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Lattice walks confined to an octant in dimension 3:
(non-)rationality of the second critical exponent

Luc Hillairet, Helen Jenne, and Kilian Raschel

Abstract. In the field of enumeration of walks in cones, it is known how to compute asymptot-
ically the number of excursions (finite paths in the cone with fixed length, starting and ending
points, using jumps from a given step set). As it turns out, the associated critical exponent is
related to the eigenvalues of a certain Dirichlet problem on a spherical domain. An important
underlying question is to decide whether this asymptotic exponent is a (non-)rational number, as
this has important consequences on the algebraic nature of the associated generating function.
In this paper, we ask whether such an excursion sequence might admit an asymptotic expan-
sion with a first rational exponent and a second non-rational exponent. While the current state
of the art does not give any access to such many-term expansions, we look at the associated
continuous problem, involving Brownian motion in cones. Our main result is to prove that in
dimension three there exists a cone such that the heat kernel (the continuous analog of the
excursion sequence) has the desired rational/non-rational asymptotic property. Our techniques
come from spectral theory and perturbation theory. More specifically, our main tool is a new
Hadamard formula, which has an independent interest and allows us to compute the derivative
of eigenvalues of spherical triangles along infinitesimal variations of the angles.

1. Introduction

The model and our main question

A lattice walk is a sequence of points P0;P1; : : : ;Pn of Zd , d > 1. The points P0 and
Pn are its starting and end points, respectively, the consecutive differences PiC1 � Pi
its steps, and n is its length. Given a set � � Zd , called the step set, a set C � Zd

called the domain (which in this paper will systematically be a cone), and elements
P and Q of C , we are interested in the number e.P;QI n/ of walks (or excursions)
of length n that start at P , have all their steps in � , have all their points in C , and end
atQ. In the present note, the main problem we would like to address is the following:
does there exist a walk model (i.e., a step set and a cone in Rd ) such that as n!1,
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one has the asymptotics

e.P;QIn/ D �n �
�
K1 � n

˛1 CK2 � n
˛2 C � � � CKp � n

˛p C o.n˛p /
�
; (1)

with some exponential growth � > 0 and critical exponents such that ˛1; : : : ; p̨�1 2Q

and p̨ … Q? (The constants K1; : : : ; Kp in (1) are assumed to be non-zero.) We now
present the context and explain our motivations to look at this particular problem.

Asymptotics of the excursion sequence and relation to D-finiteness

Is there a simple formula for e.P; QI n/ in terms of the coordinates of P , Q, and
the length n of the walk? If not, can we at least say something about the asymptotic
behavior (1) of these numbers as n goes to infinity? A first step towards answering
these questions can be done by considering the excursion generating function

eP;Q.t/ D
X
n>0

e.P;QIn/tn 2 QJtK (2)

that is associated with these numbers and determining whether it is algebraic, or, if
not, whether it is at least D-finite. Recall that a series is D-finite if it satisfies a non-
trivial linear differential equation with polynomial coefficients. Knowing that a given
series is D-finite not only implies nice computational properties of its coefficients, but
also allows us to classify the combinatorial model according to the complexity of the
underlying generating function. There has recently been a dense literature around the
above questions, in relation with the probabilistic model of random walks in cones;
see [5–9, 11, 21, 22].

As it turns out, there is a strong relation between D-finiteness of a given series
and the asymptotic behavior of its coefficients. For example, the following state-
ment (recalled in [7, Thm. 3]) is a consequence of results by André, Chudnovski,
and Katz [1, 19].

Lemma 1. Let .e.n//n>0 be an integer-valued sequence whose n-th term behaves
asymptotically like

e.n/ � K � �n � n˛ (3)

for some real positive constantsK and �. If the singular exponent ˛ is irrational, then

the generating function e.t/ D
1P
nD0

e.n/tn is not D-finite.

Given the above result, it is natural to ask whether one may compute and study the
rationality of the critical exponent ˛ in the asymptotics (3) of the excursion sequence
e.P;QIn/ (equivalently, the dominant term in the asymptotics (1)).

In dimension 1, the combinatorial model of walks in cones reduces to that of
walks confined to the positive half-line, as studied, e.g., in [2]. In this context, it is well
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known that only simple exponents appear in the dominant asymptotics, namely, ˛D 0,
�
1
2

, or �3
2

(depending on the drift of the model), and their translations by integers in
the complete asymptotic expansion (1). Accordingly, there is nothing to say from
the perspective of the rationality of asymptotic exponents. Remark that these simple
exponents are deduced from the algebraicity of the associated generating function (2)
and classical transfer theorems (singularity analysis).

Given a cone in higher dimension d > 2, the generating function (2) is in general
not algebraic (and even non-D-finite; see [7, 21] for the case of the quarter plane in
dimension 2), and the first problem is to access the critical exponent ˛. This result is
obtained by Denisov and Wachtel [11]: for a large class of cones in arbitrary dimen-
sion, they derive the one-term asymptotics (3) for the excursion sequence e.P;QIn/.
In particular, they show that [11, (12)]

˛ D �
p
�1 C .d=2 � 1/2 � 1; (4)

where d is the dimension and �1 is interpreted as the principal Dirichlet eigenvalue
for the Laplace–Beltrami operator on the subdomain of the sphere Sd�1 given by

.LC/ \ Sd�1; (5)

with C being the domain of confinement (typically an orthant RdC) and L a linear
application, which depends on the model. One should not be surprised by the pres-
ence of the linear transform L in (5); as a matter of comparison, the classical central
limit theorem for random walks in Rd involves the drift and the covariance matrix
of the process so as to put the random walk in the domain of attraction of a standard
Brownian motion. (Here, standard means without drift and with identity covariance
matrix.) Similarly, the application L above appears so as to take into account the drift
and the covariance matrix of the combinatorial model under consideration.

Some key ingredients in Denisov and Wachtel’s proof are a coupling of random
walk by Brownian motion, and then a use of older results in the probabilistic literature
on exit times for Brownian motion [3, 10, 26] (the eigenvalue �1 already appearing in
the study of Brownian motion in cones).

Accordingly, all the complexity of the excursion (one-term) asymptotics (3) is
contained in the principal eigenvalue �1.

Dimension 2

Regarding the combinatorial model of walks in the quarter plane, the domain (5)
simply becomes an arc of circle; see Figure 1 for a few examples. More precisely,
if the walk is driftless and has identity covariance matrix, then L is just the identity
and (5) is a quarter of circle. For other walk models, using the expression of the linear
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transform L, the arc has opening ˇ 2 .0; �/, which one may express as arccos.�r/,
where r is an algebraic number which is easily computed from the model; see [7] for
more details.

