the introduction
of some new quasimodes given by a superposition of functions similar to ' with the
linear form varying.

2.2. Labeling of the potential minima

We now drop Hypothesis 2.1. Before we can construct our quasimodes, we need to
recall the general labeling of the minima which originates from [2, 4] and was gen-
eralized in [7], as well as the topological constructions that go with it. Here we only
introduce the essential objects and omit the proofs. For more details, we refer to [11],
where it is in particular shown that, roughly speaking, the constructions for the poten-
tial V

2
are the projections on Rdx of the ones for the global potentialW . Recall that we

denote by

U.k/ the critical points of V of index k: (2.11)

For shortness, we will write “CC” instead of “connected component.” The construc-
tions rely on the following fundamental observation which is an easy consequence of
the Morse lemma (see for instance [11, Lemma 3.1] for a proof).

Lemma 2.5. If x 2 U.1/, then there exists r0 > 0 such that for all 0 < r < r0, .x; 0/
has a connected neighborhood Or in B0.x; r/ such that Or \ ¹W < W.x; 0/º has
exactly two CCs.

This motivates the following definition.

Definition 2.6. (1) We say that x 2 U.1/ is a separating saddle point and we denote
x 2 V.1/ if for every r > 0 small enough, the two CCs of Or \ ¹W < W.x; 0/º are
contained in different CCs of ¹W < W.x; 0/º.

(2) We say that � 2 R is a separating saddle value if � 2 V
2
.V.1//.

It is known (see for instance [11, Lemma 3.4]) that V.1/ ¤ ; since n0 � 2. Let
us then denote �2 > � � � > �N where N � 2 the different separating saddle values of
V
2

and for convenience we set �1 D C1. For � 2 R [ ¹C1º, let us denote C� the
set of all the CCs of ¹W < �º. We call labeling of the minima of V any injection
l W U.0/ ! J1; N K � J1; #U.0/K. If l.m/ D .k; j /, we denote for shortness m D mk;j .
Given a labeling l of the minima of V , we denote for k 2 J1;N K

U.0/
k
D l�1.J1; kK � J1; #U.0/K/ \

°V
2
< �k

±
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and we say that the labeling is adapted to the separating saddle values if for all k 2
J1;N K, each element of l�1.¹kº � J1; #U.0/K/ is a global minimum of V restricted to
some CC of

®
V
2
< �k

¯
, and the map

Tk W U
.0/

k
! C�k (2.12)

sending m 2 U.0/
k

on the element of C�k containing .m; 0/ is bijective. In particular,
it implies that l�1.¹kº � J1; #U.0/K/ is contained in U.0/

k
. Such labelings exist, one can

for instance easily check that the usual labeling procedure presented in [7] is adapted
to the separating saddle values. From now on, we fix a labeling .mk;j /k;j adapted to
the separating saddle values of V .

Definition 2.7. Recall the notation (2.11) and Definition 2.6. We define the following
mappings:

• EW U.0/ ! P .R2d /, mk;j 7! Tk.mk;j /, where Tk is the map defined in (2.12);

• jW W U.0/ ! P ..V.1/ [ ¹s1º/ � ¹0º/, given by

– jW .m1;1/D .s1; 0/, where s1 is a fictive saddle point such that V.s1/D �1 D
C1, and

– for 2 � k � N , jW .mk;j / D @E.mk;j / \ .V.1/ � ¹0º/, which is not empty
(see for instance [11, Lemma 3.5]), finite, and included in ¹W D �kº;

• jW U.0/ ! P .V.1/ [ ¹s1º/ such that j.m/ � ¹0º D jW .m/;

• � W U.0/ ! V
2
.V.1// [ ¹�1º, m 7! V

2
.j.m//, where we allow ourselves to identify

the set V
2
.j.m// and its unique element in V

2
.V.1// [ ¹�1º;

• S W U.0/ ! �0;C1�, m 7! � .m/ � V
2
.m/.

Following [2, 4, 7, 8], we can now state our last assumption that allows us to treat
the generic case. As mentioned in the introduction, this assumption could actually be
omitted (see [10] or [1, Section 6]), but this would introduce additionnal difficulties
that are not the main concern of this paper.

Hypothesis 2.8. Recall that we fixed a labeling .mk;j /k;j adapted to the separating
saddle values of V . We assume the following:

(a) each mk;j is the only global minimum of V on the CC of
®
V
2
< �k

¯
to which

it belongs;

(b) for all m ¤ m0 2 U.0/, the sets j.m/ and j.m0/ do not intersect.

According to [11], this hypothesis is equivalent to the facts that .m; 0/ is the only
global minimum of W jE.m/ and jW .m/ \ jW .m0/ D ;, which is what we use in
practice.
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3. Accurate quasimodes

3.1. Gaussian quasimodes superposition

By Hypothesis 2.8, the potential V has a unique global minimum that we denote
S
m.

For r > 0, denote Qr a positive number such that for all m 2 U.0/n¹
S
mº and s 2 j.m/,

W.x; v/ � � .m/C
r2

8
C
v2 � r2

4
as soon as jx � sj < Qr and jvj � r: (3.1)

We also denote for x 2 Rd

B0.x; r/ D B.x; Qr/ � B.0; r/ � R2d :

Let m2 U.0/n¹
S
mº; for each s2 j.m/we introduce a vector `sD .`s

x; `
s
v/2R2d which

will represent a linear form involved in the construction of our quasimodes. Note that
thanks to Hypothesis 2.8 (b), each `s corresponds to a unique m 2 U.0/n¹

S
mº. In the

spirit of [1, 8, 11] and more precisely in view of (2.1)–(2.2), we want s to be a local
minimum of the function

W.x; v/C
1

2

�
`s
x � .x � s/C `s

v � v
�2
I

so according to Lemma B.1 and using the notation (1.11), we take `s satisfying

�V�1s `s
x � `

s
x � j`

s
vj
2 >

1

2
:

This condition would be sufficient to develop a framework for the construction of our
quasimodes. However, it would appear later on; when establishing a result analogous
to the one of Lemma 3.6; that the optimal choice of `s would actually satisfy

�V�1s `s
x � `

s
x � j`

s
vj
2
D 1:

Similarly, one could show in this framework from the analogous of (3.9) that our
quasimodes would not depend on the norm of `s. Thus, we set

j`s
vj
2
D 1 (3.2)

as well as

�V�1s `s
x � `

s
x D 2 (3.3)

straight away as it leads to significant simplifications in the study.
We now introduce the polynomial

P./ D 4 C . C 1/2 (3.4)
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and its two roots

1 D �3C 2
p
2 2 .�1; 0/ and 2 D �3 � 2

p
2 < �1:

In the spirit of Lemma 2.4, we also introduce for  2 .1; 1� the vector .Ls
 Ix; L

s
 Iv/ 2

R2d where

Ls
 Ix D

1C 

P./1=2
`s
x and Ls

 Iv D
1 � 

P./1=2
`s
v: (3.5)

Note that .Ls
0Ix; L

s
0Iv/ D `s. Lemma 2.4 would actually suggest to consider only

 2 Œ0; 1�, but doing so it would appear with the notation (3.45) that (3.47) has no
non-trivial solution, which is not true anymore when working on .1; 1�. We do not
consider  outside .1; 1� as it would add a condition similar to (3.46) which would
be incompatible with (3.46). Here is the picture of an example in the case d D 1:

�4 �3 �2 �1

�1

1

2

3

�

�

`s

.Ls
�0:1;x; L

s
�0:1;v/

�

.Ls
1;x; L

s
1;v/ x

v

Since, by Hypothesis 1.1, the potential V is a Morse function, there exists, according
to the Morse lemma, a smooth diffeomorphism �s defined on B.s; Qr/, sending s on 0,
whose differential at s is the identity and such that

V ı ��1s D V.s/C
1

2
hVs�; �i: (3.6)

For shortness, we will use for x 2 B.s; Qr/ the notation

Qxs D �s.x/ (3.7)

and we introduce the smooth functionLs
 supported in B.s; 2 Qr/�Rdv and given when

x is close to s by the twisted linear form:

Ls
 .x; v/ D L

s
 Ix � Qxs C L

s
 Iv � v for .x; v/ 2 B.s; Qr/ �Rdv :
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Now, let us denote by � 2 C1c .R; Œ0; 1�/ an even cut-off function supported in Œ�ı; ı�
that is equal to 1 on

�
�
ı
2
; ı
2

�
, where ı > 0 is a parameter to be fixed later. As we

will not be able to produce some remainder terms that are uniform with respect to
 2 .1; 1�, we will work on Œ1 C �; 1� with

� > 0 that will be fixed small enough before letting h! 0:

Consider also a probability density ks
� on Œ1 C �; 1� as well as the quantity

As
�;h D

1Z
1C�

ks
�./

1Z
0

�
� s

N s./

�
e�

s2

2h d s d 

D

p
�h
p
2
.1CO.e�˛=h// for some ˛ > 0; (3.8)

where
N s./ D .jLs

 Ixj
2
C jLs

 Ivj
2/1=2 �

1

C
:

We will also use the notation

U s
 D

Ls


N s./
:

We now define for each m 2 U.0/n¹
S
mº the Gaussian cut-off superposition �m

�;h
as

follows: if .x; v/ belongs to [
2Œ1C�;1�

¹jU s
 j � 2ıº \ B0.s; r/

for some s 2 j.m/, then

�m
�;h.x; v/ D

1

2

�
1C .As

�;h/
�1

1Z
1C�

ks
�./

Ls
 .x;v/Z
0

�
� s

N s./

�
e�s

2=2h d s d 
�
: (3.9)

