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Perturbing isoradial triangulations

François David and Jeanne Scott

Abstract. We consider an infinite planar Delaunay graph G� which is obtained by locally
deforming the coordinate embedding of a general isoradial graph Gcr, with respect to a real
deformation parameter �. Using Kenyon’s exact and asymptotic results for the critical Green’s
function on an isoradial graph, we calculate the leading asymptotics of the first- and second-
order terms in the perturbative expansion of the log-determinant of the Laplace–Beltrami oper-
ator �.�/, the David–Eynard Kähler operator D.�/, and the conformal Laplacian �.�/ on the
deformed Delaunay graph G� . We show that the scaling limits of the second-order bi-local term
for both the Laplace–Beltrami and David–Eynard Kähler operators exist and coincide, with
a shared value independent of the choice of the initial isoradial graph Gcr. Our results allow
us to define a discrete analog of the stress-energy tensor for each of the three operators. Fur-
thermore, we can identify a central charge (c D �2) in the case of both the Laplace–Beltrami
and David–Eynard Kähler operators. While the scaling limit is consistent with the stress-energy
tensor and the value of the central charge for the Gaussian free field (GFF), the discrete cent-
ral charge value of c D �2 for the David–Eynard Kähler operator is, however, at odds with
the value of c D �26 expected by Polyakov’s theory of 2D quantum gravity; moreover, there
are problems with convergence of the scaling limit of the discrete stress-energy tensor for the
David–Eynard Kähler operator. The second-order bi-local term for the conformal Laplacian
involves anomalous terms corresponding to the creation of discrete curvature dipoles in the
deformed Delaunay graph G�; we examine the difficulties in defining a convergent scaling limit
in this case. Connections with some discrete statistical models at criticality are explored.
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1. Introduction

1.1. Purpose and motivation

This paper studies deformations of infinite isoradial planar graphs and triangulations,
and the effect of these deformations on three discrete Laplace-like operators defined
on these graphs, and on their determinants.

Our initial motivation for this study is to better understand the relation between
a model of random Delaunay triangulations (RDT) in the plane, proposed in [7]
by Eynard and the first author (FD), and the field theory model of two-dimensional
gravity (Liouville gravity) proposed first by Polyakov in [23]. The random triangu-
lation model of [7] is a model where any (finite) distribution of points z D ¹ziº in
the plane (or the Riemann sphere) is weighted by the determinant detŒD � of a dis-
crete operator D defined from the Delaunay triangulation T associated to z (hence
the terminology random Delaunay triangulation model). This discrete model has very
interesting properties. Thanks to [7, 24], it can be viewed as a model of PSL.2;C/
invariant embeddings of random abstract discrete rhombic surfaces into the Riemann
sphere, and thus is related to random planar maps models and discrete 2d gravity.
As shown in [4], it also provides an alternative description of the moduli space of the
punctured sphere M0;N equipped with the Weil–Petersson metric, since D defines
a Kähler form on the space of Delaunay triangulations.

The authors of [7] pointed out a similarity between the discrete operator D of the
RDT model and the continuous gauge fixing Faddeev–Popov operator J in Polyakov’s
model [23] (see Appendix A.4 and references therein for details), whose determinant
gives the famous Liouville action for the conformal factor (the Liouville field, see
Appendix A.4). Like the discrete RDT model, Liouville gravity is a conformal field
theory (CFT), invariant under PSL.2;C/ transformations on the sphere. We therefore
want to probe this analogy further, and find discrete analogs of CFT structures in the
RDT model, such as a stress-energy tensor T , some short distance operator product
expansion (OPE), and whether such an OPE has a discrete central charge c which can
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be compared to the central charge of the ghost sector of Liouville gravity, famously
known to be cghost D �26.

The operator D on a general Delaunay triangulation is a special case of a discret-
ized Laplace-like operator (elliptic operator) defined on graphs. These operators can
be viewed as discretizations of differential operators defined on Riemannian spaces,
with respect to some metric, and are related to some quantum field theories (QFT),
in particular, some CFT’s. They are interesting objects in their own right, both in
mathematics (index theorems, Seeley–DeWitt heat kernel expansions, trace formu-
las) and in physics (conformal field theories, quantum gravity, string theory, statist-
ical mechanics, etc.). The simplest and perhaps most notable example is the scalar
Laplace–Beltrami operator � acting on functions � over a Riemannian manifold M
with metric g D .g��/ and given by

� D �
1
p
g
@�
p
gg��@�

with @� the standard derivative with respect to the local coordinate x� acting on scalar
functions. The operator � is related to the massless scalar quantum free field the-
ory (i.e., the Gaussian free field, or GFF) on the manifold M , see Appendix A.3 for
details. Its functional determinant (properly defined), is related to the GFF partition
function Z through

det.�/ D Z�2 with Z D
Z

DŒ��e�SŒ��;

where � is the free field (a random scalar real function) and SŒ�� is the GFF action
(see (A.7)). Both the action SŒ�� and the partition function Z depend explicitly on
the metric g on M , and the effect of varying the metric in the action SŒ�� is encoded
in the so-called stress-energy tensor T D .T ��/. For a CFT such as the GFF, one
has to consider the holomorphic and antiholomorphic components T D �2�Tzz and
xT D �2�Txzxz of T which encode the effect of changing the metric by an infinitesimal
anti-analytic diffeomorphism

z ! z C �F.xz/ (1.1)

with F such that @F=@z D 0 on M (for details, see Appendix A.2). The OPE for T ,

T .z/T .z0/ D
c

2

1

.z � z0/4
C � � � (1.2)

with central charge c of the CFT, is of special importance. It implies (Appendix A.2)
that the second variation of the logarithm of the partition function of the CFT, logZ,
under (1.1) is

c

4�2

“
d2ud2v

x@F.u/x@F.v/

.u � v/4
C
@ xF .u/@ xF .v/

.xu � xv/4
C contact terms: (1.3)
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In the cases we are interested in, the central charge c is real, and this can of course be
rewritten as the double integral of the real part of

x@F .u/x@F .v/

.u�v/4
.

Accordingly, we shall try to define

(i) a discrete analog of diffeomorphisms (1.3) for Delaunay triangulations,
(ii) a discrete stress-energy tensor T associated to the operator D of the RDT

model,
(iii) an analog for D of the OPE (1.2) and of formula (1.3).

This requires us to introduce and study an appropriate “scaling limit” (in the QFT
sense) of the RDT model.

This program turns out to be very difficult for general random Delaunay trian-
gulations. As a first step, we shall study deformations of a very specific subclass of
Delaunay triangulations, namely, isoradial Delaunay triangulations. One reason for
this restriction is technical. The analysis is much simpler and explicit calculations can
be done, thanks to the fact that on isoradial triangulations, the D operator is propor-
tional to the critical Laplacian �cr considered by Kenyon in [17] (to be defined later).
Thanks to the methods of discrete analyticity, both the determinant detŒ�cr� and the
Green’s function��1cr (the propagator) take simple explicit forms in terms of the geo-
metry of the isoradial triangulation. A second reason is that isoradial triangulations
can be viewed as analogs of “discrete flat metric” (see Section 1.2.1). It is therefore
natural to study the operator D and the associated measure for triangulations which
are close to but not exactly isoradial, as a means of understanding the relationship
between the RDT model and 2d gravity, as suggested in [7].

This work is rather technical, limited in scope, but it represents the first step in
this general program. In addition to studying the operator D , we carry out a similar
analysis for two related operators, also defined for Delaunay graphs:

(i) the discrete Laplace–Beltrami operator �,
(ii) a conformal Laplacian� with PSL.2;C/ invariance properties.

Several issues require a lot of attention:

(1) Under deformations, the Delaunay constraints (see the precise definition in
Section 2.1.1) cause the incidence relations of the graph to change (by edge
flips). These flips are a potential source of discontinuities and singularities for
the operators and the determinants we are interested in.

(2) We want uniform estimates for the variation of operators and determinants, in-
dependent of the initial isoradial Delaunay graph. This is not always possible.

(3) We also look for the existence of “scaling limits” (in the usual sense of stat-
istical mechanics and quantum field theory), in particular, for the discrete
analogs of the OPE (1.2) and of formula (1.3), in order to recover a continuous
QFT interpretation of our results.
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Point (1) is treated thoroughly. Whitehead flips are under control for the operat-
ors D and �, but are shown to induce discontinuities for�.

For point (2), uniform estimates are obtained for all three operators, for which
we get discrete analogs of the stress-energy tensor T. For �, the OPE (1.2) and (1.3)
hold with central charge c D �2, as expected. For D , an OPE holds as well, and
unexpectedly we obtain a central charge c D �2 too. We do not, however, recover
formulas (1.2) and (1.3) (specific to CFT’s) for the conformal Laplacian�.

For point (3), good scaling limit results are obtained for � (this was to be expect-
ed), and we prove similar results for D , which are valid under some restrictions. This
program fails for�.

Let us now be more specific, and summarize: (1) the main concepts and tools used
in this paper, (2) the main results, and (3) the detailed plan and content of the paper.

1.2. The concepts

1.2.1. Delaunay graphs. Delaunay triangulations in the plane are models of dis-
crete space which has been studied by many authors, in particular, in high energy
physics [6] as well as in statistical physics, condensed matter and soft matter physics.
Anticipating the precise definitions and details given in Section 2, we highlight some
notions which are important.

A polyhedral graph G is a planar graph (with finitely or infinitely many vertices)
equipped with an embedding zWV.G/! C of its vertex set V.G/ such that edges are
mapped to straight line segments and faces are mapped to convex, cyclic polygons.
Accordingly, we can associate with each face f of G the circumcircle Cf, the circum-
disk Df, and the corresponding circumradius R.f/ of its cyclic polygon with respect
to the embedding.

A Delaunay graph is a polyhedral graph G such that, under the embedding,

(1) the interior of the circumdisk of each face of G contains no vertices,

(2) no two faces share the same circumdisk.

Equivalently, the dual of Delaunay graph G is the Voronoi complex V associated to
the set of (embedded) vertices of G.

A weak Delaunay graph is a polyhedral graph G such that condition (1) is sat-
isfied.

A (weak) Delaunay triangulation T is a (weak) Delaunay graph whose faces are
all triangles.

Following [7], we associate to an oriented edge Ee D .u; v/ “north” and “south”
faces fn and fs along with angles

�n.Ee/ D †vuon and �s.Ee/ D †osuv;
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Figure 1. The north and south faces fn and fs of an (oriented) edge Ee D .u; v/ are drawn in
dark blue, while the corresponding circumcircles are outlined in light blue. Their respective
circumcenters on and os, as well the associated north and south angles �n.Ee/ and �s.Ee/, are
highlighted in orange.

where on and os are the respective circumcenters of fn and fs, as depicted in Fig-
ure 1. Reversing the orientation of Ee interchanges the roles of north and south. The
conformal angle �.e/ associated to the unoriented edge e is defined as1

�.e/ D
�n.Ee/C �s.Ee/

2
: (1.4)

The clockwise orientability of the north and south triangles enforces

�
�

2
< �n.Ee/; �s.Ee/ <

�

2
:

The Delaunay condition ensures that

0 < �.e/ <
�

2
;

while the weak Delaunay condition ensures that 0 � �.e/ < �
2

.
Finally, as explained in [7] and in Section 2, to each plane Delaunay graph G,

we can associate an abstract rhombic surface S˙

G
obtained by gluing rhombi ˙.e/

1Note that the conformal angle �.e/ considered in [7] is twice the conformal angle �.e/
defined here by (1.4) (i.e., �.e/ D 2�.e/). We choose definition (1.4) for compatibility with
Kenyon’s notations in [17].
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associated to the edges e of G according to the incidence relations of G. Each rhom-
bus ˙.e/ has a unit edge length and has a corresponding rhombus angle 2�.e/. We
view S˙

G
as a discretized Riemann surface with curvature concentrated at the vertices.

This rhombic surface S˙

G
will be “flat”, i.e., can be isometrically embedded in the

plane, if and only if for each face f of G, the sum of the conformal angles of the
edges e which form the boundary of f equals �

2X
e2@f

�.e/ D
�

2
:

Equivalently, the Delaunay graph G is isoradial, i.e., the circumradii R.f/ are all
equal. Alternatively, a Delaunay graph G is isoradial if and only if S˙

G
coincides with

the planar bipartite kite graphG˙ discussed in Section 2.1. Isoradial Delaunay graphs
are also referred to as flat graphs or critical graphs.

1.2.2. The random Delaunay triangulation model. The David–Eynard model [7]
is a theory of random (finite) Delaunay graphs which are sampled (with Lebesgue
measure) according to the conformal angle values of the corresponding edges. By the
Voronoi construction, a configuration of N � 3 distinct marked points ¹z1; : : : ; zN º
in the extended plane CP1 is equivalent to a Delaunay graph G with vertex set
V.G/ D ¹1; : : : ; N º and embedding k 7! zk . This correspondence between point
configurations and graphs is PSL.2;C/ equivariant in the sense that the incidence
relations which define the Delaunay graph are invariant under the action of PSL.2;C/
by Möbius transformations. In this formulation, the relevant measure on the space
of configurations of marked points is, after fixing three points .z1; z2; z3/ thanks
to PSL.2;C/ invariance,

NY
kD4

dz2k
det0D

jz1 � z2j2jz2 � z3j2jz1 � z3j2
; (1.5)

where D is the David–Eynard discrete Kähler operator of the graph G as defined
in (1.8) below, and det0D is the .N � 3/ � .N � 3/ principal minor of D with row
and column set ¹4; : : : ; N º, see [7]. We view det0D as a reduced determinant which
suppresses the effect of the zero modes of D . As shown in [4], the measure in (1.5) is
PSL.2;C/ invariant and coincides with the Weil–Petersson measure on M0;N . Points
configurations whose corresponding Delaunay graph is a triangulation form a Zar-
iski open subset, and consequently the subspace of non-triangulations has measure
zero. For this reason, we speak of the David–Eynard model as a theory of random
triangulations.

1.2.3. The operators �, � and D . In this paper, we are interested in the three
discrete operators defined on generic polyhedral graphs G: the Laplace–Beltrami
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operator �, the conformal Laplacian �, and the David–Eynard Kähler operator D .
All three operators act on the space CV.G/ consisting of complex valued functions
supported on the vertices V.G/ of the graph G.

• The discrete Laplace–Beltrami operator � is defined for � 2 CV.G/ by

��.u/ D
X

edges EeD.u;v/

c.Ee/.�.u/ � �.v//;

c.Ee/ D
1

2
.tan �n.Ee/C tan �s.Ee//:

(1.6)

This is a standard discretization of the Laplacian in the plane, both in physics (see,
e.g., [6]) and in mathematics. It is a symmetric real operator.

• The conformal Laplacian�, which we introduce here, is defined by

��.u/ D
X

edges EeD.u;v/

tan �.e/.�.u/ � �.v//: (1.7)

It is invariant under global conformal transformations

z
g
7!

az C b

cz C d

of the graph embedding zWV.G/! C for g 2 PSL2.C/. It is worth noting that�
can be viewed as the discrete Laplace–Beltrami operator defined not on the planar
graph G, but rather on the image of G inside the rhombic surface S˙

G
(i.e., the

black vertices of S˙

G
where two black vertices are joined by an edge if and only

if they lie on a common rhombus). We point the reader to a related construc-
tion in [21]. As such, � is a discretization of the Laplace–Beltrami operator on
a Riemann surface with respect to a non-flat metric. It is also a symmetric real
operator.

• The Kähler operator D , which we are interested in, has been introduced in [7].
It is defined in terms of the geometry of the graph G as

D�.u/ D
X

edges EeD.u;v/

1

2

� tan �n.Ee/C i
R2n .Ee/

C
tan �s.Ee/ � i
R2s .Ee/

�
.�.u/ � �.v//; (1.8)

where Rn.Ee/ and Rs.Ee/ are the circumradii of the north and south faces fn and fs

adjacent to Ee, respectively. It is a Hermitian complex operator. Although it is not
obvious from this definition (1.8), the operator D transforms covariantly under
global conformal PSL.2;C/ transformations of the graph embedding, and (even
less obviously) it defines a Kähler metric dzuDuvdxzv on the space of Delaunay
graphs in the plane.
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These three operators can be defined for any polyhedral graphG. The weak Delau-
nay condition on G ensures that the three operators are positive semidefinite. If G is
isoradial (with common circumradius R > 0), then the operators �, � and R2D all
coincide, and agree with the critical Laplacian �cr considered in [17] and defined by

�cr�.u/ WD
X

edges EeD.u;v/

tan �.e/.�.u/ � �.v//: (1.9)

This coincidence occurs because �n.Ee/D �s.Ee/D �.e/ for any (oriented) edge Ee in the
isoradial case. The Green’s function ��1cr of the critical Laplacian �cr (see Section 3)
turns out to be accessible and can be written explicitly in terms of the graph’s local
structure; furthermore, the log-determinant of the critical Laplacian can be computed
as a finite sum of local contributions if in addition one assumes the graph is periodic.

1.3. The main results

1.3.1. Asymptotics of the critical Green’s function. The asymptotic behavior
of ��1cr is essential to us. The leading asymptotics has been worked out by Kenyon
in [17]. Our first result is a refinement of Kenyon’s estimate, which entails isolating
subleading terms. We shall make use of this series development later in the proof of
Theorem 1.6.

Proposition 1.1. For any vertices u and v in an isoradial Delaunay graph Gcr,

Œ��1cr �u;v D �
1

2�

�
log.2jp1.u; v/j/C 
Euler C

ReŒp3.u; v/�
6jp1.u; v/j3

C O
� 1

jp1.u; v/j4

��
; (1.10)

where 
Euler is the Euler–Mascheroni constant, and

p1.u; v/ D zcr.v/ � zcr.u/:

The term p3.u; v/ is introduced in Definition 2.23 (and written explicitly in (2.4)) in
Section 4.2. It depends on the local geometry of the graph Gcr between u and v, but is
bounded uniformly and linearly by

jp3.u; v/j � 3jp1.u; v/j:

Remark 1.2. Proposition 1.1 sharpens Kenyon’s theorem [17, Theorem 7.3] by iden-
tifying and obtaining a uniform bound on the first non-constant subdominant term

1

6
jp1.u; v/j�3 ReŒp3.u; v/� �

1

2
jp1.u; v/j�2:
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Proposition 4.9 in Section 4 extends these asymptotics to all orders of the large dis-
tance asymptotic series expansion of the Green’s function, and gives uniform bounds
for those terms. Proposition 1.1 follows from Proposition 4.9.

1.3.2. Deformations of critical graphs. We introduce a scheme for deforming De-
launay graphs (and general polyhedral graphs) and study the response of the corres-
ponding operators supported on the deformed graph.

Definition 1.3. A Delaunay deformation G� of an initial Delaunay graph G0 is de-
fined as follows. We start by deforming the initial vertex embedding v 7! z0.v/ for
v 2 V.G0/ by

z�.v/ WD z0.v/C �F.v/; (1.11)

where � � 0 is a real parameter, and where F WV.G0/! C is a displacement function
with finite support �F � V.G0/. Provided the mapping v 7! z�.v/ is one-to-one, the
corresponding Delaunay deformation G� of G0 is defined to be the unique Delaunay
graph with vertex set V.G�/ D V.G0/ and planar graph embedding v 7! z�.v/. For
a generic polyhedral graph G, the lattice closure x�F of �F is

x�F D ¹v 2 V.G/ W v shares a face f 2 F.G/ with a vertex u 2 �F º: (1.12)

We first need to control the geometry of the deformed graph G� in terms of the
deformation parameter �. This is ensured by Lemmas 5.1, 5.4, 5.7 and Proposition 5.8,
which we summarize in the following proposition.

Proposition 1.4. LetG0 be an isoradial Delaunay graph, and F a displacement func-
tion as above. There is a threshold z�F > 0 such that whenever 0 � � < z�F ,

(1) z�WV.G0/! C is an embedding,

(2) there is an inclusion of edge sets E.G0/ � E.G�/,

(3) the edge sets are stable, i.e., E.G�1/ D E.G�2/ whenever 0 < �1; �2 < z�F .

Proposition 1.4 ensures the existence of a right-sided limit graph when � ! 0,
which is weakly Delaunay.

Definition 1.5. The refinement G0C of G0 determined by F is the weak Delaunay
graph with vertex set V.G0C/ WD V.G0/ and embedding z0C WD z0, whose edge set
is given by

E.G0C/ WD lim
�!0C

E.G�/:

Note that G0C will be a weak Delaunay graph precisely when the inclusion of
edge sets is strict, otherwise G0C and G0 will coincide. It will be convenient to com-
plete G0C to a (weak) Delaunay triangulation yG0C by maximally saturating E.G0C/
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with additional non-crossing edges (see Definition 2.8). The choice of these additional
edges (referred to as chords, introduced in Definition 2.3) will not affect our calcu-
lations because the weights assigned to these edges by the operators �, D , and �
always vanish. We want to emphasize that

yG0C D G0C D G0

whenever G0 is a triangulation.
Our chief interest is when the initial graph G0 is a critical graph, i.e., an isoradial

Delaunay graph Gcr with isoradius Rcr. A Delaunay deformation Gcr ! G� (corres-
ponding to some F ) supports a Kähler operator D.�/, as well as a Laplace–Beltrami
operator �.�/ and a conformal Laplacian �.�/. All three of these operators degener-
ate on the critical graph when � ! 0,

lim
�!0

D.�/ D
�cr

R2cr
;

lim
�!0

�.�/ D lim
�!0

�.�/ D �cr;

where �cr is the critical Laplacian of Kenyon on Gcr.
Let O denote either � or� or D . Accordingly, O.�/ will denote the correspond-

ing operator on the perturbed Delaunay graph G� , while Ocr will denote the operator
on the critical graph Gcr. We introduce the variation of operators

ıO.�/ WD O.�/ �Ocr (1.13)

and formally expand the log-determinant log det O.�/ using the Green’s function O�1cr

of the critical operator as

log det O.�/ D log det Ocr C trŒıO.�/ �O�1cr �

�
1

2
trŒ.ıO.�/ �O�1cr /

2�C � � � : (1.14)

The trace terms occurring on the right-hand side of equation (1.14) are well defined
owing to the fact that the support of the perturbation is compact; consequently, the dif-
ference log det O.�/ � log det Ocr is well defined and takes a finite real value.

Our most significant results concern the second-order term trŒ.ıO.�/ � O�1cr /
2�

arising from a bi-local version of the deformation given in (1.11), executed simul-
taneously at two distant sites and controlled by a pair � D .�1; �2/ of independent
deformation parameters. These results are mainly given by Proposition 6.10 for �,
Proposition 6.11 for D , while the analysis of � is handled in Sections 6.3 and 6.4.
The following theorem summarizes these results.
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Theorem 1.6. Consider two complex functions F1.z/ and F2.z/ whose supports

�1 D suppF1 and �2 D suppF2

in the vertex set V.Gcr/ are finite and disjoint (hence at finite distance), and a bi-local
deformation of the embedding v 7! zcr.v/ given by

z�.v/ WD zcr.v/C �1F1.v/C �2F2.v/;

where � D .�1; �2/ is a pair of independent deformation parameters.
As functions of �1 and �2, log det�.�/, log det�.�/, log det D.�/ are analytic

within the range 0 � �1; �2 < min.z�F1 ; z�F2/.
Furthermore, the �1�2 cross-term in the perturbative expansion of log det�.�/,

denoted by d�1�2 log det�, is obtained from trŒ.ı�.�/ ���1cr /
2�. It takes the asymptotic

form

d�1�2 log det� D �
2

�2

X
triangles
x1;x2

A.x1/A.x2/
�

Re
h xrF1.x1/xrF2.x2/
.zcr.x1/ � zcr.x2//4

i
C O.jzcr.x1/ � zcr.x2/j�5/

�
; (1.15)

where xi 2 F.yG0C/ is a triangle having at least one vertex in �i , whose center has
the coordinate zcr.xi /, and whose area is A.xi / with i D 1; 2. Formula (1.15) makes
use of the discrete derivative operators r; xrWCV.T/ ! CF.T/ introduced in [7] for
polyhedral triangulations T; see Definition 3.3.

Likewise, the �1�2 cross-term d�1�2 log det D in the expansion of log det D.�/

is obtained from trŒ.ıD.�/ � D�1cr /
2� and takes the same asymptotic form as for-

mula (1.15).
For the conformal Laplacian�, the �1�2 cross-term d�1�2 log det� in the expan-

sion of log det�.�/ does not, in general, have an asymptotic form given by (1.15).
“Anomalous” chord-to-edge and chord-to-chord terms have to be added to formu-
la (1.15) in order to obtain the correct asymptotics. They can be interpreted as “cur-
vature defects” arising from the deformation of the graph.

Remark 1.7. Formula (1.15) is independent of the choice of triangulation yG0C used
to complete G0C , in light of a discretized version of Green’s theorem, namely Lem-
ma 3.5 and Corollary 3.6 as detailed in Section 3.2.

1.3.3. Smooth deformations and scaling limits. In this paper, we are interested
in the existence and the form of the continuum limit of the results in Theorem 1.6.
For this purpose, we shall consider smooth Delaunay deformations implemented by
test functions, defined below. We aim for results independent of the initial critical
graph Gcr, and which reconstitute the continuous formula (1.3) expected from CFT’s.
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Definition 1.8. Let F be a smooth (non-holomorphic) function F WC!C with com-
pact support � � C, and consider its restriction to an initial Delaunay graph G0 by
declaring

F.v/ WD F.z0.v//; (1.16)

where v 2 V.G0/ is a vertex.
The smooth Delaunay deformation G� of G0 corresponding to F is the Delaunay

deformation of G0 given by Definition 1.3 with the function F.v/ given by for-
mula (1.16).

We shall incorporate a parameter ` > 0 into our deformation rubric (1.16) by
rescaling the displacement function accordingly:

F`.v/ D F`.z0.v// WD `F
�z0.v/

`

�
:

Using the construction above, we obtain a rescaled deformed embedding z�;` and
a corresponding Delaunay graphG�;` together with an attending refinementG0C;` and
a completion yG0C;`. We shall denote by�.�; `/, D.�; `/, and�.�; `/ the discrete Bel-
trami–Laplace operator, Kähler operator, and conformal Laplacian on the graph G�;`,
respectively.

The following estimate (see Appendix B for the proof) explains why r and xr
should be considered as discrete analogs of the holomorphic and anti-holomorphic
derivatives @ and x@.

Lemma 1.9. Given a smooth function �WC ! C and a triangle f with vertices z1,
z2, z3 (listed in counter-clockwise order), circumcenter z.f/, and circumradius R.f/,
we have the following estimate:

jr�.f/ � @�.z.f//j � R.f/
�3
2

sup
z2Bf

j@2�j C 2 sup
z2Bf

j@x@�j C
1

2
sup
z2Bf

jx@2�j
�
;

where Bf is the disk bounded by the circumcircle of f,

Bf D ¹z W jz � z.f/j � R.f/º:

Using Lemma 1.9, we are able to obtain a smooth version of Theorem 1.6 involv-
ing a scaling parameter ` > 0 whose continuum limit is consistent with formula (1.3).

Theorem 1.10. Consider two smooth complex functions F1.z/ and F2.z/ whose sup-
ports �1 D suppF1 and �2 D suppF2 in the plane are compact and disjoint (hence
at finite distance), and a bi-local deformation of the embedding given by

z�;`.v/ WD zcr.v/C �1F1I`.v/C �2F2I`.v/;
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where ` > 0 is a scaling parameter and Fi I`.v/ WD `Fi .
zcr.v/
`
/ for i D 1; 2. The

scaling limit `!1 of the �1�2 cross-term in the expansion of log det�.�; `/ and
of log det D.�; `/ (given by Theorem 1.6) exist and are given by

lim
`!1

d�1�2 log det�.`/ D lim
`!1

d�1�2 log det D.`/

D
1

�2

“
�1��2

dx21dx
2
2 Re

hx@F1.x1/x@F2.x2/
.x1 � x2/4

i
: (1.17)

The limit value in formula (1.17) is independent of the initial isoradial Delaunay
graph Gcr.

Remark 1.11. Whenever the refinement G0C;` contains finitely many chords (see
Definition 2.3), the scaling limit `!1 of the bi-local formula for the �1�2 cross-
term in trŒı�.�; `/ ���1cr �

2 of the conformal Laplacian (as presented in Section 6.3.1)
agrees with the limit value in formula (1.17) of Theorem 1.10. In general, this is not
the case, and a scaling limit does not exist. If it exists, the effect of the anomalous
terms may be present in the scaling limit, which need not be universal. An example is
given in Appendix C.

Formula (1.17) in Theorem 1.10 implicitly involves a nested limit where the
deformation parameters � D .�1; �2/ are first taken to zero, and subsequently the scal-
ing parameter ` is taken to 1. An interesting question is whether the limits � ! 0

and `!1 can be interchanged.
To study this question, one needs uniform bounds on the variations ı�.�/ and

ıD.�/ (see (1.13)) with respect to the space of isoradial Delaunay graphs. Since the
bound z�F in Proposition 1.4 depends on the graph, we cannot hope to make a stable
deformation simultaneously for all Delaunay graphs. This requires us to work with
Delaunay deformations beyond the z�F threshold, and take into account the occurrence
of Whitehead flips as the graph is deformed. This is addressed in Section 8.

Bounding the variation of the circumradii. In order to bound the operator vari-
ations ı�.�/ and ıD.�/, it is necessary to track the circumradius R.f�/ of each
face f� of G� as a function of �. In Proposition 8.1, we bound the radius R.f/
uniformly for all faces and all initial isoradial Delaunay graphs Gcr with isoradius
Rcr D R0. Specifically, we show that there exist �max.Rcr/, as well as two functions
xR�.�; Rcr/ and xRC.�; Rcr/ such that for 0 � � < �max.Rcr/,

xR�.�; Rcr/ � R.f�/ � xRC.�; Rcr/; (1.18)

lim
�!0

xR�.�; Rcr/ D lim
�!0

xRC.�; Rcr/ D Rcr:

The quantities �max.Rcr/, xR�.�; Rcr/ and xRC.�; Rcr/ depend only on Rcr and on the
smooth displacement function F . They are given explicitly in Proposition 8.1.
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Results for interchanging the limits � ! 0 and ` ! 1. The matrix entries of the
operators �.�/ and D.�/ are continuous functions of �, and using the bounds xR�
and xRC of (1.18), we can show that the derivatives �0.�/ and D 0.�/ with respect to �
are piecewise continuous functions of � and obtain uniform bounds on their matrix
entries. This leads us to the following conjecture for �.

Conjecture 1.12. Let Gcr be an isoradial Delaunay triangulation with embedding
v 7! zcr.v/, let F1; F2 be two smooth displacement functions with disjoint compact
supports, and let z�;` D zcr C �1F1I` C �2F2I` be the corresponding scaled and de-
formed embedding with respect to a pair of independent parameters � D .�1; �2/ and
` > 0. Then

lim
�!0

lim
`!1

tr
h @
@�1

�.�; `/ ���1cr �
@

@�2
�.�; `/ ���1cr

i
D lim
`!1

lim
�!0

tr
h @
@�1

�.�; `/ ���1cr �
@

@�2
�.�; `/ ���1cr

i
D

2

�2

Z
�1

d2x1

Z
�2

d2x2 Re
hx@F1.x1/x@F2.x2/

.x1 � x2/4

i
:

Conjecture 1.12 is a special case of Proposition 8.8, which relies on the rigorous
estimates obtained in Section 8, and also on Conjecture 8.5, the later of which stipu-
lates a bound on rp3 for critical lattices (where p3 is defined in Definition 2.23 and
appears already in Proposition 1.1).

For D , we do no get such a strong result, but only the following weaker conjecture,
which follows from Propositions 8.10 and 8.11.

Conjecture 1.13. Let Gcr be an isoradial Delaunay triangulation with embedding
v 7! zcr.v/, let F1; F2 be two smooth displacement functions with disjoint compact
supports, and let z�;` D zcr C �1F1I` C �2F2I` be the corresponding scaled and de-
formed embedding with respect to a pair of independent parameters � D .�1; �2/ and
` > 0. In general, the limit

lim
`!1

tr
h @
@�1

D.�; `/ �D�1cr �
@

@�2
D.�; `/ �D�1cr

i
does not exist for non-zero �.

The double “simultaneous” limit exists, where `!1 and �! 0 such that `�D c
with c > 0 staying constant. Its value is

lim
`!1
`�Dc

tr
h @
@�1

D.�; `/ �D�1cr �
@

@�2
D.�; `/ �D�1cr

i
D

2

�2

Z
�1

d2x1

Z
�2

d2x2 Re
hx@F1.x1/x@F2.x2/

.x1 � x2/4

i
:
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1.3.4. Interpretation in terms of discrete stress-energy tensors and discrete cent-
ral charge. The results presented above can be formulated in the language of CFT
in terms of an action, a stress-energy tensor and a central charge. This is done in
Section 9.2. For the Laplace–Beltrami operator �, the associated discrete action is

SŒˆ; x̂ � D ˆ�� x̂ D
X

vertices
u;v2G

ˆu�uv x̂ v;

where .ˆ; x̂ / are Grassmann fields supported on vertices of the Delaunay graph G.
The corresponding functional integral is

det.�/ D
Z

DŒˆ; x̂ �e�SŒˆ; x̂ �:

A general deformation z 7! z C �F of the coordinate embedding induces a de-
formed action S�Œˆ; x̂ � D ˆ��.�/ x̂ , which we can develop as S� D S C �d�S C

O.�2/. Using the variation of �.�/ given by Proposition 5.12, the linear term d�S

reads explicitly as

d�SŒˆ; x̂ � D �4
X
faces

x2yG
0C

A.x/.xrF.x/rˆ.x/r x̂ .x/C c:c:/:

In analogy with the continuous case, the components of the discrete stress-energy
tensor T� can be identified as

T�.x/ D �4�rˆ.x/r x̂ .x/ and xT�.x/ D �4� xrˆ.x/xr x̂ .x/ (1.19)

while T� is traceless, namely, tr T�.x/ D 0. See (9.4) for details. Taking vacuum
expectation values of the components of the stress-energy tensor, we recover our
results (Proposition 6.1 and Theorem 1.6) for the first and second-order variations
of log det.�/ in the case of a critical lattice G D Gcr. In the scaling limit, the dis-
crete T� given in (1.19) becomes the continuum stress-energy tensor T D�4�@ˆ@ x̂

for the CFT of a free Grassmann field (see Appendix A for details).
Theorem 1.10 shows that, when perturbing a critical lattice, the scaling limit for

the second-order variation d�1�2 log det� of the Laplace–Beltrami operator � exists,
and can be calculated in terms of the connected vacuum expectation values

hT�.x/T�.y/i and h xT�.x/ xT�.y/i:

This implies that in the scaling limit, we recover a short distance operator product
expansion for T�,

hT�.u/T�.v/i D �
1

.u � v/4
C � � � ; (1.20)
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which is the OPE for a CFT with central charge c D �2 (through (1.2)). This is the
expected result for a complex Grassmann field, which is indeed a conformal field
theory with central charge c D �2 (see Appendix A and, e.g., [10]).

The same analysis is carried out for the Kähler operator D . From the variation
of D.�/ given by Proposition 5.13, we can isolate the components of the correspond-
ing discrete stress-energy tensor TD (see (9.7))

TD.x/ D �4�
1

R.x/2
.rˆ.x/r x̂ .x/C C.x/xrˆ.x/r x̂ .x//;

xTD.x/ D �4�
1

R.x/2
.xrˆ.x/xr x̂ .x/C xC.x/xrˆ.x/r x̂ .x//;

tr TD.x/ D 8
1

R.x/2
xrˆ.x/r x̂ .x/;

where R.x/ is the radius of the face x, and C.x/ is a geometrical factor given in for-
mula (5.13), which depends on the shape and orientation of the face x. Note that TD is
no longer traceless. The factor C.x/ has no obvious scaling limit `!1, independent
of the details of the Delaunay lattice, so we cannot associate a stress-energy tensor for
some continuum QFT to the discrete TD , as we did for � by replacing r by @.

Surprisingly, Theorem 1.10 also shows that, when perturbing a critical lattice, the
scaling limit for the second-order variation d�1�2 log det D of the Kähler operator D

still exists, and can still be calculated in terms of the connected vacuum expectation
values

hTD.x/TD.y/i and h xTD.x/ xTD.y/i:

Moreover, we recover a short distance OPE for TD which is identical to the OPE
for T� given by (1.20)

hTD.u/TD.v/i D �
1

.u � v/4
C � � � ;

and therefore we can associate a “central charge” cD D �2 with the same value as
the central charge c� D �2 for � (see Section 9.2 for a more thorough discussion).

Finally, a similar analysis is taken in Section 9.2.3 for the conformal Laplacian�,
and leads to a discrete stress-energy tensor T�. The trace term tr T� vanishes, and
the discretized holomorphic (and anti-holomorphic) component T� (and xT�) can be
written explicitly as

A.x/rˆ.x/r x̂ .x/C B.x/rˆ.x/xr x̂ .x/C C.x/xrˆ.x/r x̂ .x/C D.x/xrˆ.x/xr x̂ .x/:

The coefficients A.x/; : : : ; D.x/ depend in a non-trivial way on the geometry of the
face x and its three neighboring faces in yG0C , and have no meaningful continuum
limit. This is reflected in the fact that the second-order variation d�1�2 log det�.`/ has
no scaling limit in general, as stated in Remark 1.11.
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1.4. Plan of the paper

This paper is organized as follows.
The present Section 1 is the introduction.
Section 2 presents basic concepts about the geometry of planar graphs which are

relevant to the paper. Most of the material is standard, however we introduce the
notion of a chord (see Definition 2.3) which allows us to slightly broaden the defini-
tion of an isoradial triangulation (given in [17]) to accommodate configurations with
four or more cocyclic vertices. Section 2.1 gives definitions and sets notation for poly-
hedral graphs, edges and chords, (weak) Delaunay graphs, isoradial graphs, etc. and
makes precise the notion of the abstract rhombic surface S˙

G
associated to a polyhedral

graph G alluded to in Section 1.2.1. Section 2.2 addresses geometrical concepts and
properties of rhombic graphs, mainly following the presentations of [17,18]. In order
to help establish the asymptotic formula in Proposition 1.1, we undertake in Proposi-
tion 2.27 a careful analysis of the interval of possible angles taken by any path in the
rhombic graph of an isoradial Delaunay graph.