As it turns out, the principal eigenvalue (and in fact the whole spectrum) of arcs
of circles is known. More precisely, if the cone has opening ˇ, then �1 D .�ˇ /

2, and
more generally, the j -th eigenvalue is given by �j D .j �ˇ /

2. Consequently, using (4),
one deduces that the asymptotic exponent ˛ is known and is equal to

˛ D �
�

ˇ
� 1 D �

�

arccos.�r/
� 1:

For instance, for the model on the left on Figure 1 (called a scarecrow in [7]), one has
r D 1=4 and thus ˛ D � �

arccos.�1=4/ � 1, which can be proved to be non-rational [7].
Following this approach, the authors of [7] obtain that for a list of 51 (unweighted,

having infinite group and small steps) models, ˛ is non-rational, and so, using Lem-
ma 1, these 51 models admit non-D-finite generating functions. In the context of un-
weighted quadrant lattice walks, it is remarkable that the converse statement is also
true: in other words, the generating function (2) of the 74 non-singular, unweighted
quadrant lattice walks is D-finite if and only if the principal exponent is rational.

This equivalence (between D-finiteness of the generating function and rationality
of the critical exponent) is a priori not true in general; the authors of [6] construct
several models (one of them is represented on Figure 1, right) for which ˛ is rational,
but the generating function is conjectured to be non-D-finite. See [6, Tab. 2] for more
examples.

With this in mind, our question in dimension 2 would be to see whether there
exist quadrant walk models such that the associated excursion sequence admits the
asymptotics (1), with ˛1; : : : ; p̨�1 2 Q and p̨ … Q. Such a statement would also
lead to non-D-finiteness results by a generalization of Lemma 1 to many-term asymp-
totic expansions. See, in particular, the works [13, 14] where this generalization is
mentioned.

As we will explain later, we conjecture that the above rationality/non-rationality
phenomenon does not occur in dimension 2.

Dimension 3

We now explore the case of dimension 3. First, the domain (5) to consider is the
trace on the sphere S2 of LR3C, which by construction is a spherical triangle; see
Figure 2 for a few examples. In other words, in dimension 3, one has to understand
the principal eigenvalue �1 of spherical triangles. This connection between three-
dimensional positive lattice walks and spherical triangles has been studied in [5]; see
also [23] in relation with a Brownian pursuit problem.
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�
2

arccos.�1=4/

�
4

Figure 1. Three examples of walks in dimension 2 confined to the quarter plane C D R2
C

, with
the associated domain .LC/\ S1 as in (5). Their critical exponent ˛ in (3) is as follows: on the
left, ˛ D �3; for the second model, ˛ D � �

arccos.�1=4/ � 1 … Q; see [7]; on the right ˛ D �5;
see [6].

Figure 2. Two tilings of the sphere by triangles. The left one corresponds to the simple walk,
with jumps ¹.˙1; 0; 0/; .0;˙1; 0/; .0; 0;˙1/º. The tiling on the right is associated to the fol-
lowing model, known as 3D Kreweras model: ¹.�1; 0; 0/; .0;�1; 0/; .0; 0;�1/; .1; 1; 1/º. The
rationality of its critical exponent ˛ is still unknown.

While in dimension 2, it was possible to compute the whole spectrum for the
Laplace–Beltrami problem with Dirichlet conditions on the domain (5), and in addi-
tion, we had nice formulas for all eigenvalues and eigenfunctions (recall that �j D
.j �

ˇ
/2 in the planar case); this is no longer the case in dimension 3. More precisely,

given a generic spherical triangle, it is in general impossible to compute in closed
form any of its eigenvalues. To summarize, up to our knowledge, there are only two
kinds of exceptional spherical triangles which admit eigenvalues in closed form:

• Spherical triangles corresponding to tilings of the sphere [4]: notice that tilings do
not all lead to an explicit spectrum; for instance, the one on the right in Figure 2
(called the tetrahedral tiling) cannot be solved in an explicit manner, as it does not
admit the right parity. Specifically, the angles of these triangles should take one
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of the following values: .�
2
; �
3
; �
3
/, .�

2
; �
3
; �
4
/, .�

2
; �
3
; �
5
/, or .�

2
; �
2
; �
n
/, with some

integer n > 2.

• Arbitrary birectangular triangles, i.e., triangles admitting two right angles �
2

and
one arbitrary angle ˇ 2 .0; 2�/; see [25, 27, 28].

In this three-dimensional context, our question takes the following form: does there
exist an octant walk model such that the associated excursion sequence admits the
asymptotics (1) with ˛1; : : : ; p̨�1 2 Q and p̨ … Q?

The heat kernel of cones

To answer our main question, one intrinsic difficulty is to know a many-term asymp-
totic expansion of the form of (1). And indeed, such asymptotics are not available
in the literature in general (except in a few very particular cases, which are the sim-
plest cases, so precisely those with a complete asymptotic expansions with rational
exponents, see, e.g., [8, 9, 22]).

As a consequence, in order to progress on our question, we will reason by anal-
ogy between the discrete setting (random walk) and the continuous setting (Brownian
motion), and we will solve the analogous question in the Brownian framework.

First of all, the quantity analogous to the number of excursions e.P;QIn/ is called
the (continuous) heat kernel of the cone, which, as we will see, admits an expression
in closed-form (7) and explicit complete asymptotic expansions.

The heat kernel pC .x; yI t / of a cone (and actually of any domain) C admits
the following probabilistic interpretation: it is the probability density function of the
transition probability kernel

pC .x; yI t /dy D Px.Bt 2 dy; �C > t/; (6)

where the Brownian motion is denoted by Bt and �C is the first exit time from the
cone C , that is, �C D inf¹t > 0 W Bt … C º. Letting 0 < �1 < �2 6 �3 6 � � � denote the
eigenvalues of the Laplace–Beltrami operator with Dirichlet conditions on the domain
C \ Sd�1, its explicit expression is given by [3]

pC .x; yI t / D
exp

�
�
jxj2Cjyj2

2t

�
t .jxj � jyj/d=2�1

1X
jD1

I
j̨

�
jxj � jyj

t

�
mj

�
x

jxj

�
mj

�
y

jyj

�
; (7)

where j̨ D
p
�j C .d=2 � 1/2, mj is the associated normalized eigenfunction, and

I� is the modified Bessel function of order �, which admits the expression

I�.x/ D

1X
mD0

1

mŠ�.� CmC 1/

�x
2

��C2m
:

The following result may be found in [9, Thm. 2.3].
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Lemma 2. For any dimension d > 1 and any cone regular enough, the heat kernel
pC .x; yI t / in (6) admits a complete asymptotic expansion of the form

pC .x; yI t / D K1 � t
�˛1 CK2 � t

�˛2 C � � � CKp � t
�˛p C o.t�˛p /; (8)

where

• the order p of the expansion is arbitrarily large;

• the constants Ki depend on x and y, i.e., Ki D Ki .x; y/;

• the exponents ˛i are independent of x and y, and ˛1 < ˛2 < � � � < p̨;

• ¹˛i W i > 1º D ¹
p
�j C .d=2 � 1/2 C k W k > 1; j > 1º, where the �j are eigen-

values.