Here are some pictures of the set ¹jU s
 j � 2ıº \ B0.s; r/ for  D 1 C �;  D 0 and

 D 1:

�s x

v

B0.s; r/

¹Ls
0 D 0º

�s x

v

B0.s; r/

¹Ls
1 D 0º

�s x

v

B0.s; r/

¹Ls
1C�

D 0º
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Furthermore, we set

�m
�;h D 1 on .E.m/C B.0; "//n

� G
s2j.m/

� [
2Œ1C�;1�

¹jU s
 j � 2ıº \B0.s; r/

��
(3.10)

with " D ".r/ > 0 to be fixed later and

�m
�;h D 0 everywhere else. (3.11)

Note that �m
�;h

takes values in Œ0; 1� and that, thanks to (3.9), we also have

�m
�;h D 1 on

� [
2Œ1C�;1�

¹jU s
 j � 2ıº \ B0.s; r/

�\� \
2Œ1C�;1�

¹U s
 � ıº

�
and

�m
�;h D 0 on

� [
2Œ1C�;1�

¹jU s
 j � 2ıº \ B0.s; r/

�\� \
2Œ1C�;1�

¹U s
 � �ıº

�
:

Denote by � the CC of ¹W � � .m/º containing m. The CCs of ¹W � � .m/º are
separated; so, for " > 0 small enough, there exists Q" > 0 such that

min¹W.x; v/ W dist..x; v/;�/ D "º D � .m/C 2Q":

Thus, the distance between ¹W � � .m/C Q"º \ .�CB.0; "// and @.�CB.0; "// is
positive and we can consider a cut-off function

�m 2 C1c .R
2d ; Œ0; 1�/

such that

�m D 1 on ¹W � � .m/C Q"º \ .�C B.0; "// and supp�m � .�C B.0; "//:

(3.12)
To sum up, we have the following picture:

��m

�m
�;h
D 1

�m
�;h
D 0

�

supp �m

�m
�;h

given by (3.9)

j.m/
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The following lemma will among other things help us discuss the regularity of �m
�;h

.

Lemma 3.1. Recall the notation (1.11). For all  2 .1; 1�, we have

�V�1s Ls
;x � L

s
;x � .L

s
;v/

2
D 1:

In particular, according to Lemma B.1, .s; 0/ is a non-degenerate minimum of W C
1
2
.Ls
 /
2 and the associated hessian has determinant

2�2d j det Vsj:

Proof. It suffices to use (3.2) and (3.3):

�V�1s Ls
;x � L

s
;x � .L

s
;v/

2
D 2

.1C /2

P./
�
.1 � /2

P./
D
P./

P./
D 1:

For the computation of the determinant, it is sufficient to notice that, with the nota-
tion (1.11), the hessian of W C 1

2
.Ls
 /
2 at .s; 0/ is

Ws C

�
Ls
 Ix

Ls
 Iv

��
Ls
 Ix

Ls
 Iv

�T
and apply Lemma B.1.

Proposition 3.2. Up to changing the sign of `s, for all � 2 .0; j1j/, we can choose
" > 0 and ı > 0 small enough so that the function �m

�;h
is smooth on the neighborhood

of the support of �m given by �C B.0; "/.

Proof. By Hypothesis 2.8 (b), each `s corresponds to a unique m 2 U.0/n¹
S
mº. Let us

first show that in B0.s; r/ we have[
2Œ1C�;1�

¹jU s
 j � 2ıº D

�
¹U s
1 � �2ıº \ ¹U

s
1C�

� 2ıº
�

[
�
¹U s
1 � 2ıº \ ¹U

s
1C�

� �2ıº
�

(3.13)

(so in particular, this set is closed).

�

B0.s; r/

s

¹U s
1 � 2ıº \ ¹U

s
1C�

� �2ıº

x

v

�

B0.s; r/

s x

v

¹U s
1 � �2ıº \ ¹U

s
1C�

� 2ıº
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Let .x; v/ 2 ¹U s
1 ��2ıº \ ¹U

s
1C�

� 2ıº. If U s
1 .x; v/� 2ı, then .x; v/ 2 ¹jU s

1 j � 2ıº

and similarly, ifU s
1C�

.x;v/��2ı, then .x;v/ 2 ¹jU s
1C�
j � 2ıº. Now, ifU s

1 .x;v/ >

2ı and U s
1C�

.x; v/ < �2ı, by the intermediate value theorem, there exists  2 Œ1 C
�; 1� such that U s

 .x; v/ D 0; so, in particular, .x; v/ 2 ¹jU s
 j � 2ıº. Thus, we have

shown that

¹U s
1 � �2ıº \ ¹U

s
1C�

� 2ıº �
[

2Œ1C�;1�

¹jU s
 j � 2ıº (3.14)

and clearly the same strategy of proof enables to show that

¹U s
1 � 2ıº \ ¹U

s
1C�

� �2ıº �
[

2Œ1C�;1�

¹jU s
 j � 2ıº: (3.15)

Conversely, let

.x; v/ … .¹U s
1 � �2ıº \ ¹U

s
1C�

� 2ıº/ [ .¹U s
1 � 2ıº \ ¹U

s
1C�

� �2ıº/:

Since ¹U s
1 < �2ıº \ ¹U

s
1 > 2ıº and ¹U s

1C�
< �2ıº \ ¹U s

1C�
> 2ıº are empty, we

have

.x; v/ 2 ¹U s
1 < �2ıº \ ¹U

s
1C�

< �2ıº or .x; v/ 2 ¹U s
1C�

> 2ıº \ ¹U s
1 > 2ıº:

(3.16)
Besides, using (2.8) and (3.2), one can check that the sign of @U s

 .x; v/ is given by

`s
x � Qxs � j`

s
xj
2`s
v � v � .`

s
x � Qxs C j`

s
xj
2`s
v � v/ (3.17)

which vanishes at most once in .1 C �; 1/. If it does not vanish in .1 C �; 1/, then,
by monotonicity, (3.16) implies that, for any  2 Œ1C �; 1�, we have .x; v/ … ¹jU s

 j �

2ıº. Now, in the case where the expression from (3.17) vanishes at some point in
.1 C �; 1/, its values at 1 C � and 1 have opposite signs, i.e.,

j`s
xj
2`s
v � v..1 � 1 � �/`

s
x � Qxs � j`

s
xj
2.1C 1 C �/`

s
v � v/ > 0: (3.18)

When both factors from (3.18) are positive, we have `s
x � Qxs > 0, so U s

1 .x; v/ > 0 and
it follows that .x; v/ 2 ¹U s

1C�
> 2ıº \ ¹U s

1 > 2ıº. Moreover, in this case, we also
have that the minimum of  7! U s

 .x; v/ on Œ1 C �; 1� is attained on the boundary
of the interval since @U s

 .x; v/jD1 < 0, so for any  2 Œ1 C �; 1� it holds .x; v/ 2
¹U s
 > 2ıº. Here again, the same strategy of proof enables to show that if both factors

from (3.18) are negative, then for any  2 Œ1 C �; 1�, it holds .x; v/ 2 ¹U s
 < �2ıº.

Combined with (3.14) and (3.15), this proves (3.13).
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From (3.9), (3.10), (3.11), and (3.13), we see that the only parts on which it is not
clear that �m

�;h
is smooth are

F1 D
G

s2j.m/

�
¹U s
1 D 2ıº \ ¹U

s
1C�

� 2ıº \ B0.s; r/
�
;

F2 D
G

s2j.m/

�
¹U s
1 � 2ıº \ ¹U

s
1C�

D 2ıº \ B0.s; r/
�
;

F3 D
G

s2j.m/

�
¹U s
1 D �2ıº \ ¹U

s
1C�

� �2ıº \ B0.s; r/
�
;

F4 D
G

s2j.m/

�
¹U s
1 � �2ıº \ ¹U

s
1C�

D �2ıº \ B0.s; r/
�
;

F5 D
G

s2j.m/

� [
2Œ1C�;1�

¹jU s
 j � 2ıº \ @B0.s; r/

�
;

and

F6 D @.E.m/C B.0; "//n
� G

s2j.m/

� [
2Œ1C�;1�

¹jU s
 j � 2ıº \ B0.s; r/

��
:

Note that (3.13) suggested to put ¹U s
1 D 2ıº \ ¹U s

1C�
� �2ıº \ B0.s; r/ in the

definition of F1, but we allowed ourselves to discard the part ¹U s
1 D 2ıº \ ¹U

s
1C�

2

Œ�2ı; 2ı/º \ B0.s; r/ since it is included in the interior of ¹U s
1 � �2ıº \ ¹U

s
1C�

�

2ıº \ B0.s; r/ (and we did similarly for F2, F3 and F4).
Now, let s 2 j.m/ and .; x; v/ 2 Œ1 C �; 1� � B0.s; r/n¹.s; 0/º such that

U s
 .x; v/ D L

s
 .x; v/ D 0:

Using Lemma 3.1, we see that if r > 0 is small enough,

W.x; v/ D W.x; v/C
1

2
Ls
 .x; v/

2 > W.s; 0/: (3.19)

Hence, for all  2 Œ1C �;1�, the set ¹U s
 D 0º\B0.s; r/ is contained in ¹W � � .m/º.