In Section 3, we review the r and xr operators of [7] and show how they are
used to obtain “local factorizations” of the Laplace–Beltrami and Kähler operators �
and D for a general polyhedral triangulation; see Remarks 3.8 and 3.9. We remark
that the conformal Laplacian� does not admit a simple local factorization. Following
this, we recall two approaches used to define the (normalized) log-determinant of
a Laplace-like operator such as �, D , and � for infinite polyhedral graphs which
are either (1) doubly periodic or (2) obtained as a nested limit of finite graphs, each
with Dirichlet boundary conditions. Formulas (3.14) and (3.15) serve respectively
as definitions in these two cases. We end the section by discussing Kenyon’s local
formula in [17] for the normalized log-determinant of the critical Laplacian for doubly
periodic isoradial (weak) Delaunay graphs, as well as its formal extension to the non-
periodic case.

In Section 4, we derive the long-range asymptotic formula for the Green’s function
of the critical Laplacian (associated to an isoradial Delaunay graph) as stated in Pro-
position 1.1. We rely on the methods of [17] along with some added improvements,
in particular, for non-periodic graphs. Among other things, our analysis provides
uniform bounds on the coefficients of the asymptotic expansion (see Lemma 4.3
and (4.4)), thus sharpening the results and approximations in [17].

Section 5 addresses deformations of Delaunay graphs and corresponding operat-
ors. In Section 5.3, we introduce the notions of Delaunay and rigid deformations:
In both cases, the coordinate embedding of the graph is perturbed by a local displace-
ment function together with a deformation parameter � � 0. Delaunay deformations
modify the incidence relations (i.e., the edge and face sets) so that the Delaunay con-
straints are maintained while rigid deformations always fix the incidence relations of
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the initial graph (and so the resulting graph may cease to be Delaunay). In the case
of a Delaunay deformation, we explain in Lemma 5.7 how to regulate the parameter
� � 0 so that the edges of the initial graph are stable and do not undergo Lawson
“flips”. A generic Delaunay deformation, however, can break the cyclicity of faces
having four or more vertices in the initial graph and introduce new edges which sub-
divide these faces. Nevertheless, these additional edges are shown to be stable for
values of � > 0 which are bounded appropriately. This follows from Proposition 5.8
which also proves the existence of a (weak) Delaunay limit graph G0C whose redac-
tion G�

0C
coincides with the initial Delaunay graph G0. In Section 5.3, we study the

first-order variation of the Laplace–Beltrami and Kähler operators, when the under-
lying polyhedral triangulation is subject to a rigid deformation. Results are given in
Propositions 5.12 and 5.13, respectively. The conformal Laplacian � does not admit
a local factorization of the kind presented in Propositions 5.12 and 5.13, and for this
reason there is no analogous formula for its first-order variation. Section 5.4 sets up
notation.

The calculations of the first- and second-order variations of the log-determinant
for the Laplace–Beltrami operator, the Kähler operator, and the conformal Laplacian
are undertaken in Section 6. The first-order variation formulas are entirely local,
i.e., expressed as sums of weights of edges. The second-order variations, on the
other hand, involve long-range effects of the critical Green’s function ��1cr asso-
ciated to pairs of distant vertices and, in principle, register aspects of the global
geometry of the initial isoradial Delaunay graph Gcr. In Propositions 6.1 and 6.6 of
Section 6.1, we present formulas for the first-order variations of the Laplace–Beltrami
and Kähler operators which are valid uniformly for all isoradial Delaunay graphs.
The first-order formula for the conformal Laplacian incorporates an additional term
which accounts for the effect made by chords in G0C and is given in Proposition 6.4.
The second-order formulas for the variation of the log-determinant of the Laplace–
Beltrami and Kähler operators are calculated separately in Propositions 6.10 and 6.11
of Section 6.2, respectively; this is the content of Theorem 1.6. In both cases, our
approach relies on the asymptotics of the Green’s function in Proposition 1.1 and
Lemma 6.9; the latter makes use of the operator factorizations in Propositions 5.12
and 5.13, as well as a novel estimate presented in Lemma 6.8. Formula (1.15) of
Theorem 1.6 is not valid for the conformal Laplacian, and it must be modified by
defect terms which take into account the effect of chords in G0C . See formulas (6.25)
and (6.26). We propose that these defects are indicative of a discrete curvature anom-
aly arising from the perturbation. This is examined in Section 6.4.

Section 7 handles the proof of Theorem 1.10, which deals with the existence and
value of the scaling limit given by formula (1.17) for the Laplace–Beltrami and Kähler
operators. Sections 7.1 and 7.2 address some technical points about bi-local deform-
ations, scaling limits, and re-summation. In Section 7.3, we prove the existence of
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the scaling limit of (1.15) in the case of a continuous bi-local deformation and settle
Theorem 1.10. The basic idea is to interpret (1.15) as a Riemann sum with a mesh con-
trolled by the scaling parameter. The scaling limit considered in Section 7.3 is taken
with respect to an isoradial refinement yG0C;` associated to a (scaled) deformation of
our initial isoradial Delaunay graphGcr. In effect, the result is a calculation of a nested
limit: First we take the deformation parameter limit �1; �2! 0 (bringing us to yG0C;`),
and then we subsequently take the scaling limit `!1. In Section 7.4, we ask whether
these two limits can be interchanged. This question is related to whether the scaling
limit in Theorem 1.10 exists for a Delaunay graph (not necessarily isoradial) which is
obtained as a small deformation of an isoradial Delaunay graph. We return to this issue
in Section 8. Section 7.5 addresses the issue of the uniform convergence in the “flip
problem” for smooth scaled deformations. A first attempt is offered in Lemma 7.1,
where we introduce a lower bound on the range of conformal angles for an isora-
dial Delaunay triangulation. This constraint ensures that no flips occur whenever the
deformation parameter � is bounded above by a threshold {�F which is uniform both
with respect to the scaling parameter and this proper subclass of isoradial Delaunay
triangulations.

In Section 8, we return to the general case of deformations G� of Delaunay graphs
Gcr which may incur edge flips. We look for uniform bounds on the variation of the
corresponding operators �.�/ and D.�/ for small but non-zero values of the deform-
ation parameters. In order to get uniform bounds with respect to the choice of the
initial graph G0, we obtain in Proposition 8.1 an estimate for the variation of the
radius R.f�/ of an arbitrary triangle f� of G� as the deformation parameter � varies.
We deduce strong results (summarized in Conjecture 1.12) on the uniform conver-
gence of the scaling limit for � (Proposition 8.4) and of the scaling limit of the
second-order bi-local term (leading to the OPE) (Proposition 8.7); the later result
depends on a conjectural uniform estimate (Conjecture 8.5) on rp3.f/ and xrp3.f/
in terms of the radius R.f/ of a face f and the scaling parameter. We finish the
section by showing that there is a qualitative difference between � and D , and we
obtain a weaker but interesting “simultaneous convergence” result for the scaling limit
of the second-order bi-local term for D (Proposition 8.11), summarized in Conjec-
ture 1.12.

Section 9 summarizes our results and presents them from a more statistical physics
point of view. After reviewing the aims of the paper in Section 9.1, we discuss in Sec-
tion 9.2 the first-order variation of the log-determinant for the three operators �, �
and D vis-à-vis the Gaussian free field. We show that formula (6.3) for the Laplace–
Beltrami operator � can be re-expressed in terms of the vacuum expectation value of
a discrete stress-energy tensor T� for a Grassmann free field theory (for convenience,
we opt for a fermionic analog of the massless free field (GFF)) supported on Gcr and
whose scaling limit coincides with the standard continuous free field. This is not a sur-
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prise. Our results for D and � are similarly expressed using discrete stress-energy
tensors TD and T� however neither formula (6.6) nor formula (6.4) have an obvious
continuous limit relating it to the continuous free field. In Section 9.3, we discuss
the bi-local second-order variation formula and the universal form of its scaling limit
for � and D in terms of their respective discrete stress-energy tensors. Furthermore,
we address the (in general) non-existence of a scaling limit for �. In Section 9.4, we
discuss the relation and differences between (i) the model and the questions addressed
for Delaunay graphs in our work, and (ii) previous studies made by Chelkak et al. on
the O(n) model and by Hongler et al. on the GFF and the Ising model on the hexagonal
and square lattices respectively. Finally, in Section 9.5, we briefly list some open ques-
tions and some possible extensions of this work.

Some standard material, technical derivations of results and matters not central to
this work are relegated to appendices. Appendix A presents some standard notations
and reminders about QFT, CFT and the stress-energy tensor, in particular, for the free
boson and the b–c ghost theory. Appendix B gives the derivation of Lemma 1.9, which
is instrumental for Theorem 1.10 and the derivation of the scaling limit. Appendix C
examines the conformal Laplacian � on a particular critical Delaunay graph G, as
well as the anomalous terms associated with chords inG0C which arise in the second-
order variation of the log-determinant formula for � addressed in Section 6.3.1. The
graph G is sufficiently regular, and G0C has a sufficient density of chords to ensure
that these anomalous terms have a convergent scaling limit, which is computed expli-
citly in Proposition C.4.

2. Planar graphs and rhombic graphs

2.1. Definitions and properties of the basic objects

Let us first introduce the basic geometrical objects that we shall consider: plane tri-
angulations, plane polyhedral graphs (whose faces are cyclic polygons), Delaunay
graphs, rhombic graphs, etc. Most of the notations and properties are standard, and
can be found in, for instance, [1, 8, 13]. Some notations and concepts on isoradial
graphs come from [17, 18].

2.1.1. Plane graphs and Delaunay graphs.

Definition 2.1. An embedded planar graph will be – for the purpose of this article –
a graph G given by a set of vertices V.G/ and a set of edges E.G/, together with
an injective map zWV.G/! C. For a vertex v 2 V.G/, we shall denote its complex
coordinate by z.v/; if there is no risk of confusion, we shall sometimes denote the
complex coordinate by the vertex label v itself. Each edge e D uv is embedded as
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a straight line segment joining its end-points z.u/ and z.v/, while the oriented edge
Ee D .u; v/ corresponds to the displacement vector z.v/ � z.u/. We require that for
any pair of edges the corresponding line segments are non-crossing (i.e., do not share
any interior points). The embedding determines an abstract set of faces F.G/, and
we require that each face f 2 F.G/ is embedded as a convex polygon endowed with
a counter-clockwise orientation (so that no face is folded onto an adjacent face). Fur-
thermore, the set of faces must cover the plane and they must not accumulate in any
finite region of the plane (i.e., each open disk must contain only finitely many faces).
We shall occasionally suppress the distinction betweenG as an abstract combinatorial
entity (i.e., vertices, edges, faces and their incidence relations) and its description as
an embedded object in the plane (points, segments, and polygons with the geometrical
restrictions described above).

Definition 2.2. A polyhedral graph will be an embedded planar graph such that each
face is a cyclic polygon, i.e., all the vertices of the face lie on a circle (the circum-
circle Cf of the face f), in cyclic order. Two faces may have the same circumcircle.

Definition 2.3. An edge e 2 E.G/ of a polyhedral graph G is a chord if the two
faces f and g of G adjacent to e share the same circumcircle (i.e., the circumcenters
of f and g coincide). An edge which is not a chord is said to be a regular edge of G.
If no ambiguity arises, we shall use the term edge for regular edges only, and chords
for the others.

Definition 2.4. A chordless polyhedral graph is a polyhedral graph without chords,
i.e., no pair of faces share the same circumcircle. Obviously, chordless polyhedral
graphs correspond to a special class of circle patterns in the plane. In a general poly-
hedral graph, a face which does not share its circumcircle with another face will be
said to be a chordless face.

Definition 2.5 (Redacted graph). Given a polyhedral graph G, let G� be the graph
with the same vertex set V.G�/ D V.G/, the same embedding z� D z, and with
edge set E.G�/ D E.G/ � chords.G/, where chords.G/ is the set of all chords in G.
We call G� the redaction, or redacted graph, of G.

Definition 2.6. A weak Delaunay graph is a polyhedral graph G such that for any
face f, the interior of the circumdisk Df (the closed disk whose boundary is the
circumcircle Cf) contains no vertex of G. The circumcircle itself contains the vertices
of f, and possibly other vertices. A Delaunay graph is a chordless weak Delaunay
graph.2

2Note that in the literature the term Delaunay graph often denotes what we call here a weak
Delaunay graph.
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Definition 2.7. A triangulation is an embedded planar graph T such that each face
is a triangle. Obviously, a triangulation is a polyhedral graph. A Delaunay triangula-
tion is a triangulation which is a Delaunay graph. A weak Delaunay triangulation is
a triangulation which is a weak Delaunay graph.

Definition 2.8. A triangulation T is called a completion of a weak Delaunay graph G
if E.G/ � E.T/. Such a triangulation is necessarily weakly Delaunay, and is obtained
by saturating G with a maximal collection of non-crossing chords. Clearly, the redac-
tions T� andG� coincide. Throughout the paper, yGwill denote a choice of completion
of a weakly Delaunay graph G.

Remark 2.9. The concepts of polygonal and Delaunay graphs can be extended to
finite graphs embedded in the Riemann sphere. This is done in [7], for instance. Such
a graph can be visualized either on the sphere or as an embedded planar Delaunay
graph together with edges (represented as infinite rays) joining vertices on the bound-
ary of the convex hull of the graph to a vertex situated at 1 (if present). Likewise,
the Voronoi construction, as well as the Lawson flip algorithm [20], can be adap-
ted to construct a unique embedded Delaunay graph from any finite configuration of
points in the Riemann sphere. A similar approach can be undertaken for (finite) graphs
embedded in a compact Riemann surface; for example, this is done implicitly in [17]
for the torus.

Möbius transformations preserve the Delaunay property for finite graphs embed-
ded in the Riemann sphere, and so one can incorporate the PSL2.C/ symmetry into
the model, as done in [7]. Our situation is different: We are chiefly interested in infinite
Delaunay graphs in the plane which are locally finite, i.e., having only finitely many
vertices in any open ball. Although the application of a PSL2.C/ transformation pre-
serves the Delaunay property, the resulting graph may cease to be locally finite, since
a neighborhood of1 can be mapped to a finite radius ball containing an infinite num-
ber of vertices. This is not a problem for our study, since we shall consider graph
deformations which are implemented by bounded functions with compact support.

2.1.2. Isoradial graphs.

Definition 2.10. An isoradial graph is a polyhedral graph G such that the circum-
radii R.f/ (the radius of the circumcircle Cf of f) of all the faces f of G are equal.

Definition 2.11. Following [17], a face f whose circumcenter is inside or on the
boundary of f (considered as a cyclic polyhedron) is called a regular face. A poly-
hedral graph such that all its faces are regular is called a regular graph.

Remark 2.12. Given an oriented edge Ee of a polyhedral graph, we define the corres-
ponding north and south angles �n.Ee/ and �s.Ee/ through Figure 1 in Section 1.2.1.
By the inscribed angle theorem, �n.Ee/ does not depend upon the choice of vertex
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n 2 fn in the north face. Likewise, �s.Ee/ is independent of the vertex s 2 fs in the
south face. Note that reversing the orientation of Ee exchanges the roles of north and
south, and so the conformal angle �.e/ WD 1

2
.�n.Ee/ C �s.Ee// is independent of the

choice of edge orientation, hence the notation �.e/.

Remark 2.13. Given an edge e D uv with vertices u; v 2 V.G/, the value of the
conformal angle �.e/ equals the argument of the following cross-ratio involving the
(coordinates of the) vertices u, v, n, s:

�.e/ D
1

2
arg.�Œz.u/; z.v/I z.n/; z.s/�/ (2.1)

with the anharmonic cross-ratio

Œz1; z2I z3; z4� D
.z1 � z3/.z2 � z4/

.z1 � z4/.z2 � z3/
:

Consequently, the conformal angle is SL2.C/-invariant owing to the fact that the
cross-ratio is invariant.

Remark 2.14. We want to reiterate the comments in Section 1.2.1, and stress that the
Delaunay condition as stated in Definition 2.6 is equivalent to the condition that for
any edge e of a polyhedral graph, its conformal angle �.e/ is positive and bounded
between

0 < �.e/ <
�

2
:

The weak Delaunay condition holds for a polyhedral graph if and only if for any
edge e of the graph the conformal angle �.e/ is non-negative and bounded between
0 � �.e/ < �

2
.

Remark 2.15. In a weak Delaunay graph, an edge e is a chord if and only if

�n.Ee/C �s.Ee/ D 2�.e/ D 0;

i.e., if and only if the conformal angle �.e/ vanishes. However, in this case, the north
and south angles �n.Ee/ and �s.Ee/ need not to be both zero. The special case

�n.Ee/ D �s.Ee/ D �.e/ D 0

occurs only if the edge e is a diameter of the circumcircle of the cyclic quadrilateral
.u; s; v; n/.

Remark 2.16. Note that � � 2�.e/ is the intersection angle between the clockwise
oriented north and south circumcircles Cn and Cs. In a polyhedral graph, we have
�.e/ > 0 if and only if z.n/ lies outside the circumdisk of Cs, or equivalently if and
only if z.s/ lies outside the circumdisk of Cn.
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2.1.3. Some properties. Regular graphs will be useful when discussing rhombic
graphs (following Kenyon’s treatment, see [17]) in Section 2.1.4, thanks to the fol-
lowing simple result.

Lemma 2.17. Let Gcr be a planar, isoradial Delaunay graph with common circum-
radius Rcr. Then Gcr is regular.

Proof. Suppose by contradiction there exists an irregular face f 2 F.Gcr/. There exists
an edge e 2 @f with an orientation Ee such that f D fs and such that the face fs is
contained in the intersection of the disks of circles Cs and C , where C is the circle
of radius Rcr obtained by reflecting Cs about the line determined by the edge e as
depicted in Figure 2. In virtue of isoradiality, the vertices v 2 @fn with v … @e must
all lie either (1) on the portion of the circle C residing in the interior of the disk of
circumcircle Cf or else (2) on the circumcircle Cs. Case (1) is impossible because
then any vertex v of this kind would violate the Delaunay property with respect to the
face fs because the edge e would form a chord between faces fn and fs. Likewise,
case (2) is impossible because the edge e would form a chord between faces fn and fs.
So Gcr must be regular.

vv
e e

ff

ofof

CC

Cs Cs

Figure 2. Cases (1) and (2) in the proof of Lemma 2.17.

Corollary 2.18. By Lemma 2.17, the redacted graph G� is an isoradial regular De-
launay graph whenever G is isoradial and weakly Delaunay.

2.1.4. Rhombic graphs and abstract rhombic surfaces. We now consider the bi-
partite kite graph built from the vertices and the face centers of a Delaunay graph, as
well as the associated concept of rhombic surface.

Definition 2.19 (Kite graphs G˙). For a Delaunay graph G, let G˙ denote the bipart-
ite graph whose vertex set consists of all vertices v ofG (the black vertices �) together
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with all circumcenters of of faces f of G (the white vertices ı), and whose edges cor-
respond precisely to those pairs ¹v;ofº for which v 2 @f. We extend the embedding z
of G to G˙ by setting z.of/ WD z.f/ for each face f 2 F.G/, where

z.f/ WD
1

4i
jz.u/j2.z.v/ � z.w//C jz.v/j2.z.w/ � z.u//C jz.w/j2.z.u/ � z.v//
z.v/xz.u/ � z.u/xz.v/C z.w/xz.v/ � z.v/xz.w/C z.u/xz.w/ � z.w/xz.u/

is the complex coordinate of the circumcenter of the face f 2 F.G/ with any choice
of three vertices u; v; w 2 @f appearing in counter-clockwise order. As constructed,
each face of the graph G˙ is quadrilateral (in fact, a kite) ˙.uv/ D .u; os; v; on/

corresponding to a unique unoriented edge uv of the graph.

Remark 2.20. For any weak Delaunay graph G, we define G˙
WD .G�/˙. Clearly,

G
˙

1 D G
˙

2 if and only if G�1 D G
�
2 for any two weak Delaunay graphs G1 and G2.

Definition 2.21 (Rhombic surface S˙

G
). Following [7], a rhombic surface S˙

G
can be

constructed from a Delaunay graph G in the following way: assign to each unoriented
edge e D uv a rhombus ˙.e/ D zuzoszvzon with unit edge lengths ` D 1 and rhombus
angle †zoszuzon D 2�.e/, as depicted in Figure 3.

"

:••

I
µµ

§⇒#⑧&
v

u

zv

zu

zos

zon

zos

zon

2�2�

Figure 3. An edge e D uv of G and the associated kite in the plane (left), and the associated
rhombus ˙.e/ of S˙

G
(right).

If two edges e1 and e2 of the graph share a common vertex and simultaneously
belong to a common face, then rhombi ˙.e1/ and ˙.e2/ are glued together along
their common edge. In this way, we obtain an abstract rhombic surface S˙

G
.

A simple example is depicted in the Figure 4. In this example, an explicit isomet-
ric embedding in R3 as a tesselated rhombic surface is possible. Part (a) is a piece of
a Delaunay graph G, in blue, with the kites associated to each edge (in orange); (b) is
the associated kite graph G˙ (in orange); (c) is an isometric embedding in R3 of the
associated rhombic surface S˙

G
. In this particular example, the conformal angles �.e/

for each edge ofG equal �
2

, and so the faces of S˙

G
are, in fact, squares, and the embed-
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x

y

z

(a) (b) (c)

Figure 4. An example (in blue) of a Delaunay graph G (a), of the associated kite graph
G

˙ (b), and of the rhombic surface S˙
G

, here represented as consisting of squares embedding
in R3 (c). The curvatureK is localized on the ı vertices with 3 neighbors � vertices (positiveK)
or 5 neighbors � vertices (negative K).

ding (c) is a surface in Z3. In general, the rhombic surface S˙

G
cannot be embedded

isometrically and rigidly into R3.
A rhombic surface is flat at each vertex zu associated to a vertex u of G but has

a potential curvature defect at each vertex zof corresponding to a circumcenter of of
a face f of G, with scalar (Ricci) curvature Rscal defined by

Rscal.zof/ WD 4� � 2
X
e2@f

.� � 2�.e//: (2.2)

If Rscal.zof/ D 0 for every face f of the graph, G is said to be flat. It is easy to see
that this is equivalent to saying that the Delaunay graph is isoradial, namely that all
circumradii are equal to some R. Note that for every oriented edge Ee of an isoradial
polyhedral graph either

�n.Ee/ D �s.Ee/ D �.e/ > 0 or �n.Ee/ D ��s.Ee/

in which case �.e/ D 0.
When G is isoradial (with common circumradius R), each kite ˙.uv/ will be

a rhombus with side length R; in this case, we shall refer to G˙ as a rhombic graph;
see Figure 5 for an illustration. Up to a global rescaling R! 1, we have

G
˙
D S

˙

G
:

This corresponds to the rhombic graphs discussed in [17].

Remark 2.22. Isoradial Delaunay graphs are in bijection with the rhombic graphs
of [17].
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Figure 5. Fragments of an isoradial Delaunay graph Gcr (on the left) and its rhombic graph G˙
cr

(on the right).

2.2. Geometry on rhombic graphs

In the following discussion, Gcr will be an isoradial Delaunay graph with embedding
zcrWV.Gcr/! C and, if not specified otherwise, we shall assume for simplicity that
the value of the common circumradius is Rcr D 1. Let us recall some geometrical
concepts of [17, 18], with some more material needed in this paper.

2.2.1. Paths on rhombic graphs. A path in G˙
cr is a finite sequence of vertices v D

.v0; : : : ; vk/ such that for each 1 � j � k, the vertices vj�1 and vj are joined by an
edge ej of G˙

cr ; in this case, we say v is a path of length k from v0 to vk; see Figure 6.
Let Eej D .vj�1;vj / be the oriented edge corresponding to ej , let EE.v/D .Ee1; : : : ; Eek/
be the sequence of oriented edges of v , and E.v/ D

S
j ¹ej º the set of edges of v .

For each edge Eej of v , there is a phase ei�j WD zcr.vj / � zcr.vj�1/ associated to it.
We denote by �.v/ D .�1; : : : ; �k/ the sequence of angles of these phases.

We can regard the rhombic graph G˙
cr as a cellular decomposition of the plane;

accordingly, vertices, oriented edges, and oriented faces ofG˙
cr can be viewed respect-

ively as 0, 1, and 2-chains of a cellular complex X with Z-coefficients. For a path v ,
let Ev denote the 1-chain Ee1 C � � � C Eek in C1.XIZ/. Two paths v1 and v2 are said to
differ by an oriented rhombus ˙	 if Ev2 D Ev1 C @˙	; see Figure 7 for an example.
The vanishing of H1.XIZ/ is equivalent to the fact that any two paths Ev1 and Ev2 both
from a vertex u to a vertex v must differ by a sum of oriented rhombi.

For an integer n together with an oriented edge Ee joining a vertex u to a vertex v,
set bEecn WD ein� , where ei� D zcr.v/ � zcr.u/ is the phase of the difference of the
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v0

v1

v2

vk�1

vk

Figure 6. Path v D .v0; : : : ; vk/ in the rhombic graph G˙
cr .

u0

u1

u2

u3

u4

v0

v1

v2v3

v4
v5

v6

Figure 7. Paths u D .u0; : : : ; u4/ and v D .v0; : : : ; v6/ are differ by a rhombus.

coordinates of the vertices; extend this by linearity to 1-chains in C1.XIZ/, and thus
define jX

j

aj Eej
k
n
WD

X
j

aj bEej cn:

Notice that b˙	cn D 0 for any oriented rhombus ˙	 whenever n is an odd integer.
It follows that for any path v , and for any odd integer nD 2d C 1, bEvcn depends only
on the two end-points .v0; vk/ of v .

Definition 2.23. For any pair of vertices u and v of G˙
cr and for any odd integer

n D 2d C 1, we define pn.u; v/ WD bEvcn, where v is any path from u to v.

Note that p1.u; v/ D zcr.v/ � zcr.u/. In addition, pn.u; v/ D �pn.v; u/.
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2.2.2. Train-tracks.

Definition 2.24 (train-track). A train-track in the rhombic graph G˙
cr is an infinite

sequence of rhombi t D .˙n W n 2 Z/, whose consecutive rhombi ˙n and ˙nC1
are incident along a common edge en for each n 2 Z, and for which the edges en
and enC1 are parallel for each n 2 Z. We shall denote these parallel edges “train-
track tie”, or in short “tie”. We consider train-tracks up to shift and inversion, i.e.,
t.1/ D .˙.1/n W n 2 Z/ is equivalent to t.2/ D .˙.2/n W n 2 Z/ if ˙.2/n D ˙.1/

˙nCd
for

some d 2 Z. Let Ties.t/ D ¹en W n 2 Zº denote this set of edges. A train-track t has
inclination �t 2 Œ0; �/ if the ties en are parallel to the phase exp.i�t/. See Figure 8
for an illustration.

˙3
˙2

˙1

˙0 e0

˙�1
˙�2

˙�3

Figure 8. Train-track t.

Clearly, any train-track is determined (but not uniquely) by an initial rhombus ˙0
together with a choice of one of its edges e0. For any choice of initial edge e0 in t, the
distance of each edge en from the axis determined by e0 is monotonically increasing
with n, i.e., the train-track must move forward in the axis perpendicular to e0.

We say two train-tracks t.1/ D .˙.1/n W n 2 Z/ and t.2/ D .˙.2/n W n 2 Z/ intersect
if ˙.1/m D ˙.2/n for some m; n 2 Z. Two important features of any rhombic-graph G˙

cr

are the following facts.
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Fact 2.25. No train-track can intersect itself, i.e., if t D .˙n W n 2 Z/, then ˙m ¤ ˙n
for all integers m ¤ n.

Fact 2.26. Any two distinct train-tracks are either disjoint or else intersect once.

The notion of train-track is amenable to any quad-graph (a planar graph consisting
entirely of quadrilateral faces) and these two properties characterize rhombic graphs
within the broader class of quad-graphs; specifically, any quad-graph satisfying these
two properties is a deformation of a rhombic graph (see [18]).

2.2.3. Intersections of train-tracks with paths. A train-track t partitions the vertex
set V.G˙

cr/ into two disjoint subsets V0 and V00. Specifically, the edge set E.G˙
cr/ �

Ties.t/ defines a disconnected subgraph ofG˙
cr with two disjoint components; V0 and

V00 are the respective vertex sets of these components. Accordingly, we say that two
vertices u and v are separated by t if they lie in different components; furthermore,
we say t separates the path v if the end-points of the path v0 and vk are separated
by t.

Given a path v D .v0; : : : ;vk/ and a train-track t, let I.v I t/ WD ¹1 � j � k W ej 2
Ties.t/º be the set of indices of edges common to both v and t. If t separates v , then
its cardinality jI.v I t/j must be odd due to the fact the path must begin on one side
of t and end on the other. If, on the other hand, t does not separate v , then jI.v I t/j is
even (and may, in fact, be zero if there is no intersection at all).

The edges ej for j 2 I.v I t/ are clearly parallel (since they all inhabit the train-
track t) but the oriented edges Eej for j 2 I.v I t/ must alternate in direction, and so
their phases ei�j for j 2 I.v I t/ must alternate in sign. Consequently, if I.v I t/ D
¹j1 < � � � < jd º and n is odd, then

dX
sD1

ein�js D

´
ein�j1 whenever t separates v ;

0 otherwise:
(2.3)

If t separates v , their intersection angle is defined as #.v ; t/ WD �j1 , and ‚.v/ D
¹#.v ; t/ W t intersects vº is the set of intersection angles of all train-tracks that separate
the path v . Define the multiplicitym# WD j¹t separates v W # D #.v ; t/ºj for # 2‚.v/.
It follows from equation (2.3) that for odd n,

pn.u; v/ D
kX

jD1

ein�j D
X

train-tracks t
separating v

ein#.v ;t/
D

X
#2‚.v/

m#e
in# ; (2.4)

where v0D u and vk D v are the beginning and end points of the path v . Given a train-
track t separating v with angle of intersection � D �.v ; t/, define Ru

�
D zcr.u/ C

R>0ei� to be the ray (half-line) starting from zcr.u/ in the direction � , and Rv
�C�
D

zcr.v/ C R>0ei.�C�/ be the ray starting from zcr.v/ in the direction � C � . It is
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Rv
�

Ru
�

u

v

Figure 9. Vertices u and v separated by a train-track t.

geometrically clear that t must intersect the right-hand sides of rays Ru
�

and Rv
�C�

,
without backtracking in the direction orthogonal to Ru

�
(and without intersecting the

opposite rays Ru
�C�

and Rv
�
). See Figure 9.

For completeness, one should consider the case where lozenges in t become infin-
itely flat, so that t goes to infinity in the � direction before intersecting Ru

�
(see

Figure 10). Then one can consider that t crosses Ru
�

at infinity.

Proposition 2.27. Let v D .v0; : : : ; vk/ be a path in G˙
cr , let the direction of the path

be �0 D arg.zcr.vk/ � zcr.v0//. Let us fix the determinations of the angles # 2 ‚.v/
as real numbers in

# 2 .�0 � �; �0 C ��;

and let
˛ D max¹# 2 ‚.v/º; ˇ D min¹# 2 ‚.v/º:

Then
˛ � ˇ < � and ˇ � �0 � ˛:

In other words, the set ‚.v/ and the angle �0 are contained in the open subinterval
.�v �

�
2
; �v C

�
2
/, where �v D

1
2
.˛ � ˇ/.

Proof. Set �0 D arg.zcr.vk/ � zcr.v0// 2 Œ0; �/. Each # 2 ‚.v/ is the intersection
angle of at least one train-track t whose inclination equals # (modulo �) and which
separates the vertices v0 and vk .

First let us note that the angle �0 C � cannot be an element of ‚.v/. Were this
the case, there would be a train-track joining the right-hand sides of the rays Ru

�0C�

and Rv
�0

without backtracking. This is impossible, as depicted in Figure 11.
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Rv
�

Ru
�

u

v

Figure 10. A situation where the vertices u and v are asymptotically separated by a train-track.

Rv
�0

Ru
�0C�

u v

Figure 11. A track separating u and v with orientation �0 C � must backtrack.

Consequently, the angles in ‚.v/ are in the interval .�0 � �; �0 C �/. Consider
˛ D max‚.v/ and ˇ D min‚.v/. It is enough to prove that ˛ � ˇ � � . Indeed, sup-
pose instead that ˛ � ˇ > � . Both ˛ and ˇ are intersection angles for two respective
train-tracks t1 and t2 which separate u WD v0 and v WD vk . If we attempt to draw t1
and t2 bearing in mind monotonicity and their requisite intersections with the rays
Ru
˛ , Ru

ˇ
, Rv

˛C� , and Rv
ˇC�

, we will observe that the two train-tracks are forced to
intersect at least three times (as depicted in Figure 12).

Since two distinct train-tracks may intersect at most once, we are forced to con-
clude that ˛ � ˇ � � . Finally, by equation (2.4), the difference zcr.v/� zcr.u/ can be
written as

zcr.v/ � zcr.u/ D
X

#2‚.v/

m#e
i# with m# 2 Z>0:
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Rv
˛C�

Rv
ˇC�

Ru
˛ u

v

�0

< �

< �

Ru
ˇ

Figure 12. Two train-tracks separating u and v cannot have separating angles differing by more
that � .

Any positive combination of phases ei# for # 2 ‚.v/ must lie in the positive cone
¹aei˛ C beiˇ W a; b 2 R>0º because ˛ � ˇ < � . It follows that ˇ < �0 < ˛.

For obvious topological reasons the set ¹t separates v W # D #.v ; t/º only depends
on the end-points v0 and vk of the path v . By Proposition 2.27, if # 2 ‚.v/, then
# C � … ‚.v/, which means that if two distinct train-tracks t1 and t2 share the same
inclination and both separate v , then

#.v ; t1/ D #.v ; t2/:

Consequently, the set ‚.v/ together with the multiplicities m# for # 2 ‚.v/ must
only depend on the end-points v0 and vk of the path v as well. This observation is
consistent with the fact that the value of bEvcn depends only on the end-points of v .

3. Laplacians and their determinants

3.1. Laplacians and the critical Laplacian

3.1.1. Laplacians associated to polyhedral graphs and triangulations. Given a
polyhedral graph G, we denote by CV.G/, CE.G/, and CF.G/ the vector spaces of
complex-valued functions supported on the vertices, edges, and faces of G, respect-
ively. The operators �, � and D are associated to a general polyhedral graph G and
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were introduced in Section 1.2.3. Each operator is a linear map CV.G/! CV.G/. The
Laplace–Beltrami operator � is defined as

��.u/ D
X

edgeEeD.u;v/

c.Ee/.�.u/ � �.v//; c.Ee/ D
1

2
.tan �n.Ee/C tan �s.Ee//: (3.1)

The conformal Laplacian� is

��.u/ D
X

edge EeD.u;v/

tan �.e/.�.u/ � �.v//:

The Kähler operator D is

D�.u/ D
X

edge EeD.u;v/

1

2

� tan �n.Ee/C i
R2n.Ee/

C
tan �n.Ee/ � i
R2s .Ee/

�
.�.u/ � �.v//;

where �n.Ee/, �s.Ee/ and �.e/ are the north, south and conformal angles, respectively,
associated to the oriented edge Ee D .u; v/, while Rn.Ee/ and Rs.Ee/ are the circumradii
of the respective north fn and south fs faces associated to Ee (see Figure 1).

Remark 3.1. The Laplace–Beltrami operator�, the conformal Laplacian�, and the
David–Eynard Kähler operator D on a polygonal graph G agree with �, �, and D ,
respectively, when defined on the associated redacted graph G� (see Definition 2.5).
By definition, the vertex sets of G and G� coincide. So for any pair of vertices u, v,
the corresponding matrix entries �u;v,�u;v, and Du;v are independent of whether we
calculate their values with respect to the graph embedding (and incidence relations)
of either G or G�. Likewise, �, �, and D operating on G agree with their respective
counterparts when defined on any completion yG of G (see Definition 2.8).

3.1.2. Areas, angles and circumradii formulas. We recall some basic geometrical
formulas for these quantities. Let f D .v1; v2; v3/ be a counter-clockwise oriented
triangle with vertices labeled v1, v2, v3 and respective coordinates z1, z2, z3, then the
area A.f/ of the triangle is

A.f/ D
1

4i
.z2xz1 � z1xz2 C z3xz2 � z2xz3 C z1xz3 � z3xz1/: (3.2)

The circumcenter z.f/ of the triangle is given by

z.f/ D
z1xz1.z2 � z3/C z2xz2.z3 � z1/C z3xz3.z1 � z2/

4iA.f/
;

and the circumradius R.f/ of the triangle is given by the trigonometric relation

R.f/ D
jz1 � z2jjz2 � z3jjz3 � z1j

4A.f/
; (3.3)
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while the north angle associated to the oriented edge Ee D .v1; v2/ is

�n.Ee/ D
1

2i
log
�
�
.xz2 � xz3/.z1 � z3/

.z2 � z3/.xz1 � xz3/

�
: (3.4)

Furthermore, tan2 �n.Ee/ can be written explicitly in coordinates as

tan2 �n.Ee/ D
2C z2�z3

xz2�xz3

xz1�xz3
z1�z3

C
z1�z3
xz1�xz3

xz2�xz3
z2�z3

2 � z2�z3
xz2�xz3

xz1�xz3
z1�z3

�
z1�z3
xz1�xz3

xz2�xz3
z2�z3

D 4
jz.f/ � z12j

2

jz2 � z1j2
with z12 D

z2 C z1

2
: (3.5)

The derivatives of A.f/, R.f/ and of the angles �n.Ee/ under a variation of a vertex
coordinate are easy to calculate, using, for instance,

@z1A.f/ D
1

4i
.xz3 � xz2/; @z1 jz1 � z2j D

1

2

xz1 � xz2

jz1 � z2j
with @z1 D

@

@z1

and will be discussed later.

3.1.3. Laplacians on critical (isoradial) graphs. The critical Laplacian studied by
Kenyon in [17] corresponds to the special case of � with edge weight c.e/ given
by (3.1), defined on a critical graph (according to the terminology of [17]), i.e., an
isoradial, Delaunay graph Gcr. Accordingly, we shall use the following terminology
for critical Laplacians, given here.

Definition 3.2. Let Gcr be an isoradial Delaunay graph. The Laplace–Beltrami oper-
ator �, the conformal Laplacian �, and the David–Eynard Kähler operator (normal-
ized by the squared isoradius Rcr of the faces of Gcr) coincide for Gcr. This common
operator is called the critical Laplacian associated to Gcr and is denoted by �cr,

�cr D � D � D R
2
crD on Gcr:

An explicit formula for �cr is also given in equation (1.9) of Section 1.2.3.