In this new (and last!) setting, our question may be formulated as follows: is it
possible in the asymptotics (8) to have first rational exponents ˛1; : : : ; p̨�1 and a
non-rational p̨?

Statements of our main results

As the following proposition establishes, our question is easily solved in dimension 2,
and the answer happens to be negative.

Proposition 3. In dimension d D 2, the exponents ˛i appearing in the asymptotics (8)
of the heat kernel are simultaneously all rational or non-rational.

Proof. Using that d D 2 and �j D .j �ˇ /
2, it follows from Lemma 2 that the exponents

˛i may be expressed as j �
ˇ
C k, where j and k are positive integers. Clearly, when

j and k vary, these numbers are either all rational or all non-rational.

Accordingly, we also conjecture that we cannot construct any discrete model
having this rationality/non-rationality property (with sufficiently many moment con-
ditions).

Although we will not elaborate on this here, we would like to mention that, based
on the above two-dimensional result, it should be easy to give an example on our
rationality/non-rationality phenomenon in dimension 4, seeing R4 as a product of
two planes and defining on each plane a different model, one with �

ˇ1
2 Q and the

second one with �
ˇ2
2 Q. We thank Andrew Elvey Price for this suggestion.

So, we have to move to dimension 3. Our first theorem in this paper is the fol-
lowing.

Theorem 1. There exists a 3D cone such that the heat kernel admits the asymp-
totics (8), with first rational exponents ˛1; : : : ; p̨�1 and then a non-rational expo-
nent p̨ .
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�2 D 30

Figure 3. A glimpse of the curve �1 D 12.

The proof of Theorem 1 involves in a crucial way some properties of �2 on the
curve on which �1 D 12; see Figure 3.

For the positive octant R3C (corresponding in (5) to the equirectangle triangle),
one has .�1; �2/ D .12; 30/, and thus, with (8),

pC .x; yI t / D K1;1t
�9=2
CK1;2t

�11=2
CK1;3t

�13=2
CK2;1t

�13=2
C � � � ;

where two exponents 13=2 are confluent: the first one is
q
�1 C

1
4
C 3, and the second

one is
q
�2 C

1
4
C 1. Observe that

q
�2 C

1
4
C 1 is the smallest exponent associated

to the second eigenvalue; see Lemma 2.
Still looking at the family of triangles �1 D 12, the first natural question is the

following: is it possible to have
q
�2 C

1
4
C 1 ¤ 13

2
? By continuity of �2, answering

this question will immediately lead to Theorem 1. This part of our results is a rather
direct consequence of the description of the level set of the first eigenvalue �1 on the
set of triangles; see Proposition 5. This result follows from standard spectral theory.

We will actually do more and study the local behavior of �2 along the curve where

�1 D 12. In particular, we will see which of 13
2

and
q
�2 C

1
4
C 1 becomes the dom-

inant exponent.

Theorem 2. There exist t0 > 0 and a real-analytic function b defined on .�t0; t0/
such that the one-parameter family of triangles .Tt /t2.�t0;t0/ that have one side of
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length �
2

and adjacent angles with values

�

2
C t;

�

2
C b.t/

satisfies, for the Dirichlet Laplace operator,

• the first eigenvalue �1.t/ of Tt is constant: 8t 2 .�t0; t0/; �1.t/ D 12;

• the second eigenvalue �2.t/ is continuous and admits the first-order approxima-
tion

�2.t/ D 30 �
22
p
3

�
� jt j C o.t/:

For completeness, we mention that we will prove as well that

�3.t/ D 30C
22
p
3

�
� jt j C o.t/:

Theorem 2 immediately implies that the third dominant exponent of the triangle

Tt is
q
�2 C

1
4
C 1 for t small. One of the key tools to the proof of Theorem 2 is the

introduction of a Hadamard formula allowing us to compute the derivative of �2.
Let us emphasize the fact that Theorem 2, and more generally analytic perturba-

tion theory, is not needed for proving Theorem 1; see Remark 4 for more comments in
that direction. However, our approach inspires other questions (which for now seem
out of reach), as follows:

• What are the possible values for �2 (and then for the associated exponent 1 Cp
�2 C 1=4)? Is it solely the interval Œ20; 30�? Is �2 globally decreasing along the

curve �1 D 12? (See Figure 3.)

• Do the values of the couple .�1; �2/ determine the geometric properties of the
associated spherical triangle?

Beyond these specific computations, we hope that the spectral theory tools developed
in this paper will be useful for other combinatorial problems.

2. The spectrum of spherical triangles

We prove Theorem 2 by studying the first eigenvalues as functions on the set M of
spherical triangles with one side of length �

2
. We first show that the level sets of the

first eigenvalue �1 are analytic curves in M. Denote by T� the equirectangle triangle;
see Figure 4 (left). Restricting to the curve on which the first eigenvalue is constant
and equal to 12 D �1.T�/, we then compute the derivatives of the second and third
eigenvalue branches at T� to obtain the result.
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x y

z

A�

�
2

B�

�
2

C�

�
2

c

ab

x y

z

A�
˛

B�

ˇ

C




c

a
b

Figure 4. On the left: the equirectangle triangle T� D T .�2 ;
�
2
/. On the right: a generic triangle

T .˛; ˇ/ in M.

This strategy of proof relies heavily on analytic perturbation theory (see [18]) and
similar techniques which have been used by the authors of [25] to study the spectral
gap of spherical triangles. The reader new to analytic perturbation theory may also
find [12] as a useful reference giving a similar application of this theory.

2.1. The set of spherical triangles and the associated spectral problem

Let A� and B� be two points at distance �
2

on the unit sphere in R3. We choose one of
the two hemispheres that have A� and B� on its boundary and denote by M the set of
triangles whose vertices are A�, B�, and C , where C is any point of that hemisphere.
For any T in M, we denote by a the length of the side opposite to A� (resp., b and c)
and by ˛ the angle at A� (resp., ˇ at B� and 
 at C ). Figure 4 summarizes these
notations.

Remark 1. Strictly speaking, to properly define the set of triangles with one side of
length �

2
, we should mod out by the involution .˛; ˇ/$ .ˇ; ˛/. We do not need this

subtlety here and may freely work on M.