Assume by contradiction that for any r > 0, the function U s
 takes both positive and

negative values on E.m/ \ B0.s; r/. Then, according to Lemma 2.5, the two CCs of
Or \ ¹W < � .m/º are both included in E.m/ (the one on which U s

 > 0 and the one
where U s

 < 0). This is a contradiction with the fact that s 2 V.1/. Therefore, U s
 has

a sign on E.m/ \ B0.s; r/ and since it depends smoothly on  and cannot vanish on
E.m/ \ B0.s; r/, this sign does not depend on  . In particular, it is given by the sign
of U s

0 on E.m/ \ B0.s; r/ so taking `s such that

`s
� .�s.x0/; v0/ > 0 (3.20)
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for some .x0; v0/ 2E.m/\B0.s; r/, we get that for each  2 Œ1C �;1�, the function
U s
 is positive onE.m/\B0.s; r/. We can then choose ".ı/ > 0 small enough so that

..E.m/C B.0; "// \ B0.s; r// � ¹U
s
1 � �ıº \ ¹U

s
1C�

� �ıº: (3.21)

Similarly, if we denote �s the other CC of ¹W < � .m/º which contains .s; 0/ on
its boundary, one can check that .��1s .��s.x0//;�v0/ 2 �s \ B0.s; r/ \ ¹U

s
0 < 0º

where .x0; v0/ was introduced in (3.20) so U s
 is negative on �s \ B0.s; r/ and�

.�s C B.0; "// \ B0.s; r/
�
� ¹U s

1 � ıº \ ¹U
s
1C�

� ıº: (3.22)

Choosing once again ".r/ small enough, we can even assume that�
E.m/C B.0; "/ \�s C B.0; "/

�
� jW .m/C B0.0; r/ (3.23)

(see [11, Lemma 3.2] for more details). We first prove that �m
�;h

is smooth on F1 \
.�C B.0; "//: let s 2 j.m/ and .x; v/ 2 B0.s; r/ \ ¹U s

1 D 2ıº \ ¹U
s
1C�

� 2ıº \

.�CB.0; "//. According to (3.22), there exists a small ball B centered in .x; v/ such
that

B � .B0.s; r/ \ ¹U
s
1 > ıº \ ¹U

s
1C�

> ıº \ .E.m/C B.0; "///:

Thus, according to (3.9), (3.10), and (3.13), with ı instead of 2ı, we have �m
�;h
D 1

on B , so �m
�;h

is smooth at .x; v/. Obviously, the same goes for F2 \ .�C B.0; "//,
and, similarly, for .x; v/ 2 .F3 [ F4/ \ .�C B.0; "//, we can show that �m

�;h
D 0 in

a neighborhood of .x; v/.
Now, we show that F5 does not meet � C B.0; "/. Recall that � denotes the

CC of ¹W � � .m/º containing m. For s 2 j.m/, we can deduce from (3.19) that if
.; x; v/ 2 Œ1 C �; 1� � @B0.s; r/ is such that U s

 .x; v/ D 0, then .x; v/ … �. Hence,
.; x; v/ 7! jU s

 .x; v/j must attain a positive minimum on Œ1 C �; 1� � .@B0.s; r/ \
�/, so we can choose ı.r; �/ > 0 independent of  such that for all  2 Œ1 C �; 1�,
the set @B0.s; r/ \ ¹jU s

 j � 2ıº does not intersect �. It follows that we can choose
".ı/ > 0 such that

F5 �
�
R2dn�C B.0; "/

�
:

It only remains to prove that, as for F5, the set F6 does not meet � C B.0; "/. If
.x; v/ 2 F6 \ B0.s; r/, (3.21) and (3.13) imply that .x; v/ 2 ¹U s

1 � 2ıº \ ¹U
s
1C�

�

2ıº so using (3.22), we see that .x; v/ is outside �s C B.0; "/. Since it is not in
.E.m/C B.0; "// either, it is outside �C B.0; "/. Now, if .x; v/ 2 F6n.jW .m/C
B0.0; r//, (3.23) implies that .x;v/ is outside[j.m/.�sCB.0;"// so it is also outside
�C B.0; "/ for " small enough and the proof is complete.
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From now on, we fix the sign of `s as well as " > 0 and ı > 0 such that the
conclusion of Proposition 3.2 holds true. In particular, even though we do not make it
appear in the notations, the functions �m and � now depend on �. Finally, we denote

W m.x; v/ D W.x; v/ �
1

2
V.m/ (3.24)

and it is clear from (3.12) that

W m
� S.m/C Q" on supp r�m: (3.25)

Our quasimodes will be the L2-renormalizations of the functions

f m
�;h.x; v/ D �m.x; v/�

m
�;h.x; v/ e�W

m.x;v/=h; m 2 U.0/n¹
S
mº; (3.26)

and, for m D
S
m,

f
S
m;h.x; v/ D e�W S

m.x;v/=h
2 KerPh:

Note that for m ¤
S
m, we have f m

�;h
2 C1c .R

2d / thanks to Proposition 3.2 and

suppf m
�;h � E.m/C B.0; "

0/ (3.27)

where "0 D max."; r/.

3.2. Action of the operator Ph

Let us fix m 2 U.0/n¹
S
mº. For  2 .1; 1�, we will denote

�W m
 .x; v/ D W

m.x; v/C
1

2

X
s2j.m/

Ls
 .x; v/

2: (3.28)

For s 2 j.m/ and x 2 B.s; Qr/, we also denote

Q�s
;h.x; v/ D

Ls
 .x;v/Z
0

e�
s2

2h d s: (3.29)

We now have to compute Phf m
�;h

. We will see fairly easily thanks to (3.35) that Xh0
applied to f m

�;h
will yield a superposition of the exponentials

.e� �Wm
 =h/2Œ1C�;1�: (3.30)
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In view of (3.9), we see that the computation of Qhf m
�;h

will essentially boil down to

the one of Qh. Q�s
;h

e�W
m=h/ which we are already able to do thanks to Lemma 2.4:

Qh. Q�
s
;h e�W

m=h/

D �h

1Z
0

@yL
s.; y/ exp

h
�
1

h

�
W m.x; v/C

1

2
ŒLs.; y/ � . Qxs; v/�

2
�i

dy �
�
Qxs

v

�
;

where Ls.; y/ stands for the vector� 1C y

.4jLs
;vj

2y C .y C 1/2/1=2
Ls
;x;

1 � y

.4jLs
;vj

2y C .y C 1/2/1=2
Ls
;v

�
: (3.31)

Here we disregarded the fact that the linear form L is twisted in x as Qh only acts
in v. Our concern is now to see whether the functions�

exp
h
�
1

h

�
W m.x; v/C

1

2
ŒLs.; y/ � . Qxs; v/�

2
�i�

2Œ1C�;1�;y2Œ0;1�

belong to the family (3.30) as we hoped for some compensations betweenXh0 f
m
�;h

and
Qhf

m
�;h

. It appears to be the case as, denoting for  2 .1; 1� and y 2 Œ0; 1�

� .y/ D
y C 

1C y
; (3.32)

an easy computation shows that

Ls.; y/ D .Ls
� .y/;x

ILs
� .y/;v

/: (3.33)

We sum up the above discussion in the following updated version of Lemma 2.4.

Lemma 3.3. With the notations (3.29), (3.32), and (3.28), we have

hOph.g/.e
�

�Wm

h Ls

;v/ D Qh.
Q�s
;h e�W

m=h/.x; v/

D �h

1Z
0

@y.L� .y// e�
�Wm
� .y/

h dy �
�
Qxs

v

�
:

Moreover,

Oph.my;h Id/ ı bh. Q�s
;h e�

Wm.x;v/
h /

D 2h.2�h/�d=2 e�
V.x/�V.m/

2h
.y C 1/d�2

.4y/
d
2

�

Z
v02Rd

e�
1
h
. v
02

4 C
y
8 .vCv

0/2C .v�v
0/2

8y C 12L
s
 .x;v

0/2/ d v0Ls
;v: (3.34)
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We are now in position to give a precise computation of Phf m
�;h

.

Proposition 3.4. Let f m
�;h

be the quasimode defined in (3.26) and recall the nota-
tions (3.7) and (3.28). There exist some functions Rm

�;h
and .!m

�;z/z2Œ1C�;1� in
L2.R2d / such that

(1) the function Phf m
�;h
�Rm

�;h
is supported in jW .m/C B0.0; r/;

(2) the function Rm
�;h

is O�;L2.h
3Cd
2 e�

S.m/
h /;

(3) for .x; v/ 2 jW .m/C B0.0; r/, one has

.Phf
m
�;h �R

m
�;h/.x; v/ D

� h
2�

�1=2 1Z
1C�

!m
�;z.x; v/ exp

h
�
1

h
�W m
z .x; v/

i
d z

where, using the notation (1.11), we have the expression

!m
�;z.x; v/ D

X
s2j.m/

�
ks
�.z/

�
0 �Vs

Id 0

��
Ls
zIx

Ls
zIv

�

�

zZ
1C�

ks
�./ d 

�
@zL

s
zIx

@zL
s
zIv

��
�

�
Qxs

v

�
:

Proof. In order to lighten the notations, we will drop some of the exponents and
indexes m, s, � and h in the proof. We know that � is smooth on the support of � and
since � is constant outside of jW .m/C B0.0; r/, we have

r� D
1

2

X
s2j.m/

.As
h/
�1

1Z
1C�

ks./�.U s
 / e�.L

s
 /
2=2h
rLs

 1B0.s;r/ d : (3.35)

Using Corollary 2.3, we can then begin by computing

Qh.f / D hOph.g/..@v�/� e�W
m=h
C.@v�/� e�W

m=h/

D
h

2

X
s2j.m/

.As
h/
�1

1Z
1C�

ks./Oph.g/.��.U
s
 / e�

�Wm

h 1B0.s;r/L

s
;v/ d 

CO�.h e�
S.m/CQ"

h /; (3.36)

as � now depends on �, where we used (3.25) as well as the fact that Oph.g/
is bounded uniformly in h since g 2 S1=2.h.v; �/i�1/. Now, since ��.U s