3.2. Factorization of Laplacian using r and xr operators

In the case of a planar triangulation T, we present an alternative representation of
the operators � and D which will be convenient for our calculations. We follow the
definition and the notations of [7].

Definition 3.3. The operators r and xr are linear operators from the space of com-
plex-valued functions over the set of vertices V.T/ of T, onto the space of complex-
valued functions over the set of triangles (faces) F.T/ of T,

CV.T/ r
! CF.T/; CV.T/

xr
! CF.T/;
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where r is defined as follows. Given a triangle f (a face of the triangulation T) with
vertices v1, v2, v3 (listed in counter-clockwise order) and complex coordinates zj WD
z.vj / for 1 � j � 3 together with a function � 2 CV.T/, define

r�.f/ D
�.v1/.xz2 � xz3/C �.v2/.xz3 � xz1/C �.v3/.xz1 � xz2/

�4iA.f/
; (3.6)

r corresponds to a discrete linear derivative with respect to the embedding v 7! z.v/
because

rz D 1; rxz D 0:

Similarly, its conjugate xr is defined as

xr�.f/ D
�.v1/.z2 � z3/C �.v2/.z3 � z1/C �.v3/.z1 � z2/

4iA.f/
(3.7)

and satisfies
xrz D 0; xrxz D 1:

The transposes of these operators are defined accordingly

CF.T/ r
>

! CV.T/; CF.T/
xr>

! CV.T/:

Remark 3.4. It follows from definitions (3.6) and (3.7) and the area formula (3.2)
that for any function � 2 CV.T/,

�.v1/ � �.v2/ D .z1 � z2/r�.f/C .xz1 � xz2/xr�.f/: (3.8)

Note that the discrete derivatives r and xr are defined for general triangulations.
Even when the triangulation is isoradial, r and xr do not coincide with the discrete
holomorphic and discrete antiholomorphic derivatives @ and x@ considered in [17] for
isoradial bipartite graphs. Indeed, r and xr do not even act on the same space of
functions as @ and x@.

Nevertheless, we shall need to bound the difference between the r� and the
ordinary continuous derivative @� in the case of a smooth complex-valued function
�WC ! C with compact support and its restriction to V.T/ given by

�.v/ WD �.z.v//;

where zWV.T/! C is the embedding of T. This estimate is explained in Lemma 1.9
of the introduction and proven in Appendix B.

In addition, the r-operator satisfies a discrete analog of Green’s theorem“
�

@�.z; xz/ dzdxz D

I
@�

�.z; xz/ dxz

in complex coordinates, namely, the following lemma.
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Lemma 3.5. Let T be a polyhedral triangulation with embedding zW V.T/ ! C,
let � � F.T/ be a finite collection of triangular faces (each taken with a counter-
clockwise orientation), let @� � E.T/ be the finite subset of (oriented) edges corres-
ponding to the boundary of �, and let � 2 CV.T/ be a complex-valued function, thenX

x2�

A.x/r�.x/ D
X

.u;v/2@�

.xz.v/ � xz.u//
�.v/C �.u/
�4i

: (3.9)

Proof. Use definition (3.6) for r and observe that the area A.x/ defined by (3.2)
cancels with the area factor in the denominator of r�.x/, and that for each oriented
triangle x D .u; v; w/, the term A.x/r�.x/ can be reorganized as

�
1

4i
¹.xz.v/ � xz.u//.�.v/C �.u//C .xz.w/ � xz.v//.�.w/C �.v//

C .xz.u/ � xz.w//.�.u/C �.w//º:

Now sum over the faces of �. Note that all internal edges count twice with opposite
orientations and cancel, and so only the oriented edges on the boundary @� contribute
and give the right-hand side of (3.9).

The polyhedral condition can, in fact, be dropped but we assume it to keep the
exposition simple. Lemma 3.5 implies the following corollary which is relevant to
our results.

Corollary 3.6. Let T1 and T2 be two polyhedral triangulations which share a com-
mon redacted graph G WD T�1 D T

�
2. Given a face f 2 F.G/ with vertex set V.f/, let

�i .f/ be the set of triangular faces of Ti , each of whose vertices are in V.f/. ThenX
x12�1.f/

A.x1/r�.x1/ D
X

x22�2.f/

A.x2/r�.x2/

for any complex-valued function � 2 CV.G/.

Definition 3.7. The diagonal operators A D diag.¹A.f/I f 2 F.G/º/ (with A.f/ the
area of the face f defined by (3.2)), and R D diag.¹R.f/I f 2 F.G/º/ (with R.f/ the
circumradius of the face f defined by (3.3)) map CF.G/ ! CF.G/ and are defined by
their action on all  2 CF.G/ as

A .f/ D A.f/ .f/; R .f/ D R.f/ .f/:

Then we shall heavily use the following local decompositions for the D and �
operators.

Remark 3.8. The Kähler operator D can be factored as

D D 4xr>
A

R2
r: (3.10)
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This decomposition is shown in [7, Section 2.6, Proposition 2.2]. Note that A
and R commute.

Remark 3.9. The Laplace–Beltrami operator � can be factored as

� D 2.xr>Ar C r>Axr/: (3.11)

This decomposition can be derived easily using the method of [7]. Alternatively,
one can use formula (3.2) for A.f/ and (3.8) to reorganize terms and show that for
any � 2 CF.G/ one hasX

u;v

x�.u/�uv�.v/ D 2
X

f

A.f/.xr x�.f/r�.f/Crx�.f/xr�.f//

which amounts to (3.11).

Remark 3.10. No similar decomposition holds for the conformal Laplacian�, since
the weight tan �.e/ associated to an oriented edge Ee depends non-additively on the
north and south angles �n.Ee/ and �s.Ee/.

3.3. Making sense of the log-determinant for infinite lattices

3.3.1. The problems. As explained in the introduction, we are interested in studying
the variation of the logdetO under a variation of the coordinates of the triangulation T,
where O is any of the Laplace-like operators �, � and D . Two potential dangers
arise:

(1) These operators have zero modes and some care is needed in imposing bound-
ary conditions in order to exclude them.

(2) We consider infinite polygonal graphs – and so by any naive account, the log-
determinant will be infinite.

There is a host of standard methods used to handle these issues; below we discuss two
situations where problems (1) and (2) can be side-stepped.

3.3.2. Using periodic triangulations. Consider a polyhedral graph G which is peri-
odic with respect to a lattice ZC �Z with Im � > 0. This means there is an action of
the additive group ƒ D Z2 on V.G/ denoted v 7! vC .a; b/ such that

(1) z.vC .a; b// D z.v/C aC �b,

(2) uC .a; b/ and vC .a; b/ are joined by an edge whenever u and v are joined
by an edge (moreover, the weights of these edges agree)

for all u; v 2 V.G/ and .a; b/ 2 ƒ. Given a choice of an additive subgroup, ƒmn WD
mZ � nZ of ƒ with m; n 2 Z>0 form the quotient graph G=ƒmn, which we can
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view as a finite graph embedded in the torus Tmn WD C=.mZ C � nZ/. Since the
edge weights are periodic, the operator O descends to an operator Omn on the quo-
tient graph G=ƒmn; moreover, if we identify the vertices of G=ƒmn with the sub-
set Vmn consisting of vertices v 2 V.G/ for which z.v/ 2 ¹s C t� W .s; t/ 2 Œ0;m/ �
Œ0; n/º, then Omn is a finite-dimensional operator acting on a vector space of dimen-
sion jVmnj.

We define the reduced log-determinant log det0Omn as the sum of the logarithms
of the non-zero eigenvalues of O (the non-zero part of the spectrum is real and positive
since O will be a positive operator in the cases we consider). Then the normalized
reduced log-determinant log det0O is defined as

log det0�Omn D
1

jVmnj
log det0Omn: (3.12)

The normalized log-determinant of O, defined for the entire infinite bi-periodic
graph G, is defined simply as the limit

log det�O D lim
m;n!1

log det0�Omn: (3.13)

So log det�O corresponds to an “effective action” density (free energy density) per
vertex on the infinite lattice.

Definition (3.13) agrees with the log-determinant considered by Kenyon in [17]
when O is the critical Laplacian on a bi-periodic infinite isoradial (critical) graph.

In fact, the limit in formula (3.13) exists and coincides with the following descrip-
tion in terms of matrix-valued symbols: Choose complex parameters z and w, and for
each pair .m; n/ 2 Z2>0 define the space of quasi-periodic functions

Fmn.z; w/ D
®
�WV.G/! C W �.vC .am; bn// D zawb�.v/

for all v 2 V.G/ and all a; b 2 Z
¯
:

This is a finite-dimensional vector space of dimension dimFmn.z;w/D jVmnj. Clear-
ly, O� 2Fmn whenever � 2Fmn, and consequently the operator O restricts to a finite-
dimensional linear operator �O

mn on Fmn.z; w/ which is called the symbol of O. The
entries of the matrix �O

mn are Laurent polynomials in z and w, and for generic values
of z and w, this matrix will be invertible; indeed, the work of Kassel and Kenyon [16]
implies that its determinant det�Omn is non-negative for values of z and w each having
unit modulus. One checks that the average value of the log-determinant of this symbol
agrees with normalized log-determinant of O,

log det�O D
1

4�2
1

jVmnj

Z 2�

0

Z 2�

0

d�d! log det �O
mn.e

i� ; ei!/: (3.14)

Remark 3.11. The value of the right-hand side of (3.14) can be evaluated using
Jensen’s formula (twice) and is independent of the choice of m; n 2 Z>0.
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3.3.3. Using Dirichlet boundary conditions. Let us propose the following alternat-
ive construction. For an arbitrary polygonal graph G (not necessarily periodic), one
can consider a sequence of truncated operators On obtained from a nested sequence of
domains�1 � � � � � �n � �nC1 � � � � whose union is C: for instance, the sequence
of 2n � 2n squares �n D ¹z W jRe.z/j < n; jIm.z/j < nº, where On is the restriction
of the operator O to the subset of vertices Vn D ¹v 2 V.G/ W z.v/ 2�nº with Dirich-
let boundary conditions imposed on the complement of �n. This amounts to setting
the .u; v/ matrix entry of On to zero, whenever z.u/; z.v/ … �n. Thus the non-zero
part of On is a jVnj � jVnj submatrix. Since we choose Dirichlet boundary condi-
tions on the boundary of �n, On has no zero modes and log det On is well defined.
Then we expect that the normalized 1-volume log-determinant, defined in analogy
with (3.12) by

lim
n!1

1

j�nj
log det On; (3.15)

exists, at least in the case of a non-periodic graph G which is sufficiently “regu-
lar/homogeneous” (e.g., a quasi-periodic lattice), and agrees with the normalized
log-determinant log det� O defined above by (3.13) when the graph is periodic. This
is to be expected on physical grounds by arguments analogous to those leading to
the existence of a unique infinite volume thermodynamical limit for simple classical
statistical systems, such as a lattice of classical oscillators, or spin systems, in their
high temperature phase, independent of the boundary conditions chosen for the sys-
tem. We shall not elaborate more, nor attempt to present a complete and fully rigorous
proof, since this is not needed for the rest of this work.

3.3.4. Local variation of 1-volume determinants. The finite variation of1-vol-
ume determinants (by themselves infinite) under a local deformation can be defined
properly for the two schemes that we have presented above. Let us explain the idea
in the Dirichlet boundary scheme. We begin with a polyhedral graph G and make
a perturbation G! G

0 by moving some of its vertices inside a finite size compact
domain �. The operator O changes accordingly

O ! O0 D O C ıO:

If the incidence relations ofG do not change, the variation ıO will be an operator sup-
ported on the finite set x� consisting of all vertices in� plus their nearest neighboring
vertices (any vertex which shares a common face with a vertex in �). Considering
a nested sequence of domains �1 � �2 � � � � � �n � � � � ! C such that x� � �1,
one can write the variation series expansion for the restriction of O in each �n

log det O0n D log det On C trŒıOn �O�1n � �
1

2
trŒ.ıOn �O�1n /2�C � � � :
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In the limit n ! 1, since the ıOn extended to G are equal to ıO, every term in
the expansion will converge to its1-volume limit, so that we have for any positive
integer K

trŒ.ıOn �O�1n /K �! trŒ.ıO �O�1/K �; K 2 NC;

so that, although log det O0 and log det O are formally infinite, the difference is finite
and one can write

log det O0 D log det O C trŒıO �O�1� �
1

2
trŒ.ıO �O�1/2�C � � � : (3.16)

We shall study the perturbation around an isoradial, Delaunay graph Gcr, where we
have seen that O�1cr (the Green’s function) can be expressed in a simple contour integ-
ral form. Moreover, we shall consider infinitesimal transformations (1.11), namely,

z.v/! z�.v/ D z.v/C �F.v/

and study the general form of the first-order term in (3.16), and some especially inter-
esting terms in the second-order term.

3.4. Kenyon’s local formula for log det�cr

3.4.1. Kenyon’s formula for a periodic infinite lattice. In [17], Kenyon derived
an explicit formula for the normalized log-determinant of �cr for periodic, isoradial,
Delaunay triangulations Tcr. The proof of this result relies only on the structure of
the corresponding rhombic graph T˙

cr and indeed works for any rhombic graph. For
this reason, Kenyon’s formula implicitly extends to all periodic, isoradial, Delaunay
graphs Gcr. The formula reads

log det��cr D
2

�jV11j

X
edges e

of Gcr=ƒ11

L.�.e//C L
��
2
� �.e/

�
C �.e/ log tan �.e/

is the volume (number of vertices) of the elementary domain of the infinite periodic
graph (see Section 3.3.2), the sum runs over all edges e in the quotient toric graph,
and L is the Lobachevsky function (related to the Clausen function Cl2) defined by

L.x/ D �
Z x

0

dy j2 log.y/j D
Cl2.2x/
2

: (3.17)

3.4.2. Extension to general isoradial (weak) Delaunay graphs. Kenyon’s formula
can be formally extended to express the (formally infinite) un-normalized log-deter-
minant log det�cr for a general isoradial Delaunay graph Gcr as a sum over all edges
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e 2 E.Gcr/, namely,

log det�cr D
2

�

X
e2E.Gcr/

L.�.e// (3.18)

with for compactness of the function L of the conformal angles �.e/ given by

L.�.e// D L.�.e//C L
��
2
� �.e/

�
C �.e/ log tan �.e/: (3.19)

We may further generalize this formula to any isoradial weak Delaunay graph G
obtained from Gcr by adding chords inside the faces of Gcr, i.e., any graph such that
G
�
D Gcr. Indeed, if e is a chord in G, then

�n.Ee/ D ��s.Ee/ and L.�n.Ee// D �L.�s.Ee//;

where the function L.�/ is analytically extended to an odd function of � over .��;�/.
For any isoradial weak Delaunay graph G of this kind, formula (3.18) becomes

log det�cr D
1

�

X
e2E.G/

L.�n.Ee//CL.�s.Ee// (3.20)

since the contribution of any chord is zero. This is true, in particular, for the isoradial
weak Delaunay graphs G0C and yG0C mentioned in Definition 1.5 of the introduction.
Note that the derivative of L is

L0.�/ D
d

d�
L.�/ D

�

sin � cos �
: (3.21)

4. The critical Green’s function and its asymptotics

4.1. Kenyon’s formula for the critical Green’s function

The Green’s function ��1cr studied by Kenyon in [17] is a right-inverse of the critical
Laplacian �cr characterized uniquely by the following three conditions:

(1) �cr�
�1
cr D 1,

(2) Œ��1cr

�
u;v D O.log jzcr.u/ � zcr.v/j/ for jzcr.u/ � zcr.v/j � 0,

(3)
�
��1cr

�
u;u D 0.

Here Gcr is an isoradial Delaunay graph with embedding zcr, and G˙
cr is its associated

rhombic graph (its embedding is also denoted by zcr). Kenyon showed that this critical
Green’s function ��1cr on Gcr is expressed by the explicit integral

Œ��1cr �u;v D �
1

8�2i

I
C

dw

w
log.w/E�.v/.w/; (4.1)
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where v D .v0; : : : ; vk/ is any choice of path from v0 D u to vk D v on G˙
cr ; �.v/ D

.�1; : : : ; �k/ is the associated sequence of angles; E� .w/ is the meromorphic func-
tion in w,

E� .w/ WD
kY

jD1

w C ei�j

w � ei�j
: (4.2)

The value of E� .w/ depends only on the end points v0 and vk of the path; this follows
from an argument similar to the proof in demonstrating that the value of bvcn for
odd positive integers n also depends only on the end points v0 and vk of the path.
If we fix v0 and allow the end point v D vk of the path to vary, then the mapping
v 7! E� .w/ is an example of a discrete analytic function on G˙

cr as discussed in [17].
By Lemma 4.4, the restriction of this mapping to vertices v 2 V.Gcr/ may be viewed
as a lattice approximation of the continuous exponential function

z 7! exp¹2wŒxz � xzcr.v0/�º

provided jwj < 1. For this reason, E� .w/ is referred to as a discrete exponential func-
tion. Finally, C is any closed, counter-clockwise oriented contour enclosing the finite
set of phases ˆ.v/ WD ¹ei# W # 2 ‚.v/º. As explained in Proposition 2.27, the set of
angles ‚.v/, and thus ˆ.v/, are finite and depend only on the end-points u and v
of the path v . The set of poles of the integrand in formula (4.1) is precisely ˆ.v/
and e�i�0 … ˆ.v/, so a contour C can be chosen to avoid the branch cut ��0 D
arg.zcr.u/ � cr.v// of the logarithm; see Section 4.3 below for details.

Remark 4.1. Formula (4.2) is invariant under both global translation and rotation of
the graph Gcr.

Remark 4.2. Let us consider an oriented edge Ee D .uv/ of an isoradial weak Delau-
nay graph Gcr. There are two possible situations.

(1) Either Ee D .uv/ is not a chord (see Figure 13, left), in which case the north
and south angles of Ee are equal (and generically non-zero) and both coincide
with the conformal angle of the edge e,

�n.Ee/ D �s.Ee/ D �.e/:

(2) Or Ee D .uv/ is a chord (see Figure 13, right), in which case the north and
south angles of Ee are opposite, while the conformal angle of e is zero,

�n.Ee/ D ��s.Ee/ ¤ 0; �.e/ D 0:

In both cases, Kenyon’s formula for the Green’s function for this pair of vertices u, v
reads

Œ��1cr �u;v D �
1

�
�n.Ee/ cot �n.Ee/ D �

1

�
�s.Ee/ cot �s.Ee/:
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u

v

s

n

on

os u

v

s

n

o

Figure 13. Either the edge EeD .uv/ is not a chord, in which case the respective north and south
centers on and os are different and �n.Ee/ D �s.Ee/ (and generically non-zero). Or else the edge
Ee D .uv/ is a chord, in which case the centers coincide on D os D o and �n.Ee/ D ��s.Ee/.

Proof. Select, for instance, the north face fn and let on be its center. Assume that
the isoradius of the critical triangulation is Rcr D 1 for simplicity. Consider the path
v D .u; on; v/. Set ei�1 D zcr.on/ � zcr.u/ and ei�2 D zcr.v/ � zcr.on/ and note that
�n.uv/ D �1��2

2
. Then

Œ��1cr �u;v D �
1

8�2i

I
C

dw

w
log.w/

w C ei�1

w � ei�1

w C ei�2

w � ei�2

D �
1

4�

�
2ei�1 e

i�1 C ei�2

ei�1 � ei�2

log.ei�1/

ei�1
C 2ei�2 e

i�2 C ei�1

ei�2 � ei�1

log.ei�2/

ei�2

�
D �

1

4�

�
2i.�1 � �2/

ei�1 C ei�2

ei�1 � ei�2

�
D �

1

�

�1 � �2

2
cot

��1 � �2
2

�
:

The calculation with the south face fs gives the same result, regardless of whether
os ¤ on or os D on.

4.2. Expansion and bounds for the discrete exponential

Lemma 4.3. Consider a finite sequence of angles .�1; : : : ; �k/ contained in the closed
interval of the form Œ# � �

2
; # C �

2
� centered about some fixed angle # . Using Defin-

ition 2.23, consider

p2nC1 WD

kX
jD1

ei.2nC1/�j :

Then we have the uniform bound

jp2nC1j � .2nC 1/jp1j:



F. David and J. Scott 760

Proof. Clearly, it is enough to verify the lemma in the case of # D 0, otherwise we
have p2nC1D e�i# zp2nC1, where zp2nC1D

Pk
jD1 e

i.2nC1/z�j and where z�j D �j � # 2
Œ��

2
; �
2
�.

Begin with the polynomial

q2nC1.w/ WD 2w
2.w2n � .�1/n/.w2 C 1/�1

and notice that

q2nC1.iw/ WD2.iw/2
� .iw/2n � .�1/n

.iw/2 C 1

�
D .�1/n2w2

w2n � 1

w2 � 1

D.�1/n2.w2n C w2n�2 C � � � C w2 C 1/;

therefore,

q2nC1.w/ D .�1/
n2.1 � w2 C w4 � w6 C � � � C .�1/nw2n/:

For w D ei� with � 2 Œ��
2
; �
2
�, the function � 7! q2nC1.e

i� / is clearly continuous
and its modulus takes the maximal value jq2nC1.˙i/j D 2n, and so jq2nC1j1 D 2n.
By construction, ei.2nC1/� D cos.�/q2nC1.ei� /C .�1/nei� , and so

p2nC1 D

kX
jD1

cos.�j /q2nC1.ei�j /C .�1/np1:

We now proceed with a chain of inequalities:

jp2nC1j �
ˇ̌̌ X
1�j�k

cos.�j /q2nC1.ei�j /
ˇ̌̌
C jp1j

�

X
1�j�k

j cos.�j /q2nC1.ei�j /j C jp1j

�

X
1�j�k

cos.�j /jq2nC1.ei�j /j C jp1j

�
note that cos.�j / � 0
because ��

2
� �j �

�
2

�
�

X
1�j�k

cos.�j /jq2nC1j1 C jp1j � 2nReŒp1�C
ˇ̌
p1j

� .2nC 1/jp1j .since 0 � ReŒp1� � jp1j/:

Lemma 4.4. Given a finite sequence of angles � D .�1; : : : ; �k/ and jwj < 1, the
following infinite product expansion of E� .w/ is valid:

E� .w/ D .�1/k
Y
n odd

exp
�2
n
wn xpn

�
; where pn D

X
1�j�k

ein�j :
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Proof.

kY
jD1

w C ei�j

w � ei�j
D .�1/k

kY
jD1

1C we�i�j

1 � we�i�j

D .�1/k exp
kX

jD1

log
�1C we�i�j

1 � we�i�j

�
D .�1/k exp

kX
jD1

2
�
we�i�j C

1

3
w3e�3i�j C

1

5
w5e�5i�j C � � �

�
D .�1/k exp

�
2w

kX
jD1

e�i�jC
2

3
w3

kX
jD1

e�3i�jC
2

5
w5

kX
jD1

e�5i�jC � � �

�
D .�1/k

Y
n odd

exp
�2
n
wn xpn

�
:

Note that this can be rewritten as

.�1/k exp.2w xp1/ �
�
1C

X
N�3

wNxcN
�

with the coefficients xcN of a series.

Remark 4.5. Let � D .�1; : : : ; �n/ be a finite sequence of angles contained in an
interval of the form Œ# � �

2
; # C �

2
�, where n is a positive odd integer. Define

un D
1

n

pn

p1
and u.w/ D

X
odd
n�3

unw
n: (4.3)

By Lemma 4.3, each junj � 1, and u.w/ is analytic in the unit disk and E� .w/ D
.�1/k � exp.2 xp1w/ � exp.2 xp1u.w//. Furthermore, we have, through the standard com-
binatorial series expansion,

E� .w/ D .�1/k � exp.2 xp1w/ �
�
1C

1X
mD1

mX
dD1

w2mCd .2 xp1/
d
xcm;d

�
with the coefficients cm;d given by

cm;d D
X
r`m

#.r/Dd

Y
s�1

1

.rs/Š
.u1C2s/

rs ; (4.4)

and where the sum is taken over infinite tuples r D .r1; r2; r3; : : : / 2 ZN
�0 withP

s�1 rs D d and such that
P
s�1 srs D m.
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Let u and v be distinct vertices of Gcr, and let v D .v0; : : : ; vk/ be a path from u
to v. Translation and rotation invariance of the Green’s function allows us to assume
without loss of generality that u is situated at the origin and that the phases ei�j WD

zcr.vj /� zcr.vj�1/ of the path lie in the open interval .��
2
; �
2
/; if not, then the embed-

ding of Gcr may be shifted z 7! z � zcr.u/ and rotated z 7! z exp.�i�v / to achieve
these features; see Proposition 2.27 for a definition of �v .

4.3. Contour integral for the expansion

In [17], Kenyon handles the asymptotic behavior of the Green’s function with respect
to the distance ju� vj using a keyhole contour C with a corridor of width � > 0 avoid-
ing the cut of the logarithm arg.w/D�� . Paraphrasing Kenyon, this contour C� runs
counter-clockwise along the circle of radiusR about the origin (connecting�R˙ i�),
then travels horizontally above the x-axis from �R C i� to �r C i�, runs clock-
wise along the circle of radius r about the origin (connecting �r ˙ i�), and finally
returns horizontally from �r � i� to �R � i� below the x-axis. Here R � ju � vj
and r � ju � vj�1 (see Figure 14).

>

<

>

<

/\

0

r 1 R

ei�j

� > 0

Figure 14. Keyhole contour C .

The following lemma allows us to compute the Green’s function by integrating
along the cut of the logarithm provided we subtract off the logarithmic divergences.

Lemma 4.6. Let F.w/ be a function which is holomorphic on the extended complex
plane C [ ¹1º outside a subset S contained in the interior of the keyhole contour C
for some values of R, r , and �, and such that F.0/ D F.1/ D 1. ThenI

C

dw

w
log.w/F.w/ D �2� i

Z 1
0

.F.�t / � 1/
dt

t
:
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Proof.I
C

dw

w
log.w/F.w/

D lim
r!0
R!1

lim
�!0

I
C

dw

w
log.w/F.w/

D lim
r!0
R!1

�
i
Z ��
�

log.rei�/F.rei�/ d�„ ƒ‚ …
contribution from the circle of radius r

C2� i
Z �r
�R

F.t/
dt

t„ ƒ‚ …
contribution
along the cut

C i
Z �

��

log.Rei�/F.Rei�/ d�„ ƒ‚ …
contribution from the circle of radiusR

�

D lim
r!0
R!1

�
�2� i log.r/ � 2� i

X
N�1

1

N
.�r/NaN � 2� i

Z R

r

F.�t /
dt

t

C 2� i log.R/C 2� i
X
N�1

1

N
.�R/�N bN

�
D �2� i

Z 1
0

dt

t
.F.�t / � 1/;

where 1 C
P
N�1 aNw

N and 1 C
P
N�1 bNw

N are the power series expansions
of F.w/ at 0 and1, respectively.

Corollary 4.7. For vertices u and v in Gcr, the value of the Green’s function is

Œ��1cr �u;v D
1

2�
Re
Z 1

0

.E�.v/.�t / � 1/
dt

t
: (4.5)

Proof. We begin with the observation that E� .w�1/ D .�1/kxE� .w/ for any finite
sequence of angles � D .�1; : : : ; �k/. Since u and v are vertices in Gcr, the length k
of any path v D .v0; : : : ; vk/ from v0 D u to vk D v in G˙

cr must be even. Thus
E� .w�1/ D xE�.v/.w/. Then

Œ��1cr �u;v D �
1

8�2i

I
C

dw

w
log.w/E�.v/.w/ D

1

4�

Z 1
0

.E�.v/.�t / � 1/
dt

t

D
1

4�

Z 1

0

.E�.v/.�t / � 1/
dt

t
C

1

4�

Z 1
1

.E�.v/.�t / � 1/
dt

t

D
1

4�

Z 1

0

.E�.v/.�t / � 1/
dt

t
C

1

4�

Z 1

0

.xE�.v/.�t / � 1/
dt

t

D
1

2�
Re
�Z 1

0

.E�.v/.�t / � 1/
dt

t

�
:
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Remark 4.8. Since jt j < 1, in formula (4.5) we may use the presentation of E�.v/.t/
given in Remark 4.5 and write

Œ��1cr �u;v D
1

2�
Re
Z 1

0

.exp.�2p1t / � exp.2p1u.�t // � 1/
dt

t
;

where u.t/ D
P
n>0 u2nC1.t/

2nC1 is the function defined from the momenta p2nC1
in equation (4.3).

We may adopt the view that p1 and xp1 are independent variables on the plane and
that Œ��1cr �u;v is a smooth function of p1 and xp1.

4.4. The general asymptotics

Proposition 4.9. The Green’s function Œ��1cr �u;v has a series expansion at1 given by

�
1

2�

�
log.2jp1j/C 
Euler �

X
m�d�1

.�1/d .2mC d � 1/ŠReŒcm;d .2p1/�2m�
�
;

where the coefficients cm;d are defined in equation (4.4) in terms of the u1C2s defined
by (4.3), which are themselves bounded in terms of p1 by Lemma 4.3.

Proof.

Œ��1cr �u;v D
1

2�
Re
�Z 1

0

.E�.v/.�t / � 1/
dt

t

�
D

1

2�
Re
�Z 1

0

.exp.�2p1t / � 1/
dt

t

�
C

1

2�

X
m�d�1

Re
�

cm;d .2p1/d
Z 1

0

�.�t /2mCd�1 exp.�2p1t / dt
�

D �
1

2�
Re
�

log.2p1/C 
Euler C

Z 1
2p1

exp.�t /
dt

t„ ƒ‚ …
null power series
expansion at1

�

�
1

2�

X
m�d�1

Re
�

cm;d .�1/d .2p1/�2m

�

2mCd�1X
iD0

.2mC d � 1/Š

i Š
.2p1t /

i exp.�2p1t /„ ƒ‚ …
null power series
expansion at1

�ˇ̌̌̌1
0

D �
1

2�

�
log.2jp1j/C 
Euler

�

X
m�d�1

.�1/d .2mC d � 1/ŠReŒcm;d .2p1/�2m�
�
:
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5. Deforming Delaunay lattices and operators

5.1. Setup and problems for deformations of isoradial Delaunay graphs

We start to address the main problem of this work, which is to study geometric
deformations of isoradial Delaunay graphs and their associated operators defined in
Section 1.2.3.

Begin with an initial (not necessarily isoradial) Delaunay graphG0 as presented in
Definition 2.6 with vertex set V.G0/, edge set E.G0/, and face set F.G0/. We deform
the initial vertex embedding v 7! z0.v/ for v 2 V.G0/ by

z�.v/ WD z0.v/C �F.v/; (5.1)

where � is a positive real parameter and the displacements F.v/ are implemented by
a complex-valued function

F W V.G0/! C

with finite support, i.e., a finite subset�F � V.G0/ such that v 2 �F , F.v/ ¤ 0.
If the deformation parameter � is unconstrained, displaced vertices may poten-

tially collide, i.e., the mapping v 7! z�.v/ may fail to be one-to-one. The following
simple lemma allows us to avoid this situation.

Lemma 5.1. For any pair of distinct vertices u;v 2 G0, the corresponding perturbed
coordinates z�.u/ and z�.v/ will always remain distinct provided

0 � � < �0F DM
�1
F ;

where

MF D max
u¤v
jdF.uv/j with dF.u; v/ D

F.u/ � F.v/
z0.u/ � z0.v/

: (5.2)

Proof. The mapping v 7! F.v/ has finite support, so the set of pairs u; v 2 G0 such
that dF.uv/ ¤ 0 is finite, and MF is well defined and finite. The coordinates z�.u/
and z�.v/ are distinct, so

jz�.u/ � z�.v/j > 0

provided 1C �dF.u;v/ is non-zero, which is clearly the case whenever � �M�1F .

Definition 5.2. Let G0 be a Delaunay graph with embedding v 7! z0.v/, and let
F WV.G0/! C be a displacement function as above. Let � � 0 be a value for which
the mapping v 7! z�.v/ given by (5.1) is one-to-one. The corresponding Delaunay
deformation G� of G0 is the unique Delaunay graph with vertex set V.G�/ D V.G0/,
for which the map v! z�.v/ is a planar graph embedding.
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Generically, the edge set of G� differs from the edge set of the initial graph G0.
This is caused by the Delaunay constraints, and this difference can occur spontan-
eously for � > 0. We offer two (not unrelated) examples. Consider first a cyclic face f
of G0 with n > 3 vertices. As soon as � > 0, these vertices may cease to be concyclic.
In this case, the Delaunay condition imposed on G� will force the appearance of new
edges which will subdivide the initial face f into new cyclic sub-faces. An example is
depicted in Figure 15. In the limit �! 0C, these new edges would become chords of
the original face f if they were adjoined to the edge set of G0 (see Definition 2.3 for
the concept of chords and edges of a weak Delaunay graph).

f

!

h1

h2

h3

Figure 15. Example of deformation of a general cyclic face of the Delaunay graph G0 into
several cyclic faces; here a cyclic octagon f (nD 8) splits into 3 cyclic polygons h1, h2 and h3,
a triangle (n1 D 3), a pentagon (n2 D 5) and a quadrilateral (n3 D 4).

This phenomenon can also occur around intermediate thresholds �0 > 0 of the
deformation parameter. Two (or more) faces of G� which are distinct for � < �0 may
become concyclic and merge into a single face (the boundary edges having vanished)
when � D �0. For � > �0, this larger face may cease to be cyclic and instantaneously
split into sub-faces caused by the appearance of new edges, possibly different from
those which existed for � < �0. The prototypical example is depicted in Figure 16.
Two triangular faces for � < �0 merge into a cyclic quadrilateral at � D �0 and split
again along the opposite diagonal of the quadrilateral for � > �0. This is, of course,
an example of a Lawson flip (well known from the flip algorithm used to construct
Delaunay triangulations) or, more generally, of a Pachner move on a two-dimensional
simplicial complex.

In the next section, we shall discuss how to control this phenomenon of face split-
tings and edge flips. Let us first introduce two other concepts of graph deformations,
which shall be used later.

Definition 5.3. Let T0 be an initial planar triangulation with embedding v 7! z0.v/,
and let F WV.T0/ ! C be a displacement function as above. For � � 0, the trian-
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ooo

1

3

2

4

1

3

2

4

1

3

2

4

Figure 16. Example of a flip when two triangular faces become concyclic.

gulation TW� with vertex set V.TW�/ D V.T0/ and edge set E.TW�/ D E.T0/ is called
a rigid deformation of T0 if the mapping v 7! z�.v/ given by (5.1) defines a planar
embedding of TW� . In particular, this implies that the face set F.TW�/ induced by the
embedding coincides with the initial face set F.T0/. Stated simply, no flips are allowed
during a rigid deformation.

For a Delaunay deformation, the mapping v 7! z�.v/ will be an embedding pro-
vided it is one-to-one since, by construction, the edges determined by the Delaunay
constraints will never cross in the plane. Injectivity can be achieved, for example,
by bounding the deformation parameter 0 � � < �0F as prescribed in Lemma 5.1.
For rigid deformations, the mapping v 7! z�.v/ must be a planar embedding with
respect to a predetermined edge set E.T0/. One way to ensure this is to regulate the
deformation parameter � � 0 so that the area of a triangle .z�.u/; z�.v/; z�.w// given
by formula (3.2) remains positive whenever f D .u; v; w/ is a triangle of T0. This is
addressed in the following lemma.

Lemma 5.4. For an embedded planar triangulation T0 and a displacement func-
tion F as above, let

M 0F D max
f2F.T0/

max¹jrF.f/j; jxrF.f/jº;

where r and xr are the discrete derivative operators which map CV.T0/ ! CF.T0/

as defined by (3.6) and (3.7) in Section 3.2. Then the rigid deformation TW� is an
embedded planar triangulation if

0 � � < �00F D
1

2M 0F
:

Proof. Let us consider a face f0 of T0 with embedding .z0.u/; z0.v/; z0.w// and the
deformed face f� with embedding .z�.u/; z�.v/; z�.w//. Using formula (3.2) for the
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area A of a triangle, and result (3.8) of Remark 3.4, it is easy to show that the area
of f� is related to the area of f0 by

A.f�/ D A.f0/.1C �.rF.f0/C xr xF .f0//

C �2.rF.f0/xr xF .f0/ � xrF.f0/r xF .f0///

D A.f0/..1C �rF.f0//.1C � xr xF .f0// � �2 xrF.f0/r xF .f0//;

where A.f0/ is positive, and for 0 � � < 1
M 0
F

, we have the inequality

A.f�/ � A.f0/..1 � �M 0F /
2
� �2M 02F / D A.f0/.1 � 2�M

0
F /:

Therefore, 2�M 0F < 1 implies thatA.f�/ > 0, so that the face f� is clockwise oriented
as f0. This bound is valid for all the faces of TW� . This ends the proof.

Note that the concept of rigid deformation can be extended from triangulations to
more general embedded planar graphs, but we shall not need it. We shall, however,
use the following concept.

Definition 5.5. Let G0 be a Delaunay graph, and let F be a displacement function
as above. A Delaunay deformation G� of G0 as defined in Definition 5.2 is said to be
stable if and only if G" is a Delaunay deformation of G0 for all 0 � " � � and

E.G0/ � E.G"/ and E.G"/ D E.G�/ for all 0 < " � �:

This means that edges of the initial graph G0 remain edges in G" and that the deform-
ation creates a common set of new edges in G" which persist (i.e., do not flip) within
the range 0 < " � �.

5.2. Keeping control of stable deformations

The following results allow us to control stable deformations of Delaunay graphs.