The set M is naturally parametrized by .˛;ˇ/2 .0;�/� .0;�/, and we will denote
by T .˛; ˇ/ the corresponding triangle. Analyticity on M means analyticity in .˛; ˇ/.

We also define the distance between two triangles T and T 0 by

d.T; T 0/ D max.j˛ � ˛0j; jˇ � ˇ0j/:

We let T� D T .�2 ;
�
2
/ and A�; B�; C� denote its vertices.
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x y

z

x y

z

A�
�

B�

M.r; �/

r

Figure 5. On the left: a digon (or spherical lune) is a domain bounded by two great circles. On
the right: the spherical coordinates .r; �/.

For any fixed ˇ, when ˛ goes to 0, the triangle T .˛; ˇ/ degenerates onto the arc
A�B�, and when ˛ goes to � , it degenerates onto Dˇ : the digon (or spherical lune)
of opening angle ˇ; see Figure 5 (left).

We will use (spherical) polar coordinates at A�: the point M.r; �/ is at distance
r along the geodesic that emanates from A�, making the angle � with the arc A�B�;
see Figure 5 (right).

The side ŒB�; C � is parametrized, in these polar coordinates, by the mapping

� 7! Lˇ .�/

that is implicitly defined by the following application of the cotangent four-part for-
mula (that is simplified using the fact that the distance between A� and B� is �

2
):

0 D cotLˇ .�/ � cotˇ sin �:

This equation can be solved by setting

8ˇ; � 2 .0; �/; Lˇ .�/ D arccot.cotˇ sin �/;

with arccot being the inverse function of cot with values in .0; �/. The mapping

.ˇ; �/ 7! Lˇ .�/

is thus analytic on .0; �/2, and, for any ˇ 2 .0; �/, the mapping � 7! Lˇ .�/ extends
smoothly to R. Thus, we have the parametrization

T .˛; ˇ/ D
®
.r; �/ W � 2 .0; ˛/; r 2 .0; Lˇ .�//

¯
: (9)
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In these polar coordinates, the spherical metric reads g D dr2 C sin2.r/d�2, the
area element is sin.r/drd� , and the Dirichlet energy quadratic form for the triangle
T D T .˛; ˇ/ is, for any u 2 C10 .T /,

q.u/ D

Z
T

�ˇ̌
@ru.r; �/

ˇ̌2
C

1

sin2 r

ˇ̌
@�u.r; �/

ˇ̌2� sin.r/drd�: (10)

We also denote by n the Riemannian L2-quadratic form on T :

n.u/ D

Z
T

ˇ̌
u.r; �/

ˇ̌2 sin.r/drd�: (11)

We will abuse notation by also using q and n to denote the bilinear forms that are
canonically associated with q and n.

We now explain how to associate a self-adjoint operator (that we call the Dirichlet
Laplace operator) to this setting. The procedure is quite standard, and we refer the
reader to [24] for more details. It is well known that, when Q is a bounded quadratic
form on a Hilbert space H with scalar product n, there exists a unique associated
self-adjoint operator that satisfies the following:

8x 2 H ; Q.x/ D n.Ax; x/:

The latter statement can be extended to closed unbounded quadratic forms. However,
with the definitions above and since the quadratic form q is defined on C10 .T / only,
it is not closed. In order to prove that the quadratic form q is closable, we remark that,
using integration by parts, there exists a partial differential operator P such that

8u 2 C10 .T /; q.u/ D n.Pu; u/:

Moreover, the operator P , with domain C10 .T /, is formally symmetric so that we
can use the Friedrichs extension procedure. As a result, the Dirichlet Laplace oper-
ator is obtained as follows. We first define H 1

0 .T / to be the completion of C10 .T /
with respect to the quadratic form q C n. The quadratic form q with domain H 1

0 is
now closed, and the unique associated self-adjoint operator is the Dirichlet Laplace
operator on T . We denote it by � (observe that, by construction, � is a non-negative
operator). Despite the corners, the injection from H 1

0 .T / into L2.T / is still compact
so that the spectrum of � consists solely of eigenvalues of finite multiplicity. The
construction implies that a function u is an eigenfunction of � with eigenvalue � if
and only if the following system is satisfied:´

u 2 H 1
0 .T /;

8v 2 H 1
0 .T /; q.u; v/ D �n.u; v/:

(12)

Remark 2. Elaborating on the results of Appendix A, it can be proved that the eigen-
functions of the latter eigenvalue problem do vanish on the sides of the triangles,
hence justifying the “Dirichlet” appellation.



On the rationality of 3D lattice walks confined to an octant 695

2.2. Analyticity of the spectrum

For each triangle in M, the spectral problem (12) gives a spectrum that is usually
organized in a non-decreasing sequence

�1.T / < �2.T / 6 � � � 6 �n.T / 6 � � � :

Each eigenvalue is repeated according to its multiplicity, and we have used the known
fact that the first eigenvalue �1.T / is simple.

The theory of analytic perturbations gives conditions under which the spectrum of
a family of such spectral problems depends analytically on its parameters. We refer
to [18] for a complete account on the theory, and we now wish to apply the theory
when the parameters .˛; ˇ/ vary.

Let T0 D T .˛0; ˇ0/ be a triangle in M, and let T D T .˛; ˇ/ be another triangle
in a small neighbourhood of T0. We recall that Lˇ0 and Lˇ are the functions that are
used to describe T0 and T in polar coordinates; see (9).

Analytic perturbation theory applies to a family of quadratic forms on a fixed
Hilbert space. It cannot be used directly here since the spectral problems associ-
ated with T and T0 are not defined in the same Hilbert space, and the corresponding
quadratic forms do not have the same domain. In order to circumvent this problem,
we first define a diffeomorphism between T0 and T . We want this diffeomorphism to
depend analytically on .˛; ˇ/, but it is actually not necessary to define very precisely
what the latter means; analyticity will be checked on the expression of the quadratic
forms in the end.