 / � 1 D

O�..x � s; v/2/, we have thanks to Lemma 3.1 and by a standard Laplace method
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(see Proposition D.1) that

.��.U s
 / � 1/ e�

�Wm

h 1B0.s;r/rL

s
 D O�.h

1Cd2 e�
S.m/
h /: (3.37)

Hence, still by the boundedness of Oph.g/, we get that

Oph.g/.��.U
s
 / e�

�Wm

h 1B0.s;r/L

s
;v/

D Oph.g/.e
�

�Wm

h 1B0.s;r/L

s
;v/d CO�.h

1Cd2 e�
S.m/
h /: (3.38)

In the same spirit, we can write

1B0.s;r/L
s
;v D 1jx�sj<Qr.1jvj<r � 1C 1/L

s
;v D 1jx�sj<Qr L

s
;v C �

with � supported in ¹.x; v/I jx � sj < Qr and jvj � rº and such that k�k1 � C� ; so,
using the boudedness of Oph.g/ again and the fact that it is local in the variable x, as
well as (3.1), we get

Oph.g/.e
�

�Wm

h 1B0.s;r/L

s
;v/

D Oph.g/.e
�

�Wm

h Ls

;v/1jx�sj<Qr CO�.h
1Cd2 e�

S.m/
h /: (3.39)

Hence, putting (3.38) and (3.39) together and using (3.8), we get that (3.36) becomes

Qh.f / D
� h
2�

�1=2X
s2j.m/

1Z
1C�

ks./Oph.g/.e
�

�Wm

h Ls

;v/ d  1jx�sj<Qr

CO�.h
3Cd
2 e�

S.m/
h /; (3.40)

which further gives

Qh.f /CO�.h
3Cd
2 e�

S.m/
h / D �

� h
2�

�1=2X
s2j.m/

1Z
1C�

ks./

1Z
0

@y.L� .y//

� exp
h
�
1

h
�W m
� .y/

i
dy �

�
Qxs

v

�
d  1jx�sj<Qr

(3.41)

thanks to Lemma 3.3. By the change of variable z D � .y/, the integral in y from
(3.41) becomes

1Z


@z.L
s
z/ exp

h
�
1

h
�W m
z .x; v/

i
d z:
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Therefore, switching the order of integration and using (3.1) again, (3.41) yields that
the function Qh.f / satisfies

Qh.f /.x; v/CO�.h
3Cd
2 e�

S.m/
h /

D �

� h
2�

�1=2X
s2j.m/

1Z
1C�

zZ
1C�

ks./ d @z.Ls
z/ �

�
Qxs

v

�
e�

�Wm
z .x;v/

h d z 1B0.s;r/.x; v/:

(3.42)

Now, the computation for the transport term is easier: according to (3.35), we have

Xh0 f D h

�
v

�@xV

�
� rf

D h

�
v

�@xV

�
� r� � e�W

m=h
Ch

�
v

�@xV

�
� r� � e�W

m=h

D
h

2
�
X

s2j.m/

.As
h/
�1

1Z
1C�

ks.z/�.U s
z /

�
v

�@xV

�
� rLs

z e�
�Wm
z
h 1B0.s;r/ d z

CO�.h e�
S.m/CQ"

h /

thanks to (3.25). Here again, we can use (3.8) and (3.37) to get

Xh0 f D
� h
2�

�1=2X
s2j.m/

1Z
1C�

ks.z/

�
v

�@xV

�
� rLs

z e�
�Wm
z
h 1B0.s;r/ d z

CO�.h
3Cd
2 e�

S.m/
h /:

Recalling that the differential of �s at s is the identity, the last step consists in using
(3.6) to write�

v

�@xV

�
� rLs

z D

�
0 Id
�Vs 0

��
Qxs

v

�
�

�
Ls
z;x

Ls
z;v

�
CO�.. Qxs; v/

2/

D

�
0 �Vs

Id 0

��
Ls
z;x

Ls
z;v

�
�

�
Qxs

v

�
CO�.. Qxs; v/

2/

and the same argument that we used to establish (3.37) yields that the function Xh0 f
satisfies

Xh0 f .x; v/CO�;L2.h
3Cd
2 e�S.m/=h/

D

� h
2�

�1=2X
s2j.m/

1Z
1C�

ks.z/

�
0 �Vs

Id 0

��
Ls
z;x

Ls
z;v

�
�

�
Qxs

v

�
e�

�Wm
z .x;v/

h d z1B0.s;r/.x; v/:
(3.43)
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The conclusion follows from (3.42) and (3.43).

Remark 3.5. Since P �
h
D �Xh0 CQh, it is clear from (3.42) and (3.43) that

P �h f
m
�;h D

� h
2�

�1=2 1Z
1C�

�
!m
�;z.x; v/ exp

h
�
1

h
�W m
z .x; v/

i
d z CO�;L2.h

3Cd
2 e�

S.m/
h /

with

�
!m
�;z.x; v/ D �

X
s2j.m/

�
ks
�.z/

�
0 �Vs

Id 0

��
Ls
zIx

Ls
zIv

�

C

zZ
1C�

ks
�./ d 

�
@zL

s
zIx

@zL
s
zIv

��
�

�
Qxs

v

�
1jW .m/CB0.0;r/

.x; v/:

3.3. Choices of ` and k

Following the steps from [1, 11], we would like in view of Proposition 3.4 to find
.`s/s2j.m/ � R2d satisfying (3.2) and (3.3) as well as some probability densities
.ks
�/s2j.m/ on Œ1 C �; 1� for which the leading term of Phf m

�;h
vanishes, i.e., such

that

ks
�.z/

�
0 �Vs

Id 0

��
Ls
zIx

Ls
zIv

�
�

zZ
1C�

ks
�./ d 

�
@zL

s
zIx

@zL
s
zIv

�
D 0; (3.44)

for all s 2 j.m/; z 2 Œ1 C �; 1�.
As it will be more convenient to handle than the function ks

� , let us introduce the
cumulative distribution function (CDF) on Œ1 C �; 1� associated to ks

� :

Ks
�.z/ D

zZ
1C�

ks
�./ d : (3.45)

Lemma 3.6. Recall the notations (1.11)–(1.12). If .`s/s2j.m/ is a family of vectors
satisfying (3.2) and .ks

�/s2j.m/ is a family of probability densities on Œ1 C �; 1� for
which (3.44) holds true, then

Vs`
s
v D �s`

s
v; `s

x D �
p
2j�sj`

s
v (3.46)

(in particular, `s
x satisfies (3.3)) and the function Ks

� defined in (3.45) is a CDF on
Œ1 C �; 1� satisfying the ODE

.Ks
�/
0.z/ �

2
p
2p

j�sjP.z/
Ks
�.z/ D 0: (3.47)



Spectral asymptotics and metastability for the linear relaxation Boltzmann equation 1223

Proof. Let .`s/s2j.m/ and .ks
�/s2j.m/ satisfying the hypotheses of the lemma. Accord-

ing to (2.8), (3.2), and (3.44), we have

�ks
�.z/Vs`

s
v C 2

Ks
�.z/

P.z/
`s
x D 0 and ks

�.z/`
s
x C 4

Ks
�.z/

P.z/
`s
v D 0; (3.48)

from which we deduce that there exists �s < 0 such that `s
x D �s`

s
v and consequently,

that `s
v is an eigenvector of Vs associated to its negative eigenvalue �s. Plugging these

informations in (3.48), we obtain

j�sjk
s
�.z/C 2�s

Ks
�.z/

P.z/
D 0 and �sk

s
�.z/C 4

Ks
�.z/

P.z/
D 0

which yield �s D �
p
2j�sj and (3.47).

Since the sign of `s was fixed by Proposition 3.2 and j`s
vj
2 D 1, the choice of `s is

entirely determined by (3.46). Unfortunately, there is no CDF on Œ1 C �; 1� satisfy-
ing (3.47). However, there exists a CDF on the whole segment .1; 1� solving (3.47),
which up to renormalization is given by

Ks
0.z/ D

�z � 1
z � 2

� 1

2
p
j�sj ; i.e., ks

0.z/ D
1 � 2

2
p
j�sj.z � 2/2

�z � 1
z � 2

� 1

2
p
j�sj
�1

:

(3.49)
This leads to the introduction of the following CDF on Œ1 C �; 1� which will be an
approximate solution of (3.47):

Ks
�.z/ D

Ks
0.z/ �K

s
0.1 C �/

Bs
�

and ks
�.z/ D .K

s
�/
0.z/ D

ks
0.z/

Bs
�

(3.50)

where

Bs
� D K

s
0.1/ �K

s
0.1 C �/ D K

s
0.1/CO.�

1

2
p
j�sj /: (3.51)

Lemma 3.7. Recall the notation (1.12) and let .`s/s2j.m/ a family of vectors satisfy-
ing (3.2) and (3.46) and whose signs are fixed by Proposition 3.2. Let also .ks

�/s2j.m/

be the probability densities on Œ1 C �; 1� defined in (3.50). Then, for all s 2 j.m/

and .x; v/ 2 B0.s; r/, the prefactor from Proposition 3.4 satisfies

!m
�;z.x; v/ D O.�

1

2
p
j�sj /

�
@zL

s
zIx

@zL
s
zIv

�
�

�
Qxs

v

�
:

Proof. By some computations similar to the ones we made in the proof of Lemma 3.6,
we get that the choice of .`s/s2j.m/ implies that

!m
�;z.x; v/ D

p
j�sjP.z/

2
p
2

h
ks
�.z/ �

2
p
2p

j�sjP.z/
K�.z/

i�@zLs
zIx

@zL
s
zIv

�
�

�
Qxs

v

�
:
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The term between brackets is exactly the one appearing in (3.47); so, using (3.50) and
the fact that K0 is a solution of (3.47), we get

!m
�;z.x; v/ D

Ks
0.1 C �/

Bs
�

�
@zL

s
zIx

@zL
s
zIv

�
�

�
Qxs

v

�
D O.�

1

2
p
j�sj /

�
@zL

s
zIx

@zL
s
zIv

�
�

�
Qxs

v

�
by (3.51) and the definition of Ks

0.