Lemma 5.6. Let T0 be an initial planar triangulation with embedding v 7! z0.v/,
and let F WV.T0/! C be a displacement function with finite support �F � V.G0/,
as in the previous section. Let EeD .u;v/ be a given oriented edge of T0, and let �0.e/
be its conformal angle defined by (2.1). We do not assume T0 to be Delaunay, so
the conformal angle �0.e/ can be positive, zero, or negative. Let fn D .u; v; n/ and
fs D .v; n; s/ be the adjacent north and south triangular faces of Ee, and let

MF .e/ D max¹jdF.v; n/j; jdF.v; s/j; jdF.u; n/j; jdF.u; s/jº (5.3)

with dF.u1; u2/ D
F.u1/�F.u2/
z0.u1/�z0.u2/

as in Lemma 5.1. Take � such that

0 < � < �00F
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with �00F defined as in Lemma 5.4, and let us consider the rigid deformation TW� of T0
(which is an embedded planar triangulation by Lemma 5.4). Let ��.e/ be the deformed
conformal angle of the edge e in TW� . Then we have the bound

0 < �MF .e/ < b ) j��.e/ � �0.e/j <
1

2
arcsin

��MF .e/
b

�
(5.4)

with the constant
b D
p
10 � 3 D 0:162278 : : :

Proof. Consider the triangulation T0 and an oriented edge Ee0 D .u; v/ with adjacent
north and south faces fnD .u;v;n/ and fsD .v;n;s/. Let TW� be the rigid deformation,
and let

z�.u/ D z0.u/C �F.u/

be the corresponding embedding. By (2.1), the conformal angle of the edge e in the
initial triangulation can be expressed as

�0.e/ D
1

2
arg
�
�
.z0.u/ � z0.n//.z0.v/ � z0.s//
.z0.u/ � z0.s//.z0.v/ � z0.n//

�
;

and the deformed conformal angle in TW� is given by

��.e/ D
1

2
arg
�
�
.z�.u/ � z�.n//.z�.v/ � z�.s//
.z�.u/ � z�.s//.z�.v/ � z�.n//

�
D �0.e/C

1

2
arg

"�
1C � F.u/�F.n/

z0.u/�z0.n/

��
1C � F.v/�F.s/

z0.v/�z0.s/

��
1C � F.u/�F.s/

z0.u/�z0.s/

��
1C � F.v/�F.n/

z0.v/�z0.n/

�#
D �0.e/C

1

2
argŒ1CX.e/�; (5.5)

where

X.e/ D
�X1.e/C �2X2.e/�

1C � F.u/�F.s/
z0.u/�z0.s/

��
1C � F.v/�F.n/

z0.v/�z0.n/

�
with

X1.e/ D
F.u/ � F.n/
z0.u/ � z0.n/

C
F.v/ � F.s/
z0.v/ � z0.s/

�
F.u/ � F.s/
z0.u/ � z0.s/

�
F.v/ � F.n/
z0.v/ � z0.n/

;

X2.e/ D
F.u/ � F.n/
z0.u/ � z0.n/

C
F.v/ � F.s/
z0.v/ � z0.s/

�
F.u/ � F.s/
z0.u/ � z0.s/

C
F.v/ � F.n/
z0.v/ � z0.n/

:

Consider MF .e/ defined by (5.3). Provided that �MF .e/ < 1, we have

jX1.e/j � 4MF .e/; jX2.e/j � 2MF .e/2 ) jX.e/j �
4�MF .e/C 2�2MF .e/2

.1 � �MF .e//2
:
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Define the function Y.x/ by

Y.x/ D
4x C 2x2

.1 � x/2
:

It is a monotone convex function on the interval x 2 Œ0; 1/ with Y.0/ D 0 satisfying

0 � x � b D
p
10 � 3 D 0:162278 : : : ) 0 � Y.x/ �

x

b
:

Now we use the fact that for any complex number x 2 C,

jxj � 1 ) jarg.1C x/j � arcsin.jxj/:

Combining these inequalities, we deduce that

� MF .e/ � b ) jarg.1CX.e//j � arcsin.Y.�MF .e/// � arcsin
��MF .e/

b

�
:

Combining this with (5.5), we get (5.4).

We now use this lemma to get our first result for a Delaunay deformation of
a Delaunay graph.

Lemma 5.7. Let G0 be a Delaunay graph, and let F be a displacement function
F WV.G0/! C with finite support �F � V.G0/, as above. To each edge e 2 E.G0/
of G0, we associate its conformal angle �.e/ defined by (2.1). Define #F as

#F D min¹�.e/ W e D uv 2 E.G0/ such that u or v 2 �F º (5.6)

andMF as defined by (5.2) in Lemma 5.1. Let G� be the Delaunay deformation of G0
as introduced in Definition 5.2. Then the following bound ensures that the edges ofG0
remain edges of G� , namely,

� < x�F D sin.2#F /
b
MF

) E.G0/ � E.G�/:

Proof. The proof uses Lemma 5.6 and the Lawson flip algorithm.
Given our initial Delaunay graph G0, let us consider a triangular completion T0

of G0, as introduced in Definition 2.8. In other words,

T0 is a triangulation, and E.G0/ � E.T0/:

Any completion T0 is a weak Delaunay graph (see Definition 2.6), and the edges of T0
which are not edges of G0 are chords; consequently,

e … E.G0/ , �0.e/ D 0; e 2 E.G0/ , �0.e/ > 0

for any edge e 2 E.T0/.
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In general, G0 may have multiple (possibly infinitely many) triangular comple-
tions. Let T .G0/ denote the set of triangular completions of G0, and let us extend the
bounds M 0F and �00F of Lemma 5.4 (valid for triangulations) to Delaunay graphs,

M 0F D max
T02 T .G0/

max
f2F.T0/

max¹jrF.f/j; jxrF.f/jº;

and then as in Lemma 5.4,

�00F D
1

2M 0F
:

Now we start the proof. We choose an arbitrary triangular completion T0 of G0
and consider the rigid deformation TW� of T0 for � > 0 bounded by

� < sin.2#F /
b
MF

and � < �00F : (5.7)

For any edge e of T0, notice that

� < sin.2#F /
b
MF

, � <
b

MF .e/
;

and by Lemma 5.6, we have

��.e/ > �0.e/ �
1

2
arcsin

��MF .e/
b

�
:

If the edge e of TW� is also an edge of G0, then �0.e/ � #F . Clearly, MF .e/ � MF

and therefore
��.e/ > #F �

1

2
arcsin

��MF

b

�
> 0: (5.8)

So the initial edges of G0 still satisfy the Delaunay condition in TW� .
Now we consider whether or not the deformed triangulation TW� is weakly Delau-

nay, i.e., whether
��.e/ � 0 for all e 2 E.TW�/:

If TW� is weakly Delaunay, it is sufficient to remove all its chords, namely, all edges
such that ��.e/ D 0. We obtain the redacted graph T�W� (see Definition 2.5) which is
a Delaunay graph with the same vertex set as G0 and with embedding v! z�.v/ D
z0.v/C �F.v/. Hence it is the Delaunay deformation G� of G0, and it contains the
original edges of G0 in light of (5.8). In short,

G0 ! T0 ! TW� ! T
�
W� D G�:

If TW� is not weakly Delaunay, there must exist edges e of TW� such that

��.e/ < 0:
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In this case, we recursively apply the Lawson flip algorithm to construct from TW�

a weak Delaunay triangulation TD
W� which still completes G0 (see [20] and standard

textbooks such as [8, 14]). Let us describe the first iterative step.

(1) Choose an edge e of TW� such that ��.e/ < 0, and consider the quadrilateral
.u; s; v; n/ made of its north and south faces.

(2) Flip the edge e, i.e., perform the replacement

e D uv! e0 D ns;

so that one obtains a new triangulation T0W� .

Some conformal angles in T0W� have changed. Specifically,

� 0�.e
0/ D ���.e/ > 0;

and the conformal angles � 0� of the edges us, vn, vs, and vn as measured in T0W� may
differ from their corresponding measures �� in TW� . The new triangulation T0W� is the
rigid deformation of another triangular completion T00 of G0, namely, the triangula-
tion with edge set

E.T00/ D E.T0/n¹eº [ ¹e0º:

Therefore, E.G0/ � E.T0W�/ and inequality (5.8) is still valid for the edges of G0, i.e.,

e 2 E.G0/ ) � 0�.e/ > 0:

The Lawson flip algorithm entails iterating of this process: Choose an edge e
in T0W� such that � 0�.e/ < 0 and perform the edge flip e! e00 to obtain a new triangula-
tion T00W� with � 00� .e

00/ > 0. Repeat. This process is known to stop after a finite number
of iterations, and the final triangulation TD

W� will have no edge e with �D
W�.e/ < 0, and

so it will be weakly Delaunay. Clearly, TD
W� is the rigid deformation of a triangular

completion TD
0 of G0. Now take the redaction TD�

W� by removing any chords. Schem-
atically,

G0 ! TW� ! T
0
W� ! � � � ! T

D
W� ! T

D �
W� D G�:

The redacted graph TD �
W� is a Delaunay deformation of G0 which coincides with G�

and, to be sure,
E.G0/ � E.G�/

as long as the initial bounds (5.7) on � are satisfied.

Lemma 5.7 says nothing about the additional edges which can appear and flip
within the initial faces ofG0 during the deformation. The following proposition estab-
lishes that these additional edges are themselves stable, i.e., undergo no flips, for
values of the deformation parameter � > 0 which are sufficiently small.
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Proposition 5.8. Let G0 be a Delaunay graph and F a displacement function as
above. There exists a deformation threshold z�F > 0 such that for any 0 < � < z�F

the deformation G� is stable (see Definition 5.5). As a consequence, the limit of the
Delaunay graph G� when � ! 0C is unambiguously defined and denoted by

G0C D lim
�!0C

G�: (5.9)

The graph G0C is a weak-Delaunay graph sharing the same vertex set and embed-
ding as G0. Its redacted graph (see Definition 2.5) is the initial Delaunay graph, i.e.,
G
�

0C
D G0.

Proof. Let us consider T0 be a triangular completion of G0 (an element of T .G0/)
and an edge e D uv of T0 which is not an edge of G0 (i.e., a chord such that its
conformal angle is �0.e/ D 0). Now, as in the proof of Lemma 5.7, consider the rigid
deformation TW� of T0. The deformed conformal angle of e is given by

�W�.e/ D
1

2
arg.�Œz�.u/; z�.v/I z�.n/; z�.s/�/

D
1

2
arg
h .1C �dF.u; n// � .1C �dF.v; s//
.1C �dF.u; s// � .1C �dF.v; n//

i
with n and s the north and south vertices for the north and south faces fn and fs of
the edge e in TW� (remember that for � D 0 this is zero).

Here �W� is a regular function of � (for � small enough). We are interested in the
values of � for which �W�.e/ vanishes. Clearly, this occurs if (� is taken real)

.1C �dF.u; n//.1C �dF.v; s//

.1C �dF.u; s//.1C �dF.v; n//
.1C �dF .u; s//.1C �dF .v; n//

.1C �dF .u; n//.1C �dF .v; s//
D 1:

This amounts to solving a quartic real polynomial equation in � of the form

P4.�/ D 0;

where P4 is a degree 4 real polynomial,

P4.�/ D .1C �dF.u; n//.1C �dF.v; s//.1C �dF .u; s//.1C �dF .v; n//
� .1C �dF.u; s//.1C �dF.v; n//.1C �dF .u; n//.1C �dF .v; s//:

The polynomial P4 has at least one zero (with multiplicity) at � D 0, and at most three
other zeros, unless it is identically zero. Let us define �c.e/ by

�c.e/ D

8̂̂<̂
:̂
C1 if P4 is identically zero;

the smallest strictly positive root of P4 if it exists;

C1 if it does not exist:
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For the completion T0, define

�c.T0/ D min
e2E.T0/

�c.e/:

It is strictly positive (possibly infinite) since F has finite support on V.T0/ D V.G0/
and there are only finitely many chords e affected by the deformation. For the initial
Delaunay graph G0, define

�c.G0/ D min
T02T .G0/

�c.T0/:

Again, F has finite support on V.G0/ and since the �c.T0/’s can only take a finite
number of distinct (strictly positive) values, it must be the case that �c.G0/ is strictly
positive, �c.G0/ > 0. Now define

z�F D min¹�c.G0/; �00F ; x�F º:

Take � within the range
0 < � < z�F

and construct TD
W� according to the proof of Lemma 5.7. It is weakly Delaunay, hence

��.e/ � 0 for each edge. By the argument above, the conformal angles cannot change
sign in the interval 0 � � � �c.G0/. Therefore, for any �0 � �, each conformal angle
must stay non-negative, and so TD

W�0 remains weakly Delaunay. This implies that its
redacted graph is the Delaunay deformation G�0 of G0 and that E.G�0/ D E.G�/.
In other words, G� is a stable deformation of G0.

The graph G0C stipulated in (5.9) exists: it shares the same vertex set and embed-
ding as G0, while its edge set coincides with E.G�/ for any 0 < � < z�F by stability.
In particular, each edge e of G0 is an edge of G0C , while the remaining edges of G0C
are all chords.

Remark 5.9. The bound z�F (which defines an interval 0 < � < z�F where no flips oc-
cur) may be much smaller than �F . In fact, even for a fixed initial Delaunay graph G0
and a generic displacement function F , the threshold z�F may be arbitrarily small with
respect to �F . This point will become relevant when discussing the scaling limit and
the problem of obtaining uniform bounds with respect to the choice of G0. We return
to this issue in Section 8.

Remark 5.10. As discussed in the proof of Proposition 5.8, the edge sets E.G�/ and
E.G0C/ coincide for 0 � � < z�F . Consequently, any stable Delaunay deformation G�
of G0 is also a rigid deformation of the corresponding limit graph G0C within the
range 0 � � < z�F . Accordingly, the notions of stable and rigid deformation agree
for the limit graph G0C provided that we work with sufficiently small values of the
deformation parameter.
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Remark 5.11. Since E.G�/D E.G0C/ for 0� � < z�F , and since the faces ofG0C are
cyclic polygons, the conformal angle ��.e/ of any edge e 2 E.G�/ is unambiguously
defined and strictly positive as � varies in the interval 0 � � < z�F .

5.3. Variation of operators under rigid deformations

We now study the variations of the operators �.�/, D.�/ and�.�/ and of the associ-
ated local geometrical quantities arising from rigid deformations (see Definition 5.3)
of triangulations. It will not be necessary to assume that the triangulations are Delau-
nay at this stage.

Let T be an initial triangulation (possibly Delaunay) with vertex set V.T/, edge
set E.T/ and face set (triangles) F.T/. Let TW� be the rigid deformation of T induced
by the deformed embedding

z�.v/ D z.v/C �F.v/;

where F 2 CV.T/ is a displacement function and where � � 0 is bounded by the
threshold �00F defined in Lemma 5.4. Recall that TW� and T share the same set of ver-
tices, edges and faces. The deformed discrete differential operators are denoted by
r�; xr�WCV.T/ ! CF.T/, while the deformed area and radius operators are denoted
by A�; R�WCF.T/ ! CF.T/. They are obtained by making the substitution z 7! z� in
formulas (3.6), (3.7), (3.2), and (3.3), respectively. This allows us to unambiguously
define deformed versions�.�/ and D.�/ of the Laplace–Beltrami and discrete Kähler
operators using factorizations (3.11) and (3.10), namely,

�.�/ D 2.xr>� A�r� Cr
>
� A�
xr�/ and D.�/ D 4xr>�

A�

R2�
r�: (5.10)

We may expand all the relevant operators as (formal) series in � (they are, in fact,
meromorphic in �). Up to first order in �, the terms in these developments can be
compactly expressed using the discrete derivatives rF and xrF with respect to the
triangulation T.

Proposition 5.12. The variation of the Laplace–Beltrami operator is

�.�/ D � � 4�.r>.AxrF /r C xr>.Ar xF /xr/C O.�2/: (5.11)

Proposition 5.13. The variation of the Kähler operator is

D.�/ D D � 4�
h
xr
> A

R2
.rF C xr xF C C xrF C xCr xF /r

C r
> A

R2
.xrF /r C xr>

A

R2
.r xF /xr

i
C O.�2/ (5.12)



F. David and J. Scott 776

with the diagonal function C 2 CF.T/ and its conjugate xC which are given for a tri-
angle f D .u; v; w/ by

C.f/ D
�
xz.u/ � xz.v/
z.u/ � z.v/

C
xz.v/ � xz.w/
z.v/ � z.w/

C
xz.w/ � xz.u/
z.w/ � z.u/

�
; xC.f/ D C.f/: (5.13)

Before deriving these two equations, let us note that the variation for � is rather
simple, while the variation for D is more complicated since we have not found
a simple interpretation for the quantities C and xC in terms of the geometry of the
triangle f.

Proof. From (3.8), for a pair of vertices u and v of a triangle f D .u; v; w/ in F.T/,

z�.u/ � z�.v/ D z.u/ � z.v/

C �..z.u/ � z.v//rF.f/C .xz.u/ � xz.v//xrF.f//;

xz�.u/ � xz�.v/ D xz.u/ � xz.v/

C �..z.u/ � z.v//r xF .f/C .xz.u/ � xz.v//xr xF .f//:

(5.14)

Inserting this into (3.2) gives the variation of the area of the triangle f

A�.f/ D A.f/C �A.f/.rF.f/C xr xF .f//;CO.�2/;

which we can succinctly express as

A� D AC �A.rF C xr xF /C O.�2/; (5.15)

where we view A, rF , and xr xF as functions in CF.T/ or, alternatively, as diagonal
operators mapping CF.T/ ! CF.T/.

Using (3.3), we can write the variation of the circumradius R.f/ of the face f.
We write only the leading term of order O.�/ with the same compact notation and
with C , and xC defined by (5.13)

A�

R2�
D

A

R2
� �

A

R2
.C xrF C xCr xF /C O.�2/: (5.16)

Similarly, we get the variation of the matrix elements of the operator r. At first order,

Œr��f;v D rf;v � �.rF.f/rf;v Cr xF .f/xrf;v/C O.�2/: (5.17)

When read as operators, formula (5.17) for r� and its complex conjugate become

r� D r � �.rFr C r xF xr/C O.�2/;
xr� D

xr � �.xr xF xr C xrFr/C O.�2/:
(5.18)

Combining this with (5.10) and the Leibnitz product rule, we get (5.11) and (5.12).



Perturbing isoradial triangulations 777

Remark 5.14. Note that the exact formulas (to all orders in �) for these variations
(5.15)–(5.18) are derived in Section 8 (see, in particular, equations (8.5) in Sec-
tion 8.3).

Remark 5.15. There is no such a compact expression for the variation of the con-
formal Laplacian � in the general case. In particular, the variation of the weight
associated to an edge e D uv will depend on the discrete derivatives of F both at
the north triangle fn and the south triangle fs of the oriented edge Ee D .u; v/, which
are a priori independent (see Figure 1).

We can, of course, make the substitution z 7! z� into formula (3.4) for the north
and south angles (which express the angles as a difference of arguments of edge vec-
tors)

�n.Ee; �/ WD
1

2i
log
�
�
.xz�.v/ � xz�.n//.z�.u/ � z�.n//
.z�.v/ � z�.n//.xz�.u/ � xz�.n//

�
;

�s.Ee; �/ WD
1

2i
log
�
�
.xz�.u/ � xz�.s//.z�.v/ � z�.s//
.z�.u/ � z�.s//.xz�.v/ � xz�.s//

�
;

where n 2 fn and s 2 fs are the respective north and south vertices of the adjacent
triangles fn and fs to the edge Ee D .u; v/ as depicted in Figure 1. The order zero and
order one terms in the formal � series expansion read from (5.14)

�n.Ee; �/ D �n.Ee/C �
i
2
.xrF.fn/En.Ee/ � r xF .fn/En.Ee//C O.�2/;

�s.Ee; �/ D �s.Ee/C �
i
2
.xrF.fs/Es.Ee/ � r xF .fs/Es.Ee//C O.�2/

(5.19)

with complex coefficients En.Ee/ and Es.Ee/ given by

En.Ee/ WD
xz.v/ � xz.n/
z.v/ � z.n/

�
xz.u/ � xz.n/
z.u/ � z.n/

D
�4A.fn/

.z.v/ � z.n//.z.u/ � z.n//
;

Es.Ee/ WD
xz.u/ � xz.s/
z.u/ � z.s/

�
xz.v/ � xz.s/
z.v/ � z.s/

D
�4A.fs/

.z.v/ � z.s//.z.u/ � z.s//
:

(5.20)

The corresponding first-order variation of the edge weight tan �.e/ with �.e/ D
1
2
.�n.Ee/C �s.Ee// can be written explicitly in terms of the discrete derivatives xrF.fn/

and xrF.fs/, the coefficients En.Ee/ and Es.Ee/, and their complex conjugates. We shall
not write the formula here, since it lacks the simplicity and geometrical interpretation
of our results for � and D .

5.4. Generic notation for derivatives under graph deformations

We shall use the following compact notation for derivatives and variations of general
objects Obj associated to a rigid deformation G ! G� of a polygonal (Delaunay)



F. David and J. Scott 778

graph induced by a deformed coordinate embedding z ! z� D z C �F as set up in
Definition 5.3. The object Obj can be a local quantity such as the angle � , �n, �s

associated to oriented edge Ee of G or the area A and circumradiusR of a face f. Other
objects include the operators �,� and D .

If the object Obj is defined on the unperturbed graph G, the corresponding object
on the deformed graph G� is denoted by Obj.�/ or sometimes Obj� (for clarity or
brevity). This is consistent with the notations of Section 5.3. The variation of Obj for
finite � is denoted by

ıObj.�/ D Obj.�/ � Obj:

The initial derivatives with respect to � are denoted by

@

@�
Obj.�/ D d�Obj.�/;

@2

@�2
Obj.�/ D d��Obj.�/; etc.;

while their evaluations at zero are denoted by

@

@�
Obj.�/

ˇ̌̌
�D0
D d�Obj;

@2

@�2
Obj.�/

ˇ̌̌
�D0
D d��Obj; etc.

Accordingly, the Taylor expansion of Obj reads

Obj.�/ D ObjC � d�ObjC
1

2
�2 d��ObjC O.�3/:

The terms of order � obtained in the previous Section 5.3 give the explicit formula
of the first derivatives d� for the objects considered there. We do not rewrite them
explicitly.

6. Variations of log-determinants

6.1. First-order variations of determinants

6.1.1. The setup. Here we compute the first-order term in the �-expansion of the
(formally infinite) logarithm of the determinant of O.�/, which, in general, has the
form

ı log det O.�/ D trŒıO.�/ �O�1cr �:

Each trace is expressed as a sum of local terms over the weak Delaunay graph G0C
arising from the critical graph Gcr and the displacement function F . For both the
Laplace–Beltrami and Kähler operators, there is a local term associated to each edge
of G0C ; there is an additional local term attached to each face of G0C for the Kähler
operator. In the case of the conformal Laplacian, the local terms associated to chords
of G0C differ from local terms of the regular edges of G0C . For this reason, for-
mula (6.4) is expressed as two sums: one over the regular edges e 2 E.G�

0C
/D E.Gcr/

and another over the set of chords e 2 C.G0C/ D E.G0C/nE.Gcr/.
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6.1.2. The results for first-order variations. We first give the results; their deriva-
tions are given in the following sections.

Proposition 6.1 (Laplace–Beltrami). For the Laplace–Beltrami operator �.�/, the
first-order variation of log det�.�/ with respect to deformation (5.1) can be expressed
simply in terms of the variations of the north and south angles �n.Ee; �/ and �s.Ee; �/ of
edges e 2 E.G0C/,

trŒı�.�/ ���1cr � D
�

�

X
edges

e2G
0C

d��n.Ee/L0.�n.Ee//C d��s.Ee/L0.�s.Ee//C O.�2/: (6.1)

The function L0, given by (3.21), is the derivative of the function L given by (3.19);
�n.Ee; �/ and �s.Ee; �/ are given by (5.19).

Remark 6.2. Owing to the extended form (3.20) of Kenyon’s result for log det�cr,
it is interesting to note that, up to terms of order �2, log det�.�/ can still be written as
a sum of local terms involving the local geometry of the deformed Delaunay graphG� ,
similar to Kenyon’s result, although the graph is not isoradial,

log det�.�/ D
1

�

X
edges

e2G
0C

L.�n.e; �//CL.�s.Ee; �//C O.�2/: (6.2)

Remark 6.3. Equivalently, formula (6.1) can be written as a sum over triangles f of
any triangular completion yG0C of G0C , namely

trŒı�.�/ ���1cr � D �4�
X
faces

f2yG
0C

A.f/.xrF.f/Q.f/C c:c:/C O.�2/; (6.3)

whereQ.f/D Œr��1cr r
>�ff is a diagonal matrix entry. This is a direct consequence of

the variational formula in Proposition 5.12. Note that the value of (6.3) is independent
of the choice of triangular completion.

Proposition 6.4 (Conformal Laplacian). For the conformal Laplacian�.�/, the first-
order variation of logdet�.�/ with respect to deformation (5.1) can also be expressed
simply in terms of the variations of the north and south angles �n.Ee; �/ and �s.Ee; �/
of edges e 2 E.G0C/. However, we must distinguish between the contributions made
by regular edges versus chords in G0C . Keep in mind that the set of regular edges
E.G�

0C
/ coincides with the edge set E.Gcr/ of the critical graph,

trŒı�.�/ ���1cr � D
2�

�

X
edges
e2Gcr

d��.e/L0.�.e//C
�

�

X
chords

e2G
0C

d��n.Ee/H 0.�n.Ee//

C d��s.Ee/H 0.�s.Ee//C O.�2/; (6.4)
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where H 0.�/ D � cot � is the derivative of the function

H .�/ D 2� log.2 sin �/C L.�/;

where L.�/ is the Lobachevsky function defined in (3.17). Remember that �.e/ D
1
2
.�n.Ee/C �s.Ee// is the conformal edge angle for general triangulations.

Remark 6.5. Up to order �2, log det�.�/ can still be written as a sum of terms
reflecting the local geometry of the weak Delaunay graph G0C (see Section 5.1),

log det�.�/ D
2

�

X
edges
e2Gcr

L.�.e; �//

C
1

�

X
chords

e2G
0C

H .�n.e; �//CH .�s.Ee; �//C O.�2/: (6.5)

Proposition 6.6 (Kähler operator). For the Kähler operator D.�/, a local formula
also holds at order �. It involves the variations of the angles �n.Ee; �/ and �s.Ee; �/
for edges e 2 E.G0C/, but also the variations of the circumradii R.f; �/ for faces
f 2 F.G0C/. We note that

R.f; �/ D Rcr C ıR.f; �/ D Rcr C �ı�R.f/C O.�2/;

trŒıD.�/ �D�1cr � D
�

�

X
edges

e2G
0C

d��n.Ee/L0.�n.Ee//C d��s.e/L0.�s.Ee//

� �
X
faces

f2G
0C

d�R.f/
Rcr

C O.�2/: (6.6)

Remark 6.7. Up to order �2, log det D.�/ can still be written as a sum of terms
reflecting the local geometry of G0C ,

log det D.�/ D
1

�

X
edges

e2G
0C

L.�n.e; �//CL.�s.e; �//

�

X
faces

f2G
0C

logR.f; �/C O.�2/: (6.7)

Again, we obtain a nice local expression involving the angles �n.Ee/ and �s.Ee/ and
the circumradii R.f/. Like the conformal Laplacian, the global conformal invariance
properties of the Kähler operator are not evident in the result. However, concyclic
configurations and chords do not play any special role.
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6.1.3. Proof of Proposition 6.1. We first consider the variation of the Laplace–Bel-
trami operator � under a deformation of form (5.1). One can use (5.11) to compute
explicitly the first-order variation of log det�, but it is simpler to start from its defin-
ition in terms of angles (1.6). For an edge e D uv of G� ,

Œ�.�/�uv D �c.e; �/ D �
tan �n.Ee; �/C tan �s.Ee; �/

2
:

This implies that the variation is

Œı�.�/�uv D �
�

2
.d��n.Ee/ sec2 �n.Ee/C d��s.Ee/ sec2 �s.Ee//C O.�2/;

where d��n.Ee/ and d��n.Ee/ are of order O.1/. The limit graphG0C is weakly Delaunay
and isoradial, so either �n.Ee/ D �s.Ee/ or �n.Ee/ D ��s.Ee/. In both cases, sec2 �n.Ee/ D
sec2 �s.Ee/, so that at first order,

Œı�.�/�uv D ��
d��n.Ee/C d��s.Ee/

2
sec2 �n.Ee/C O.�2/

D ��
d��n.Ee/C d��s.Ee/

2
sec2 �s.Ee/C O.�2/:

It remains to combine this with the propagator Œ��1cr �vu which for regular edges eD uv
of G�

0C
D Gcr is

Œ��1cr �vu D �
1

�
�.e/ cot �.e/: (6.8)

A similar relation is, in fact, valid for chords of G0C ,

Œ��1cr �vu D �
1

�
�n.Ee/ cot �n.Ee/ D �

1

�
�s.Ee/ cot �s.Ee/:

Thus the first-order variation is

trŒ d�� ���1cr � D
X

vertices
u;v2G

0C

d��uvŒ�
�1
cr �vu D

1

�

X
edges

e2G
0C

d��n.Ee/�n.Ee/ cot �n.Ee/ sec2 �n.Ee/

C ı�s.Ee/�s.Ee/ cot �s.Ee/ sec2 �s.Ee/

D
1

�

X
edges

e2G
0C

d��n.Ee/
�n.Ee/

sin �n.Ee/ cos �n.Ee/
C d��s.Ee/

�n.Ee/
sin �s.Ee/ cos �s.Ee/

D
1

�

X
edges

e2G
0C

d��n.Ee/L0.�n.Ee//C d��s.Ee/L0.�n.Ee//

D d�

h 1
�

X
edges

e2G
0C

L.�n.Ee; �//CL.�s.Ee; �//
i
:

This, together with (3.20), leads to (6.2), and this ends the proof of Proposition 6.1.
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6.1.4. Proof of Proposition 6.4. For an edge e D uv of G� , the matrix element of
the conformal Laplacian� is

Œ�.�/�uv D � tan �.e; �/; �.e; �/ D
�n.Ee; �/C �s.Ee; �/

2
:

This implies that the variation is

Œı�.�/�uv D ��
d��n.Ee/C d��s.Ee/

2
sec2

��n.Ee/C �s.Ee/
2

�
C O.�2/:

Keep in mind that the limit graphG0C is weakly Delaunay and isoradial, and so either
�n.Ee/ D �s.Ee/ or �n.Ee/ D ��s.Ee/. The first case corresponds to a regular edge, while
the second case corresponds to a chord. Thus, at first order in �, the matrix entry is

Œ d���uv D

´
�

d��n.Ee/ sec2 �n.Ee/Cd��s.Ee/ sec2 �s.Ee/
2

if �n.Ee/ D �s.Ee/;

�
d��n.Ee/Cd��s.Ee/

2
if �n.Ee/ D ��s.Ee/

D

´
Œ d���uv if �n.Ee/ D �s.Ee/;

Œ d���uv C
d��n.Ee/ tan2 �n.Ee/Cd��s.Ee/ tan2 �s.Ee/

2
if �n.Ee/ D ��s.Ee/:

(6.9)

The first-order variation of the log-determinant reads as a sum over the edges of G0C ,
but it is different for the edges in G�

0C
D Gcr and the chords of G0C . Combining

with (6.8), we get at first order

trŒ d�� ���1cr � D
X

vertices
u;v2G

0C

�
d��

�
uvŒ�

�1
cr �vu D

2

�

X
edges
e2Gcr

d��.e/L0.�.e//

C
1

�

X
chords

e2G
0C

d��n.Ee/H 0.�n.Ee//C d��s.Ee/H 0.�s.Ee//

with the function H .�/ given by

H .�/ D

Z �

0

dt t cot.t/ D 2� log.2 sin �/C L.�/:

This leads to (6.5) and the proof of Proposition 6.4.

6.1.5. Proof of Proposition 6.6. The variation of the Kähler operator D starts from
the expression of the matrix elements Du;v of an edge Ee D .u; v/ in terms of the
angles �n.Ee; �/ and �s.Ee; �/ and of the circumradiiRn.Ee; �/ andRs.Ee; �/ given by (1.7),
namely,

ŒD.�/�uv D �
1

2

� tan �n.Ee; �/C i
R2n .Ee; �/

C
tan �s.Ee; �/ � i
R2s .Ee; �/

�
:
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Its variation is therefore

ŒıD.�/�uv D d�D
.1/
uv C d�D

.2/
uv C O.�2/;

d�D
.1/
uv D �

� 1

2R2n .Ee/
d� tan �n.Ee/C

1

2R2s .Ee/
d� tan �s.Ee/

�
;

d�D
.2/
uv D

� tan �n.Ee/C i
R3n .Ee/

d�Rn.Ee/C
tan �s.Ee/ � i
R3s .Ee/

d�Rs.Ee/
�
: (6.10)

For an isoradial triangulation (the critical case),

Rn.Ee/ D Rs.Ee/ D Rcr;

therefore one has Dcr D R
�2
cr �cr. Thus in the critical case, the contribution made by

the first term in (6.10) to the variation is

d�D
.1/
uv D R

�2
cr d��uv ) trŒ d�D.1/

�D�1cr � D trŒ d�� ���1cr �:

The second term’s contribution can be reorganized as a sum over faces of yG0C , i.e.,
counter-clockwise oriented triangles f D .u; v; w/

trŒ d�D.2/
�D�1cr � D

X
vertices

u;v2G
0C

d�D
.2/
uv ŒD

�1
cr �vu D

X
triangles

fD.u;v;w/in yG0C

d�R.f/
R3cr

�
�
.tan �n.

# —uv/C i/ŒD�1cr �vu C .tan �s.
# —vu/ � i/ŒD�1cr �uv

C .tan �n.
# —vw/C i/ŒD�1cr �wv C .tan �s.

# —wv/ � i/ŒD�1cr �vw

C .tan �n.
# —wu/C i/ŒD�1cr �wu C .tan �s.

# —uw/ � i/ŒD�1cr �wu
�
:

Using the fact that �n.
# —uv/ D �s.

# —vu/ and that for the critical case

ŒD�1cr �vu D ŒD
�1
cr �uv D �

1

�
R2cr�n.

# —uv/ cot �n.
# —uv/

and the fact that for a triangle f D .u; v; w/, one has

�n.
# —uv/C �n.

# —vw/C �n.
# —wu/ D

�

2
;

we obtain

trŒ d�D.2/
�D�1cr � D �

X
faces

f2yG
0C

d�R.f/
Rcr

D �

X
faces

f2yG
0C

d� logR.f/:

This leads to (6.7) and to Proposition 6.6.
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6.2. Second-order variations

6.2.1. Principle of the calculation. In order to probe the second trace term in the
perturbative expansion (1.14), we consider a bi-local deformation G� of the underly-
ing critical graph Gcr with an embedding of the form

z�.v/ WD zcr.v/C �1F1.v/C �2F2.v/;

where � D .�1; �2/ is a pair of independent deformation parameters and F1; F2 2
CV.Gcr/ are two functions, with finite supports

�1 WD �F1 and �2 WD �F2

in V.Gcr/ and whose respective lattice closures x�1 and x�2 are disjoint; see (1.12).
To ensure that G� is a stable Delaunay deformation, we restrict the parameters �1, �2
within the range Œ0; z�F /, where z�F WD min.z�F1 ; z�F2/ and z�F1 ; z�F1 are the thresholds
dictated by Proposition 5.8. Furthermore, we shall assume that the distance d between
the two supports is large, i.e., d � Rcr, where

d D dist.x�1; x�2/ WD inf
®
jzcr.w1/ � zcr.w2/j W w1 2 x�1; w2 2 x�2

¯
:

We want to isolate and then examine the long-range behavior of the �1�2 cross-term
occurring within the perturbative expansion of the log-determinant, namely, in

log det O.�/ D log det Ocr C trŒıO.�/ �O�1cr � �
1

2
trŒ.ıO.�/ �O�1cr /

2�C � � � :

The first trace term trŒıO.�/ �O�1cr � contributes nothing of order �1�2 since the lattice
closures of the supports x�1 and x�2 are disjoint. The only non-vanishing contribution
comes from the second trace term

�
1

2
trŒ.ıO.�/ �O�1cr /

2�

which is bilinear in the total variation ıO.�/. Accordingly, the coefficient of �1�2 can
be expressed as

� trŒ d�1O �O
�1
cr � d�2O �O

�1
cr � D �

X
u;v2x�1
p;q2x�2

Œ d�1O�uvŒO
�1
cr �vpŒd�2O�pqŒO

�1
cr �qu;

where d�1O and d�2O are first-order variations of the Laplace-like operator O.�/

following the notations set in Section 5.4. The sum on the left-hand side is taken over
vertices u, v, p, q such that both matrix entries Œ d�1O�uv and Œ d�2O�pq are non-zero.
In particular, this implies that uv is an edge in G0C with vertices u;v 2 x�1. Likewise,
pq must be an edge in G0C with vertices p; q 2 x�2.
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Provided the two zones of support �1 and �2 are far enough apart, the matrix
entries ŒO�1cr �vp and ŒO�1cr �qu of the critical Green’s function will only involve pairs
of vertices with jzcr.v/ � zcr.p/j ' d and jzcr.q/ � zcr.u/j ' d . Under these circum-
stances, we may estimate the contributions made by these matrix entries using the
asymptotic expansion (1.10) for the Green’s function.

It will be convenient to take a triangular completion yG� of the deformed Delaunay
graph G� as defined in Definition 2.8. Likewise, yG0C will be the completion of the
limit graph G0C induced from yG� . This will allow us to use the variational formu-
las (5.12) and (5.13) for the Laplace–Beltrami and Kähler operators. In general, such
a completion yG� will not be unique. Nevertheless, the redactions satisfy yG

�

� D G� and
yG
�

0C D Gcr regardless of the choice of completion. The Laplace–Beltrami operator,
Kähler operator, and the conformal Laplacian will not be affected by this choice, since
the weights assigned by the operators to any chords, introduced by the completion,
must vanish.

6.2.2. The Laplace–Beltrami operator. The simplest case is the Laplace–Beltrami
operator �. We shall need two intermediate results.