In order to get Hadamard variational formulas (which we will obtain in Theo-
rems 3 and 4), it is convenient to choose our diffeomorphisms as follows. We choose
� to be a smooth, non-negative, and non-increasing function on R such that � is iden-
tically 1 on .�1; 1

3
/ and identically 0 on .2

3
;1/; and we fix some " > 0. Let ˆ be

the mapping defined on T0 by

ˆ.r; �/ D .R;‚/

with 8̂̂<̂
:̂
‚.r; �/ D � C .˛ � ˛0/�

�
˛0 � �

"

�
;

R.r; �/ D r C .Lˇ ı‚.r; �/ � Lˇ0.�//�

�
Lˇ0.�/ � r

"

�
:

This mapping actually depends on ˛, ˇ, and ", i.e., ˆ D ˆ."/
˛;ˇ

, but for readability, the
notation does not reflect it. We also set

`ˇ D Lˇ ı‚ and `0 D Lˇ0 ;

and observe that these functions depend only on � .
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We now pull back the spherical metric on T to T0 using this diffeomorphism. We
thus introduce the Jacobian matrix of ˆ:

Jacˆj.r;�/ D

 
A.r; �/ C.r; �/

0 B.r; �/

!
;

where we have set8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

A.r; �/ D @rR.r; �/ D 1 � .`ˇ .�/ � `0.�//
1

"
�0
�
`0.�/ � r

"

�
;

B.r; �/ D @�‚.r; �/ D 1 � .˛ � ˛0/
1

"
�0
�
˛0 � �

"

�
;

C.r; �/ D @�R.r; �/ D .`
0
ˇ .�/ � `

0
0.�//�

�
`0.�/ � r

"

�
C .`ˇ .�/ � `0.�//

`00.�/

"
�0
�
`0.�/ � r

"

�
:

Observe that ‚ does not depend on r so that @r‚.r; �/ D 0. From these expressions,
we derive the following lemma.

Lemma 4. For any " > 0, there exists �" such that ˆ is a smooth diffeomorphism
from T0 onto T as soon as d.T; T0/ < �".

Proof. We first choose ˛ close enough to ˛0 so that B is uniformly bounded below
by some positive (small) constant. It follows that ‚ is a smooth diffeomorphism
from Œ0; ˛0� onto Œ0; ˛� and that j‚.�/ � � j D O.j˛ � ˛0j/ uniformly. By definition,
.ˇ; �/ 7! Lˇ .�/ is smooth so that if � is small enough, then A is also bounded below
by some positive constant. It follows that ˆ is a smooth bijective mapping from T0

onto T . Restricting � again if needed, we can ensure the Jacobian matrix to be always
invertible, and this proves the claim.

Using ˆ, T is then parametrized by T0. The pulled-back metric

ˆ�.dr2 C sin2.r/d�2/

is now represented by the matrix G defined by

G.r; �/ D t Jacˆj.r;�/

 
1 0

0 sin2
�
R.r; �/

�! Jacˆj.r;�/:

It is convenient to set D.r; �/ D sin.R.r; �// and to define the (Euclidean) gradient

ru D

 
@ru

@�u

!
:



On the rationality of 3D lattice walks confined to an octant 697

With these notations, the Dirichlet quadratic form (10) now reads

q.uI˛; ˇ/ D

Z
T0

t
ru.r; �/G�1.r; �/ru.r; �/ABD.r; �/drd�

D

Z
T0

�
.C 2 CD2B2/.@ru/

2
� 2AC@ru@�uC A

2.@�u/
2
�drd�
ABD

; (13)

and the L2-scalar product (11) reads

n.uI˛; ˇ/ D

Z
T0

u2ABD drd�: (14)

Using the definitions, we first observe that the quadratic forms q.� I ˛; ˇ/ are uni-
formly equivalent for .˛; ˇ/ in a small neighbourhood of .˛0; ˇ0/ and similarly for
n.� I ˛; ˇ/. The completion procedure that is used to define the Friedrichs extension
thus yields a domain that does not depend on .˛; ˇ/ and thus coincides with H 1

0 .T0/.
Moreover, for any fixed u 2 H 1

0 .T0/, the functions

.˛; ˇ/ 7! q.uI˛; ˇ/ and .˛; ˇ/ 7! n.uI˛; ˇ/

are analytic for .˛; ˇ/ close to .˛0; ˇ0/. It follows that analytic perturbation theory
applies and yields the following properties:

• If �0 is a simple eigenvalue of T0, then there exist ı > 0 and a neighbourhood of
T0 such that, in this neighbourhood, there is a unique eigenvalue of T in .�0 �
ı; �0 C ı/, and this eigenvalue depends analytically on .˛; ˇ/.

• For any (real-)analytic curve t 7! .˛.t/; ˇ.t// on some interval I , there exists a
collection .t 7! Ei .t//i>1 of real-analytic functions that exhaust the spectrum of
Tt D T .˛.t/; ˇ.t//. Such a function is called an analytic eigenvalue branch, and
there also exist corresponding analytic eigenfunction branches t 7! ui .t/.

• The derivatives of the eigenbranches are given by the Feynman–Hellmann for-
mula (see [18] or [17, Prop. 4.6] for a proof in a similar setting): for an analytic
eigenbranch t 7! .E.t/; u.t//, we have

8t 2 I; PE.t/ku.t/k2 D
�
Pqt �E.t/ Pnt

�
.u.t//; (15)

in which the dot denotes the derivative with respect to t . This formula is obtained
by differentiating (12); specifically, we first differentiate qt .u.t/;v/ and nt .u.t/;v/
with a fixed v and then evaluate at v D u.t/.

If �0 is an eigenvalue of T0 of multiplicity m, it follows by standard min-max
arguments that, for ı small enough, there exist exactly m eigenvalues of T in
.�0 � ı; �0 C ı/ in a small neighbourhood of T0. In a nutshell, analytic perturba-
tion theory says that, along any curve that is real-analytic, it is possible to label
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these m eigenvalues so as to have analytic functions. There are, however, two prob-
lems remaining. First, the labeling does not preserve the order of eigenvalues: analytic
eigenbranches may cross at T0. Then, it is usually not possible to define eigenbranches
that would be analytic for .˛;ˇ/ in a neighbourhood: the labeling depends on the ana-
lytic curve that is chosen and cannot be done consistently in all directions. Of course,
both problems only arise for multiple eigenvalues.

We have expressed the derivatives of the eigenvalue branch using the correspond-
ing eigenfunction branch. For the reasons given in the preceding paragraph, it is
convenient to give a way to recover the derivatives without knowing a priori the eigen-
function branch. This is obtained by the following procedure.

Let �0 be an eigenvalue of T0 and E0 the corresponding eigenspace. The deriva-
tives of all the eigenbranches that coincide with �0 at t D 0 are exactly the eigenvalues
of the quadratic form Pq � �0 Pn, restricted to E0 and relative to the scalar product n.
Observe that using (9), we can write

Pq � �0 Pn D P̨
�
@˛q � �0@˛n

�
C P̌

�
@ˇq � �0@ˇn

�
(16)

so that, although we may not have differentiability of the eigenvalues, still, it is enough
to know the partial derivatives @˛q � �0@˛n and @ˇq � �0@ˇn to compute the deriva-
tives of the eigenbranches in any direction.

2.3. The first eigenvalue on M

In this section, we describe the first eigenvalue �1 as a function on the set of spherical
triangles M.