Proposition 3.8. Recall the notation (1.12) and let f m
�;h

be the quasimode defined
in (3.26) with .`s/s2j.m/ and .ks

�/s2j.m/ satisfying the hypotheses from Lemma 3.7.
Then

kPhf
m
�;hk D h e�

S.m/
h kf m

�;hk
�
O�.h

1
2 /CO.�

1

2
p
j�sj j ln.�/j/

�
:

Proof. First notice that, thanks Hypothesis 2.8 (a), one can apply a standard Laplace
method (see Proposition D.1) to obtain with the notation (1.11)

kf m
�;hk

2
D

.2�h/d

det.Vm/1=2
.1CO.h//: (3.52)

Hence, according to Proposition 3.4, it is sufficient to show thatPhf m
�;h �R

m
�;h

 D h1Cd2 e�
S.m/
h O.�

1

2
p
j�sj j ln.�/j/: (3.53)

Still using Proposition 3.4 as well as Minkowski’s integral inequality and Lemma 3.7,
we have

kPhf
m
�;h �R

m
�;hk

� Ch1=2
1Z

1C�

� Z
jW .m/CB0.0;r/

!m
�;z.x; v/

2 exp
h
�
2

h
�W m
z .x; v/

i
d.x; v/

�1=2
d z

� Ch1=2�
1

2
p
j�sj

1Z
1C�

� X
s2j.m/

Z
B0.s;r/

�
@zL

s
zIx

@zL
s
zIv

��
@zL

s
zIx

@zL
s
zIv

�T�
Qxs

v

�
�

�
Qxs

v

�

� exp
h
�
2

h
�W m
z .x; v/

i
d.x; v/

�1=2
d z:

With the notation (1.11), the change of variables

.y; w/ D
�2
h

�1=2�
Ws C

�
Ls
zIx

Ls
zIv

��
Ls
zIx

Ls
zIv

�T�1=2
. Qxs; v/
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then yields according to Lemma 3.1

kPhf
m
�;h �R

m
�;hk

� Ch1C
d
2 e�

S.m/
h �

1

2
p
j�sj

1Z
1C�

� X
s2j.m/

Z
R2d

aza
T
z

�
y

w

�
�

�
y

w

�
e�

.y;w/2

2 d.y; w/
�1=2

d z;

(3.54)

where

az D

�
Ws C

�
Ls
zIx

Ls
zIv

��
Ls
zIx

Ls
zIv

�T��1=2�
@zL

s
zIx

@zL
s
zIv

�
:

Thanks to Proposition C.1, we know that

.2�/�d
Z

R2d

aza
T
z

�
y

w

�
�

�
y

w

�
e�

.y;w/2

2 d.y; w/

D jazj
2
D

�
Ws C

�
Ls
zIx

Ls
zIv

��
Ls
zIx

Ls
zIv

�T��1�
@zL

s
zIx

@zL
s
zIv

�
�

�
@zL

s
zIx

@zL
s
zIv

�
: (3.55)

Since by (2.8)�
Ws C

�
Ls
zIx

Ls
zIv

��
Ls
zIx

Ls
zIv

�T��1�
@zL

s
zIx

@zL
s
zIv

�
D

�8

P.z/3=2

�
.2j�sj/

�1=2.1 � z/ `s
v

.1C z/`s
v

�
;

we get

jazj
2
D

16

P.z/3
.2.1C z/2 � .1 � z/2/ D

16

P.z/2
: (3.56)

Putting together (3.54), (3.55), (3.56), and computing the integral in z, we obtain
(3.53), so the proof is complete.

4. Computation of the approximated small eigenvalues

Let us denote

Qf m
�;h D

f m
�;h

kf m
�;h
k

(4.1)

the renormalization of the quasimodes defined in (3.26) and satisfying the hypotheses
of Proposition 3.8. The goal of this section is to compute the approximated eigenval-
ues

Q�m
�;h´ hPh

Qf m
�;h;
Qf m
�;hi D hQh

Qf m
�;h;
Qf m
�;hi (4.2)

as Xh0 is a skew-adjoint differential operator and Qf m
�;h

is real valued.
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This will require to study the matrix

H s
 D

0BBBBB@
Vs C 2L;xL

T
;x L;xL

T
;v L;xL

T
;v

L;vL
T
;x

1

2
C L;vL

T
;v 0

L;vL
T
;x 0

1

2
C L;vL

T
;v

1CCCCCA ; (4.3)

where we used the notation (1.11) and for shortness, we wrote L;x and L;v instead
of Ls

;x and Ls
;v .

Lemma 4.1. For  2 Œ1 C �; 1�, the matrix H s
 is positive definite.

Proof. It suffices to notice that

H s


 
x
v
v0

!
�

 
x
v
v0

!
D

�
Ws C

�
Ls
 Ix

Ls
 Iv

��
Ls
 Ix

Ls
 Iv

�T��
x

v

�
�

�
x

v

�
C

�
Ws C

�
Ls
 Ix

Ls
 Iv

��
Ls
 Ix

Ls
 Iv

�T��
x

v0

�
�

�
x

v0

�
and apply Lemma 3.1.

In the spirit of Proposition 2.2 and with the notation (2.3), let us denote

Qy;h D b
�
h ı Oph.my;h Id/ ı bh: (4.4)

For m 2 U.0/n¹
S
mº, s 2 j.m/, we also denote h�; �iQr the inner product on L2.B.s; Qr/�

Rdv /.

Lemma 4.2. Let s 2 j.m/ for some m 2 U.0/n¹
S
mº and recall the notations (1.11),

(3.24), and (3.29). Then, for all  2 Œ1 C �; 1� and y 2 .0; 1/,

hQy;h. Q�
s
;h e�

Wm.x;v/
h /; Q�s

;h e�
Wm.x;v/

h iQr

D 2h2 e
�2S.m/

h .2�h/d j det Vsj
�1=2 1CO�.h/

.1C y/.1C .1C 2jLs
;vj

2/y/
jLs
;vj

2:

Proof. First, let us use the definition of Qy;h to write

hQy;h. Q�
s
;h e�

Wm.x;v/
h /; Q�s

;h e�
Wm.x;v/

h iQr

D hOph.my;h Id/ ı bh. Q�s
;h e�

Wm.x;v/
h /; bh. Q�

s
;h e�

Wm.x;v/
h /iQr :
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Using (3.34), we get

hQy;h. Q�
s
;h e�

Wm.x;v/
h /; Q�s

;h e�
Wm.x;v/

h iQr

D 2h2.2�h/�d=2
.y C 1/d�2

.4y/
d
2

e
V.m/
h jLs

;vj
2

�

Z
jx�sj<Qr

v;v02Rd

exp
h
�
1

h
.V .x/C

v2 C v02

4
C
y

8
.v C v0/2 C

.v � v0/2

8y

C
Ls
 .x; v/

2 C Ls
 .x; v

0/2

2
/
i

d x d v d v0: (4.5)

By the change of variables x0D�s.x/ and with the notation � .m/ from Definition 2.7,
the last integral becomes

e
�2� .m/

h

Z
j��1s .x0/�sj<Qr;

v; v02Rd

exp

"
�
1

2h
H s
;y

 
x0

v
v0

!
�

 
x0

v
v0

!#
j detDx0��1s j d x

0 d v d v0 (4.6)

where, using the notation (4.3),

H s
;y D

0B@Vs C 2L;xL
T
;x L;xL

T
;v L;xL

T
;v

L;vL
T
;x

.yC1/2

4y
C L;vL

T
;v

y2�1
4y

L;vL
T
;x

y2�1
4y

.yC1/2

4y
C L;vL

T
;v

1CA
D H s

 C

0B@0 0 0

0 y2C1
4y

y2�1
4y

0 y2�1
4y

y2C1
4y

1CA (4.7)

is a positive-definite matrix uniformly in .; y/ 2 Œ1 C �; 1� � .0; 1/, thanks to
Lemma 4.1. Hence, .H s

;y/
�1=2 exists and is O�.1/ so by a standard Laplace method

(see Proposition D.1),Z
j��1s .x0/�sj<Qr;

v; v02Rd

exp

"
�
1

2h
H s
;y

 
x0

v
v0

!
�

 
x0

v
v0

!#
j detDx0��1s j d x

0 d v d v0

D .2�h/3d=2 det.H s
;y/
�1=2.1CO�.h//

D .2�h/3d=2j det Vsj
�1=2 .4y/d=2

.1C y/d�1.1C .1C 2jLs
;vj

2/y/
.1CO�.h//; (4.8)

where we also used Lemma B.2. The conclusion then follows from (4.5), (4.6),
and (4.8).
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Lemma 4.3. Recall the notation (3.32) and let 1 C � � z �  < 1. For y 2 Œ0; 1/,
we have

��1z ı � .y/ 2 Œ0; 1/

and

Qy;h. Q�
s
;h e�

Wm.x;v/
h / D .��1z ı � /

0.y/Q��1z ı� .y/;h.
Q�s
z;h e�

Wm.x;v/
h /

on B.s; Qr/ �Rdv .