Lemma 6.8. Let f D .v1; v2; v3/ be a counter-clockwise oriented triangle with cir-
cumcenter zcr.f/ and circumradius R D 1. Define ei�j WD zcr.vj / � zcr.f/ for j D
1; 2; 3. Let rfvj be the matrix elements of the discrete derivative operator r restric-
ted to the triangle f. For any integer m 2 Z, one has the uniform boundsˇ̌̌̌ 3X

jD1

rfvj e
im�j

ˇ̌̌̌
�
m.mC 1/

2
; m 2 Z; (6.11)

and ˇ̌̌̌ 3X
jD1

xrfvj e
im�j

ˇ̌̌̌
�
m.m � 1/

2
; m 2 Z: (6.12)

Proof. Using definition (3.6) of r, one can rewrite

3X
jD1

rfvj e
im�j D det

0B@1 e�i�1 eim�1

1 e�i�2 eim�2

1 e�i�3 eim�3

1CA� det

0B@1 e�i�1 ei�1

1 e�i�2 ei�2

1 e�i�3 ei�3

1CA : (6.13)

For m > 0, we can rewrite the numerator as

e�i.�1C�2C�3/ det

0B@1 ei�1 ei.mC1/�1

1 ei�2 ei.mC1/�2

1 ei�3 ei.mC1/�3

1CA ;
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which involves a special case of the following Vandermonde-like determinant:

det

0B@1 z1 zmC11

1 z2 zmC12

1 z3 zmC13

1CA D .z1 � z2/.z2 � z3/.z3 � z1/Sm�1.z1; z2; z3/;
where Sn is the complete homogeneous symmetric polynomial of degree n (a Schur
polynomial),

Sn.z1; z2; z3/ D
X

p1;p2;p32N
p1Cp2Cp3Dn

z
p1
1 z

p2
2 z

p3
3 ;

which consists of .nC1/.nC2/
2

monomials. The numerator equals the denominator in
the right-hand side of (6.13) when m D 1, and since S0.z1; z2; z3/ D 1, we get

3X
jD1

rfvj e
im�j D Sm�1.e

i�1 ; ei�2 ; ei�3/

when m > 0. It is clear that for m > 0, we have the bound

jSm�1.e
i�1 ; ei�2 ; ei�2/j �

.m � 1C 1/.m � 1C 2/

2
D
m.mC 1/

2
;

which is saturated when �1 D �2 D �3. For m D 0 or m D �1, it is clear that

3X
jD1

rfvj e
im�j D 0:

When m � �2, we can rewrite

3X
jD1

rfvj e
im�j D e�i�1e�i�2e�i�3S�m�2.e

�i�1 ; e�i�2 ; e�i�3/

by a similar trick. Since �m � 2 � 0, we get the bound

jS�m�2.e
�i�1 ; e�i�2 ; e�i�3/j �

.�m � 2C 1/.�m � 2C 2/

2

D
m.mC 1/

2
:

Thus we get (6.11). To obtain (6.12), one uses simply

3X
jD1

xrfvj e
im�j D

3X
jD1

rfvj e
�im�j

and (6.11).
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Now we can get uniform asymptotic estimates for the discrete derivatives of the
Green’s function.

Lemma 6.9. Let��1cr be the critical Green’s function on an isoradial weak Delaunay
triangulation Tcr, let f and g be two faces (triangles), and let zcr.f/ and zcr.g/
be the complex coordinates of their respective circumcenters of and og. Let d D
jzcr.f/ � zcr.g/j be the distance between the centers. Then the discrete double deriv-
atives of the Green’s function have the following large distance asymptotics:

Œr��1cr
xr
>�fg D

1

4�

� Q
v2g e

i�v

.zcr.f/ � zcr.g//3
�

Q
u2f e

�i�u

.xzcr.f/ � xzcr.g//3

�
C O.d�4/;

Œxr��1cr r
>�fg D

1

4�

� Q
v2g e

�i�v

.xzcr.f/ � xzcr.g//3
�

Q
u2f e

i�u

.zcr.f/ � zcr.g//3

�
C O.d�4/

(6.14)

and
Œr��1cr r

>�fg D �
1

4�

1

.zcr.f/ � zcr.g//2
C O.d�3/;

Œxr; ��1cr
xr
>�fg D �

1

4�

1

.xzcr.f/ � xzcr.g//2
C O.d�3/:

(6.15)

Proof. Let f D .123/ and g D .456/ be the vertices of f and g, respectively. The
triangulation Tcr is isoradial, so denote

zcr.u/ � zcr.f/ D ei�u ; u D 1; 2; 3;

and
cr.v/ � zcr.g/ D ei�v ; v D 4; 5; 6:

Use (1.10) to separate the Green’s function Œ��1cr �uv into its leading large distance
term (continuous limit term) of order log d , its subleading large distance correction
of order d�2, and the rest of its large distance expansion of order d�4,

Œ��1cr �uv D G
.0/
uv CG

.2/
uv CG

.4/
uv

with
G.0/uv D �

1

2�
.log.2jzcr.u/ � zcr.v/j/C 
Euler/;

G.2/uv D �
1

24�

� p3.u; v/
.zcr.u/ � zcr.v//3

C
Np3.u; v/

.xzcr.u/ � xzcr.v//3

�
;

G.4/uv D O.jzcr.u/ � zcr.v/j�4/:

(6.16)

Begin by writing

zcr.u/ � zcr.v/ D zcr.f/ � zcr.g/C ei�u � ei�v
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and expand the logs and powers of .zcr.u/ � zcr.v// and .xzcr.u/ � xzcr.v// in for-
mulas (6.16) as power series in .zcr.f/ � zcr.g// and .xzcr.f/ � xzcr.g//, where d D
jzcr.f/ � zcr.g/j � 1 is large. For example,

G.0/uv D �
1

2�
.log.2jzcr.f/ � zcr.g/j/C 
Euler/C

1

2�
Re
X
r�1

1

r

� ei�v � ei�u

zcr.f/ � zcr.g/

�r
:

The coefficients in these expansions involve the phases ei�u and ei�v , and so the matrix
entries in formulas (6.14) and (6.15) can be computed using the basic identitiesX

u2f

rfue
i�u D 1 and

X
u2f

rfue
�i�u D

X
u2f

rfu D 0

along with values of rfu, xrfu and r>vg D rgv, r�vg D
xrgv explicitly given in (3.6)

and (3.7). As an illustration,

ŒrG.0/ xr>�fg D
X
u2f

X
v2g

rfu xrgvG
.0/
uv

D
1

4�

� Q
u2f e

i�u

.zcr.f/ � zcr.g//3
�

Q
v2g e

�i�v

.xzcr.f/ � xzcr.g//3

�
C

1

2�

X
r�4

X
u2f

X
v2g

rfu xrgv
1

r
Re
� ei�v � ei�u

zcr.f/ � zcr.g/

�r
:

The vanishing of the coefficients of order r � 2 is straightforward. We present the
calculation of the coefficient of .zcr.f/ � zcr.g//�3 occurring in ŒrG.0/ xr>�fg here,

1

3

X
u2f

X
v2g

rfu xrgv.e
i�v � ei�u/3

D
1

3

�X
u2f

rfu

�
„ ƒ‚ …

vanishes

�

�X
v2g

xrgve
3i�v
�
�

�X
u2f

rfue
i�u
�

„ ƒ‚ …
equals 1

�

�X
v2g

xrgve
2i�v
�

„ ƒ‚ …
�
Q

v2g e
i�v

C

�X
u2f

rfue
2i�u
�
�

�X
v2g

xrgve
i�v
�

„ ƒ‚ …
vanishes

�
1

3

�X
u2f

rfue
3i�u
�
�

�X
v2g

xrgv

�
„ ƒ‚ …

vanishes

:

Due to Lemma 6.8 (or in this case through a direct estimate), its norm is uniformly
bounded by a constant independent of the shape of the faces. For G.0/, which is
a smooth function of the vertex coordinates, these calculations amount to replacing r
and xr by their corresponding continuous derivatives @ and x@, up to subdominant terms
of order 0.d�3/. This is in agreement with Lemma 1.9. The result is that asymptot-
ics (6.14) and (6.15) are valid for G.0/ alone.
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To end the proof of the lemma, one must show that the corresponding derivative
terms for G.2/ and G.4/ are O.d�3/. This is clear for G.4/, which is itself O.d�4/,
hence its discrete derivatives are also O.d�4/. But this is not obvious for G.2/ which
is only O.d�2/. We must use the explicit form of G.2/. Let us consider the termX

u2f

X
v2g

rfu

� p3.u; v/
.zcr.u/ � zcr.v//3

�
r
>
vg

which appears in rG.2/r>. One has

p3.u; v/ D p3.of; og/C e
�3i�u � e�3i�v :

So we have to consider three terms. The first term isX
u2f

X
v2g

rfu

� p3.of; og/

.zcr.u/ � zcr.v//3

�
r
>
vg

D p3.of; og/
X
u2f

X
v2g

rfu

� 1

.zcr.u/ � zcr.v//3

�
r
>
vg

D p3.of; og/
�

�12

.zcr.f/ � zcr.g//5
CO.d�6/

�
D O.d�4/:

In the last step, we used the uniform bound from Lemma 4.3

jp3.of; og/j � 3jzcr.f/ � zcr.g/j D 3d:

The second term isX
u2f

X
v2g

rfu

� e�3i�u

.zcr.u/ � zcr.v//3

�
r
>
vg

D

X
u2f

rfu

� 3e�3i�u

.zcr.f/ � zcr.g//4
C O.d�5/

�
D 3

�X
u2f

rfue
�3i�u

� 1

.zcr.f/ � zcr.g//4
C O.d�5/:

From Lemma 6.8, ˇ̌̌X
u2f

rfue
�3i�u

ˇ̌̌
� 6;

hence the second term is of order O.d�4/. By the same argument, the third term is

�

X
u2f

X
v2g

rfu

� e�3i�v

.zcr.u/ � zcr.v//3

�
r
>
vg D O.d�4/:

This ends the derivation of (6.15) (the second equation is the complex conjugate
(c.c.)). The derivation of (6.14) proceeds in a similar way.
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We are now in a position to state the main result.

Proposition 6.10. The second-order variation for the Laplace–Beltrami operator
�.�/ on an isoradial Delaunay graph Gcr is

trŒ d�1� ��
�1
cr � d�2� ��

�1
cr �

D
1

�2

X
f2x�1

X
g2x�2

A.f/A.g/
h xrF1.f/xrF2.g/
.zcr.f/ � zcr.g//4

C
r xF1.f/r xF2.g/
.xzcr.f/ � xzcr.g//4

i
C O.d�5/; (6.17)

where the double sum is taken over pairs of triangles f; g 2 F.yG0C/ such that all
vertices of f reside in x�1 and all vertices of g reside in x�2.

Proof. We start from the local form of the operator �.�/ (3.11), which implies that
the first-order variation on �.�/ is

d�� D 2.d� xr
>Ar C xr>d�Ar C xr

>Ad�r C d�r
>Axr C r>d�Axr C r

>Ad� xr/:

We use the formula for the variation of A,

d�A D A.rF C xr xF /;

as well as the formulas for the variations of the operators r and xr given by (5.18),
which read

d�r D �.rFr C r xF xr/;

d� xr D �.xr xF xr C xrFr/

to get
d�� D �4.xr

>.r xF /Axr C r>.xrF /Ar/:

One uses this and the cyclicity of the trace to rewrite the second-order variation as

trŒ d�1� ��
�1
cr � d�2���

�1
cr � D 16

�
tr.Ar xF1 � xr��1cr

xr
>
� Ar xF2 � xr�

�1
cr
xr
>/

C tr.AxrF1 � r��1cr
xr
>
� Ar xF2 � xr�

�1
cr r

>/

C tr.Ar xF1 � xr��1cr r
>
� AxrF2 � r�

�1
cr
xr
>/

C tr.AxrF1 � r��1cr r
>
� AxrF2 � r�

�1
cr r

>/
�
:

Note that the trace on the left-hand side is a sum over vertices, while the trace on the
right-hand side is a sum over faces (triangles). Using the large distances asymptot-
ics (6.14) and (6.15), and writing the trace explicitly as a double sum over faces f
and g gives the theorem.

We now consider the other operators. The case of the conformal Laplacian is more
complicated, so let us first discuss the Kähler operator.
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6.2.3. The Kähler operator D .

Proposition 6.11. The second-order variation for the Kähler operator D.�/ on an
isoradial, Delaunay graph Gcr has the same form as the second-order variation for
the Laplacian �.�/

trŒ d�1D �D
�1
cr � d�2D �D

�1
cr �

D
1

�2

X
f2x�1

X
g2x�2

A.f/A.g/
h xrF1.f/xrF2.g/
.zcr.f/ � zcr.g//4

C
r xF1.f/r xF2.g/
.xzcr.f/ � xzcr.g//4

i
C O.d�5/; (6.18)

where the double sum is taken over pairs of triangles f; g 2 F.yG0C/ such that all
vertices of f reside in x�1 and all vertices of g reside in x�2.

Proof. The derivation goes along the same line. We start from Proposition 5.13 which
gives the explicit form (5.12) of the first-order variation of D.�/. The graph Gcr is
isoradial, so all circumradii are equal R.f/ D Rcr, and thus Dcr D R�2cr �cr. This
implies that the first-order variation of D.�/ has the special form

d�D D R
�2
cr d�� � 4R

�2
cr
xr
>.A.rF C xr xF /C C xrF C xCr xF /r

with C and xC defined by (5.13). Formula (6.18) follows by repeating the analysis
made in the proof of Proposition 6.10, which relies on the asymptotics of Lemma 6.9.
One can check that the new terms involvingC and xC do not change asymptotics (6.17)
obtained for �.

6.3. The case of the conformal Laplacian: The anomalous term

6.3.1. Second-order variation for the conformal Laplacian�. By formula (6.9) in
the proof of Proposition 6.4, the contribution made by regular edges e2 E.G�

0C
/ to the

first-order variation d�� of the conformal Laplacian is identical to the variation d��

of the Laplace–Beltrami Laplacian. There is, however, an additional term in the first-
order variation d�� coming from the chords of G0C . We call it the “anomalous term”
and denote it by ıA, d�� D d��C d�A.

The non-diagonal elements of d�A are non-zero only for chords. From (6.9), for
vertices u ¤ v, they are

d�A.Ee/ D Œ d�A�uv

D

8̂̂<̂
:̂

d��n.Ee/ tan2 �n.Ee/C d��s.Ee/ tan2 �s.Ee/
2

if e D uv is a chord
in E.G0C/,

0 otherwise:

(6.19)



F. David and J. Scott 792

Here e D uv is an edge of G0C and Ee D .u; v/ is an orientation. The graph G0C is
isoradial and weakly Delaunay, and so �n.Ee/ D ˙�s.Ee/ for any edge. In particular,
tan2 �n.Ee/ D tan2 �s.Ee/, and so d�A.Ee/ D d�A.Ee�/, where Ee� D .v;u/ is the opposite
orientation. As for the diagonal terms, we have

Œ d�A�uu D �
X
v¤u

Œ d�A�uv: (6.20)

In the case of a chord Ee, we may use (5.19) for the angle variations d��n.Ee/ and d��s.Ee/
and re-express the anomalous term d�A.Ee/ given in formula (6.19) as

d�A.Ee/ D
1

2
ImŒxrF.fn/En.Ee/ tan2 �n.Ee/C xrF.fs/Es.Ee/ tan2 �s.Ee/�; (6.21)

where the functions En.Ee/ and Es.Ee/ are defined in (5.20) and where fn and fs are
the respective north and south triangles abutting Ee in the triangulation yG0C which
completes G0C .

The second-order variation

trŒ d�1� ��
�1
cr � d�2� ��

�1
cr �

is the sum of the second-order variation made by the Laplace–Beltrami Laplacian,
namely

trŒ d�1� ��
�1
cr � d�2� ��

�1
cr � (6.22)

along with three anomalous trace terms, which we can express (in light of (6.20)) as
follows:

trŒ d�1A ��
�1
cr � d�2� ��

�1
cr �„ ƒ‚ …

chord-edge term

D

X
chords Ee12G0C
edges Ee22yG0C

d�1A.Ee1/K.Ee1; Ee2/d�2�.Ee2/K.Ee2; Ee1/;

trŒ d�1� ��
�1
cr � d�2A ��

�1
cr �„ ƒ‚ …

edge-chord term

D

X
edges Ee12yG0C

chords Ee2 2G0C

d�1�.Ee1/K.Ee1; Ee2/d�2A.Ee2/K.Ee2; Ee1/;

trŒ d�1A ��
�1
cr � d�2A ��

�1
cr �„ ƒ‚ …

chord-chord term

D

X
chords

Ee1;Ee22G0C

d�1A.Ee1/K.Ee1; Ee2/d�2A.Ee2/K.Ee2; Ee1/;

(6.23)
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where Ee1 D .u1; v1/ and Ee2 D .u2; v2/ are oriented edges of the triangulation yG0C ,
whose vertices u1, v1 and u2, v2 lie in x�1 and x�2, respectively, and where

K.Ee1; Ee2/ WD Œ��1cr �v1v2 � Œ�
�1
cr �u1v2 � Œ�

�1
cr �v1u2 C Œ�

�1
cr �u1u2 :

Note thatK.Ee1; Ee2/DK.Ee2; Ee1/D�K.Ee�1 ; Ee2/, where Ee�1 D .v1;u1/ has the reverse
orientation. Applying two rounds of formula (3.8), we obtain

K.Ee1; Ee2/ D p1.u2; v2/Œ��1cr r
>�u1f2 � p1.u2; v2/Œ�

�1
cr r

>�v1f2

C xp1.u2; v2/Œ��1cr
xr
>�u1f2 � xp1.u2; v2/Œ�

�1
cr
xr
>�v1f2

D 2Re
�
p1.u1; v1/p1.u2; v2/Œr��1cr r

>�f1f2

C p1.u1; v1/ xp1.u2; v2/Œr��1cr
xr
>�f1f2

�
; (6.24)

where fi is a triangle of yG0C , north or south, containing the edge Eei for i D 1; 2. By
assumption, x�1 and x�2 are separated by a large distance d � Rcr, and so we can
estimateK.Ee1; Ee2/ as presented in formula (6.24) using asymptotic expansions (6.14)
and (6.15) of Lemma 6.9. We end up with

K.Ee1; Ee2/ D
1

2�
Re
hp1.u1; v1/p1.u2; v2/
.zcr.f1/ � zcr.f2//2

i
C O

� 1

jzcr.f1/ � zcr.f2/j3

�
;

where p1.u; v/ D zcr.v/ � zcr.u/ as introduced in Definition 2.23.

6.3.2. The chord-chord term. Let us begin by examining the chord-chord term
of (6.23). It involves the contribution of two (oriented) chords Ee1 D .u1; v1/ and
Ee2 D .u2; v2/, whose vertices u1, v1 and u2, v2 are contained in x�1 and x�2, respect-
ively. Since Eei D .ui ; vi / is a chord for i D 1; 2 in G0C , the corresponding north
and south triangles fi n and fi s in yG0C are concyclic and therefore share a common
circumcenter whose complex coordinate we denote by

Z cr.Eei / D z.fi n/ D z.fi s/:

This is depicted in Figure 17.

df1 f2

u1 u2

v1 v2

e1
e2

s1

s2n1
n2

Figure 17. Two far apart chords Ee1 D .u1v1/ and Ee2 D .u2v2/ at distance d � 1.
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Putting things together, we see that the contribution made by a pair of (oriented)
chords .Ee1; Ee2/ to the chord-chord anomalous trace term in (6.23) is

1

16�2
d�1A.Ee1/d�2A.Ee2/

�
Re
hp1.u1; v1/p1.u2; v2/
.Z cr.Ee1/ � Z cr.Ee2//2

i�2
C O

� 1

jZ cr.Ee1/ � Z cr.Ee2/j5

�
(6.25)

with d�1A.Ee1/ and d�2A.Ee2/ given by (6.21) that we recall for completeness,

d�A.Ee/ D
1

2
ImŒxrF.fn/En.Ee/ tan2 �n.Ee/C xrF.fs/Es.Ee/ tan2 �s.Ee/�

with

En.Ee/ D
xz.v/ � xz.n/
z.v/ � z.n/

�
xz.u/ � xz.n/
z.u/ � z.n/

D
�4A.fn/

.z.v/ � z.n//.z.u/ � z.n//

and a similar form for Es.Ee/. Any triangulation yG0C which completes the limit graph
G0C is itself isoradial and weakly Delaunay, consequently tan2 �n.Ee/D tan2 �s.Ee/ the
value of which is given by (3.5).

Result (6.25) for the anomalous chord-chord contribution to the variation of
log det�.�/ does not have the same form as the “regular” contribution (6.22) which
is similar to the variation of the Laplace–Beltrami operator �, which is a sum over
triangles of terms

A.f1/A.f2/
xrF1.f1/ � xrF2.f2/
.zcr.f1/ � zcr.f2//4

C c.c.

First, in addition to harmonic terms in the coordinates of the circumcenters of the
form

.Z cr.Ee1/ � Z cr.Ee2//�4 and .Z cr.Ee1/ � Z cr.Ee2//�4;

it contains non-harmonic terms of the form

jZ cr.Ee1/ � Z cr.Ee2/j�4

which are problematic with respect to the conformal invariance and an interpretation
in terms of CFT, as will be discussed in Section 9.

Second, from the form of d�1A.Ee1/ and d�2A.Ee2/, it does not contain only terms
of the form

xrF1.f1/ � xrF2.f2/ and r xF1.f2/ � r xF2.f2/

but also terms of the form

xrF1.f1/ � r xF2.f2/ and r xF1.f2/ � xrF2.f2/:

Third, the geometric terms associated to the faces (the triangles f1 and f2) are not
simply the area terms A.f1/ and A.f2/, but they depend on the detailed geometry and
orientation of the chords and the triangles through the terms En=s.Ee/ and tan2 �n=s.Ee/.
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6.3.3. The chord-edge term. We now discuss briefly the chord-edge term present
in (6.23), which involves the anomalous variation term Œ d�1A�u1v1 of a chord Ee1 D
.u1; v1/ and the ordinary variation term Œ d�2��u2v2 of an edge Ee2 D .u2; v2/. It will
be simpler to group together the terms made by a single chord

Ee1 D Ee D .u; v/

and the edges Ee2 forming the boundary of a fixed (counter-clockwise oriented) tri-
angle f, and then sum the contributions as the chord Ee in G0C and triangle f in yG0C
both vary; see the illustration in Figure 18.

d
c

c0

1

10

2

20

e g

4

3 30

Figure 18. A chord e D .12/ and a triangle g D .102030/ at distance d .

Accordingly, the contribution made by a chord-triangle pair .Ee; f/ is found to be

1

4�2
d�1A.Ee/Re

hp21.u; v/A.f/xrF2.f/
.Z cr.Ee/ � zcr.f//4

i
C O

� 1

jZ cr.Ee/ � zcr.f/j5

�
: (6.26)

This term is again different from the regular term. Now it is harmonic in the coordin-
ates of the circumcenters, since it does not contain the non-harmonic term

jZ cr.Ee1/ � Z cr.Ee2/j�4:

However, it still contains the terms of the form

xrF1.f1/ � r xF2.f2/ and r xF1.f2/ � xrF2.f2/;

and it depends on the detailed geometry and orientation of the chord, as for the chord-
chord term discussed previously.

6.3.4. A simplification for specific deformations. Finally, let us note that the anom-
alous term d�A.Ee/ for a chord Ee from (6.21) takes a simpler form in the special case
when the discrete derivatives of F coincide on the north and south triangles fn.Ee/
and fs.Ee/ due to the following lemma.
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1 2

3

4

N

S

1 2

3

4

W E

Figure 19. The triangles N, S, E and W.

Lemma 6.12. Consider two triangles N D .v1; v2; v3/ and S D .v2; v1; v4/ sharing
the edge v1v2 and the flipped triangles E D .v3; v4; v2/ and W D .v4; v3; v1/ sharing
the edge v3v4 as depicted in Figure 19. Let v 7! F.v/ be a function defined on the
vertices. Then the four following expressions are equivalent:

rF.N/ D rF.S/; rF.E/ D rF.W/; xrF.N/ D xrF.S/; xrF.E/ D xrF.W/:

Note that the four points are not necessarily concyclic.

Proof. The proof follows from definitions (3.6) and (3.7), and it is left to the reader.
It has a simple geometric interpretation. Again, note that this is valid for any pair of
triangles sharing an edge.

In this case, a single pair of discrete derivatives .rF.c/; xrF.c// of F is associ-
ated to a cocyclic configuration of points, namely, a simple cyclic polygon

P D .z1; z2; : : : ; zk/; k � 4;

with circumcenter c. The variation d�1A.Ee/ for a chord Ee is then given by

d�1A.Ee/ D
1

2
ImŒxrF.c/.En.Ee/C Es.Ee//� tan2 �n=s.Ee/:

6.4. Curvature dipoles and the anomalous chord term

Let us discuss a possible explanation of the anomalous terms corresponding to defor-
mations of cocyclic vertex configurations. The adjective “anomalous” indicates that
these contributions are not present for either the Laplace–Beltrami operator � or the
Kähler operator D , both of which admit a smooth continuum limit consistent with the
predictions of conformal invariance.
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cN

cS

KN D 0

KS D 0

Figure 20. A regular edge eD .12/ of a critical triangulationG (left) and its associated rhombic
lattice G˙ (right), the curvatureK associated to each face of G, i.e., its white zo-vertices of G˙,
is zero.

cN

cS

KNDO.�/

KSDO.�/

Figure 21. A deformation of G. The Gauss curvatures K of the N and S faces are non-zero, but
of order O.�/.

As discussed in definition (1.7), the conformal Laplacian� for a Delaunay graph
G can be viewed as the discretized Laplace–Beltrami operator on the rhombic sur-
face S˙

G
introduced in Definition 2.21. The construction of S˙

G
is illustrated in Fig-

ure 20 for an isoradial Delaunay graphG and in Figure 21 for a generic (non-isoradial)
Delaunay triangulation G.

It is easy to see that the surface S˙

G
is piecewise flat, with curvature defects (i.e.,

conical singularities) localized at the vertices zof associated to circumcenters of faces f
in G. The defect angle K.f/ corresponds to a localized curvature defect at zof, and its
value is given in terms of the conformal angles �.e/ of the edges forming the boundary
of the face f. Recall from Remark 2.2 that the associated scalar curvature Rscal.zof/ at
a vertex zof is

Rscal.zof/ D 4� � 2
X
e2@f

.� � 2�.e//
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or, equivalently, twice the measure of the defect angle around the circumcenter of of
the face f, i.e., the Gauss curvature

K.f/ WD 2� �
X
e2f

.� � 2�.e//„ ƒ‚ …
discrete Gauss curvature

:

For an isoradial Delaunay graph G, the rhombic surface S˙

G
coincides with the planar

kite graph G˙ whose faces, in this case, are all rhombi. Furthermore, the scalar
curvature Rscal.zof/ associated to each face f in G is zero. For a generic Delaunay
graph G, the scalar curvature Rscal.zof/ will be non-zero (see Figure 21). Indeed,
consider a cyclic quadrilateral face f in an isoradial triangulation Gcr depicted in
Figure 22 and the effects of a generic deformation Gcr ! G� depicted in Figure 23.
In S˙

Gcr
, four lozenges meet at zof where the scalar curvature Rscal.zof/ vanishes.

c.P/
Kc D 0

Figure 22. A cocyclic face P D .1423/ of a critical triangulation Gcr (left) and its associated
rhombic latticeG˙ (right), the curvatureK associated to each face ofG, i.e., its white o-vertices
of G˙, is zero.

As illustrated in Figure 23, as soon as we deform this cyclic quadrilateral, a di-
agonal edge e generically emerges in G� (infinitesimally a chord e in G0C) which
subdivides the quadrilateral f into two triangles fn and fs, while the circumcen-
ter of splits into two circumcenters on and os. In the deformed rhombic surface S˙

G�

a new lozenge appears between zon and zos. However, this new lozenge is “flat”, i.e.,
to first-order in � its angles are .0; �; 0; �/. Therefore, the Gaussian curvatures K.fn/

and K.fs/ have opposite signs and they are both of order O.1/, not of order O.�/.
In terms of the north and south angles of the chord Ee, they read

K.fn/ D �2�n.Ee/C O.�/; K.fs/ D �2�s.Ee/C O.�/:

Thus the deformation produces a curvature dipole associated to the chord e, i.e.,
neighboring curvature defects with non-zero but opposite signs. Said differently, the
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c.N/
c.S/

KN D CK0 C O.�/

KS D �K0 C O.�/

Figure 23. A deformation O.�/ of the cocyclic configuration. The Delaunay condition select
a chord eD .12/, which splits the face PD .1423/ into two triangles ND .123/ and SD .214/.
A flat lozenge .1S2N/ appear in the rhombic lattice G˙. The curvatures K of the N and S faces
are non-zero, but of order O.1/ and opposite. The triangles N and S form a “curvature dipole”.

smooth deformation Gcr ! G� manifests a discontinuity in the curvature. Generic-
ally, when one smoothly deforms a cyclic face f of Gcr with four or more vertices,
a curvature dipole will emerge for each chord e 2 G0C which subdivides the face f.

Finally, let us stress that a curvature dipole appears if the anomalous term d�A.Ee/
discussed above in Section 6.3.1 is non-zero. Indeed, this anomalous term is pro-
portional to tan2 �n.Ee/, while the dipole is proportional to �n.Ee/. Thus for a chord
e 2 G0C with �n.Ee/ D �s.Ee/ D 0, no anomalous term is present, and so no curvature
dipole appears at first order in the deformation. This occurs if and only if the cir-
cumcenter of of the face f lies on the edge e. Notice that if f is a quadrilateral (as
in Figure 23) where the north and south angles of both e D .12/ and the flipped
edge e� D .34/ are zero, then the face f is a rectangle. In this case, to first order in �,
the deformation is isoradial! isoradial, not isoradial! non � isoradial.
These isoradial! isoradial deformations are the ones considered by Kenyon
in the seminal paper [17].

7. The scaling limit of variations

7.1. Rescaling smooth deformations

As explained in the introduction, we incorporate a scaling factor `> 0 into the deform-
ation in order to define and study a continuum limit. We may view the scaling para-
meter ` > 0 as imparting a resolution on the critical graph, i.e., we get a rescaled
embedding z1=`cr WD

zcr
`

of Gcr, under which vertices become closer and denser in any
compact region of the plane as ` > 0 increases. In particular, the area A.f/ of a face
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f 2 F.Gcr/ shrinks by a factor of 1
`2

under the rescaled embedding, while its circum-
center coordinate zcr.f/ is rescaled by a factor of 1

`
. In this way, the scaling parameter

` > 0 allows us to interpret the critical graph as a planar partition and can be used
to define a Riemann sum. More specifically, given any continuous complex-valued
function H WC ! C with compact support � D suppH , then

lim
`!1

X
x2F.Gcr/

A.x/
`2
�H

�zcr.x/
`

�
D

Z
�

d2x H.x/:

Given a smooth complex-valued function F WC!C with compact support, and ` > 0
a scaling real parameter, we set F`.z/ WD `F.z` /. When deforming a critical isoradial
Delaunay graphGcr (with unit circumradiusRcrD 1), we shall consider the restriction
of F` to (the coordinates of) the vertices of the critical graph. By abuse of notation,
we shall write F`.v/ WD `F.

zcr.v/
`
/ for each vertex v 2 V.Gcr/. We use F` to displace

the coordinates of the critical graph and define a deformed embedding, namely,

z�;`.v/ WD zcr.v/C �F`.v/:

7.2. Rescaling bi-local deformations

Our analysis of second-order variations (for the log-determinants which we consider)
involve a bi-local deformation implemented by two smooth, complex-valued func-
tions F1 and F2WC! C whose respective supports�1 and�2 are compact and have
lattice closures x�1 and x�2 which are disjoint. Set

d WD dist.�1; �2/ D inf¹jw1 � w2j W wi 2 �iº

to be the distance between the supports �1 and �2. Obviously, 0 < d < 1. The
corresponding deformed embedding z�;`WV.Gcr/!C of the critical lattice is given by

z�;`.v/ WD zcr.v/C �1F1I`.v/C �2F2I`.v/;

where � D .�1; �2/ is a pair of deformation parameters �1; �2 � 0, and where we use
the notation Fi I`.z/ WD `Fi .z` / and by abuse of notation Fi I`.v/ WD Fi I`.zcr.v// for
a vertex v 2 V.Gcr/ and i D 1; 2. The results of Lemma 5.8 still hold for the bi-
local deformed embedding z�;`; simply apply the lemma to F1 and F2 independently
and take z�F D min.z�F1 ; z�F2/. Let us denote by G�;` the Delaunay graph uniquely
determined by the vertex set V.G�;`/ WD V.Gcr/ together with the deformed embed-
ding z�;`. As we have seen, the one-sided limit �i ! 0C for i D 1; 2 induces the
structure of a weak Delaunay graph G0C;` on the vertex set V.Gcr/ with respect to
the critical embedding zcr. In general, the edge set E.G0C;`/ will vary as the scaling
parameter ` > 0 evolves; nevertheless E.Gcr/� E.G0C;`/ for all 0 < ` �1. For each
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value of ` > 0, select a weak Delaunay triangulation yG0C;` which completes G0C;`.
Because E.Gcr/� E.G0C;`/� E.yG0C;`/ for each 0 < `�1, we may always perform
the following resummation:X

x2F.yG
0C;`

/

A.x/H.zcr.x// D
X

y2F.Gcr/

A.y/H.zcr.y//;

where we combine terms on the left-hand side involving triangles of yG0C;` which
share a common circumcenter and where H.x/ is any quantity which depends only
upon the circumcenter zcr.x/ of x 2 F.yG0C;`/. Consequently, the choice of triangula-
tion yG0C;` completing G0C;` will not affect our calculations.

7.3. Scaling limit and derivation of Theorem 1.10

We now are in a position to study the scaling limit of the bilocal terms (6.17) (Pro-
position 6.10) and (6.18) (Proposition 6.11) and to derive Theorem 1.10. For GD Gcr

or G D yG0C;`, we denote by Fx�i .`/.G/ the subset of faces x of G whose vertices
belong to the lattice closure x�i .`/ of the support �i .`/ WD suppFi I` for i D 1; 2.

7.3.1. The initial ` finite term. Let O.�; `/ denote either the Laplace–Beltrami
operator �.�; `/ or the Kähler operator D.�; `/ on the Delaunay graph G�;`. From
Propositions 6.10 and 6.11, the �1�2 cross-term of log det O.�; `/ is given by the trace
term

� tr
�
d�1O.`/ ��

�1
cr � d�2O.`/ ��

�1
cr

�
;

which can be expressed as the following double sum over triangles in yG0C;`:

�
2

�2

X
x12Fx�1.`/.

yG
0C;`

/

x22Fx�2.`/.
yG
0C;`

/

A.x1/A.x2/

�

�
Re
h xrF1I`.x1/xrF2I`.x2/
.zcr.x1/ � zcr.x2//4

i
C O.jzcr.x1/ � zcr.x2/j�5/

�
; (7.1)

where zcr.xi / is the circumcenter of xi for i D 1; 2. Both F1 and F2 have compact
support, so by Lemma 1.9 we have that

xrFi I`.x/ D x@Fi
�zcr.x/

`

�
C
Rcr

`
�Ei .x/;

where jEi .x/j is bounded by a constant Bi > 0 independent of both x and ` > 0.
We begin by breaking (7.1) into two pieces and evaluate their large limits ` separ-
ately.
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7.3.2. The subleading term. The large limit ` of the second part of (7.1) vanishes
as the following computation shows:ˇ̌̌ X

x12Fx�1.`/.
yG
0C;`

/

x22Fx�2.`/.
yG
0C;`

/

A.x1/A.x2/ � O.jzcr.x1/ � zcr.x2/j�5/
ˇ̌̌

�

X
x12Fx�1.`/.

yG
0C;`

/

x22Fx�2.`/.
yG
0C;`

/

A.x1/A.x2/ �
ˇ̌
O.jzcr.x1/ � zcr.x2/j�5/

ˇ̌

�

X
x12Fx�1.`/.Gcr/

x22Fx�2.`/.Gcr/

A.x1/A.x2/ �
ˇ̌
O.jzcr.x1/ � zcr.x2/j�5/

ˇ̌

�
1

d

1

`

X
x12Fx�1.`/.Gcr/

x22Fx�2.`/.Gcr/

A.x1/
`2

A.x2/
`2
�

ˇ̌̌
O
�ˇ̌̌zcr.x1/

`
�
zcr.x2/
`

ˇ̌̌�4�ˇ̌̌
:

In the large limit `, the sum over the triangles becomes a standard Riemann integral

� lim
`!1

X
x12Fx�1.`/.Gcr/

x22Fx�2.`/.Gcr/

A.x1/
`2

A.x2/
`2
�

ˇ̌̌
O
�ˇ̌̌zcr.x1/

`
�
zcr.x2/
`

ˇ̌̌�4�ˇ̌̌

D

“
�1��2

d2x1d
2x2 � jO.jx1 � x2j�4/j D O.1/:

Hence

lim
`!1

X
x12Fx�1.`/.Gcr/

x22Fx�2.`/.Gcr/

A.x1/A.x2/ � O.jzcr.x1/ � zcr.x2/j�5/ D 0:

7.3.3. The leading term. To evaluate the first part in (7.1), we consider the norm of
the difference between the original term with discrete derivative and the correspond-
ing term with continuous derivatives, and use the previous results to get the boundsˇ̌̌̌ X

x12Fx�1.`/.
yG
0C;`

/

x22Fx�2.`/.
yG
0C;`

/

A.x1/A.x2/

� Re
h xrF1I`.x1/xrF2I`.x2/ � x@F1.zcr.x1/=`/x@F2.zcr.x2/=`/

.zcr.x1/ � zcr.x2//4

iˇ̌̌̌
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�
Rcr

`

X
x12Fx�1.`/.

yG
0C;`

/

x22Fx�2.`/.
yG
0C;`

/

A.x1/
`2

A.x2/
`2
jE1.x1/j � jx@F2.zcr.x2/=`/j
jzcr.x1/=` � zcr.x2/=`j4

C
Rcr

`

X
x12Fx�1.`/.

yG
0C;`

/

x22Fx�2.`/.
yG
0C;`

/

A.x1/
`2

A.x2/
`2
jx@F1.zcr.x1/=`/j � jE2.x2/j
jzcr.x1/=` � zcr.x2/=`j4

C
R2cr

`2

X
x12Fx�1.`/.

yG
0C;`

/

x22Fx�2.`/.
yG
0C;`

/

A.x1/
`2

A.x2/
`2

jE1.x1/j � jE2.x2/j
jzcr.x1/=` � zcr.x2/=`j4

�
Rcr

`

X
x12Fx�1.`/.

yG
0C;`

/

x22Fx�2.`/.
yG
0C;`

/

A.x1/
`2

A.x2/
`2

B1 � jx@F2.zcr.x2/=`/j
jzcr.x1/=` � zcr.x2/=`j4

C
Rcr

`

X
x12Fx�1.`/.

yG
0C;`

/

x22Fx�2.`/.
yG
0C;`

/

A.x1/
`2

A.x2/
`2

jx@F1.zcr.x1/=`/j � B2
jzcr.x1/=` � zcr.x2/=`j4

C
R2cr

`2

X
x12Fx�1.`/.

yG
0C;`

/

x22Fx�2.`/.
yG
0C;`

/

A.x1/
`2

A.x2/
`2

B1 � B2

jzcr.x1/=` � zcr.x2/=`j4

�
Rcr

`

X
x12Fx�1.`/.Gcr/

x22Fx�2.`/.Gcr/

A.x1/
`2

A.x2/
`2

B1 � jx@F2.zcr.x2/=`/j
jzcr.x1/=` � zcr.x2/=`j4

C
Rcr

el l

X
x12Fx�1.`/.Gcr/

x22Fx�2.`/.Gcr/

A.x1/
`2

A.x2/
`2

jx@F1.zcr.x1/=`/j � B2
jzcr.x1/=` � zcr.x2/=`j4

C
R2cr

`2

X
x12Fx�1.`/.Gcr/

x22Fx�2.`/.Gcr/

A.x1/
`2

A.x2/
`2

B1 � B2

jzcr.x1/=` � zcr.x2/=`j4
: (7.2)

In the large limit `, each sum over triangles becomes a Riemann integral. Hence
the large ` limit of the left-hand side of (7.2) is less than or equal to

lim
`!1

c

2�2
B1Rcr

`
�

“
�1��2

dx1dx2

jx1 � x2j4
jx@F2.x2/j
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C lim
`!1

c

2�2
B2Rcr

`
�

“
�1��2

dx1dx2

jx1 � x2j4
jx@F1.x1/j

C lim
`!1

c

2�2
B1B2R

2
cr

`2
�

“
�1��2

dx1dx2

jx1 � x2j4
D 0:

7.3.4. Summing up. From this it follows that

lim
`!1

X
x12Fx�1.`/.

yG
0C;`

/

x22Fx�2.`/.
yG
0C;`

/

A.x1/A.x2/Re
h xrF1I`.x1/xrF2I`.x2/
.zcr.x1/ � zcr.x2//4

i

D lim
`!1

X
x12F.yG

0C;`
/

x22F.yG
0C;`

/

A.x1/A.x2/Re
h xrF1I`.x1/xrF2I`.x2/
.zcr.x1/ � zcr.x2//4

i

D lim
`!1

X
x12F.yG

0C;`
/

x22F.yG
0C;`

/

A.x1/
`2

A.x2/
`2

Re
hx@F1.zcr.x1/=`/x@F2.zcr.x2/=`/

.zcr.x1/=` � zcr.x2/=`/4

i

D lim
`!1

X
x12F.Gcr/
x22F.Gcr/

A.x1/
`2

A.x2/
`2

Re
hx@F1.zcr.x1/=`/x@F2.zcr.x2/=`/

.zcr.x1/=` � zcr.x2/=`/4

i

D

“
�1��2

dx1dx2 Re
hx@F1.x1/x@F2.x2/

.x1 � x2/4

i
:

Thus we have

lim
`!1

trŒ d�1O.`/ ��
�1
cr � d�2O.`/ ��

�1
cr �

D
2

�2

“
�1��2

dx1dx2 Re
hx@F1.x1/x@F2.x2/

.x1 � x2/4

i
:

This settles the proof of Theorem 1.10 by establishing equation (1.17).