It is well known that the first eigenvalue of a domain in a Riemannian manifold is
always simple. It then follows that the eigenvalue �1 depends analytically on .˛;ˇ/ in
.0; �/ � .0; �/. We now make a list of several facts that help us understand the level
sets of �1.

(i) Symmetry: The symmetry with respect to the median hyperplane of ŒA�;B��
in the sphere exchanges T .˛; ˇ/ and T .ˇ; ˛/. The function �1 is thus sym-
metric with respect to .˛; ˇ/$ .ˇ; ˛/.

(ii) Monotonicity: If ˛0 > ˛ and ˇ0 > ˇ, then the triangle T .˛; ˇ/ is a subset of
T .˛0; ˇ0/. Using the min-max principle, Dirichlet eigenvalues are shown to
be decreasing relative to the inclusion of domains. We thus infer that:

˛0 > ˛ and ˇ0 > ˇ H) �1.˛
0; ˇ0/ 6 �1.˛; ˇ/:

Since the first Dirichlet eigenvalue of the hemisphere is 2, we also get that

8T 2M; �1.T / > 2:
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(iii) Regularity:

8.˛; ˇ/ 2 .0; �/ � .0; �/; @˛�1.˛; ˇ/ < 0; and @ˇ�1.˛; ˇ/ < 0:

Let us prove that @˛�1 ¤ 0 by contradiction, anticipating on the Hadamard
formula, to be proved in Theorems 3 and 4. If this derivative vanishes, then
the integral formula of Theorem 3 implies that @�u vanishes on one side
of the triangle. If we reflect the triangle across this side, we obtain a rhom-
bus to which we extend u by 0. We denote by Qu this extension, and we
test .�� �/ Qu against a smooth function with compact support in the rhom-
bus. Using integration by parts (Green’s formula) inside and outside the
original triangle, we obtain an integral over the side across which we have
reflected. This integral vanishes because u and @�u vanish on that side. This
proves that Qu is an eigenfunction (with the same eigenvalue) of the Dirich-
let Laplace operator in the rhombus. This violates the principle of analytic
continuation for eigenfunctions. By symmetry, the derivative with respect
to ˇ cannot vanish. The monotonicity gives the sign.

(iv) Behaviour near the boundary: If ˛ or ˇ goes to 0, then �1 goes to infinity.
This is a general fact about shrinking domains with Dirichlet boundary con-
dition. For instance, here, we could use the min-max principle to compare
with a spherical angular sector whose angle goes to 0.
If ˛ goes to � and ˇ goes to ˇ0 2 .0; ��, the first eigenvalue �1.˛; ˇ/
converges to the first eigenvalue of Dˇ0 , the digon of opening angle ˇ0 (see
Figure 5, left). Indeed, the family of spectral problems is continuous up to
.0; �� � .0; ��.

(v) Behaviour on the boundary: All the computations we made are still valid
for ˛ D � and varying ˇ. It follows that the mapping �, which to an angle
ˇ 2 .0; �� assigns the first Dirichlet eigenvalue of the digon of opening
angle ˇ, is an analytic, decreasing diffeomorphism from .0; �/ onto .2;1/
that extends continuously at � .

Remark 3. Observe that, in [25] (see also [27, 28]), it is proved that the spectrum of
the digon of angle ˇ can be explicitly computed. This computation yields

�.ˇ/ D
�

ˇ

��
ˇ
C 1

�
;

which obviously satisfies all claimed features. For ˇ D �
3

, we obtain �.�
3
/ D 12.

These properties allow us to prove the following proposition, which gives a rea-
sonably complete understanding of how �1 behaves as a function on M. See Figure 6
for an illustration.
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Figure 6. All these triangles have first Dirichlet eigenvalue �1 D 12. The first domain is the
equirectangle triangle T�, and the last domain is the digon of opening �

3
. The second eigenvalue

is strictly decreasing along this path of triangles, going from 30 to 20.

Proposition 5. For any c 2 .2;1/, there exists ˛c 2 .0; �/ such that the first eigen-
value of D˛c is c. The level set ��11 ¹cº �M is an analytic curve that can be globally
parametrized by ˛ 2 .˛c ;�/. More precisely, there exists an analytic function Bc from
.˛c ; �/ such that

�1.T .˛; ˇ// D c ” ˇ D Bc.˛/:

The function Bc is decreasing, extending continuously to Œ˛c ; �� by Bc.˛c/ D � and
Bc.�/ D ˛c , and B 0c.

�
2
/ D �1.

Proof. The first statement follows from the known behavior of the first eigenvalue
of digons; see Remark 3. Moreover, using monotonicity in ˇ, for each ˛ > ˛c , the
mapping ˇ 7! �1.˛; ˇ/ is a decreasing diffeomorphism onto .�.˛/;1/. Since this
interval contains c, there is a unique ˇ that we denote by Bc.˛/ such that

�1.˛; ˇ/ D c:

The fact that Bc.˛/ is analytic then follows from the implicit function theorem. The
remaining statements follow from the behavior of �1 near and on the boundary and
the symmetry.

Remark 4. In Proposition 5, the level sets ��11 ¹cº are proved to be analytic curves.
In order to show Theorem 1, however, only the continuity of these curves is needed.
With some effort, the latter continuity can be proved using only the strict monotony
of eigenvalues so that Theorem 1 does not need the Hadamard formula. However, we
have found the latter formula interesting in itself because it gives more insight on the
structure of the level sets of eigenvalues.

2.4. Proof of Theorem 1

We apply Proposition 5 for cD 12, and we deduce the existence of an analytic curve of
triangles, on which �1 is constant equal to 12. This analytic curve joins the equirect-
angle triangle to the digon of opening �

3
; see Remark 3. We know that the second
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eigenvalue �2 is continuous along this curve, by standard spectral theory argument,
and varies from 30 (equirectangle triangle) to 20 (�

3
-digon); see Figures 3 and 6.

2.5. A Hadamard variational formula

The formulas (15) and (16) express the derivative of the eigenbranches using inte-
grals over the whole domain T0 of some quadratic expressions in u, @ru, and @�u.
Hadamard variational formulas use integrals only on the boundary of the domain; see
Theorems 3 and 4 below. Since the latter are of independent interest and give slightly
simpler computations in the end, we explain here how to derive them. This derivation
is made possible by computing Pq � �0 Pn for fixed " and then letting our parameter "
go to 0. More precisely, for any ", we define the two quadratic forms (see (16))

D"
˛ D @˛q � �0@˛n and D"

ˇ D @ˇq � �0@ˇn;

which are obtained from (13) and (14), where we recall that the dependence on "
comes from the diffeomorphism ˆ

."/

˛;ˇ
.