Proof. First, notice that for all  2 Œ1 C �; 1/, the function � W Œ0; 1/! Œ; 1/ is an
increasing bijection whose inverse is given by

��1 .y/ D
y � 

1 � y
; (4.9)

so the first assertion follows from the hypothesis on z and  . Now, by Lemma 3.3
applied with Qy;h instead of Qh, we get, using the notation (3.31) as well as (3.33),
that, on B.s; Qr/ �Rdv ,

Qy;h. Q�
s
;h e�

Wm.x;v/
h / D �h @yL.; y/ e�

�W�.y/.x;v/
h �

�
Qxs

v

�
(4.10)

(here we once again disregarded the fact that the linear form L is twisted in x as
Qy;h only acts in v). Thus, denoting @2L.; �/ the derivative of L with respect toits
second argument and still using (3.33), we also have

Qy;h. Q�
s
;h e�

Wm.x;v/
h /

D �h @y.L� .y// e�
�W�.y/.x;v/

h �

�
Qxs

v

�
D �h @y.L.z; �

�1
z ı � .y/// e�

�W�.y/.x;v/
h �

�
Qxs

v

�
D �h .��1z ı � /

0.y/ @2L.z; �
�1
z ı � .y// e�

�W�.y/.x;v/
h �

�
Qxs

v

�
so (4.10) with Q��1z ı� .y/;h and Q�s

z;h
yields the last statement.

Proposition 4.4. With the notations (1.11), (1.12), (3.49), and (4.2), we have for m 2

U.0/n¹
S
mº

Q�m
�;h D h Q%�;h.m/ e

�2S.m/
h
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with

Q%�;h.m/CO�.h/CO.�
1

2
p
j�sj / D

1

�

X
s2j.m/

�2Cp2
2 �
p
2

� 1p
j�sj
� det Vm

j det Vsj

�1=2
�

Z
1�z�<1

ks
0./k

s
0.z/ ln

�
2
.1C z/.1C /

1C 3z C 3 C z

�
d z d :

Proof. As we mentioned at the beginning of the section, since Xh0 is a skew-adjoint
differential operator and Qf m

�;h
is real valued, we have

hPh Qf
m
�;h;
Qf m
�;hi D hQh

Qf m
�;h;
Qf m
�;hi:

Now, by Proposition 2.2, we get

hQhf
m
�;h; f

m
�;hi D hOph.mh Id/.bhf m

�;h/; bhf
m
�;hi (4.11)

and we saw through (3.36)–(3.40) that

bhf
m
�;h D

� h
2�

�1=2X
s2j.m/

1Z
1C�

ks
�./ e�

�Wm

h Ls

;v d 1jx�sj<Qr

CO�.h
3Cd
2 e�

S.m/
h / (4.12)

D .2�h/�1=2
X

s2j.m/

1Z
1C�

ks
�./bh.

Q�;h e�
Wm.x;v/

h / d 1jx�sj<Qr

CO�.h
3Cd
2 e�

S.m/
h / (4.13)

Note that (4.12) also implies

bhf
m
�;h D O�.h

1Cd
2 e�

S.m/
h /: (4.14)

Combining the boundedness of Oph.mh Id/ with (4.13)–(4.14) and using the nota-
tion (4.4), (4.11) becomes

hQhf
m
�;h; f

m
�;hi

D

X
s2j.m/

Z
Œ1C�;1�

2

ks
�./k

s
�.z/hQh.

Q�;h e�
Wm.x;v/

h /; Q�z;h e�
Wm.x;v/

h iQr d  d z.2�h/�1

CO�.h
dC2 e�

2S.m/
h /



T. Normand 1230

D

X
s2j.m/

1Z
0

Z
Œ1C�;1�

2

ks
�./k

s
�.z/hQy;h.

Q�;h e�
Wm.x;v/

h /; Q�z;h e�
Wm.x;v/

h iQr d  d z dy

� .2�h/�1 CO�.h
dC2 e�

2S.m/
h /

D

X
s2j.m/

1Z
0

Z
1C��z�<1

ks
�./k

s
�.z/hQy;h.

Q�;h e�
Wm.x;v/

h /; Q�z;h e�
Wm.x;v/

h iQr d z d  dy

� 2.2�h/�1 CO�.h
dC2 e�

2S.m/
h /; (4.15)

where for the last equation we used the fact that Qy;h is self-adjoint. Applying
Lemma 4.3 together with the change of variables Qy D ��1z ı � .y/, we get that (4.15)
yields

hQhf
m
�;h; f

m
�;hi CO�.h

dC2 e�
2S.m/
h /

D 2.2�h/�1
X

s2j.m/

Z
1C��z�<1

1Z
��1z ./

ks
�./k

s
�.z/hQ Qy;h.

Q�z;h e�
Wm.x;v/

h /;

Q�z;h e�
Wm.x;v/

h iQr d Qy d z d 

which by Lemma 4.2 is further equal to

2

�
h.2�h/d e

�2S.m/
h

X
s2j.m/

j det Vsj
�1=2

�

Z
1C��z�<1

1Z
��1z ./

ks
�./k

s
�.z/jL

s
z;vj

2

.1C Qy/.1C .1C 2jLs
z;vj

2/ Qy/
d Qy d z d : (4.16)

By partial fraction decomposition, the Qy-integral becomes

1Z
��1z ./

1

.1C Qy/.1C .1C 2jLs
z;vj

2/ Qy/
d Qy

D
1

2jLs
z;vj

2

1Z
��1z ./

1C 2jLs
z;vj

2

1C .1C 2jLs
z;vj

2/ Qy
�

1

1C Qy
d Qy

D
1

2jLs
z;vj

2
ln
� .1C jLs

z;vj
2/.1C ��1z .//

1C .1C 2jLs
z;vj

2/��1z ./

�
(4.17)
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and, using (3.4)–(3.5) as well as (4.9), the quantity in the logarithm from (4.17) sim-
plifies as follows:

.1C jLs
z;vj

2/.1C ��1z .//

1C .1C 2jLs
z;vj

2/��1z ./
D

.P.z/C .1 � z/2/.1 � z/.1C /

P.z/.1 � z/C .3z2 C 2z C 3/. � z/

D 2
.1C z/2.1 � z/.1C /

.1 � z2/.1C 3z C 3 C z/

D 2
.1C z/.1C /

1C 3z C 3 C z
: (4.18)

Putting together (4.16), (4.17), (4.18) and using (3.52), we get

hPh Qf
m
�;h;
Qf m
�;hi CO�.h

2 e�
2S.m/
h /

D
h

�
e
�2S.m/

h

X
s2j.m/

� det Vm

j det Vsj

�1=2 Z
1C��z�<1

ks
�./k

s
�.z/ ln

�
2
.1C z/.1C /

1C 3z C 3 C z

�
d z d :

(4.19)

Now, the function 1C 3z C 3 C z is non-negative on Œ1; 1�2 and vanishes only at
.1; 1/. Moreover, we have by Taylor expansion that

1C 3z C 3 C z �
j.; z/ � .1; 1/j

C
� max

�z � 1
C

;
 � 1

C

�
for .; z/ 2 Œ1; 1�2 close enough to .1; 1/ and thus

ln
�
2

.1C z/.1C /

1C 3z C 3 C z

�
D O.j ln.z � 1/j/

holds as well as

ln
�
2

.1C z/.1C /

1C 3z C 3 C z

�
D O.j ln. � 1/j/:

Besides, by (3.50) and (3.51), we have

ks
�.z/ D

� 2 �p2
2C
p
2

� �1

2
p
j�sj ks

0.z/.1CO.�
1

2
p
j�sj //; (4.20)

with
ks
0.z/ D O.jz � 1j

1

2
p
j�sj
�1
/

on Œ1; 1�. Consequently, the integralZ
1�z�<1

ks
0./k

s
0.z/ ln

�
2
.1C z/.1C /

1C 3z C 3 C z

�
d z d 
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exists and we haveZ
1C��z�<1

ks
0./k

s
0.z/ ln

�
2
.1C z/.1C /

1C 3z C 3 C z

�
d z d  CO.�

1

2
p
j�sj /

D

Z
1�z�<1

ks
0./k

s
0.z/ ln

�
2
.1C z/.1C /

1C 3z C 3 C z

�
d z d : (4.21)

Combining (4.19), (4.20), and (4.21), we get the announced result.

5. Proof of the main results

We now introduce a series of results which will enable us to go from the approximated
eigenvalues of Ph to the actual ones.

Lemma 5.1. Let m 2 U.0/n¹
S
mº. Using the notations (1.12), (4.1), and (4.2), we have

(i) kPh Qf
m
�;h
k D

q
h Q�m

�;h
.O�.h

1
2 /CO.�

1

2
p
j�sj j ln.�/j//;

(ii) kP �
h
Qf m
�;h
k D

q
h Q�m

�;h
.O�.h

1
2 /CO.j ln.�/j//.