7.4. Controlling the geometry of the lattice for small deformations

7.4.1. The limits we considered. Let us summarize what we did previously, up to
Section 7.3. We begin with an infinite critical graph Gcr and two displacement func-
tions F1 and F2 whose respective supports �1 and �2 are compact and whose lattice
closures x�1 and x�2 are disjoint. We construct the stable Delaunay deformation G�
with embedding z� D zcr C �1F1 C �2F2 along with a corresponding deformed oper-
ator O.�/, where � D .�1; �2/ is a pair of independent parameters. We then proceed
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to isolate the coefficient of �1�2 in the Taylor series of log det O.�/. Since the lattice
closures of the supports of F1 and F2 are disjoint, the first trace term trŒO.�/ � O�1cr �

contributes nothing. The only non-vanishing contribution to �1�2 comes from the
second trace and can be expressed as

� trŒ d�1O �O
�1
cr � d�2O �O

�1
cr � (7.3)

defined on the weak Delaunay graph yG0C (a completion of the isoradial refinement
of the initial graph Gcr relative to the deformation). We then rescale the deformation
by `, consider the family of deformations zcr ! zcr C �1F1I` C �2F2I` and show that
the scaling limit ` ! 1 of (7.3) exists and is independent of the choice of initial
critical graph Gcr. Stated simply, we study the nested limit

lim
`!1

lim
�1!0
�2!0

.trŒ d�1O.�; `/ �O
�1
cr � d�2O.�; `/ �O

�1
cr �/: (7.4)

An interesting question is whether these two limits can be interchanged. A positive
answer would be a first step in understanding if one can define a continuum limit of
(the total variation of) logdetO.�;`/ starting from an infinite Delaunay graph which is
not isoradial, but rather obtained by a small smooth deformation of a Delaunay graph
which is isoradial. A simpler question is the following: We know that for a given crit-
ical graph Gcr, limit (7.4) makes sense when �1; �2 ! 0. Is the convergence uniform
with respect to all critical graphs Gcr? We return to this issue in Section 8.

7.4.2. The problem with flips. The geometrical effects of a finite �-deformation of
a Delaunay graph G have already been discussed in Sections 5.1 and 5.2. Lemma 5.6
and Proposition 5.8 ensure that, for a given initial graph Gcr and a given displacement
function F (with compact support), there exists a strictly positive bound 0 < z�F such
that no flip occurs in the interval 0 < � < z�F . However, z�F depends non-trivially
on F and on the geometry of Gcr. Furthermore, it is clear that such a bound cannot be
made uniform with respect to all critical graphs Gcr. This means that given any small
value � > 0 of the deformation parameter, flips will occur in G� for some critical
graph Gcr within the class of all critical graphs. Consequently, the (matrix entries
of the) operators d�O.�/ are discontinuous functions of �, and it will be difficult to
control them as � varies.

7.5. A simple restriction to control small deformations: Enforcing a global
lower bound on the edge angles

A naive but brutal way to manage the “flip problem” is to consider only a subclass of
graphs Gcr such that the bound z�F of Proposition 5.8 can be controlled explicitly, so
that no flip occurs. Similar constraints (7.5) on the geometry of Gcr have been used
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in the literature for other problems involving isoradial lattices, see, e.g., the paper
by Bücking [3]. Our solution is given by the following lemma.

Lemma 7.1. Let F WC!C be a non-zero smooth complex-valued function with com-
pact support �F . We define

{MF D max
z2C
j@F.z/j Cmax

z2C
jx@F.z/j:

This is a simple modification of the bound MF of Lemma 5.1 given by (5.2) which
is now independent of the triangulation. For a generic Delaunay triangulation T,
we define, in analogy with #F given by (5.6) in Lemma 5.7,

{#.T/ D inf¹�.e/ W e 2 E.T/º:

For a fixed, strictly positive {# > 0, define the subset of Delaunay triangulations

T {#
D ¹Delaunay triangulation T W {#.T/ � {#º (7.5)

and the strictly positive bound

{�F D b sin.2{#/ {M�1F

with b D
p
10 � 3 as in Lemma 5.6.

For any triangulation T 2 T {# and any scaling parameter ` > 0, the Delaunay
deformation z ! z�I` D z C �F`.z/ of T preserves all the edges of T if

0 < � � {�F ; ` > 0 and T 2 T {#
) E.T�;`/ D E.T/:

In other words, no flip occurs as long as 0 < � � {�F .

Proof. The mapping z�;`WV.T�;`/! C is an embedding provided there are no “col-
lisions”, that is, z�;`.u/ ¤ z�;`.v/ whenever u ¤ v are distinct vertices in V.Tcr/.
Equivalently, 1 C �dF.`/.u; v/ must not vanish. Apply the fundamental theorem of
calculus using 
uv.�/ WD

�zcr.u/
`
C

.1��/zcr.v/
`

,

jdF`.u; v/j D
ˇ̌̌F.zcr.u/=`/ � F.zcr.v/=`/

zcr.u/=` � zcr.v/=`

ˇ̌̌
D

1

jzcr.u/=` � zcr.v/=`j
�

ˇ̌̌̌ Z 1

0

d�
d

d�
F.
uv.�//

ˇ̌̌̌
D

ˇ̌̌̌ Z 1

0

d� @F.
uv.�//C
xzcr.u/ � xzcr.v/
zcr.u/ � zcr.v/

Z 1

0

d� x@F.
uv.�//

ˇ̌̌̌
�

ˇ̌̌̌ Z 1

0

d� @F.
uv.�//

ˇ̌̌̌
C

ˇ̌̌
xzcr.u/ � xzcr.v/
zcr.u/ � zcr.v/

ˇ̌̌
�

ˇ̌̌̌ Z 1

0

d� x@F.
uv.�//

ˇ̌̌̌
� max j@F j Cmax jx@F j D {MF :
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By construction, {# � #F` , and taken it together with the fact thatMF` �
{MF , we can

conclude that {�F � x�F` . As long as � < {�F , we can apply Lemma 5.7 and conclude
that the edge set E.T/ � E.T�;`/. Since T is a triangulation, no chords appear, and
hence E.T/ D E.T�;`/. We stress that this bound on � is valid and independent of all
values of the scaling parameter ` > 0, including ` D1.

8. Finite � variations, beyond the linear approximation

8.1. Outline of the section

In this section, we now consider deformations of an initial critical lattice Gcr imple-
mented by a local diffeomorphism of the plane

z ! z C �F.z; xz/

for small values of a deformation parameter �, and a fixed smooth (but non-analytic)
displacement function F with compact support. We shall look for uniform bounds for
the variation of the operators� and D with respect to �, independent of the particular
geometry of the initial critical graph Gcr, except for its isoradius Rcr.

We therefore need to consider generic Delaunay deformations and take into ac-
count the occurrence of edge flips in the deformed Delaunay graph Gcr ! G� . These
flips were avoided in the stable deformation scheme studied in Sections 5, 6 and 7 by
imposing tight bounds on the parameter �.

For a fixed smooth displacement function F and a deformation parameter �,
it will be necessary to compare the corresponding Delaunay and rigid deformations,
as explained in Section 5. We discuss this in Section 8.2, as well as the concept of
“backtracking a deformation without flips”.

In Section 8.3, we give explicit variational formulas for the various operators r,
xr, � and D , as well as the circumradii R in the case of a rigid deformation of the
graph; see Definition 5.3.

In Section 8.4, we derive integral representations of the variations of these objects
taking flips into account.

In Sections 8.5 and 8.6, we give variational formulas for the discrete derivatives r
and xr, as well as the circumradius of a face. The later result, given in Proposition 8.1,
is important and leads to uniform bounds on the variations of r, xr, � and D with
respect to �; see Proposition 8.2.

In Section 8.7, we deduce strong results on the uniform convergence of the scal-
ing limit ` ! 1 for � (Propositions 8.3 and 8.4) and of the scaling limit of the
corresponding second-order bi-local trace term (which leads to the OPE) (Proposi-
tion 8.7).
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In Section 8.8, we finally address the problem of interchanging the � ! 0 de-
formation limit and ` ! 1 scaling limit when evaluating the bi-local trace term
of log det�.�; `/. Specifically, we consider the scaling limit `!1 of the bi-local
term in the variation of logdet� for non-zero deformation parameters. The uniformity
of this limit depends on a technical bound on the discrete derivatives of the function
p3.u;v/ defined for isoradial graphs by (2.4). We explicate this condition and conjec-
ture that the bound is valid for general isoradial graphs in Conjecture 8.5. Provided
the bound is satisfied, we prove in Proposition 8.7 that the bi-local trace term has
a uniform scaling limit, and that the scaling limit `!1 and the � ! 0 deformation
parameter limit both exist, are uniform, and commute (see Proposition 8.8).

Finally, in Section 8.9, we address the same questions for deformations of the
Kähler operator D . Proposition 8.9 gives a uniform bound on the variation of D , but
it implies that there is no general scaling limit `!1 for D for non-zero values of
the deformation parameters � (Proposition 8.10). This is different from the situation
for �. We argue that the best uniform convergence result to be expected for the bi-
local trace term is a scaling limit where both ` ! 1 and � ! 0 simultaneously,
keeping the constant `� D c (Proposition 8.11).

8.2. Deforming triangulations with and without flips

We now define and compare Delaunay deformations of graphs and connectivity-fixed
deformations of the same graphs.

8.2.1. Delaunay deformations (with flips). We start from an (isoradial) Delaunay
graph G0 D Gcr and then deform its embedding v 7! z0.v/ using a smooth function
F WC ! C with compact support to obtain a mapping

v 7! z�.v/ D z0.v/C �F.z0.v//

for vertices v of G0. Using the method for proving Lemma 5.1, it is simple to prove
that the mapping v 7! z�.v/ defines an embedding of the vertex set V.G0/ as long
as � is small enough, namely,

j�j < P�F D .max.j@F j/Cmax.jx@F j//�1: (8.1)

Indeed, we have ˇ̌̌ z�.u/ � z�.v/
z0.u/ � z0.v/

ˇ̌̌
D

ˇ̌̌
1 � �

F.z0.u// � F.z0.v//
z0.u/ � z0.v/

ˇ̌̌
� j1 � �.max j@F j Cmax jx@F j/j:

This ensures that if u ¤ v, jz�.u/ � z�.v/j > 0 at least as long as (8.1) holds.
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As in Definition 5.2, the Delaunay graph G� is obtained by applying the Delaunay
construction to the set of deformed coordinates z�.v/ for v 2 G0. The vertices of G�
and G0 are identical by definition, however the edges and the faces of G� may differ
from those of G0 since the Delaunay constraints may force flips to occur during the
deformation. Unlike the setup of Lemma 5.7, the inclusion E.G0/ � E.G�/ may now
fail. Generically, G� will be a triangulation regardless of whether the initial graph G0
is a triangulation.

The operators�.�/, D.�/ and�.�/ act on the same space of functions CV.G�/ D

CV.G0/ irrespective of � since, by construction, the vertex sets V.G�/D V.G0/ agree.
Denote by r� and xr� the discrete derivative operators relative to the faces of G� , both
of which are operators CV.G�/ ! CF.G�/. Note that, in general, the set of deformed
and critical faces differ, i.e., F.G�/ ¤ F.G0/. Similarly, let A� and R� denote the area
and circumradius functions for the faces of G� .

8.2.2. Geometric back-deformation: Deforming without flips. We define the rigid
back-deformation G�W0 of the Delaunay graph G� to be the graph whose vertex set
and embedding are identical to those of our initial (weak) Delaunay graph G0, but
whose edge and face sets coincide with those of the Delaunay graph G� obtained
from G0 by a Delaunay deformation. The construction of G�W0 can be seen in two
stages:

(1) First G� is the end point of the continuous family of Delaunay deformations

G0 ! G" ! G�W 0! "! �

obtained by continuously deforming the embedding z0 7! z" D z0 C "F.z0/

of the initial graph G0 over the range 0 � " � �, while maintaining the De-
launay condition (and performing edge flips as required) at each stage of the
deformation.

(2) Then, starting with G� , reverse the deformation z" by letting " move from �

to 0,
G� ! G�W" ! G�W0W � ! "! 0

but without performing any edge flips. In general, G�W" will denote the graph
whose vertex, edge, and face sets coincide with G� but whose embedding
is z".

More schematically,
0

"
�! �

"
�! 0

G0

Delaunay
�! G�

rigid
�! G�W0:

(8.2)

It is clear that G�W0 is a graph (and, in general, a triangulation) with the vertex set as
the original Delaunay graph G0, but is generically not a Delaunay graph.
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8.2.3. An illustrative example. Let us give a simple but illustrative example of such
deformations of a triangulation T0 ! T� ! T�W0. The original triangulation T0 is
a biperiodic lattice. Vertices are labeled by .m; n/ 2 Z2 with coordinates

z0.m; n/ D b
�
mC

n

2

�
C in; 0 < b � 1 a small parameter:

Hence the Delaunay triangulation T0 is made of “thin” up and down triangles such
that

height D 1; basis D b:

We choose as a deformation function a simple shear parallel to the real axis, so that
the deformed coordinates of vertices are

z�.m; n/ D b
�
mC

n

2

�
C inC �n:

The effect of a Delaunay deformation T0! T� is depicted in Figure 24, on the special
case of b D 1

10
, and for 0 � � � �0 D 1

10
. Note that a flip occurs for every

� D
2k C 1

2
b; k 2 Z;

and that the Delaunay deformation T0 ! T� is then periodic

T�Ckb D T�; k 2 Z:

� D 0 � D 0:02 � D 0:04 � D 0:06 � D 0:08 � D 0:1

Figure 24. Deformation of a periodic isoradial Delaunay triangulation T0 ! T� by a global
shear z ! z C � Im z, keeping it Delaunay. On this example, the base and the height of the
triangles are b D 1

10
and h D 1, respectively, so that a flip occur for " D b

2
D

1
20

, and we
choose � D b D 1

10
. Since a flip occurs at �f D

b
2

, a triangle such has the one depicted in red,
which is an original face of T0, stays a face of T� for 0 < � < �f, but is not a face after the flip
for � > �f.
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Note also that if
0� b � � � 1;

a large number of flips Nflip.�/ '
�
b

occur, even when � is small. The correspond-
ing no-flip back-deformation �W �0 ! 0 which sends back T�0 ! T�W0 is depicted in
Figure 25. It is clear in this figure that no back-flip occurs at � D 0:05, so that an
original face of T�0 stays a face of T�W0. However, T�W0 is a triangulation which is not
Delaunay anymore.

� D 0:1 � D 0:08 � D 0:06 � D 0:04 � D 0:02 � D 0

Figure 25. The back-deformation of the triangulation of Figure 24 T� ! T�W0, keeping the
edges and faces of the triangulations fixed (no-flips). An original face of T� (in blue) stays
a face of T�W0. However, T�W0 is not Delaunay.

8.3. Full variation of operators without flips

8.3.1. Variation of the area. Consider the variation of the triangulation T ! T�

given by deforming the embedding z.u/! z�.u/ D z.u/C �F.u/ without flips (so
that, in fact, T� should be denoted by T0W� with the notations of the previous section).
For a triangle f, the full variation of its area is from (3.2) and (3.8)

A! A� D A.1C �.rF C xr xF /C �
2.rF xr xF � xrFr xF //: (8.3)

For brevity, D.�IF / will denote the scaling factor

D.�IF / D 1C �.rF C xr xF /C �2.rF xr xF � xrF r xF /: (8.4)

8.3.2. Variation of the discrete derivatives. The vertex sets V.T/ and V.T�/ are, by
definition, identical, and the face sets F.T/ and F.T�/ agree so long as no flips occur
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in the deformation T! T� . Consequently, the nabla operators r and r� (and their
conjugates xr and xr�) share a common range and domain. Accordingly, we have

r ! r� D
1C � xr xF

D.�IF /
r �

�r xF

D.�IF /
xr;

xr ! xr� D
1C �rF

D.�IF /
xr �

� xrF

D.�IF /
r:

(8.5)

8.3.3. A word of caution: deformations of functions. Recall that we may restrict
a smooth, complex-valued function GWC! C to the vertex set of the triangulation T
using its graph embedding zWV.T/! C. Bearing some abuse of notation, we define
and denote this restriction by G.v/ WD G.z.v// for vertices v 2 V.T/. Some care is
needed when restricting a smooth function G to the deformed triangulation T� . The
vertex sets of T and T� are identical but, of course, their respective embeddings z
and z� are not, and consequently the functions v 7! G.z.v// and v 7! G.z�.v// do
not agree. In order to side-step this discrepancy, we introduce a deformed smooth
function G�WC ! C defined implicitly by

G�.w C �F.w// D G.w/

for all w 2 C, where � � 0 is fixed and sufficiently small. By construction,

G�.z�.v// D G.z.v// DW G.v/:

To stress the role of the deformed embedding z� , we shall define and denoteG�.v/ WD
G�.z�.v// for v 2 V.T�/. When G D F , this allows us to write

z�C�0.v/ D z.v/C .� C �0/F.z.v// D z� C �0F�.z�.v//: (8.6)

8.3.4. Variation of the circumradii. The full variation of the circumradius R.f/ of
a face is more complicated. For a face with vertices labeled 1; 2; 3, i.e., f D .123/

using (3.3), we get

R2 ! R2� D R
2N12.�IF /N23.�IF /N31.�IF /

D.�IF /2

with

Nuv.�IF / D 1C �.rF C xr xF C xCuvr xF C Cuv xrF /

C �2.rF xr xF C xrFr xF C xCuvrFr xF C Cuv xrF xr xF /;

where Cuv for an (unoriented) edge uv denotes

Cuv D
xz.u/ � xz.v/
z.u/ � z.v/

: (8.7)
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8.3.5. Variation of the operators. Thus we get the variation of the Laplacian oper-
ators from

�! �.�/ D 2.r>� A�r� C
xr
>
� A�
xr�/;

D ! D.�/ D 4xr>�
A�

R2�
r�

that we do not write explicitly. Note that these expressions are rational functions in �,
and the results of Section 5.3 can be recovered by keeping only the first-order terms
in the series expansions (in �).

8.4. Full variation of operators under Delaunay deformations (with flips)

Here we address the case of a critical triangulation T D Tcr with isoradius R0 > 0

whose embedding undergoes a deformation

z ! z� WD z C �F;

where flips are allowed, so that the deformed graph T� remains Delaunay. As before,
the displacement function F is the (restriction) of a smooth complex-valued function
on the plane with compact support. We consider the full variation of the operators
associated to the deformation Tcr ! T� , namely,

ı�.�/ D �.�/ ��cr; ıD.�/ D D.�/ �Dcr

instead of the instantaneous, first-order terms d�� and d�D in the respective �-expan-
sions, as done in Sections 5.3 and 6. We shall need uniform estimates for the � ! 0

limit of terms related to the variations ı�.�/ and ıD.�/ which are independent of the
initial critical lattice Tcr. Furthermore, uniform estimates for the R0! 0 limit will be
needed, as this is synonymous with the `!1 scaling limit.

Unfortunately, the exact results of the previous Section 8.3 cannot be directly
applied, since flips generically occur within the continuous family of Delaunay graphs
T" as the deformation parameter " moves from zero to � > 0. Nevertheless, we may
write each variation as the integral of a derivative, and then try to get uniform bounds
on the derivatives. This is what we discuss in the remaining part of this section.

Let us first consider the simpler case of the Laplace–Beltrami operator�. We can
write

ı�.�/ D

Z �

0

d"�0."/ with �0."/ D
d

d"
�."/ D d"�."/: (8.8)

Indeed, since F is smooth with compact support, there is a finite (possibly large)
number of flips as " increases, and we know that �."/ is a continuous function of ",



F. David and J. Scott 814

and its derivative exists and is continuous in the interval between the flips. Therefore,
the derivative�0."/ is bounded and piecewise continuous, so that integral (8.8) makes
sense. For a given value "� 0, the first-order term in formula (5.11) extends to the case
of�."/ defined on T" and with respect to the transported displacement function F" in
the plane,

�0."/ D r>" �A"�D"�r" C
xr
>
" �A"�D"�

xr" (8.9)

with
D" D �4xr"F"; D" D �4r" xF": (8.10)

Similarly, we can write the variation of the Kähler operator as

ıD.�/ D

Z �

0

d"D 0."/; D 0."/ D
d

d"
D."/ D d"D."/:

The results of Section 5.3 give for the derivative of D

D 0."/ D xr>" A"K"r" Cr
>
" A"H"r" C

xr
>
" A"
xH" xr" (8.11)

with
K" D �

4

R2"
.r"F" C xr" xF" C C" xr"F" C xC"r" xF"/;

H" D �
4

R2"

xr"F"; xH" D �
4

R2"
r" xF"

(8.12)

and with the C" and xC" defined by (5.13) for faces the triangulation T", namely, for
a face f D .123/,

C.f/ D C123 D
xz1 � xz2

z1 � z2
C
xz2 � xz3

z2 � z3
C
xz3 � xz1

z3 � z1
: (8.13)

Note that we can decompose C.f/ as a sum of the terms Cuv defined in (8.7) for
edges uv of f. Specifically, C.123/ D C12 C C23 C C31, where f D .123/.

8.5. Uniform bounds under Delaunay deformations (with flips)

8.5.1. Bounds on continuous derivatives. Now we study whether it is possible to
give uniform bounds with respect to " and T� on the various coefficients A� , R� , D� ,
R� and H� of the previous Section 8.4, and on the operators r� and xr� . From now on,
let F WC ! C be a given smooth deformation function with compact support. Let

M1 D sup
z2C

max¹j@F.z/j; jx@F.z/jº;

M2 D sup
z2C

max¹j@2F.z/j; j@x@F.z/j; jx@2F.z/jº:
(8.14)
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We will consider the transported function F� defined by (8.6), and the transported
version of (8.14)

M1.�/ D sup
z2C

maxŒj@F�.z/j; jx@F�.z/j�;

M2.�/ D sup
z2C

maxŒj@2F�.z/j; j@x@F�.z/j; jx@2F�.z/j�:

By differentiating the functional relation (8.6) between F and F� , one gets the general
inequalities

M1.�/ � xM1.�/ D
M1

1 � 2�M1

; M2.�/ � xM2.�/ D
M2

.1 � 2�M1/3
(8.15)

valid as long as � is small enough, namely,

0 � � < {�F D
1

2M1

;

which ensures that F� is not multivalued (and stays smooth with compact support).

8.5.2. Bounds on discrete derivatives. Let Tcr be a critical (Delaunay isoradial) tri-
angulation with isoradiusR0, and let T� be the Delaunay triangulation T� obtained by
the �-deformation z! zC �F . We shall establish bounds on the norm of the discrete
derivatives of F� on the triangulation T� , as well as inequalities on the radii R.f/ of
the faces of T� .

First we define for a generic triangulation T and a generic smooth functionG with
compact support

BG.T/ D sup
faces f2T

max.jrG.f/j; jxrG.f/j/:

We use Lemma 1.9, which gives a bound on the difference between the discrete deriv-
ative rG.f/ and the continuous derivative @G of G at the circumcenter of f. This
bound involves the circumradius of f and the maximum of the second derivative of G
inside the circumcircle. Denote the maximum of the circumradii of the faces f of
a triangulation T by

Rmax.T/ D max
f2T

R.f/:

For the initial critical triangulation Tcr, Lemma 1.9 implies

BF .Tcr/ �M1 C 4M2R0

but for T� , it becomes

BF .T�/ �M1.�/C 4M2.�/Rmax.T�/;

and we need an estimate of Rmax.T�/.
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8.6. Inequalities for general variations of circumradii (with or without flips)

8.6.1. The problem. In order to get a bound onRmax.T�/, we now derive a bound on
the variation of the circumradius of the faces, of a triangulation under a deformation
z ! z C �F .

Let us consider the following general deformation scheme. We start with an initial
Delaunay triangulation T0 which need not be isoradial. We deform the embedding
z! z C "F.z/ of T0 within the range 0 � " � � (with � < P�F defined by (8.1)). If at
any stage of the deformation the circumradii R.f1/ and R.f2/ of two neighboring
faces f1 and f2 agree, we may either (1) perform an edge flip, so that f1, f2 are
replaced by two new faces f01, f02 or (2) not perform the flip. Thus we get a family of
triangulations ¹T" W " 2 Œ0; ��º, in general, not Delaunay, which share the same vertex
set and have vertex embeddings z� D z0 C �F.z0/.

Now let us consider an initial face (triangle) f0 of T0, with initial circumradius
R.0/ D R0.f0/. When deforming T" from 0 to �, we can continuously follow the
face f0, and when it sustains a flip, we choose one of the two faces created by the
flip. In this way we get a “continuous” family of faces ¹f" 2 T" W " 2 Œ0; ��º, so that
" 7! R.f"/ is a continuous piecewise differentiable function (this is a crucial point for
the following argument).

8.6.2. Bounds on the derivative ofR and consequences. Now, in between the flips,
from (5.15), (5.16) the derivative of the circumradius R.f"/ of this face f" is

R0.f"/ D
d

d"
R.f"/

D
R.f"/
2

.r"F".f"/C xr" xF".f"/C C".f"/xr�F".f"/C xC".f"/r" xF".f"//:

Using Lemma 1.9 again, for this face f" of the triangulation T", we get the bound

jr"F".f"/j and jxr"F".f"/j � M1."/C 4R.f"/M2."/;

and from the definition of C (8.13), we have

jC".f"/j � 3:

We thus get the boundˇ̌̌ d
d"
R.f"/

ˇ̌̌
� 4 xM1."/R.f"/C 16 xM2."/R.f"/2: (8.16)

Remember that the functions xM1."/ and xM2."/ are explicitly known functions of "
and the constants M1 and M2 associated to the displacement function F ,

xM1."/ D
M1

1 � 2"M1

; xM1."/ D
M2

.1 � 2"M1/3
:



Perturbing isoradial triangulations 817

8.6.3. Bounds on the circumradii R.f�/. Using inequality (8.16), we get uniform
bounds on the variation of the circumradius of faces R.f�/ under deformations z !
z� D z C �F.z/.

Proposition 8.1. The radius of the face f� satisfies the inequalities

xR�.�; R.f0// � R.f�/ � xRC.�; R.f0// (8.17)

with the functions of the radius variable R

xRC.�; R/ D
R

.1CM2R=M1/.1 � 2M1�/2 � .M2R=M1/.1 � 2M1�/�2
(8.18)

and
xR�.�; R/ D

R.1 � 2M1�/
2

1C .8M2R=M1/ log.1=.1 � 2M1�//
: (8.19)

Inequality (8.17) is satisfied at least if

0 � � < �max.R.f0// with �max.R/ WD
1

2M1

�
1 �

�
1C

M1

RM2

��1=4�
(8.20)

the value of �, where xRC.�;R/ diverges. Note that �max.R/ <
1

2M1
and that xR�.�;R/

is positive and well defined for �max.R/ <
1

2M1
.

Proof. Let us perform a change of variable and consider instead of � the variable y

y D � log.1 � 2M1�/

and the function V.y/ defined as

V.y/ D
.1 � 2M1�/

2

R.f�/

and denote
V0 D V.0/ D

1

R.f0/
: (8.21)

After some algebra, inequality (8.16) becomes a simple linear inequality

�A � 4V.y/ �
dV.y/

dy
� A; A D

8M2

M1

: (8.22)

The rightmost inequality implies obviously

V.y/ � xV�.y/ D V0 C Ay:

The leftmost inequality gives for the function

T .y/ D V.y/e�4y
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which is such that T .0/ D V0, the inequality dT.y/
dy
� �Ae4y which implies

T .y/ � V0 �
A

4
.e4y � 1/;

hence
V.y/ � xVC.y/ D

�
V0 C

A

4

�
e�4y �

A

4
D xVC.y/:

Note that the functions xV�.y/ and xVC.y/ are the functions which saturate inequali-
ties (8.22) for V with the same initial condition xV�.0/D xVC.0/D V.0/D V0. Going
back from V to R.f/ through (8.21), and defining xRC and xR� through

VC.y/ D
.1 � 2M1�/

2

xRC.f�/
and V�.y/ D

.1 � 2M1�/
2

xR�.f�/
;

we get the results of Proposition 8.1.

Proposition 8.1 is the main result of this section. Note that it does not require the
initial triangulation to be Delaunay or isoradial. It is also completely independent of
whether we perform flips or do not perform flips during the deformation. It depends
only on the deformation function F and on the initial radius of the initial face we
start from.

Notice that when the initial radius of the initial face becomes very small, (8.17)
implies that

.1 � 2�M1/
2
� lim
R.f0/!0

R.f�/
R.f0/

� .1 � 2�M1/
�2:

8.6.4. Final estimates. With Proposition 8.1, we can complete the estimates of Sec-
tion 8.5. We start from an initial critical triangulation Tcr with initial radius R0, and
deform it into the Delaunay triangulation T� . Inequality (8.17) implies that

Rmax.T�/ D max
f2T�

R.f/ � xRC.�; R0/;

hence

BF .T�/ D max
f2T�

.jr�F�j; jxr�F�j/ � xM1.�/C 4 xM2.�/ xRC.�; R0/:

We can bound the coefficients in the derivative with respect to � of the Laplace–
Beltrami operator �.�/ (in (8.9)), and of the Kähler operator D.�/ (in (8.11)),

jD�j � 4 xM1.�/C 16 xM2.�/ xRC.�; R0/;

jK�j �
16 xM1.�/C 64 xM2.�/ xRC.�; R0/

xR�.�; R0/2
;

jH�j �
4 xM1.�/C 16 xM2.�/ xRC.�; R0/

xR�.�; R0/2
:
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Using the explicit forms of xM1.�/ and xM2.�/ given by (8.15), and of RC.�; R0/
and xR�.�; R0/ given by (8.18) and (8.19), one deduces that jD�j, jK�j and jH�j are
uniformly bounded. More precisely, we can summarize the estimates we obtained into
the following proposition.

Proposition 8.2. Let us choose a smooth displacement function F with bounds M1

and M2 associated to its first and second derivatives. Let us also choose �b strictly
smaller than �max.R0 D 1/ given by

0 < �b < �max.1/ D
1

2M1

.1 � .1CM1M2/
�1=4/; (8.23)

for instance, �bD
1
2
�max.R0D 1/; see formula (8.20) for a definition of �max.R0/. Then

consider an arbitrary initial critical triangulation (isoradial and Delaunay) T0 with
circumradius R0, some � > 0, the deformed Delaunay lattice T� obtained from T0 by
the deformation z ! z C �F.z/, and an arbitrary face f of T� .

Then the factors D�.f/ (given by (8.10)), K�.f/ and H�.f/ (given by (8.12)) for
the face f are uniformly bounded over the sets of

(i) initial triangulation T0 with isoradius R0 less or equal to one,

(ii) deformation parameter � smaller or equal to �b,

(iii) faces f of T� .

Namely, there exist constants D0, K0 and H0 which depend only on F and on the
choice of �b such that

jD�.f/j � D0; jK�.f/j � K0; jH�.f/j � H0:

Similarly, there exists a constant P0, which depends only on F and on �b, which
uniformly bounds the variation of the radius of the facesˇ̌̌R.f�/ �R0

R0

ˇ̌̌
� �P0:

8.7. Consequence for the control of the scaling limit of�

8.7.1. The Laplace–Beltrami operator�. To simplify, we use a 2� 2 block matrix
notation. The � operator and its �-derivative �0 on the deformed lattice T� reads

�.�/ D 2

 
r�

xr�

!�  
A� 0

0 A�

! 
r�

xr�

!
;

�0.�/ D �4

 
r�

xr�

!�  
0 A�r� xF�

A� xr�F� 0

! 
r�

xr�

!
:

(8.24)



F. David and J. Scott 820

Remember that A� , r� xF� and xr�F� are defined for the faces of the deformed trian-
gulation T� , whose vertices have positions z� D z C �F.z/, while �.�/ and �0.�/
act on the functions defined on the vertices of T� . Since T� is obtained by deforming
an initial critical lattice T0 D Tcr, let us rewrite them in terms on objects defined for
the “back-deformed” lattice T�W0 defined by the procedure introduced in Section 8.2
(see (8.2) and the example illustrated in Figures 24 and 25)

Tcr D T0
Delaunay
�! T�

no flip
�! T�W0:

Again, T�W0 has the same vertices as T0, but the edges and faces of T� . In other
words, T� is obtained from T�W0 by the deformation z! z� D zC �F.z/, but without
flips. We can therefore express the objects relative to the faces of T� in terms of those
relative to the faces of T�W0. The area A� of a face f� of T� is related to the area A of
the corresponding face f D f�W0 of T�W0 by (8.3), namely,

A� D D.�IF /A;

where D.�I F / is defined by (8.4). Note that the operators r and xr refer now to
faces of T�W0. In a strict sense, they should be denoted by r�W0 and xr�W0. We omit the
subscript to simplify notation. The discrete derivative operators on T� are expressed
in terms of those on T�W0 by (8.5), which can be expressed in the block matrix nota-
tion as  

r�

xr�

!
D

1

D.�IF /

 
1C � xr xF ��r xF

�� xrF 1C �rF

! 
r

xr

!
:

In particular,  
r�F�
xr�F�

!
D

1

D.�IF /

 
1C � xr xF ��r xF

�� xrF 1C �rF

! 
rF
xrF

!
:

Again, the discrete r and xr refer now to faces of T�W0. Including this into (8.24),
one gets

�0.�/ D

 
r

xr

!�
AD.�IF /

 
r

xr

!
; (8.25)

where D is the 2 � 2 block matrix,

D.�IF / D
.�4/

D.�IF /2
(8.26)

�

 
��r xF xrF.2C �.rF C xr xF // r xF ..1C �rF /2 � �2 xrFr xF /
xrF..1C � xr xF /2 � �2r xF xrF / ��r xF xrF.2C �.rF C xr xF //

!
:
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8.7.2. Scaling limit for �.�/. We can now study the scaling limit of the deformed
operator �.�/. We proceed as follows. As before, we choose a smooth displace-
ment function F with compact support F WC ! C. For each r 2 .0; 1� (or simply
a decreasing sequence of .rn/n2N converging to 0), we associate an arbitrary crit-
ical triangulation of the plane Trcr D T

r
0 with isoradius r . Finally, we choose a finite

bound �0b such that

0 < �0b <
1

2
�max.1/ (8.27)

for the deformation parameter �, where �max.1/ is given by (8.23) above. The calcu-
lations leading to the bounds of Proposition 8.2 for the deformation T0 ! T� can
be easily repeated for the double deformations Tr0 ! T

r
� ! T

r
�;0. In particular, the

circumradius of each face f of Tr�;0 is bounded uniformly by

� � �b; r � 1 ) jR.f/ � r j � �rP0.F I 2�0b/ (8.28)

withP0 defined in Proposition 8.2. This allows us to uniformly control the r! 0 limit
of the discrete derivatives r and xr by using Lemma 1.9 combined with the previous
ingredients.