Proposition 6. Let �0 be an eigenvalue of T0 and E0 the corresponding eigenspace.
For any u 2 E0,

lim
"!0

D"
˛.u/ D �

Z `.˛/

0

j@�u.r; ˛/j
2

sin r
dr;

lim
"!0

D"
ˇ .u/ D �

Z ˛0

0

�ˇ̌
@ru.Lˇ0.�/; �/

ˇ̌2
C
j@�u.Lˇ0.�/; �/j

2

sin2Lˇ0.�/

�
� .@ˇL/ˇ0.�/ sin.Lˇ0.�// d�:

Proof. Since u 2 H 1
0 , the expressions D"

˛.u/ and D"
ˇ
.u/ can be obtained by differ-

entiating under the integral sign the expressions given in (13) and (14).
Thus, for D"

˛ , we need to compute F.r; � I ˛0; ˇ0/; @˛F.r; � I ˛0; ˇ0/ for F D
A;B;C;D. We compute

@˛A.˛0; ˇ0/ D 0 D @˛C.˛0; ˇ0/ D @˛D.˛0; ˇ0/;

@˛B.˛0; ˇ0/ D �
1

"
�0
�˛0 � �

"

�
so that we obtain

D"
˛.u/ D

Z
T0

1

"
�0
�˛0 � �

"

��
� j@ruj

2
C
j@�uj

2

sin2.r/
C �0juj

2

�
sin.r/drd�:

We now let " go to zero. When tested against sufficiently well-behaved functions,
1
"
�0.˛0 � �/ converges to the integration on the side®

.r; ˛0/ W r 2 Œ0; Lˇ0.˛0/�
¯
:
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In Appendix B, we will provide all the necessary estimates showing that this limit is
justified when u is an eigenfunction. We then obtain

lim
"!0

D"
˛.u/ D �

Z `.˛/

0

j@�u.r; ˛/j
2

sin r
dr:

The first and last terms vanish since u satisfies the Dirichlet boundary condition.
For D"

ˇ
, we follow the same strategy, computing now the derivatives with respect

to ˇ; still evaluated at .˛0; ˇ0/. We find that

D"
ˇ .u/ DZ
T0

@ˇLˇ0 j@ruj
2

�
.cos r/�

�
Lˇ0.�/ � r

"

�
C

sin r
"
�0
�
Lˇ0.�/ � r

"

��
drd�

� 2

Z
T0

@ru@�u

sin r

��
@ˇL

0
ˇ0

�
�

�
Lˇ0.�/ � r

"

�
C @ˇLˇ0

L0
ˇ0

"
�0
�
Lˇ0.�/ � r

"

��
drd�

�

Z
ˇ0

j@�uj
2

sin2 r

�
.cos r/�

�
Lˇ0.�/ � r

"

�
C

sin r
"
�0
�
Lˇ0.�/ � r

"

��
drd�

� �0

Z
T0

@ˇLˇ0 juj
2

�
.cos r/�

�
Lˇ0.�/ � r

"

�
�

sin r
"
�0
�
Lˇ0.�/ � r

"

��
drd�:

As above, we will give in Appendix B the needed estimates to prove that the terms
with �.

Lˇ0 .�/�r

"
/ converge to 0 and the terms with 1

"
�0.

Lˇ0 .�/�r

"
/ converge to a

boundary integral over the side ¹.Lˇ0.�/; �/ W � 2 Œ0;˛0�º. Since u satisfies the Dirich-
let boundary condition, u vanishes on the latter side. Denoting by 
 the parametriza-
tion � 7! .Lˇ0.�/; �/, we obtain

lim
"!0

D"
ˇ .u/ D �

Z ˛0

0

�
j@ru ı 
 j

2
� 2L0ˇ0.�/

.@ru@�u/ ı 


sin2Lˇ0.�/
�
j@ˇu ı 
 j

2

sin2Lˇ0.�/

�
� .@ˇL/ˇ0.�/ sin.Lˇ0.�// d�:

This expression can be simplified further by observing that the Dirichlet boundary
condition implies that .L0

ˇ0
@ruC @�u/ ı 
 D 0. Finally, we obtain

lim
"!0

D"
ˇ .u/ D �

Z ˛0

0

�
j@ru ı 
 j

2
C

@�u ı 
 j
2

sin2Lˇ0.�/

�
@ˇL.� I˛0; ˇ0/ sinLˇ0.�/ d�:

Remark 5. The estimates of the appendix are needed to properly prove the conver-
gence when " goes to zero for any eigenvalue branch at any triangle T0. The proof
of Theorem 2 relies on this computation only for the first three eigenvalues and at
the equirectangle triangle. In the latter case, we have an explicit expression for the
eigenfunction so that the convergence can be proved directly, without referring to the
general Sobolev theory on singular domains.
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Combining the latter proposition and the results of analytic perturbation theory
that we have recalled in the previous section, we obtain the following two theorems.

Theorem 3. Let T0 2 M and �0 be a simple eigenvalue of the Dirichlet spherical
Laplace operator of T0. There exist ı > 0 and a neighbourhood U �M of T0 such
that the following hold.

• Any triangle T in U has a unique eigenvalue � in .�0 � ı; �0 C ı/.

• The mapping T 7! �.T / is real-analytic on U .

• For any T D T .˛; ˇ/ 2 U , we have

@˛�.T / D �

Z Lˇ.˛/

0

j@�u.r; ˛/j
2

sin r
dr;

@ˇ�.T / D �

Z ˛

0

�
j@ru.Lˇ .�/; �/j

2
C
j@�u.Lˇ .�/; �/j

2

sin2Lˇ .�/

�
� .@ˇL/ˇ .�/ sin.Lˇ .�// d�;

where u is a L2.T /-normalized eigenfunction.

Theorem 4. For t in an interval I , let t 7! T .˛.t/; ˇ.t// D Tt be an analytic family
of spherical triangles and �0 be an eigenvalue of multiplicity m of T0. Then, there
exist m analytic functions .Ek/16k6m defined on I such that the following hold.

(i) There exist ı0; t0 > 0 such that, for any t 2 .�t0; t0/ and any eigenvalue �
in Spec.Tt / \ .�0 � ı0; �0 C ı0/, the multiplicity of � is the number of k
such that Ek.t/ D �.

(ii) The derivatives PEk.0/ are the eigenvalues of the quadratic form

u 7! � P̨ .0/

Z Lˇ.˛/

0

j@�u.r; ˛/j
2

sin r
dr

� P̌.0/

Z ˛

0

�ˇ̌
@ru.Lˇ .�/; �/

ˇ̌2
C
@�u.Lˇ .�/; �/j

2

sin2Lˇ .�/

�
� .@ˇL/ˇ .�/ sin.Lˇ .�// d�; (17)

restricted to the eigenspaces of �0 and relatively to the L2-norm on T .