Proof. The first item is an immediate consequence of Propositions 3.8 and 4.4. The
second one can be obtained similarly using Remark 3.5 and mimicking the proof of
Proposition 3.8 after noticing that

�
!m
�;z.x; v/ D O.1/

�
@zL

s
zIx

@zL
s
zIv

�
�

�
Qxs

v

�
:

Lemma 5.2. For m and m0 two distinct elements of U.0/,

(i) hPh Qf
m
�;h
; Qf m0

�;h
i D O�.h

1

q
Q�m
�;h
Q�m0

�;h
/;

(ii) there exists c > 0 such that h Qf m
�;h
; Qf m0

�;h
i D O.e�c=h/.

Proof. The proof is a straightforward adaptation of the one in [11, Lemma 5.5], even
though the operator Ph and the quasimodes . Qf m

�;h
/m differ from the ones of this refer-

ence. We recall the main steps for the reader’s convenience.

(i) The idea is to use (3.27), the fact that Ph is local in x, Hypothesis 2.8 and the
support properties of r�m

�;h
and r�m to show that

jhPhf
m
�;h; f

m0

�;h ij � hOph.mh Id/.�m
�;h.@v�m/ e�W

m=h/; bhfm0;hi

D O�.h
1 e�

S.m/CS.m0/
h /

by (4.14). We can then conclude with (3.52).
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(ii) It is shown in [11, proof of Lemma 5.5] that, when V.m/ D V.m0/, the sup-
ports of f m

�;h
and f m0

�;h
do not meet. Thus, we can suppose that V.m/ > V.m0/ and, in

that case, using once again (3.27) and Hypothesis 2.8, we show that

hf m
�;h; f

m0

�;h i D

Z
E.m/CB.0;"0/

�m
�;h�

m0

�;h�m�m0 e�
2V�V.m/�V.m0/Cv2

2h d.x; v/ D O.e�
V.m/�V.m0/

2h /;

so the conclusion immediately follows from (3.52).

In order to go from quasimodes to functions that actually belong to the generalized
eigenspace associated to the small eigenvalues of Ph, let us now consider the operator

…0 D
1

2i�

Z
jzjDch

.z � Ph/
�1 d z

introduced in [13]. Using the resolvent estimates from Theorem 1.2, the following is
established in [13].

Proposition 5.3. The operator…0 is a projector on the generalized eigenspace asso-
ciated to the small eigenvalues of Ph and satisfies k…0k D O.1/.

Lemma 5.4. Using the notations (1.12), (4.1), and (4.2), for any m 2 U.0/, we have

k.1 �…0/ Qf
m
�;hk D

q
Q�m;h

�
O�.1/CO.h

�1=2�
1

2
p
j�sj j ln.�/j/

�
:

Proof. We simply recall the proof from [8]. We write

.1 �…0/ Qf
m
�;h D

1

2i�

Z
jzjDch

.z�1 � .z � Ph/
�1/ Qf m

�;h d z

D
�1

2i�

Z
jzjDch

z�1.z � Ph/
�1Ph Qf

m
�;h d z:

We can then conclude using Lemma 5.1 and the resolvent estimate from Theorem 1.2.

Lemma 5.5. Recall the notations (1.12), (4.1), and (4.2). The family .…0
Qf m
�;h
/m2U.0/

is almost orthonormal: there exists c > 0 such that

h…0
Qf m
�;h;…0

Qf m0

�;h i D ım;m0 CO�.e�c=h/:

In particular, it is a basis of the space Ran…0.
Moreover, we have

hPh…0
Qf m
�;h;…0

Qf m0

�;h i D ım;m0
Q�m
�;h C

q
Q�m
�;h
Q�m0

�;h

�
O�.
p
h /CO.�

1

2
p
j�sj j ln.�/j2/

�
:
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Proof. The proof is the same as the one of [8, Proposition 4.10]. It suffices to write

h…0
Qf m
�;h;…0

Qf m0

�;h i D h
Qf m
�;h;
Qf m0

�;h i C h
Qf m
�;h; .…0 � 1/ Qf

m0

�;h i C h.…0 � 1/ Qf
m
�;h;…0

Qf m0

�;h i

as well as

hPh…0
Qf m
�;h;…0

Qf m0

�;h i D hPh
Qf m
�;h;
Qf m0

�;h i C h.…0 � 1/ Qf
m
�;h; P

�
h
Qf m0

�;h i

C h…0Ph Qf
m
�;h; .…0 � 1/ Qf

m0

�;h i:

and use all the previous results of this section together with Proposition 4.4.

Let us re-label the local minima m1; : : : ;mn0 so that .S.mj //jD1;:::;n0 is non-
increasing in j . For shortness, we will now denote

Qfj D Qf
mj
�;h

and Q�j D Q�
mj
�;h

which still depend on � and h. Note in particular that, according to Proposition 4.4,
Q�j D O�. Q�k/ whenever 1 � j � k � n0. We also denote . Quj /jD1;:::;n0 the orthogo-
nalization by the Gram–Schmidt procedure of the family .…0

Qfj /jD1;:::;n0 and

uj D
Quj

k Quj k
:

In this setting and with our previous results, we get the following (see [8, Proposition
4.12] for a proof).

Lemma 5.6. With the notations (1.12), (4.1), and (4.2), for all 1 � j; k � n0, it holds

hPhuj ; uki D ıj;k Q�j C

q
Q�j Q�k

�
O�.
p
h /CO.�

1

2
p
j�sj j ln.�/j2/

�
:

In order to compute the small eigenvalues ofPh, let us now consider the restriction
PhjRan …0 WRan…0 ! Ran…0. We denote by Ouj D un0�jC1, O�j D Q�n0�jC1 and M

the matrix of PhjRan…0 in the orthonormal basis . Ou1; : : : ; Oun0/. Since Oun0 D u1 D Qf1,
we have

M D

�
M0 0

0 0

�
where M0 D .hPh Ouj ; Ouki/1�j;k�n0�1

and it is sufficient to study the spectrum of M0. We will also denote by ¹ yS1 < � � �< ySpº
the set ¹S.mj / W 2 � j � n0º and’ for 1 � k � p, by Ek the subspace of L2.R2d /
generated by ¹ Our W S.mr/ D ySkº. Finally, we set

$k D e�. ySk�ySk�1/=h for 2 � k � p

and

"j .$/ D

jY
kD2

$k D e�. ySj�yS1/=h for 2 � j � p
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(with the convention "1.$/ D 1). In view of Proposition 4.4, let us also denote

Q%0.m/ D
1

�

X
s2j.m/

�2Cp2
2 �
p
2

�g
r

1p
j�sj

� det Vm

j det Vsj

�1=2
�

Z
1�z�<1

ks
0./k

s
0.z/ ln

�
2
.1C z/.1C /

1C 3z C 3 C z

�
d z d 

and
O�0j D h Q%0.mn0�jC1/ e

�2S.mn0�jC1
/

h :

Lemma 5.7. With the above notations, the matrix M0 satisfies

h�1 e2 yS1=h M0 D �.$/
�
M #
0 CO�.

p
h /CO.�

1

2
p
j�sj j ln.�/j2/

�
�.$/

with
M #
0 D diag. Q%0.mn0�jC1/ W 1 � j � n0 � 1/

and
�.$/ D diag."1.$/ IdE1 ; : : : ; "p.$/ IdEp /:

In particular, for all � > 0, there exists h0 > 0 such that, for all 0 < h < h0,

h�1 e2 yS1=h M0 D �.$/
�
M #
0 CO.�

1

2
p
j�sj j ln.�/j2/

�
�.$/:

Remark 5.8. In the words of [8, Definition A.1], the last lemma implies that for all
� > 0, there exists h0 > 0 such that for all 0 < h < h0,

h�1 e2 yS1=h M0 is a ..Ek/k;$; �
1

2
p
j�sj j ln.�/j2/-graded matrix:

Proof. According to Lemma 5.6 and Proposition 4.4, we can decompose

M0 DM01 CM02

with
M01 D diag. O�0j W 1 � j � n0 � 1/

and

M02 D
�q
O�j O�kŒO�.

p
h /CO.�

1

2
p
j�sj j ln.�/j2/�

�
1�j;k�n0�1

:

It then suffices to notice that M #
0 D h

�1 e2 yS1=h�.$/�1M01�.$/
�1 and that

h�1 e2 yS1=h�.$/�1M02�.$/
�1
D O�.

p
h /CO.�

1

2
p
j�sj j ln.�/j2/;

where we still used Proposition 4.4.
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Proof of Theorem 1.3. According to Remark 5.8, it now suffices to combine the result
of Lemma 5.7 with [8, Theorem A.4] which gives a description of the spectrum of
graded matrices. We get that for all � > 0, there exists h0 > 0 such that for all 0 <
h < h0,

h�1 e2S.m/=h �.m; h/ � Q%0.m/ D O.�
1

2
p
j�sj j ln.�/j2/

and the result is proven.

Proof of Corollaries 1.4 and 1.5. With the notations from Theorem 1.3, it is shown
in [13, Section 4], with the use of PT-Symmetry arguments and a quantitative version
of the Gearhart–Prüss theorem, that there exist c > 0 and some projectors .…j /1�j�n0
which are O.1/ and such that

• …1 D P1,

• …j…k D ıj;k…j ,

• Pk D
P
¹j WS.mj /�S.mk/º

…j ,

• e�tPh=h D
Pn0
jD1 e�t�.mj ;h/=h…j CO.e�ct / for t � 0 and h small enough.

Corollary 1.4 directly follows, while the proof of Corollary 1.5 is then an easy adap-
tation of the one of [1, Corollary 1.6]. (Note that our notations t�

k
and tC

k
differ from

that in [1].)

A. Structure of the collision operator

The aim of this section is to show Proposition 2.2 and Corollary 2.3. For a, b two
symbols, we denote by a # b the symbol of Oph.a/ ı Oph.b/. We start by showing
that Qh defined in (1.7) is a pseudo-differential operator.