Proposition 8.3. Let F be a smooth displacement function with compact support,
fix �, and let F D ¹Tr0º be a family of critical triangulations as above. To each point
z 2 C and to each r , we associate the face fr�W0.z/ of the deformed triangulation Tr�W0
which contains z. Note that the set of z which are either vertices or else belong to
an edge of the triangulation is a set of measure zero and can be ignored. Then in the
r ! 0 limit, the discrete derivative operators r and xr for the face fr�W0.z/ converge
uniformly towards the continuum partial derivative @ and x@ at the point z. More pre-
cisely, let � be a smooth function (or at least of the class C 2) with compact support�
of the plane. Then

lim
r!0
r�.fr�W0.z// D @�.z/; lim

r!0

xr�.fr�W0.z// D x@�.z/:

Moreover, the limit is uniform: Namely, there is a constant C independent of z 2 �,
the choice of the family F of triangulations, and the value of � 2 Œ0; �0b� (but still
depending on F , on �0b and on �), such that

jr�.fr�W0.z// � @�.z/j and jxr�.fr�W0.z// � x@�.z/j � Cr: (8.29)

Proof. Let us apply bound (B.5) obtained in Remark B.1 in the proof of Lemma 1.9
in Appendix B to the face fr�W0.z/, to get

jr�.fr�W0.z// � @�.z/j � R.f
r
�W0.z//

�5
2

sup
z2�

j@2�j C 3 sup
z2�

j@x@�j C
1

2
sup
z2�

jx@2�j
�
:
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We then use (8.28) to bound uniformly the circumradius of fr�W0.z/ by

R.fr�W0.z// � r.1C �P0.F I 2�
0
b//:

This leads to bound (8.29). The same argument applies to xr�.

It follows that the full variation of the discrete Laplace–Beltrami operator ı�.�/D
�.�/ �� converges uniformly towards a local Laplace-like operator which depends
on � and F , in the following sense.

Proposition 8.4. Let F , � and F D ¹Tr0º be as in Proposition 8.3, and let � be
a smooth function (or at least of the class C 2) with compact support � of the plane.
Then

� � ı�.�/ � � D
X

u;v2Tr
0

x�.u/Œı�.�/�uv�.v/

converges uniformly when r ! 0 towards the local quadratic formZ
�

d2z

 
@�

x@�

!�
E.�IF /

 
@�

x@�

!
; (8.30)

where E.�IF / is the 2 � 2 matrix,

E.�IF / D

Z �

0

d"E0."IF /

with

E0."IF / D
�4

..1C "@F /.1C "x@ xF / � "2x@F @ xF /2
(8.31)

�

 
�"@ xF x@F.2C ".@F C x@ xF // @ xF ..1C "@F /2 � "2x@F @ xF /

x@F..1C "x@ xF /
2
� "2@ xF x@F / �"@ xF x@F.2C ".@F C x@ xF //

!
:

Proof. One just writes ı�.�/ as

ı�.�/ D ı�.�/ D

Z �

0

d"�0."/

and use the explicit representations (8.25), (8.26) for �0."/ to write

� ��0."/ � � D
X

f2Tr
"W0

A.f/

 
r�.f/
xr�.f/

!�
� ŒD."IF /�.f/ �

 
r�.f/
xr�.f/

!
;

which is a Riemann sum. Then (8.28) and Proposition 8.3 ensure that in the r ! 0

limit this converges uniformly towards an ordinary integral involving continuous deri-
vatives of � and F (D becoming E). One thus recovers (8.30).
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8.8. Scaling limit for the bi-local deformation term for�

These arguments can be repeated for studying the scaling limit `!1 of the bi-local
term

trŒı1�.�1/ ���1cr � ı2�.�2/ ��
�1
cr �

for finite deformation parameters �1 and �2. Again, we consider two smooth deforma-
tion functions F1 and F2 with disjoint compact supports�1 and�2. Here ı1�.�1/D
�.�1/ ��cr (resp. ı2�.�2/ D �.�2/ ��cr) is the variation of the Laplace–Beltrami
operator under the deformation z! zC �1F1.z/ (resp. z! zC �2F2.z/). As above,
instead of considering a fixed initial critical lattice Tcr with isoradius R0 D 1, and
rescaled deformation functions F`.z/ D `F.z

`
/, with rescaling parameter ` ! 1,

we consider a family F D ¹Trº of critical lattices with isoradii r , fixed deformation
functions F ’s, and study the limit r ! 0. This is equivalent since by a change of
variable, r � 1

`
.

For a finite 0 < r � 1, deforming the initial Trcr critical lattice, the bi-local deform-
ation term reads as a double sum over the faces of the two non-isoradial lattices Tr�1W0
and Tr�2W0, which share the same vertices, but not the same faces, with Trcr, of the
explicit form

TrŒ�0.�1/ ���1cr ��
0.�2/ ��

�1
cr �

D

X
f12Tr�1W0

X
f22Tr�2W0

A.f1/A.f2/ tr

 
ŒD.�1IF1/�.f1/ �

" 
r

xr

!
��1cr

 
r

xr

!� #
f1f2

� ŒD.�2IF2/�.f2/ �

" 
r

xr

!
��1cr

 
r

xr

!� #
f2f1

!
: (8.32)

The trace TrŒ � in the left-hand side of (8.32) is the “big trace” over the infinite set
of vertices of the critical lattice. The trace tr. / in the right-hand side of (8.32) is
a finite trace over a product of 2� 2matrices. This appears again as a double Riemann
discrete sum over the faces of the triangulations Tr�1W0 and Tr�2W0.

Studying the scaling limit r ! 0 might seem similar to what was done above
for�. There is, however, a delicate point. The critical propagator��1cr on Trcr is given
by Kenyon’s explicit integral formula, but its matrix elements Œ��1cr �u;v are not given
by the restriction of a smooth function of the vertex positions G.z.u/; z.v//.

Indeed, the large distance asymptotics of ��1cr on a critical lattice with isoradius
R0 D 1 given by Proposition 4.9 implies that the propagator ��1cr on a lattice Trcr

can be separated in a dominant smooth part GD and a subdominant non-smooth
part GSD,

Œ��1cr �u;v D GD.u; v/CGSD.u; v/:
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The dominant smooth part is the continuum propagator (note now the dependence
on r)

GD.u; v/ D �
1

2�

�
log

�2jz.u/ � z.v/j
r

�
C 
Euler

�
:

The subdominant non-smooth part is

GSD.u; v/ D
1

2�

� X
m�d�1

.�1/d .2mC d � 1/Š

� Re
�
cm;d .u; v/

� r=2

z.v/ � z.u/

�2m��
(8.33)

with the coefficients cm;d .u; v/ defined by (4.4). Note that now p1.u; v/ D
z.v/�z.u/

r
.

From Lemma 4.3, the cm;d ’s are of order O.1/ irrespective of .u; v/, so the sum of
the terms given by a fixedm > 0 is bounded by an O.r2m/ in the scaling r ! 0 limit,
and is indeed subdominant.

In the scaling limit r ! 0, the sum over triangles in equation (8.32) becomes
a Riemann integral,X

f12Tr�1W0

X
f22Tr�2W0

A.f1/A.f2/!
Z
�1

d2z1

Z
�2

d2z2:

The D.�aI Fa/.fa/, a D 1; 2, in the right-hand side of equation (8.32) are easy to
control since they converge uniformly to E0.�aIFa/.za/ given by (8.31). Controlling
the scaling limit of the discrete derivatives of the smooth part of the propagator is also
easy by means of Lemma 1.9. We get the uniform limit" 

r

xr

!
Gs

 
r

xr

!� #
f1f2

���!
r!0

�
1

4�

 
0 .z1 � z2/

�2

.xz1 � xz2/
�2 0

!
: (8.34)

The non-trivial point is to get a uniform bound on the scaling limit of the left C right
discrete derivatives of the non-smooth part of the propagator, and to show that it is
subdominant. This issue has been discussed in detail in Section 6.2 through Lem-
mas 6.8 and 6.9. However, Lemma 6.8 relies on the fact that the discrete derivatives r
and xr are relative to the faces f of an isoradial triangulation T0. This is not the case
anymore here, since the discrete derivatives are relative to the faces of a non-isoradial
triangulation Tr�W0 derived from an isoradial one Tr0 by flips of edges, without moving
the position of the vertices.

We can repeat the analysis of Section 6.2 for this more general case. The dan-
gerous contribution which could give a term of order jz1 � z2j�2 is the m D 1 term
in (8.33), which is explicitly proportional to the real part of

p3.u; v/r3

.z.u/ � z.v//3
:
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The most dangerous contribution comes from applying left C right discrete derivat-
ives to p3.u; v/. Generically, a naive dimensional analysis shows that each discrete
derivative applied on p3 will bring a term of order r�1, so that we will get for a pair
of triangles f1 2 Tr�1W0 \�1, f2 2 Tr�2W0 \�2

X
u12f1

X
u22f2

 
r

xr

!
f1;u1

p3.u1; u2/

 
r

xr

!�
u2;f1

� const � r�2:

However, we shall see that this estimate is generically not uniform. Namely, the const
in this estimate can be arbitrarily large! One should remember that from Lemma 6.8,
if f1 and f2 are faces of the original isoradial triangulation T0, then this const is
bounded by const � 9.

This is a technical point which comes from the fact that generically, if we start
from an isoradial Delaunay triangulation T0 with isoradius r , and consider an arbit-
rary triangle tD .u1;u2;u3/ which is not a face f of T0, this triangle may have a very
large circumradius R.t/, R.t/� r , and an arbitrarily small area A.t/, A.t/� r2.
“Experimental mathematics” studies of such singular cases and some analytical estim-
ates lead us to the following conjecture.

Conjecture 8.5. Let Tr0 be an isoradial Delaunay triangulation of the plane with
isoradius r , and let p3.u; v/ be the function defined by

p3.u; v/ D
2nX
jD1

e3i�j ; �j D arg.z.vj / � z.vj�1//

for any pair of vertices .u; v/ of Tr0, where v D .v0; : : : ; vk/ is a path in the rhombic
lattice Tr0

˙ going from v0 D u to vk D v (see Definition 2.23 and (2.4)).
For any non-degenerate triangle t D .u1; u2; u3/ in Tr0 (not necessarily a face,

as illustrated in Figure 26), let rp3.t/ and xrp3.t/ be the discrete derivatives of
the function u 7! p3.u; v/ evaluated at the triangle t, where the vertex v is fixed,
according to definitions (3.6) and (3.7).

Then there is a uniform bound

jrp3.t/j and jxrp3.t/j � const �
R.t/
r2

;

where the circumradius R.t/ of the triangle t given by formula (3.3), and const is
a number of order O.1/ independent of the choice of the critical triangulation Tr0 and
of the triangle t. Among the examples we have studied, we found const D 6.

Assuming the validity of the conjecture, it is easy to adapt the arguments of
Section 6.2, and to use that fact that the circumradii of the faces f1 and f2 of the
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u1

u2

u3

Figure 26. Example of a triangle t D .u1; u2; u3/ in an isoradial graph, with its circumcircle,
as considered in Conjecture 8.5.

deformed-back-deformed non-isoradial triangulations Tr�1W0 and Tr�2W0 are uniformly
bounded for �1 and �2 small enough by (8.28). This leads to the following assertion.

Lemma 8.6. Assuming Conjecture 8.5, the left-right discrete derivative of the non-
smooth part of the propagator is uniformly bounded in the scaling limit r ! 0 byˇ̌̌̌

ˇ
"  
r

xr

!
Gns

 
r

xr

!� #
f1f2

ˇ̌̌̌
ˇ � const �

r

jz.f1/ � z.f2/j3
:

It is therefore subdominant when compared to the contribution of the smooth part of
the propagator given by (8.34).

Combining the previous results, we can state the following proposition about the
existence of the scaling limit of the bi-local term.

Proposition 8.7. Assuming Conjecture 8.5, TrŒ�0.�1/ � ��1cr � �
0.�2/ � �

�1
cr �, the bi-

local term, defined on critical triangulations Tr0 converges uniformly in the scaling
limit r ! 0 towards the bi-local termZ

�1

d2z1

Z
�2

d2z2 tr

"
E0.�1IF1/.z1/ �

 
0 .z1 � z2/

�2

.xz1 � xz2/
�2 0

!

� E0.�2IF2/.z2/ �

 
0 .z1 � z2/

�2

.xz1 � xz2/
�2 0

!#
:

Note that this term depends on the four derivatives @F1, x@F1, @F2, x@F2 and
their c.c., and contains both the analytic term .z1 � z2/

�4, the anti-analytic term
.xz1 � xz2/

�4, and the mixed term .z1 � z2/
�2.xz1 � xz2/

�2.



Perturbing isoradial triangulations 827

Finally, from the explicit expression (8.31), the limit � ! 0 of E0.�I F / exists
and is uniform,

lim
�!0

E0.�IF / D

 
0 �4@ xF

�4x@F 0

!
:

Together with Proposition 8.7, this leads to the commutation of limits result for �.

Proposition 8.8. Assuming Conjecture 8.5, the limit � ! 0 and the scaling limit
r ! 0 for the bi-local term exist, are uniform, and commute. One recovers the result
obtained previously for the scaling limit of the OPE on the lattice for �,

lim
�!0

lim
r!0

TrŒ�0.�1/ ���1cr ��
0.�2/ ��

�1
cr �

D lim
r!0

lim
�!0

TrŒ�0.�1/ ���1cr ��
0.�2/ ��

�1
cr �

D
1

�2

Z
�1

d2z1

Z
�2

d2z2
x@F1.z1/x@F2.z2/

.z1 � z2/4
C
@ xF1.z1/@ xF2.z2/

.xz1 � xz2/4
:

Conjecture 1.12 in the introduction is a special case of Proposition 8.8. We simply
repeat the arguments given at the beginning of Section 8.8, which show that one can
equivalently define the scaling limit by choosing a given deformation function F ,
and letting the isoradius Rcr of the critical graphs Gcr go to zero Rcr ! 0, or fixing
the isoradius Rcr of the critical graph Gcr, but then instead introducing the rescaled
displacement function F` and letting ` go to infinity `!1.

8.9. About the scaling limit of the Kähler operator D

We now discuss briefly the deformations of the Kähler operator, without giving details
of the calculations. In the block matrix representation, the Kähler operator D and its
�-derivative read

D.�/ D 4

 
r�

xr�

!�  A�
R2�

0

0 0

! 
r�

xr�

!
;

D 0.�/ D

 
r�

xr�

!�  
A�R� A� xH�
A�H� 0

! 
r�

xr�

! (8.35)

with A� and R� the areas and circumradii of the faces of the deformed lattice T� ,
while R� and H� are given by (8.12) and (8.13). In order to study D.�/ at a finite
epsilon and to compare it to D.0/ D Dcr, and its scaling limit, one can try to repeat
the argument for � presented in the previous section. It is enough to consider D 0.�/.
We start from a critical lattice Tr0 with isoradius r , perform the deformation z !
z C �F.z/, and reexpress D 0.�/, defined on the deformed Delaunay lattice Tr� , on
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the back-deformed lattice Tr�W0. We can thus rewrite D 0.�/ under a block form similar
to (8.25)

D 0.�/ D

 
r

xr

!�
A � F 0.�IF /

 
r

xr

!
(8.36)

with 2 � 2 block matrix F 0.�I F / made of diagonal matrices relative to the faces f
of Tr�W0, defined implicitly by (8.36). The 2 � 2 matrix extracted of F 0 relative to
a face f, ŒF 0.�IF /�.f/ can be computed explicitly out of the rF.f/ and xrF.f/, and
of the geometry of the face f, but the result will be quite long and not very illuminating
at this stage. The difference with the previous case of � is that for a face f (let us
denote its vertices (123)) F 0 will depend explicitly on the circumradius R.f/ of the
face, and on the phases Ce associated to the unoriented edges eD .12/, .23/ and .31/
of f, defined by (8.7). Indeed, the coefficient H.f/ depends explicitly of R.f/, and
the coefficient R.f/ depends also on the coefficients C.f/D

P
e2fCe. Moreover, the

variation of these coefficients under the back-deformation T�W0$ T� depends also on
these Ce.

We can now use Proposition 8.2 which bounds the H.f/ and R.f/ and R.f/,
and the fact that since the Ce are phases so that jCej D 1, to bound uniformly the
coefficients of the matrices ŒF 0.�IF /�.f/’s with respect to the deformation parameter �
(small enough) and the triangulations Tr0.

Proposition 8.9. Let F be a displacement function, F D ¹Tr0W r 2 .0; 1�º a family
of critical triangulations labeled by their isoradius r , and � 2 .0; �0b� with �0b defined
by (8.27). There is a constant which depends only on F and the choice of �0b such that
there is a uniform bound for the matrix elements of the ŒF 0.�IF /�.f/ matrices

kŒF 0.�IF /�.f/k � const � r�2

with the standard operator norm k � k on matrices (for instance).

Proof. The proof relies on writing explicitly the matrix F 0. This is lengthy but not
difficult. Note that the factor r�2, where r is the isoradius of the initial lattice Tr0,
comes from the A

R2
0

in the initial definition of D (8.35).

If we look now at the limit r ! 0, keeping � fixed, denoting as in Proposition 8.3
the face of Tr�W0 which contains the point z by fr�W0.z/, there is no reason for a gen-
eric family F D ¹Tr�W0º that the ratio xR.fr�W0.z// D

R.fr
�W0
.z//

r
and the coefficients

Ce.fr�W0.z// and C.fr�W0.z// converge towards fixed values xR.zI �/, C.zI �/, Ce.zI �/

in the scaling limit r ! 0. Indeed, these quantities depend explicitly on the detailed
local geometrical structure of the lattices Tr0 in the neighborhood of the point z, for
each value of r . Only for some very specific sequences of Tr0, for instance, iterative
isoradial refinements of the initial lattice for r D 1, we can expect strong correlations
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leading to the existence of a limit r ! 0 for these quantities. We can therefore state
the following.

Proposition 8.10. Under the hypothesis of Proposition 8.9, the matrix F 0.�IF /
r2

has
generically no local scaling limit for � finite when r ! 0,

lim
r!0

ŒF 0.�IF /�.fr�W0.z//
r2

does not exist. Of course, one must have

z 2 � D supp.F /

since otherwise this limit exists and is zero. The same is obviously true for the non-
existence of the limit r ! 0 of the bi-local term at finite �1, �2,

lim
r!0

TrŒD 0.�1/ �D�1cr �D
0.�2/ �D

�1
cr � (8.37)

does not exist.

Therefore, the existence of a scaling limit for D could make sense in a much more
limited setting than for �. Remember that we want to compare

(i) the limit �! 0, which, for D 0 as well as for�0, has the effect of keeping only
the terms linear in rF , xrF and their c.c.;

(ii) the scaling limit r ! 0, which allows replacing the discrete derivatives r, xr
by continuous derivatives @ and x@, and, in particular, (8.34).

In fact, the best result we obtain so far concerns the “simultaneous limit” when � and r
go to zero, and is stated in the following proposition.

Proposition 8.11. Let F be a displacement function, F D ¹Tr0W r 2 .0; 1�º a fam-
ily of critical triangulations labeled by their isoradius r , and �0b defined by (8.27).
We consider the “simultaneous limit” where

r ! 0; �a D �.r/ D rca

with 0 � ca � �0b for a D 1; 2. Assuming the validity of Conjecture 8.5, the bi-local
term of (8.37) converges uniformly towards its continuum limit given in Theorem 1.10,

lim
r!0

�1=rDc1
�2=rDc2

TrŒD 0.�1/ �D�1cr �D
0.�2/ �D

�1
cr �

D
1

�2

Z
�1

d2z1

Z
�2

d2z2

�x@F1.z1/x@F2.z2/
.z1 � z2/4

C
@ xF1.z1/@ xF2.z2/

.xz1 � xz2/4

�
:
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9. Discussion and perspectives

9.1. The aim of the study

In this work, we study properties of the measure on planar graphs introduced by [7] in
order to better understand the relationship between this discrete model and continuum
models of random geometries on the plane arising from conformal field theories
(CFT), in particular, the quantum Liouville theory. The model is defined as an integ-
ral over the space of all Delaunay graphs of the plane. We do not study as a whole
the global properties of this integral and its associated measure. Rather, we study
the measure in the neighborhood of very specific graphs, namely, isoradial Delaunay
graphs. Our motivation is twofold:

(i) isoradial graphs can be viewed as a discretization of flat geometry, so this
should amount to some “semiclassical limit”;

(ii) deforming the geometry is a way to introduce a stress-energy tensor into the
statistical model, whose properties are crucial for conformal theories.

The measure of the model is a Kähler measure (in fact, equivalent to the Weil–
Petersson measure), and its density can be written as the determinant of a Laplacian-
like Kähler operator D (defined on the Delaunay graphs), with specific global con-
formal invariance properties under PSL.2;C/ transformations. In order to compare
our result with other cases, we study in parallel the Kähler operator D , the ordin-
ary discrete Laplace–Beltrami operator� (which is not PSL.2;C/ invariant), and the
conformal Laplacian � which, like D , also enjoys a global PSL.2;C/ invariance
property.

9.2. The first-order variations and discretized conformal field theories

9.2.1. The Laplace–Beltrami operator �. The calculation for the first-order vari-
ation for the discretized Laplace–Beltrami operator � is easy to discuss in the frame-
work of a discretized CFT on the lattice. We refer to Appendix A for a reminder of the
definitions and properties of CFT which are needed in this discussion. Our result (6.3)
in Proposition 6.1 states that

d� log det.�/ D �
X
faces

f2yG
0C

4A.f/.xrF.f/Q.f/Cr xF .f/ xQ.f// (9.1)

with
Q.f/ WD Œr��1r>�ff D

X
u;v

rfurfvŒ�
�1
cr �uv; (9.2)
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where the operators r, xr are defined in formulas (3.6) and (3.7), respectively. Equa-
tion (9.1) can be read as the discretized version of the first-order variation of the
partition function under a diffeomorphism for a CFT (see (A.4)) given by

d� log.Z/ D �
1

�

Z
d2x .x@F.x/hT .x/i C @ xF .x/h xT .x/i/;

where the sum over faces discretizes the integral over the plane, and the derivat-
ives r xF and xrF serve as discrete versions of @ xF and x@F ,X

f

A.f/$
Z
d2x; r xF $ @ xF ; xrF $ x@F:

The term Q.f/ is given by the vacuum expectation value (v.e.v.)

4�Q.f/ D hT�.f/i

of a discretized stress-energy tensor T� for a theory with Grassmann fields .ˆ; x̂ /
attached to the vertices of the triangulation Gcr with discretized action S ,

SŒˆ; x̂ � D ˆ�� x̂ D
X

vertices
u;v2Gcr

ˆu�uv x̂ v; (9.3)

where

T�.f/ D �4�rˆ.f/r x̂ .f/ D �4�
X

u;v2f

rfuˆurfv x̂ v (9.4)

for a face (triangle) f of the triangulation Gcr.
Note that this definition (9.4) for the discrete stress-energy tensor follows directly

from (9.3) and the variation of the discrete Laplace–Beltrami operator � given by
Proposition 5.12 and equation (5.11).

The above discussion is valid regardless of whether we consider the variation of
the Laplace–Beltrami operator defined on an isoradial Delaunay graph Gcr or instead
on a general Delaunay graphG. Indeed, (9.4) follows from the general equation (5.11)
for the variation of� on generic triangulations. Note also that the absence of the term
rF C xr xF in the variation of�means TrTD T zxz D T xzz is zero, and that the discrete
Laplace–Beltrami operator � has a discrete conformal invariance property.

The interesting result, relevant for the discussion here, is that for an isoradial
Delaunay graph Gcr the term Q.f/, i.e., the v.e.v. of the discretized stress-energy
tensor T , depends only on the local geometry of the graph, i.e., on the shape of the
triangle f, as stated in Proposition 6.1. This is not true when G is not isoradial; in that
case, hT .f/i will depend on the full geometry of the lattice.
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9.2.2. The Kähler operator D . The first-order variation for the Kähler operator D

is given by (6.6) in Proposition 6.6. The first term in (6.6) is the same as the first-order
variation for � in (6.1), which is rewritten in (9.1) as a sum over the triangles of the
lattice involving the discrete derivatives of the deformation xrF and r xF . The second
term in (6.6) involves the first-order variation d�R.f/ of the circumradii R.f; �/
of a face, which can be obtained from formulas (5.15) and (5.16). Then the final
result is

d� log det.D/D�
X
faces

f2yG
0C

��
4A.f/Q.f/C

1

2
C.f/

�
xrF.f/C

1

2
rF.f/

�
C c:c: (9.5)

with the geometrical factor C.f/ for a triangle f given by (5.13), while Q.f/ is given
by (9.2), and corresponds to the v.e.v. of the discretized stress energy tensor T�.f/
defined by (9.4) for the Laplace–Beltrami theory.

Like for the Laplace–Beltrami operator, variation (9.5) can be written in terms of
a discretized stress-energy tensor TD for a theory with discretized action

SD Œˆ; x̂ � D ˆ �D x̂

in the following way:

d� log det.D/ D trŒ d�D �D�1�

D �
1

�

X
f

A.f/.xrF.f/hTD.f/i C r xF .f/h xTD.f/i/

C
1

2

X
f

A.f/.rF.f/C xr xF .f//htr TD.f/i; (9.6)

where the components of the discretized stress-energy tensor are

TD D �4�
1

R2
.rˆr x̂ C C xrˆr x̂ /;

xTD D 4�
1

R2
.xrˆxr x̂ C xC xrˆr x̂ /;

tr TD D 8
1

R2
xrˆr x̂ :

(9.7)

One should note the non-zero term 1
2
.xrF C r xF / in (9.5) and the non-vanishing of

the v.e.v. of the trace of a discrete stress-energy tensor tr TD . This follows from the
fact that the dimension of the matrix elements of D is length�2.

Definition (9.7) and the variation formula (9.6) remain valid if we replace the iso-
radial Delaunay graph Gcr by a generic Delaunay graph G. The additional term C.f/
in (9.7) depends explicitly on the local geometry of the graph in the neighborhood of
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the triangle f. This term cannot be written simply in the continuum limit `!1 in
terms of continuous derivatives @ and x@ of a “smooth” complex Grassmann fieldˆ.x/
in the flat continuum plane R2. This implies that TD has no direct interpretation in
a continuum field theory setting, in contrast with T�.

Again, the interesting explicit local form given in Proposition 6.6 and in Re-
mark 6.7 are only valid for the variation of an isoradial Delaunay graph Gcr.

9.2.3. The conformal Laplacian �. The result given by Proposition 6.4 for � ad-
mits a similar interpretation. Again, the absence of a rF C xr xF term signals the
conformal invariance of �, which in this case is ensured from the start, before one
takes the scaling limit. The first-order variation can still be written as a sum over
triangles, of the form

d� log det.�/ D �
X
faces

f2yG
0C

4A.f/.xrF.f/Qconf.f/C c:c:/ (9.8)

but now the local face term Qconf.f/ differs from Q.f/ when one or several of the
edges of the triangle f are chords, owing to the additional terms in (6.4). More pre-
cisely, the contribution for a chord can be separated into equal contributions for its
adjacent “north” and “south” triangles, so that one writes

A.f/Qconf.f/ D A.f/Q.f/CHanom.f/

with the anomalous termHanom.f/ for a (counter-clockwise oriented) face f expressed
as a sum over its (oriented) edges Ee which are chords

Hanom.f/ WD
X

chords
Ee2@f

H.Ee; f/

with
H.Ee; f/ WD

1

8� i
�n.Ee/ cot �n.Ee/En.Ee/;

where En.Ee/ is defined in (5.20). These explicit results are valid when deforming an
isoradial Delaunay graph Gcr.

Again, for a deformation of a generic triangulationGcr, variation (9.8) can be writ-
ten in terms of a discretized stress-energy tensor T� using a Grassmann field .ˆ; x̂ /
with action Sconf D ˆ �� x̂ ,

d� log det.�/ D �
1

�

X
f

A.f/.xrF.f/hT�.f/i C r xF .f/h xT�.f/i/

C
1

2

X
f

A.f/.rF.f/C xr xF .f//htr T�.f/i:
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f

f0

f00f000

Figure 27. A face f (triangle) and its three neighbors.

One has generically tr T� D 0 (conformal invariance). The discretized analytic and
anti-analytic components T� and xT� can be written explicitly, using Section 5.3 and,
in particular, (5.19) in Remark 5.15. We get a generic form for T� involving all pos-
sible binomials of discrete derivatives of the fields

T� D Arˆr x̂ C Brˆxr x̂ C Cxrˆr x̂ C Dxrˆxr x̂ : (9.9)

The coefficients A.f/, B.f/, C.f/ and D.f/ depend not only on the geometry of the
triangle f, but also of its three neighboring triangles f0, f00 and f000, since they depend
explicitly on the conformal angles of the three edges e0, e00 and e000 of f. See Figure 27.
Like T�, the discrete stress-energy tensor T� is quadratic in the local derivatives of
the fields .ˆ; x̂ /. However, it involves not only the term rˆr x̂ but three other terms.
Furthermore, the coefficient A.f/ of the rˆr x̂ term is non-constant and depends on
the geometry of f and its neighbors.

9.3. The second-order variations and discretized conformal field theories

We now discuss along the same lines our result for the second-order variation and its
scaling limit.

9.3.1. The Laplace–Beltrami operator�. Here we consider the Laplace–Beltrami
operator of the Delaunay graph G� obtained through a bi-local deformation

z�.v/ WD zcr.v/C �1F1.v/C �2F2.v/

of the critical embedding of an isoradial Delaunay graph Gcr. The �1�2 cross-term
of log det�.�/ can be calculated exactly using Proposition 5.12 and expressed using
the limit graph G0C and any weak Delaunay triangulation yG0C which completes it.
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This gives

d�1d�2 log det� D � trŒ d�1� ��
�1
cr � d�2� ��

�1
cr � (9.10)

D �64 tr
�
ReŒxr>.r NF1/Axr� ���1cr � ReŒxr>.r NF2/Axr� ���1cr

�
D �

X
triangles

x1;x22yG0C

32A.x1/A.x2/Re
�
xrF1.x1/xrF2.x2/.Œr��1cr r

>�x1x2/
2
�

�

X
triangles

x1;x22yG0C

32A.x1/A.x2/Re
�
xrF1.x1/r NF2.x2/.Œr��1cr

xr
>�x1x2/

2
�
:

Using formula (9.4) for the discrete stress-energy tensor T� and applying Wick’s
theorem, we can express the two-point v.e.v.’s

1

32�2
hT�.x1/T�.x2/iconn: D .Œr�

�1
cr r

>�x1x2/
2;

1

32�2
hT�.x1/ xT�.x2/iconn: D .Œr�

�1
cr
xr
>�x1x2/

2

(9.11)

and the c.c. So far we do not require the initial graph to be isoradial: We may, in fact,
replace the critical graph Gcr with any Delaunay graph G0 equipped with its corres-
ponding Laplace–Beltrami operator�0 and Green’s function��10 , and the variational
formula (9.10) and the double correlator identity (9.11) remain valid. If, however,
we incorporate a scaling parameter ` > 0 and consider the bi-local smoothly deformed
embedding z�;`.v/ WD zcr.v/C �1`F1I`.v/C �2`F2I`.v/, then the isoradial property
(responsible for the asymptotic expansion (1.10) for the critical Green’s function��1cr )
is sufficient to establish the convergence of the scaling limit of formula (9.10), which
is consistent with the OPE of a CFT with the expected central charge c D�2, namely,

lim
`!1

d�1d�2 log det�.`/ D
c

�2

“
�1��2

dx21dx
2
2 Re

hx@F1.x1/x@F2.x2/
.x1 � x2/4

i
: (9.12)

As we have seen,r��10 r
> andr��10 xr

> (and their complex conjugates) must decay
in accordance with Lemma 6.9 in order for (9.12) to hold. Our result is, of course, not
surprising, and should be viewed as a check of the validity of our approach.

9.3.2. The Kähler operator D . Proposition 6.11 and its scaling limit given in Sec-
tion 7.3 are the novel results of the paper. They state that the scaling limit of the
bi-local second-order variation for log det D.�; `/ and log det�.�; `/ are identical,

�
1

�2

“
�1��2

dx1dx2

�x@F1.x1/x@F2.x2/
.x1 � x2/4

C
@ xF1.x1/@ xF2.x2/

. Nx1 � Nx2/4

�
:

This result is interesting for two reasons.
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The operator D has a different form and even a different scaling dimension than�.
Its variation (5.12) and the associated stress-energy tensor (9.7) are different. How-
ever, the second-order variation has exactly the same OPE as the second-order vari-
ation for �, and it corresponds to a CFT with the same central charge

c D �2:

This value for the central charge is in our opinion somehow unexpected, and this is
interesting per se. Indeed, it was suggested by the first author in the original paper [7]
that the measure over triangulations given by det.D/ (later shown in [4] to coincide
with the Weil–Petersson metric over a marked complex curve), had a direct rela-
tion with the gauge fixing Faddeev–Popov determinant in two-dimensional quantum
gravity. If true, it should be related to the so-called b–c ghosts system in Polyakov’s
formulation as Liouville theory of 2D gravity and non-critical strings (see [12]). Then
one could have expected a different value for the central charge, since the central
charge for the b–c system is c D �26, and the central charge for the corresponding
Liouville quantum gravity (at Q D 5p

6
, i.e., 
 D

q
8
3

) is c D 26.

9.3.3. The conformal Laplacian �. For the conformal Laplacian operator �, we
do not have such a simple result, and the corresponding OPE cannot be interpreted
as coming from a CFT. There are additional contributions that come from the chords,
which have been studied in Section 6.3, namely the chord–chord term given by
expression (6.25) and the chord–edge term given by (6.26). The latter chord–edge
term has the expected harmonic form (depending only on .x � x0/�4 and its c.c.), but
with a local geometry dependent coefficient involving both xrF1 xrF2 and rxF1 xrF2
terms. The chord–chord term is even more involved and contains a non-harmonic
term, proportional to jx � x0j�4, with a more complicated geometrical dependence in
the geometry of the faces and the chords. In Appendix C, we give an explicit example
of a critical lattice with a finite density of chords where these additional “anomalous”
terms give a macroscopic anomalous contribution to the second-order variation, which
precludes an interpretation in terms of conformal field theory in the scaling limit.
Of course, this comes from the anomalous terms in the expression of the discretized
stress-energy tensor Tconf (of general schematic form given in (9.9)), which does not
have a simple universal field theoretical interpretation in the scaling limit. This is also
a new, although somehow negative, result.

9.4. Relations and differences with other discrete models

The operators that we study here are defined on planar isoradial Delaunay graphs.
Isoradial graph embeddings play a very important role in the study of two-dimensional
models of statistical mechanics in theoretical physics and in mathematics. In partic-
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ular, they are an essential tool in the proof of the conformal invariance of the Ising
model at its critical point, and in the study of the conformal invariance of other critical
models. They are very important in our study too, since they allow control of the large
distance properties of the respective Green’s functions.

However, we stress that there is an important difference in terms of perspective.
In studies of critical statistical models on such graphs, the underlying graph is fixed,
and the proofs of the existence of a scaling limit and of its conformal invariance are
undertaken for a fixed lattice. The random triangulation model of [7] is a statistical
model of planar graphs, rather than a statistical model on a planar graph. The planar
isoradial graphs that we consider here are just some special “semiclassical” configura-
tions, which minimize a “local curvature functional”, as discussed in the Section 2.1.4,
formula (2.2).

There are nevertheless relations between our work and some recent works, espe-
cially in regard to defining a notion of a discrete stress-energy tensor. Let us briefly
discuss two of them.

9.4.1. Discrete stress-energy tensor in the loop model of Chelkak et al. In [5],
Chelkak, Glazman and Smirnov study the famous critical O(n) loop model [11,19,22]
on abstract discrete surfaces with boundaries (denoted byGı ) made by gluing together
equilateral triangles4 and rhombi ˙.�/ of unit length ı, where each rhombus has an
independent acute angle � selected in the range 0 < � � �

2
, as depicted in Figure 28.

The surface has, in general, conical singularities at all of its vertices. A discrete sur-
face may admit more than one tessellation into triangles and rhombi if some vertices
are flat (no conical defect). Two tessellations are equivalent (i.e., they describe the
same surface) if one can be transformed into the other by applying a sequence of the
following three kinds of local operations:

(i) Yang–Baxter transformations which flip a flat hexagon made up of three
rhombi sharing a common vertex,

(ii) pentagonal transformations which interchange a triangle and a rhombus
which form a flat pentagon with a triangle and two rhombi,

(iii) split transformations which dissect a rhombus ˙.�
3
/ into a pair of equilat-

eral triangles sharing a common edge; this is depicted in Figure 29.

�

Figure 28. The triangles and rhombi of [5].
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 ! !

 !

(a) (b)

(c)

Figure 29. Yang–Baxter (a), pentagonal (b) and split (c) moves of [5]; white vertices ı have to
be flat (no conical singularity).

The states of the O.n/ loop model for a tessellated surface Gı are configura-
tions 
 consisting of non-crossing loops and strands (joining boundary components,
if present) drawn on the surface Gı which can be obtained by concatenating local
arrangements of arcs, one for each triangle and rhombus in Gı . A local weight w
 .f/
is associated to each face f of Gı which depends on the configuration of the loops
on f, the geometry of the face (hence of angle � if f D ˙.�/ is a rhombus), and on
a parameter s (related to the temperature). A factor n (loop fugacity) is associated to
each closed loop. The local weights w
 .f/ (that we do not discuss here) are taken to
have a very specific form in order to satisfy the Yang–Baxter and pentagonal relations,
ensuring that the model is the same for equivalent tessellations of the surface.

The partition function Zb.Gı/ for the O.n/ loop model on a fixed surface Gı
equipped with a boundary condition b (specifying which boundary edges are joined
by arcs), is given by the sum over states (loops+arcs configurations 
 ) by

Zb.Gı/ WD
X

b-configurations 


n#loops.
/
Y
faces

f2Gı

w
 .f/:

In addition, when the specific relation between n (the loop fugacity) and s (the tem-
perature parameter)

n D � cos
�4�s
3

�
holds, then the loop model is critical.

In [5], Chelkak et al. consider a planar version without conical defects where
all rhombi have angle � D �

3
, and such that the discrete surface Gı is a compact,

connected domain� of the triangular lattice. In this planar case, they define a discrete
stress-energy tensor as the response of the model to an infinitesimal �-deformation
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� � C ��!

�!
�

Figure 30. The �-deformations of rhombi in [5].

of the original planar surface into a non-planar surface with conical defects. More
precisely, two deformations are considered:

(i) replacing two adjacent equilateral triangles (forming a rhombus ˙.�
3
/) by

a rhombus ˙.�/ with angle � D �
3
C �,

(ii) replacing two aligned edges by an “almost flat” rhombus ˙.�/ (see Figure 30).