Lemma A.1. One has …h D Oph.$h/ with $h 2 S
1=2.1/ given by

$h.v; �/ D 2
d e�

v2C4�2

2h :

Proof of Lemma A.1. First, notice that the distributional kernel of…h is�h.v/�h.v0/.
Using the formula (1.8) to compute the symbol of a pseudo-differential operator from
its distributional kernel, we get

Fh;v0
�
�h

�
v C

v0

2

�
�h

�
v �

v0

2

��
.v; �/ D 2d e�

v2C4�2

2h

which is clearly in S1=2.1/ as e�
v2C4�2

2 2 S0.1/.
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Proof of Proposition 2.2. Let us first check that mh 2 S1=2.hv; �i�2/. We have

mh.v; �/ D Qm.h
�1=2v; h�1=2�/ and Qm.v; �/ D Lm

�v2
2
C 2�2

�
(A.1)

with

Qm.v; �/ D 2

1Z
0

.y C 1/d�2 e�y.
v2

2 C2�
2/ dy

and

Lm.�/ D 2

1Z
0

.y C 1/d�2 e�y� dy:

One can then check, using integration by parts that, for all k 2 N, there exists Ck
such that j@k� Lm.�/j � Ckh�i

�k�1, from which we deduce, using (A.1), that Qm 2
S0.hv; �i�2/. Thus, still using (A.1), for ˛ 2 N2d , there exists C˛ such that

j@˛mh.v; �/j D h
�j˛j=2

j@˛ Qm.h�1=2v; h�1=2�/j � C˛h
�j˛j=2

hh�1=2v; h�1=2�i�2

� C˛h
�j˛j=2

hv; �i�2;

so mh indeed belongs to S1=2.hv; �i�2/. Using symbolic calculus and Lemma A.1,
one could then simply check that�

�i�T C
vT

2

�
# .mh Id/ #

�
i�C

v

2

�
D h.1 �$h/ (A.2)

but let us explain how the suitable mh (i.e., the one solving (A.2)) was found. Since�
i�C v

2

�
and its conjugate are both polynomials of degree 1, we compute�

�i�T C
vT

2

�
# .mh Id/ #

�
i�C

v

2

�
D

�
�2 C

v2

4

�
mh �

h

2
.dmh C v � @vmh C � � @�mh/C

h2

4

�
�v C

1

4
��

�
mh:

(A.3)

Let us look for solutions under the form mh.v; �/ D uh.v; �/ e
v2C4�2

2h . In that case,

@vmh D e
v2C4�2

2h

�
@vuh C

uh

h
v
�

and

�vmh D
�
�vuh C

2v

h
� @vuh C

d

h
uh C

v2

h2
uh

�
e
v2C4�2

2h ;
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so
h2

4
�vmh �

h

2
v � @vmh D

�h2
4
�vuh C

hd

4
uh �

v2

4
uh

�
e
v2C4�2

2h :

Similarly, we compute

h2

16
��mh �

h

2
� � @�mh D

�h2
16
��uh C

hd

4
uh � �

2uh

�
; e
v2C4�2

2h I

so, according to (A.3), (A.2) becomes

h2

4

�
�vuh C

1

4
��uh

�
D h.e�

v2C4�2

2h �2d e�
v2C4�2

h /:

Applying the semiclassical Fourier transform on R2d , this yields

�
1

4

�
v�
2
C
��2

4

�
Fhuh D h.�h/

d .e�
4v�

2
C��

2

8h � e�
4v�

2
C��

2

16h /

D �
.�h/d

4

�
v�
2
C
��2

4

� 2Z
1

e�s
4v�

2
C��

2

16h d s;

where .v�; ��/ denotes the dual variable of .v; �/. Hence,

Fhuh.v
�; ��/ D .�h/d

2Z
1

e�s
4v�

2
C��

2

16h d s

and, applying the inverse semiclassical Fourier transform, we get

uh.v; �/ D 2
d

2Z
1

s�d e�
v2C4�2

sh d s:

Consequently,

mh.v; �/ D 2
d

2Z
1

s�d e�
v2C4�2

2h
. 2s�1/ d s

and we find the final expression of mh by substituting y D 2
s
� 1.

Proof of Corollary 2.3. By symbolic calculus, we just have to check that

gh D
�
� i�T C

vT

2

�
# .mh Id/:

Since the symbol on the left-hand side is a polynomial of degree 1, we have�
�i�T C

vT

2

�
# .mh Id/ D mh

�
�i�T C

vT

2

�
�
h

2

�
@Tv �

i

2
@T�

�
mh:
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Now,

�
h

2
@Tvmh.v; �/ D

1Z
0

y.y C 1/d�2 e�
y
h
. v
2

2 C2�
2/ dy vT

so we easily get

mh.v; �/
vT

2
�
h

2
@Tvmh.v; �/ D

1Z
0

.y C 1/d�1 e�
y
h
. v
2

2 C2�
2/ dy vT:

One can show similarly that

�imh.v; �/ �
T
C
ih

4
@T�mh.v; �/ D �2i

1Z
0

.y C 1/d�1 e�
y
h
. v
2

2 C2�
2/ dy �T

which is enough to conclude.

B. Bilinear algebra

Lemma B.1. Let L.x; v/ D Lx � x C Lv � v a linear form on R2d and recall the
notation (1.11). Then for any s 2 U.1/, the matrix Ws CrLrL

T is positive definite if
and only if

�V�1s Lx � Lx � L
2
v >

1

2
: (B.1)

Moreover, its determinant is

2�2d det Vs .1C 2V
�1
s Lx � Lx C 2L

2
v/:

Proof. First notice that since s 2 U.1/ and Ws C rLrL
T � Ws, the matrix Ws C

rLrLT has at most one negative eigenvalue, so it is sufficient to show that its deter-
minant is positive if and only if (B.1) holds. The rest of the proof is inspired by [1,
Lemma 3.3]. We have

det.Ws CrLrL
T/ D det Ws det.IdCW�1s rLrL

T/

D 2�2d det Vs det.IdCW�1s rLrL
T/

and since det Vs < 0, it only remains to show that

(B.1) () det.IdCW�1s rLrL
T/ < 0:



T. Normand 1240

Now, it is easy to see that

.IdCW�1s rLrL
T/jrL? D Id

and
.IdCW�1s rLrL

T/rL � rL D .1C 2V�1s Lx � Lx C 2L
2
v/jrLj

2:

Hence, det.IdCW�1s rLrL
T/ D 1C 2V�1s Lx � Lx C 2L

2
v which is negative if and

only if (B.1) holds true.

Lemma B.2. Recall the notations (1.11) and (4.7). For  2 Œ1C �; 1� and y 2 .0; 1/,
we have

detH s
;y D

.1C y/2d�2

.4y/d
.1C .1C 2jLs

;vj
2/y/2 j det V j: (B.2)

Proof. We drop some exponents and indexes s in the notations for shortness. Let us
begin by writing

H;y D

0BB@
V 0 0

0 .yC1/2

4y
y2�1
4y

0 y2�1
4y

.yC1/2

4y

1CCA
264IdC

0B@V�1 0 0

0 1 1�y
1Cy

0 1�y
1Cy

1

1CA
0B@L;x L;x

L;v 0

0 L;v

1CA
�

�
LT
;x LT

;v 0

LT
;x 0 LT

;v

�375 :
(B.3)

Clearly, the determinant of the first factor is .4y/�d .y C 1/2d det V . Denoting

zH;y D

0B@V�1 0 0

0 1 1�y
1Cy

0 1�y
1Cy

1

1CA
0B@L;x L;x

L;v 0

0 L;v

1CA LT
;x LT

;v 0

LT
;x 0 LT

;v

!
;

it is also clear that zH;y has rank 2, so it has at most 2 non-zero eigenvalues. Besides,
using Lemma 3.1, one can easily check that

zH;y

0B@.1C y/V�1L;xL;v

L;v

1CA D �2

1C y
.1C .1C jLs

;vj
2/y/

0B@.1C y/V�1L;xL;v

L;v

1CA
and

zH;y

0B@ 0

L;v

�L;v

1CA D 2yjL;vj
2

1C y

0B@ 0

L;v

�L;v

1CA :
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Hence, the determinant of the second factor from (B.3) is

�.1C y/�2.1C .1C 2jLs
;vj

2/y/2

and we get (B.2).

C. Multivariate Gaussian moment

Using the formulas of the first moments of the one-dimensional Gaussian, we easily
establish the following.

Proposition C.1. If A is a real symmetric matrix, thenZ
Rd 0

Ax � x e�
x2

2 d x D .2�/d
0=2 Tr.A/:

D. Laplace’s method

Here we give a precise statement of Laplace’s method that we use to approximate
h-dependent integrals.

Proposition D.1. Let x0 2 Rd
0

, K a compact neighborhood of x0, and ' 2 C1.K/

such that x0 is a non-degenerate minimum of ' and its only global minimum on K.
Denote H 2Md 0.R/ the Hessian of ' at x0.

• If ah is a function bounded uniformly in h on K such that

ah D O..x � x0/
2n/;

then
h�d

0=2

Z
K

ah.x/ e�
'.x/�'.x0/

h d x D O.hn/:

• If ah �
P
j�0 h

jaj in C1.K/, then the integral

det.H/1=2

.2�h/d
0=2

Z
K

ah.x/ e�
'.x/�'.x0/

h d x

admits a classical expansion whose first term is given by a0.x0/.
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