The variation of the logarithm of the partition function under such �-deformations
defines the v.e.v. of a discrete stress-energy tensor Tejm associated to edges e or to
midlines m (of the honeycomb lattice built from the original triangular lattice), and
out of these related real objects, a discrete complex stress-energy tensor T can be
associated to the vertices and the faces of the lattice (with relations). In [5], it is
conjectured that this object is approximately discrete-holomorphic and converges to
the stress-energy tensor of the corresponding CFT in the scaling limit.

9.4.2. Similarities and differences. There are similarities but also important differ-
ences with the approach and results of our study. The discrete conformal Laplacian�
defined in (1.7) is also defined with respect to a rhombic tessellated surface S˙

G
nat-

urally associated to a Delaunay graph G in the plane (see Section 2.1 and especially
Definition 2.21). However, S˙

G
is constructed only out of rhombi ˙.e/ associated to

edges e of G, and contains no equilateral triangles. Moreover, the rhombic surface S˙

G

is bipartite, with black and white vertices corresponding to vertices and faces of G
respectively. Finally, and most importantly, the black vertices of S˙

G
must be flat (they

do not carry a conical singularity), while the white vertices may carry a conical sin-
gularity (corresponding to a non-zero Ricci curvature given by (2.2)), see Figure 31.
Thus our model considers only a subspace of the space of tessellated surfaces of [5].

Like [5], the stress-energy tensor in our study is defined in terms of deform-
ations. However, an important difference is that we consider deformations of S˙

G

which are induced from deformations of the underlying Delaunay graph G in the
plane. This space of deformations differs from those considered in [5] in two respects.
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2�.e/ flat

curvature

Figure 31. The rhombi which build the tessellated surface S˙
G

in this paper.

First, our deformations preserve the flatness of the black vertices of S˙

G
. Second, and

this is essential, our discrete stress-energy tensor has a specific invariance properties
under global continuous analytic transformations of the plane, i.e., Möbius trans-
formations. This holds a priori, independent of the specific geometry of the Delaunay
graph G.

In [5], as well as in other studies, the framework is different. One looks for a dis-
crete stress-energy tensor on an isoradial critical graph G which has some specific
invariance properties under the discrete analytic and anti-analytic transformations
of G. Discrete analyticity is a very special and powerful property, but it depends
explicitly on the critical graph considered. It is only in the scaling limit that discrete
analyticity can be shown to “converge” (this is a crude presentation of beautiful and
precise results) towards the usual analyticity in the continuum (i.e., in the complex
plane C).

Another difference is that our setting includes deformations of “flat rhombi” (cor-
responding to chords) which are not deformations of aligned edges, as considered
in [5] and depicted in Figure 30. These deformations induce the appearance of the
“curvature dipoles” discussed in Section 6.4, which complicate the analysis of�.

The overlap between our work and the results of [5] is restricted to the case of the
operator�, which is related to the GFF. Strictly speaking, the authors of [5] consider
the critical O.n/ loop model for n2 Œ�2;2�, but it is known that the GFF can be related
to the n D 2 model, and that there is some relation between the Laplace–Beltrami
operator on a graph and the n D �2 model.

On the other hand, the Laplace–Beltrami operator � and the Kähler operator D ,
which we would like to study on a general Delaunay graphG, are not defined in terms
of the abstract rhombic surface S˙

G
. We do not know how to relate precisely, and, in

general, their corresponding discrete stress-energy tensors to the construction of the
stress-energy tensor given by [5].

9.4.3. Stress-energy tensor constructions through lattice representations of the
Virasoro algebra. In an approach taken by Hongler et al. in [15], a stress-energy
tensor for some lattice models is defined implicitly by identifying its modes through
an action of the Virasoro algebra on an appropriately defined vector space F WD
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Floc=Fnull of lattice local fields (modulo null fields) supported on the graph. This con-
struction avoids interpreting the stress-energy tensor as a response to a deformation
of the graph embedding. Instead, an intermediate action of the Heisenberg algebra is
introduced using a discrete holomorphic current along with a technique of discrete
contour integration and a notion of discrete half-integer power functions. Only the
special cases of the discrete GFF and of the Ising model on the square lattice G D Z2

ı

with mesh size ı are handled in [15]. However, we expect that most of their tech-
nology (e.g., the notions of medial and corner graphs, discrete power functions, and
discrete contour integration) is readily adaptable to arbitrary isoradial graphs (and
their rhombic graphs where the theory of discrete holomorphicity is well behaved).
The space of lattice local fields Floc of [15] depends on the translation properties
ofGDZ2

ı
. Specifically, Floc consists of fields which can be constructed as polynomial

expressions of elementary fields �ı.z/ together with their translates �ı.z C xı/ for x
in some fixed finite set V � Z2 of admissible displacements. For a general isoradial
graph, one would need to specify an adequate vector space of lattice local fields Floc

on which a representation of the Virasoro algebra could be supported. Bearing this,
it would be natural to examine whether the stress-energy tensor(s) for the operator(s)
considered in our paper can be realized by such putative Virasoro algebra action(s).
For older references of representations of Virasoro algebra in lattice models, see the
references in [15].

9.5. Open questions and possible extensions

Problem 1. We would like to reiterate the problem of settling Conjecture 8.5 of Sec-
tion 8.8, or in lieu of that, finding another adequate bound onR.f/�1rp3.f/ uniform
in the faces f of T.r/0 and the scaling parameter ` (or r D 1

`
), in order to complete the

proof of Propositions 8.7 and 8.8 as well as 8.11.

Problem 2. Instead of using an isoradial Delaunay graph, we could begin with a De-
launay graph which is “smoothly non-isoradial”, in the sense that the circumradii
of the faces R.f/ vary slowly with the position of the faces in the plane. Studying
the Laplace-like operators �, � and D and their deformations on such a graph
is an interesting problem which might entail finding asymptotic expansions of the
corresponding Green’s functions.

Problem 3. The properties that make a general isoradial graphG so useful as a start-
ing point in our analysis are a reflection of the underlying notion of discrete analyticity
supported on the lozenge graph G˙. Chelkak et al. [5] have introduced the concept of
s-holomorphicity and s-embeddings of graphs, and one can try to develop a theory of
deformations for such graphs and their associated operators.
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Problem 4. In the scaling limit, random planar graphs are known to be related to the
Liouville conformal field theory. Finding a notion of discrete Liouville local field, with
good properties in the scaling limit, for the model of random Delaunay triangulations
is still an open problem. A solution could lead to an alternative discrete stress-energy
tensor on a Delaunay graph, different from the one considered here, and with differ-
ent properties under geometrical deformations of the graphs; in particular, having
a discrete central charge different from c D �2 (possibly c D �26).

Problem 5. It should also be interesting to study the existence and description of
a stress-energy tensor for other discrete models on Delaunay graphs, such as Dirac
fermions, the Ising model, the O.N/ model, etc. using the approach of our work.
It would be fruitful to compare the results with the approaches taken in [5,15] (see Sec-
tion 9.4).

A. Reminders: The stress-energy tensor in quantum field theories and
the central charge in 2D conformal field theories

A.1. The stress-energy tensor

For completeness, we recall some textbook material of quantum field theories (QFT)
and (CFT), which can be found, for instance, in [10]. A central concept in field theory
is the stress-energy tensor T D .T ��/ (also denoted the energy-momentum tensor
in the literature). Firstly, T can be viewed (in flat space) as the conserved current
J� D .T �

� / associated to space-time translation invariance, and is defined through
Noether’s theorem by the action of an infinitesimal local change of coordinates

x� ! x� C ��.x/ (A.1)

on the action � (classical or quantum) of the theory. Secondly, T can be viewed
(in a general curved space) as the “response of the theory” to an infinitesimal vari-
ation of the classical “background metric” g D .g��/

g�� ! g�� C ıg��

of the space-timeM where the theory “lives”. More precisely, T is defined classically
by the functional derivative of the action �

T ��.x/ D �
2p
g.x/

ı�

ıg��.x/
:

For a quantum theory (i.e., a local QFT), T is now a quantum operator. Its vacuum
expectation value (the vacuum-vacuum matrix element) is given by the first-order
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variation of the logarithm of the partition functionZ of the QFT under an infinitesimal
variation of the metric ıg��

ı logZ D
1

2

Z
M

dx
p
g.x/ıg��.x/hT

��.x/i C � � � : (A.2)

Similarly, the first-order variation of the vacuum expectation of an observable O, for
instance, a product of local operators O1.x1/ � � �On.xn/, gives by the connected cor-
relator of T times O

ıhOi D
1

2

Z
M

dx
p
g.x/ıg��.hT

��.x/Oiconn: C contact terms/C � � � ; (A.3)

where the so-called “contact terms” are present in (A.3) when the position x of T
coincides with that of some local operators in O.

These two definitions of the stress-energy tensor T are closely related, and, in
fact, equivalent (with the proper definitions of T), since diffeomorphism (A.1) induces
a change of metric

ıg�� D D��� CD���

with the covariant derivative D� and �� D g����.
These definitions extend to the higher-order terms in ıg�� and give expectation

values of products of T (correlators). For instance, the second-order term in the vari-
ation of logZ gives the two-point connected correlator

1

8

Z
M

dx
p
g.x/ıg��.x/

Z
M

dy
p
g.y/ıg�� .y/hT

��.x/T �� .y/iconn:C contact terms

and so on.

A.2. The stress-energy tensor in two-dimensional conformal field theories

In two dimensions, it is standard to work in complex coordinates z D x1 C ix2,
xz D x1 � ix2, so that the flat metric is

gzz D gxzxz D 0; gzxz D gxzz D
1

2
:

An infinitesimal diffeomorphism z 7! z C �F.z;xz/ thus amounts to a variation of the
metric

ıgzz D �@ xF ; ıgxzxz D �x@F; ıgzxz D ıgxzz D
�.@F C x@ xF /

2
:

For QFT’s in two dimensions (in particular, for CFT’s), especially important are
the holomorphic and antiholomorphic components of the stress-energy tensor T,
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which are denoted by T and xT in the literature (see, e.g., [10]). In the flat metric,
they are

T D �
�

2
T xzxz D �2�Tzz; xT D �

�

2
T zz D �2�Txzxz :

The variation of logZ (A.2) reads

ı log.Z/ D�
�

�

Z
d2x .@ xF .x/h xT .x/i C x@F.x/hT .x/i/

C
�

2

Z
d2x .@F.x/C x@ xF .x//htr T.x/i C � � � ; (A.4)

where tr T D T �� D T ��g�� D T zxz D T xzz .
Conformal invariance in 2D implies that T zxz D T xzz D tr T D 0 identically van-

ishes. For a quantum theory, this requires a proper definition of the renormalized
stress-energy tensor, and this identity is valid up to very specific contact terms. The
conservation law for the current @�T �� D 0 reduces to x@T D 0, @ xT D 0, hence the
terminology holomorphic and anti-holomorphic components. This is valid for a CFT
in a flat metric.

For a 2D CFT defined on a general surface with a non-flat metric g, one can still
use (local) conformal coordinates where the metric reads ds2 D �.z;xz/ dzdxz, so that
the analyticity property of T and xT are preserved. Here � is the conformal factor of
the metric. A most important property is that the trace of the stress-energy tensor does
not vanish anymore. Its expectation value is given by the trace anomaly

htr T.x/i D g��.x/hT ��.x/i D
c

24�
Rscal.x/ (A.5)

with the central charge c of the theory, and Rscal.x/ the scalar curvature of the met-
ric g. The trace anomaly is a quantum anomaly, caused by short distance quantum fluc-
tuations and renormalization effects. See, e.g., [12] for details. It can be derived from
the short distance operator product expansion (OPE) for the stress-energy tensor,
which takes the form (for the holomorphic component T )

T .z/T .z0/ D
z!z0

c

2

1

.z � z0/4
C subdominant terms: (A.6)

Formula (A.5) can be obtained from (A.6), e.g., by writing hT .z/T .z0/i as the func-
tional derivative ıhT.z/i

ıgxzxz.z0/
and comparing with the classical ıRscal.z/

ıgxzxz.z0/
(see, e.g., [12]

or [10]).
For a discrete statistical model, corresponding to a lattice regularized QFT, con-

formal invariance is expected to hold only at a critical point and in the large distance
scaling limit (a famous example is the Ising model). The scaling limit of the model
corresponds to a CFT. The discretized stress-energy tensor Treg: can be defined, but
it contains, in general, short distance UV divergent terms, proportional to negative
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powers and logarithms of the short distance regulator a (the lattice mesh) or powers
of the high momentum/energy cut-off ƒ � 1

a
. By dimensional analysis,

Treg / ƒ
2
� a�2:

The definition of the continuum limit a ! 0 (ƒ ! 1) requires a renormalization
prescription in order to define a renormalized stress-energy tensor T with the correct
properties for conformal invariance (OPE, trace anomaly).

A.3. The two-dimensional boson and the� theory

Finally, we recall that our results for the Laplace–Beltrami operator � can be inter-
preted in the framework of the standard free boson CFT (which has the central charge
c D 1). Indeed, for the classical free boson, the action Sboson and the stress-energy
tensor are (on a closed Riemannian manifold M)

SbosonŒ�� D
1

2

Z
M

d2x
p
g@��g

��@�� D
1

2

Z
M

d2x
p
g�.x/�g�.x/ (A.7)

with stress-energy tensor

T �� D
�
�
1

2
g��g�� C g��g��

�
@��@��:

In two-dimensional flat space, using complex coordinates, �g D �4@x@. The action
and the components of the stress-energy tensor are

SbosonŒ�� D 2

Z
d2x @�x@�

and

T D �2�.@�/2; xT D �2�.x@�/2; tr T D T zxz D T xzz D 0:

The last identity shows that the two-dimensional free boson is indeed conformally
invariant. The partition function for the boson is related to the determinant of �g by
the functional integral

Zboson D

Z
DŒ��e�SŒ�� D det.�g/�1=2

with the properly defined functional determinant det.�/ of �, taking into account
renormalization and the zero mode.

Formally, det.�g/ D Z�2boson is the partition function of the “n D �2 compon-
ents” free boson CFT, with c D �2. Equivalently, a standard trick is to write det.�g/
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as the partition function of a theory for a scalar complex Grassmann field: A spin
zero field obeying Fermi–Dirac statistics, described by a pair of conjugate Grassmann
(anti-commuting) fields .ˆ; x̂ /, where the ˆ.x/’s and x̂ .x/’s are the generators of
an infinite-dimensional Grassmann (or exterior) algebra. The partition function Z� is
given by a Berezin functional integral (see, e.g., [9,10] and the original reference [2]).
It reads, using the Berezin integration notation

Z� D det�g D
Z

DŒˆ; x̂ �e�SŒˆ; x̂ �; DŒˆ; x̂ � D
Y
x

dˆ.x/d x̂ .x/

with the action S� (here a degree 2 element of the Grassmann algebra) which is
simply the Grassmann version of the action for a complex bosonic scalar field

S�Œˆ; x̂ � D 4

Z
d2x @ˆx@ x̂ D

Z
d2x ˆ ��g x̂ :

Of course, unlike the bosonic case, the Berezin functional integral cannot be con-
sidered in terms of probabilistic averages over random real or complex fields “living”
on a space-time manifold, but as an algebraic construction. In the fermionic theory,
the two-point functions (the propagator) are (note the anticommutativity)

h x̂ .x/ˆ.y/i D �hˆ.x/ x̂ .y/i D Œ��1g �xy ;

hˆ.x/ˆ.y/i D h x̂ .x/ x̂ .y/i D 0:

The stress-energy tensor components are

T� D �4�@ˆ@ x̂ ; xT� D �4�x@ˆx@ x̂ ; tr T
�
D 0:

As explained in the discussion in Section 9, our results for the variations of the dis-
cretized Laplacians �, � and the Kähler operator D (defined on a triangulation T)
can be easily formulated in terms of discretized stress-energy tensors attached to the
faces of T. However, only for the Laplace–Beltrami operator � can the discretized
stress energy tensor be given a simple continuum limit formulation as the stress-
energy tensor of a continuum QFT.

A.4. The conformal ghost-antighost theory

For completeness, we recall what is the ghost-antighost CFT theory for two-dimen-
sional gravity. The two-dimensional gravity is a quantum theory for the Riemannian
2d metric tensor g D .g��/ on a Riemann surface (e.g., the sphere). It must be invari-
ant under local diffeomorphisms

x� ! x0� D x� C ���; g�� ! g�� � �.D��� CD���/ (A.8)
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with vector field � D .��/ and covariant derivativeD D .D�/ in the metric g. In Po-
lyakov’s formulation (see the original article by Polyakov on the bosonic string [23],
and the Les Houches lecture notes by Friedan [12] for details), the diffeomorph-
ism local invariance is fixed by the conformal gauge. A background classical metric
xg D .xg��/ is chosen, and the metric is fixed to be conformal with respect to xg, i.e.,
of the form

g��.x/ D ƒ.x/xg��.x/; (A.9)

where ƒ.x/ is the conformal factor. This amounts to enforcing the local gauge fixing
condition

xK�� D xg��g�� xg
��
�
1

2
xg��g�� xg

��
D 0:

The variation of the gauge fixing term xK under a general diffeomorphism (A.8) is,
when deforming a conformal metric of form (A.9),

xK�� D 0! xK�� D ��ƒ. xD��� C xD��� � xg�� xD��
� /

with xD D . xD�/ the covariant derivative with respect to the background metric g.
It can be written as

��.J � �/�� ;

where J is a differential operator which maps a vector field � onto a symmetric trace-
less tensor (with respect to the background metric xg). Quantizing the metric g in
the conformal gauge gives in the functional integral a Faddeev–Popov determinant,
which can be written as a Grassmann functional integral in terms of two anticommut-
ing ghost fields, c and b, where

c D .c�/ is a type .1; 0/ tensor

and
b D .b��/ is a type .0; 2/ symmetric traceless tensor

such that b�� D b�� and xg��b�� D 0. The Faddeev–Popov determinant reads

detŒJ� D
Z

DŒb; c�eb�J�c :

The action for the b–c system is (here in the background metric xg)

SghostŒb; c� D b � J � c D
Z
d2x

p
xgb��. xD

� c� C xD�c� � xg�� xD�c
� /:

The symmetric stress-energy tensor for this ghost action is

T
��
ghost D b

�� xD�c� C b
�� xD�c� C xD�b

��c� � xg��b�� xD�c�:
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As shown by Polyakov in [23], this b–c system is a conformal theory (CFT) with
central charge c D �26. As a consequence, when fixing the conformal gauge (A.9) in
the functional integral for 2D gravity, which is

Z D

Z
DŒg�e�

R
M d2x�0

p
g ;

the resulting effective action for the remaining conformal factor

ƒ.x/ D exp.'.x//

with the Liouville field '.x/ is the Liouville action, which defines the Liouville 2D
gravity model.

B. Proof of Lemma 1.9

Proof. For j D 2; 3, introduce interpolations zj .t/ WD tzj C .1 � t /z1 between zj
and z1. In addition, set

z.s; t/ WD sz3.t/C .1 � s/z2.t/:

We start from the definition of r

r�.f/ D
Œ�.z2/ � �.z1/�Œxz3 � xz1� � Œ�.z3/ � �.z1/�Œxz2 � xz1�

�4iA.f/
;

where by formula (3.3), we have for the area of the triangle f

4A.f/ D
jz1 � z2jjz2 � z3jjz3 � z1j

R.f/
:

The numerator can be expressed by

Œ�.z2/ � �.z1/�Œxz3 � xz1� � Œ�.z3/ � �.z1/�Œxz2 � xz1�

D

Z 1

0

dt
d

dt

�
�.z2.t//Œxz3 � xz1� � �.z3.t//Œxz2 � xz2�

�
D

Z 1

0

dt
�
Œz2 � z1�Œxz3 � xz1�@�.z2.t// � Œz3 � z1�Œxz2 � xz1�@�.z3.t//

�
„ ƒ‚ …

�-integral

C

Z 1

0

dt
�
Œxz2 � xz1�Œxz3 � xz1�Œ@�.z2.t// � @�.z3.t//�

�
„ ƒ‚ …

��-integral

: (B.1)
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Apply the fundamental theorem of calculus once again, the �-integral in (B.1) can be
expressed as a double integral

�

Z 1

0

Z 1

0

dtds
d

ds

�
@�.z.s; t//.sŒz3 � z1�Œxz2 � xz1�C .1 � s/Œz2 � z1�Œxz3 � xz1�/

�
D

Z 1

0

Z 1

0

dtds @�.z.s; t// .Œz2 � z1�Œxz3 � xz1� � Œz3 � z1�Œxz2 � xz1�/„ ƒ‚ …
D�4iA.f/

C

Z 1

0

Z 1

0

t dtds @@�.z.s; t//Œz2 � z3�

� .sŒz3 � z1�Œxz2 � xz1�C .1 � s/Œz2 � z1�Œxz3 � xz1�/

C

Z 1

0

Z 1

0

t dtds @x@�.z.s; t//Œxz2 � xz3�

� .sŒz3 � z1�Œxz2 � xz1�C .1 � s/Œz2 � z1�Œxz3 � xz1�/:

Dividing the �-integral in (B.1) by .�4 ImA.f//, we obtain a first contribution
to r�.f/, namely,Z 1

0

Z 1

0

dtds @�.z.s; t//

C iR.f/
Z 1

0

Z 1

0

t dtds @@�.z.s; t//
z2 � z3

jz2 � z3j

�

�
s
z3 � z1

jz3 � z1j

xz2 � xz1

jz2 � z1j
C .1 � s/

z2 � z1

jz2 � z1j

xz3 � xz1

jz3 � z1j

�
C iR.f/

Z 1

0

Z 1

0

t dtds @x@�.z.s; t//
xz2 � xz3

jz2 � z3j

�

�
s
z3 � z1

jz3 � z1j

xz2 � xz1

jz2 � z1j
C .1 � s/

z2 � z1

jz2 � z1j

xz3 � xz1

jz3 � z1j

�
:

Again, by the fundamental theorem of calculus, we can transform the ��-integral
in (B.1) and obtainZ 1

0

dt .Œxz2 � xz1�Œxz3 � xz1�Œ@�.z2.t// � @�.z3.t//�/

D �Œxz2 � xz1�Œxz3 � xz1�

Z 1

0

Z 1

0

dtds
d

ds
.@�.z.s; t///

D Œxz2 � xz1�Œxz3 � xz1�

Z 1

0

Z 1

0

t dtds

� .Œz2 � z3�@x@�.z.s; t//C Œxz2 � xz3�x@x@�.z.s; t///:
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Dividing the ��-integral in (B.1) by .�4 ImA.f//, we obtain a second contribution
to r�.f/, namely,

iR.f/
xz2 � xz1

jz2 � z1j

xz3 � xz1

jz3 � z1j

�

Z 1

0

Z 1

0

t dtds
� z2 � z3
jz2 � z3j

@x@�.z.s; t//C
xz2 � xz3

jz2 � z3j
x@x@�.z.s; t//

�
:

So we end up with

r�.f/ �
Z 1

0

Z 1

0

dtds @�.z.s; t//

D iR.f/
Z 1

0

Z 1

0

t dtds @@�.z.s; t//
z2 � z3

jz2 � z3j

�

�
s
z3 � z1

jz3 � z1j

xz2 � xz1

jz2 � z1j
C .1 � s/

z2 � z1

jz2 � z1j

xz3 � xz1

jz3 � z1j

�
C iR.f/

Z 1

0

Z 1

0

t dtds @x@�.z.s; t//
xz2 � xz3

jz2 � z3j

�

�
s
z3 � z1

jz3 � z1j

xz2 � xz1

jz2 � z1j
C .1 � s/

z2 � z1

jz2 � z1j

xz3 � xz1

jz3 � z1j

�
C iR.f/

xz2 � xz1

jz2 � z1j

xz3 � xz1

jz3 � z1j

Z 1

0

Z 1

0

t dtds

�

� z2 � z3
jz2 � z3j

@x@�.z.s; t//C
xz2 � xz3

jz2 � z3j
x@x@�.z.s; t//

�
: (B.2)

Thus we can bound the norm of the right-hand side of (B.2) by

R.f/
Z 1

0

Z 1

0

t dtds .j@@�.z.s; t//j C 2j@x@�.z.s; t//j C jx@x@�.z.s; t//j/:

Thus we haveˇ̌̌̌
r�.f/ �

Z 1

0

Z 1

0

dtds @�.z.s; t//

ˇ̌̌̌
� R.f/

�1
2

sup
z2f
j@@�.z/j C sup

z2f
j@x@�.z/j C

1

2
sup
z2f
jx@x@�.z/j

�
: (B.3)

Finally, we come to bound the difference between @�.z.s; t// and @�.zf/, where zf

is the circumcenter of f. Again, by the fundamental theorem of calculus, defining

z.p; s; t/ D pz.s; t/C .1 � p/zf;
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we write

@�.z.s; t// � @�.zf/ D

Z 1

0

dp
d

dp
@�.z.p; s; t//

D

Z 1

0

dp ..z.s; t/ � zf/@@�.z.p; s; t//

C .xz.s; t/ � xzf/@x@�.z.p; s; t///:

Since z.s; t/ is inside the triangle f, it is also in the disk Bf of radius R.f/ with
center zf, hence jz.s; t/ � zfj � R.f/, and we get the bound

j@�.z.s; t// � @�.zf/j � R.f/. sup
z2Bf

j@@�.z/j C sup
z2Bf

j@x@�.z/j/;

which when averaged becomesˇ̌̌̌ Z 1

0

Z 1

0

dtds @�.z.s; t// � @�.zf/

ˇ̌̌̌
� R.f/. sup

z2Bf

j@@�.z/j C sup
z2Bf

j@x@�.z/j/: (B.4)

Combining bounds (B.3) and (B.4), we get the final result of Lemma 1.9,

jr�.f/ � @�.zf/j � R.f/
�3
2

sup
z2Bf

j@2�j C 2 sup
z2Bf

j@x@�j C
1

2
sup
z2Bf

jx@2�j
�
:

Remark B.1. For a general point w 2 Bf, we have jz.s; t/ � wj � 2R.f/ and after
modifying our estimates by a factor of 2, we obtain

jr�.f/ � @�.w/j � R.f/
�5
2

sup
z2Bf

j@2�j C 3 sup
z2Bf

j@x@�j C
1

2
sup
z2Bf

jx@2�j
�
: (B.5)

C. Continuum limits of curvature anomalies: An example

In this appendix, we present an example of an isoradial Delaunay graph Gcr for
which the anomalous terms of the associated conformal Laplacian � (as defined in
formulas (6.23) and examined in equations (6.25) and (6.26) of Section 6) have well-
defined non-trivial scaling limits `!1. Unlike the continuum limits addressed in
Theorem 1.10, the limit values of the anomalous edge-to-chord, chord-to-edge, and
chord-to-chord terms computed in Proposition C.4 of this section reflect features of
the underlying geometry of the initial critical graph Gcr, specifically the choice of
fundamental quadrilateral Q used to construct Gcr. See Figure 33. We emphasize that
this is a very specific example; for “generic” isoradial Delaunay graph Gcr, no such
continuum limit exist.
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Begin with four angles ˛1 < ˛2 < ˛3 < ˛4 in the interval Œ0; 2�/ and construct the
cyclic quadrilateral Q, whose vertices are the unit complex numbers zk WD exp.i˛k/
with k 2 ¹1; 2; 3; 4º. We will require that the origin is contained in the interior of Q,
which is achieved whenever ˛3 � ˛1 > � or ˛4 � ˛2 > � . This constraint ensures
that the tiling we are about to construct is Delaunay. Let Qop denote the quadrilateral
obtained by rotating Q by 180 degrees. A cyclic quadrilateral with associated angles
˛1 D

�
3

, ˛2 D 5�
7

, ˛3 D 13�
9

, and ˛4 D 21�
11

is illustrated in Figure 32.

˛1

˛2

˛3
˛4

Figure 32. The fundamental quadrilateral Q considered in the example.

Construct a doubly periodic quadrilateral tiling Gcr of the plane using translations
of Q and Qop. Clearly,Gcr will be isoradial and Delaunay in the sense of Section 2.1.1;
by construction, each face of Gcr is a cyclic quadrilateral. Figure 33 depicts such
a tiling.

For each quadrilateral face q of Gcr, let zq denote the complex coordinate of its
center; with respect to this center, the four vertices vq.k/ of q, with k 2 ¹1; 2; 3; 4º,
have complex coordinates z.vq.k//D zq˙ zk , where the sign isC if q is a translation
of Q and � if q is a translation of Qop. Let eCq denote the chord of the quadrilat-
eral q joining vertices vq.2/ and vq.4/, while e�q will denote the chord joining vq.1/

and vq.3/. Up to a sign, the corresponding north angles are given by #C WD ˛2 � ˛4
and #� WD ˛1 � ˛3, respectively. Define zC WD z2 � z4 and z� WD z � z3. Let AQ

denote the area of Q.
Let F.z/ be a smooth complex-valued function with compact support together

with deformation and scaling parameter values � > 0 and ` > 0. Let G�;` denote the
graph obtained by deforming the embedding of Gcr by z 7! z C �`F.z

`
/ and then

adjoining edges eCq or e�q to those quadrilateral faces q of Gcr according to whether
��;`.eCq / > 0 or ��;`.e�q / > 0, respectively; these conditions are mutually exclusive, as
the signs of ��;`.eCq / and ��;`.e�q / are opposite. Neither edge is selected if both con-
formal angles are zero. As long as � > 0 lies within the range 0 < � < z�F;` prescribed
by Proposition 5.8, the graph G�;` will remain Delaunay.
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Figure 33. Fragment of a tiling Gcr by a cyclic quadrilateral q.

As an example, consider the following “mollified” shear ofGcr. For simplicity, we
consider the case where the support of F has one connected component (in particular,
it is a disk D with unit radius):

F.z/ WD

8<: exp
�

i� C jzj2

jzj2�1

�
ImŒz� if jzj � 1;

0 otherwise:

Figure 34 depicts the effect of the corresponding deformation z 7! z C �`F.z
`
/. The

reader will notice that the support of F`W z 7! `F.z
`
/ is partitioned roughly into three

“unidirectional” zones consisting of deformed quadrilaterals whose diagonals share
the same alignment. In general, for any smooth compactly supported perturbation
z 7! z C �`F.z

`
/, the support of F` will be partitioned into such zones of constant

alignment. If we ignore the quadrilaterals q for which � 0
0;`
.eCq / vanishes, then the

remaining set of quadrilaterals can be partitioned into zones over which the sign
of � 0

0;`
.eCq / is constant. For `� 0 large, the interfaces between these zones approx-

imate the level curves of ImŒx@F`E� D 0 within the disk D` of radius `, where

E WD e12 � e23 C e34 � e14 and emn WD
xzm �xzn

zm � zn
for m; n 2 ¹1; 2; 3; 4º:

The appearance of continuous interfaces is a prodigy (of the existence) of the scaling
limit for the anomaly, as formalized in Lemma C.1 and Proposition C.4. In the case
of the mollified-shear example, the corresponding level curves are depicted in red in
Figure 34.
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Figure 34. Mollified-shear with angle value � D ��
5

, deformation parameter value � D 0:1,
and scaling parameter value ` D 22.

In order to analyze the anomalous terms arising in the second-order variation
of the conformal Laplacian, we return to using a scaled, bi-local perturbation as
prescribed in Section 7. As before, F1.z/ and F2.z/ are complex-valued functions
whose supports �1 and �2 are compact and whose lattice closures x�1 and x�2 are
disjoint. In addition, � D .�1; �2/ is a pair of independent deformation parameters,
and ` > 0 is a scaling parameter. Let G�;` denote the Delaunay graph associated to
the deformed embedding z�;`.v/ WD z.v/C �1F1I`.z.v//C �2F2I`.z.v//, where the
deformation parameters are constrained within the range 0 � �1; �2 < min.z�F1 ; z�F2/,
whose bounds z�F1 , z�F2 are specified in Proposition 5.8.

Given p 2 C and a value of the scaling parameter ` > 0, center a copy of the
fundamental quadrilateral Q about the dilated point `p 2 C. The coordinates of its
vertices are q`.pI k/ D `p C zk for k 2 ¹1; 2; 3; 4º. The perturbation will displace
these vertices by q`.pI k/ 7! q�;`.pI k/, where

q�;`.pI k/ WD q`.pI k/C �1F1I`.q`.pI k//C �2F2I`.q`.pI k//:

The conformal angle ��;`.p/ and its �i -derivatives d�i �`.p/ are accordingly defined by

��;`.p/ D Im log
h .q�;`.pI 4/ � q�;`.pI 3//.q�;`.pI 2/ � q�;`.pI 1//
.q�;`.pI 4/ � q�;`.pI 1//.q�;`.pI 2/ � q�;`.pI 3//

i
;

d�i �`.p/ D
@

@�i

ˇ̌̌
�iD0

��;`.p/

D Im
h
xrFi

�
p C

z1

`
; p C

z2

`
; p C

z4

`

�
.e12 � e14/

i
C Im

h
xrFi

�
p C

z2

`
; p C

z3

`
; p C

z4

`

�
.e34 � e23/

i
D ImŒx@Fi .p/E�C O

�1
`

�
:

(C.1)
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Lemma C.1. Fix a value of the scaling parameter ` > 0, then for any pair of points
p; z 2 suppFi with jz � pj < 1

`
,

jd�i �`.z/ � ImŒx@Fi .p/E�j �
4

`
Mi .z; `/;

where

Mi .z; `/ WD max
jw�zj< 1

`

j@2Fi .w/j C 2 max
jw�zj< 1

`

j@x@Fi .w/j

C max
jw�zj< 1

`

jx@2Fi .w/j:

Proof. For brevity, we will simply write F instead of either F1 or F2 and d��`.z/

instead of d�1�`.z/ or d�2�`.z/. For indices i; j; k 2 ¹1; 2; 3; 4º, we will use the pro-
visional notation

Aijk WD xrF
�
z C

zi

`
; z C

zj

`
; z C

zk

`

�
� x@F.p/:

By Remark B.1, if jz � pj < 1
`

, we have

jAijkj � R
�5
2

max
z2B
j@2F j C 3max

z2B
j@x@F j C

1

2
max
z2B
jx@2F j

�
;

where B is the disk of radius R D 1
`

centered at z. By formula (C.1), we have

jd��`.z/ � ImŒx@F.p/E�j D j ImŒA124.e12 � e14/C A234.e34 � e23/�j

� jA124j � je12 � e14j C jA234j � je34 � e23j

� 2.jA124j C jA234j/:

Accordingly, we have

jd��`.z/ � ImŒx@F.p/E�j �
4

`

�5
2

max
z2B
j@2F j C 3max

z2B
j@x@F j C

1

2
max
z2B
jx@2F j

�
:

Definition C.2. For a fixed value of the scaling parameter ` > 0 and any (continuous)
function �WC ! C, let us introduce the following piecewise abridgment:

h�i`.p/ WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�.
zq
`
/ whenever `p 2 int.q/ for a quadrilateral q;

1
2

P2
kD1 �.

zqk
`
/ whenever `p 2 int.@q1 \ @q2/ for

a pair of quadrilaterals q1 and q2;
1
4

P4
kD1 �.

zqk
`
/ whenever `p 2 @q1 \ @q2 \ @q3 \ @q4

for quadrilaterals q1, q2, q3, and q4:
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Remark C.3. Let �i I` WD hd�i �`i`, then �i I` ! ImŒx@FiE� uniformly in the limit
`!1. Furthermore, �˙

i I`
! Im˙Œx@FiE� uniformly as `!1, where

gC.p/ WD max.g.p/; 0/ and g�.p/ WD �min.g.p/; 0/

for any real-valued function gWC ! R.

Proposition C.4. For signs �; � 2 ¹C;�º, define

J .�;�/ WD
tan2 #� tan2 #�
16�2A2

Q

“
�1��2

d2xd2y Im� Œx@F1.x/E�

�

h
Re

z�z�

.x � y/2

i2
Im� Œx@F2.y/E�;

J .1/� WD
tan2 #�
8�2AQ

“
�1��2

d2xd2y Im� Œx@F1.x/E�Re
hz2�x@F2.y/
.x � y/4

i
;

J .2/� WD
tan2 #�
8�2AQ

“
�1��2

d2xd2y Re
hx@F1.x/z2�
.x � y/4

i
Im� Œx@F2.y/E�:

The continuum limits of the edge-to-chord Aed�ch
`

, chord-to-edge Ach�ed
`

, and chord-
to-chord Ach�ch

`
anomalies exist and their values are

lim
`!1

Aed�ch
` D J

.2/
C C J

.2/
� ;

lim
`!1

Ach�ed
` D J

.1/
C C J

.1/
� ;

lim
`!1

Ach�ch
` D J .C;C/ C J .C;�/ C J .�;C/ C J .�;�/:

Proof. We will verify the claim in the case of the chord-to-chord anomaly Ach�ch
`

and
leave the remaining cases to the reader. Begin with a pair of signs �; � 2 ¹˙º. For
.x; y/ 2 �1 ��2, let us introduce the following step-function

ˆ
�;�
`
.x;y/ WD

8̂̂<̂
:̂
Œ d�1�`.

zx
`
/�� � ŒRe z�z�

.zx�zy/2
�2 � Œ d�2�`.

zy
`
/�� ; `x2 int.x/; `y2 int.y/;

x; y 2 F.Gcr/;

bounded noise otherwise:

Note that Ach�cr
`
D J .C;C/

`
C J .C;�/

`
C J .�;C/

`
C J .�;�/

`
, where

J .�;�/
`
D

tan2 #� tan2 #�
16�2

X
x2F.Gcr/

x\�1.`/¤;

X
y2F.Gcr/

y\�2.`/¤;

ˆ
�;�
`

�zx

`
;
zy

`

�
:
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It follows from Lemma C.1 that ˆ�;�
`
.x; y/ ! ˆ�;� .x; y/ converges uniformly on

�1 ��2 as `!1, where

ˆ�;� .x; y/ WD Im� Œx@F1.x/E� �
h
Re

z�z�

.x � y/2

i2
� Im� Œx@F2.y/E�;

J .�;�/ D
tan2 #� tan2 #�
16�2A2

Q

“
�1��2

d2xd2y ˆ�;� .x; y/

D
tan2 #� tan2 #�
16�2A2

Q

lim
`!1

“
�1��2

d2xd2y ˆ
�;�
`
.x; y/

D
tan2 #� tan2 #�

16�2
lim
`!1

X
x2F.Gcr/

x\�1.`/¤;

X
y2F.Gcr/

y\�2.`/¤;

ˆ
�;�
`

�zx

`
;
zy

`

�
D lim
`!1

J .�;�/
`

:
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