Proof. The proof of the two theorems follows the same line. First, we fix some " > 0.
The first statements, in particular, the existence of U (or t0), follow from the previous
section using the family of diffeomorphismsˆ". It remains to compute the derivatives.
For this, we pick a triangle T in the neighbourhood U , and we write, for each deriva-
tive and each " > 0, the formula that is obtained using ˆ" (with now T as the starting
point). Using analyticity, the eigenvalue branches that we obtain do not depend on ".
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So, for each ", the formula for the derivative of simple eigenbranches gives the same
value. For a multiple eigenvalue, the quadratic form that gives the derivatives has the
same eigenvalues. We can thus let " go to zero, and Proposition 6 then yields the
result.

3. Proof of Theorem 2

Let T� be the equirectangle triangle with vertices A�, B�, C�; see Figure 4. It cor-
responds to ˛ D ˇ D �

2
. We have �1.T0/ D 12. In the sequel, we set B D Bc for

c D 12. Using the formula in [25, Prop. 1.1] for the eigenvalues of the digons, we
obtain that the function B is defined on Œ�

3
; ��, analytic in .�

3
; �/, and

8˛ 2
h�
3
; �
i
; �1.˛;B.˛// D 12:

Let I be a small interval around 0. For t 2 I , we define

˛.t/ D
�

2
C t; ˇ.t/ D B ı ˛.t/;

and we set Tt D T .˛.t/; ˇ.t//. The curve t 7! Tt is real-analytic, and, using the
properties of B, we know that the spectrum of Tt is organized into analytic branches.
Since the second eigenvalue of T0 is of multiplicity 2, we can restrict I so that there
exists three analytic functions E1, E2, E3 such that

8t 2 I; �1.t/DE1.t/D12; �2.t/Dmin¹E2.t/;E3.t/º; �3.t/Dmax¹E2.t/;E3.t/º:

Let E be the (two-dimensional) eigenspace corresponding to �2.0/. We make the
formulas (17) explicit, using in particular the fact that .@ˇL/�

2
.�/ D sin � and that

P̨ .0/ D 1 and P̌.0/ D �1. Thus, the derivatives of E2 and E3 are given by the eigen-
values of the quadratic form

d.u/ D �

Z �
2

0

ˇ̌
@�u.r;

�
2
/
ˇ̌2

sin r
dr C

Z �
2

0

ˇ̌̌
@ru

��
2
; �
�ˇ̌̌2

sin � d�

with respect to the L2-norm. We define on T0 the functions u1 and u2 by8̂̂<̂
:̂
u1.r; �/ D

r
1155

8�
.3 cos5 r � 4 cos3 r C cos r/ sin 2�;

u2.r; �/ D

r
3465

32�
cos r sin4 r sin 4�;

which form a L2-orthonormal basis of E (see [25, Cor. 2.1] for instance).
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We computeZ �
2

0

j@�u1.r;
�
2
/j2

sin r
drD

1155

8�

Z �
2

0

4.3 cos5 r�4 cos3 rCcos r/2

sin r
drD

44

�
;Z �

2

0

j@�u2.r;
�
2
/j2

sin r
drD

3465

32�

Z �
2

0

16 cos2 r sin8 r
sin r

dr D
88

�
;Z �

2

0

@�u1.r;
�
2
/@�u2.r;

�
2
/

sin r
drDC

Z �
2

0

.3 cos5r�4 cos3rCcos r/ cos r sin4 r
sin r

drD0;

where C is some numerical constant that we do not need to write down explicitly, andZ �
2

0

ˇ̌̌
@ru1

��
2
; �
�ˇ̌̌2

sin � d� D
1155

8�

Z �
2

0

sin2.2�/ sin �d� D
77

�
;Z �

2

0

ˇ̌̌
@ru2

��
2
; �
�ˇ̌̌2

sin � d� D
3465

32�

Z �
2

0

sin2.4�/ sin � d� D
55

�
;Z �

2

0

@ru1

��
2
; �
�
@ru2

��
2
; �
�

sin � d� D
1155
p
3

16�

Z �
2

0

sin.2�/ sin.4�/ sin � d�

D �
11
p
3

�
:

We obtain that the matrix that represents d in the basis .u1; u2/ of E is

D D �
11

�

 
3 �

p
3

�
p
3 �3

!
:

Since .u1; u2/ is an L2-orthonormal basis of E , the derivatives PE2 and PE3 are the
eigenvalues of D that we compute to be˙22

p
3

�
. Finally, we obtain, for t close to 0,8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

E2.t/ D 30C t �
22
p
3

�
C o.t/;

E3.t/ D 30 � t �
22
p
3

�
C o.t/;

�2.t/ D 30 � jt j �
22
p
3

�
C o.t/;

�3.t/ D 30C jt j �
22
p
3

�
C o.t/;

and the proof is complete.

Remark 6. Using the computations above, the quadratic form that is given by (17) at
the equirectangle triangle when expressed in the basis .u1;u2/ yields the same expres-
sion as in [25, (3.11)]. We could have used analyticity to claim that the formula loc.
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cit., which is proved for variations of triangles of diameter �
2

(using different vari-
ational, Feynman–Hellmann-type, formulas), still holds for any variation. We have
found it interesting to write down the Hadamard variational formula so as to have a
(slightly) different proof.

Remark 7. This perturbation approach can be implemented starting from any initial
triangle T�, and, basically, we only need to show that the ratio �2

�1
cannot be always

rational. Although this seems a rather weak statement, our proof requires some rather
precise knowledge of the eigenfunctions. This explains our choice of the equirectangle
triangle.

A. Regularity of eigenfunctions of a triangle

The aim of this appendix is to provide the necessary estimates that allow to pass to the
limit "! 0 in order to obtain the Hadamard variational formulas. All the results can be
extracted from the literature on elliptic problems in domains with corners (see [15,20]
for instance). We have chosen to give some ideas of the proof so as to have a self-
contained presentation.

We fix a spherical triangle T .˛; ˇ/ for some .˛; ˇ/ 2 .0; �/2. Explicitly, it is the
domain as in (9) equipped with the metric

g D dr2 C sin2.r/d�2:

We may see T as a subset of the plane R2 equipped with the coordinates x D r cos �
and y D r sin � . The metric g is then uniformly equivalent to the Euclidean metric

dx2 C dy2:

We recall the definition of the usual Sobolev spaces for k 2 N and using the
common multi-index notation:

H k.T / D ¹u 2 L2.dxdy/ W 8˛; j˛j 6 k; @˛u 2 L2.dxdy/º;

8u 2 H k.T /; kuk2
Hk
D

X
j˛j6k

k@˛ukL2.dxdy/:

We also recall thatH 1
0 .T / is the completion of C10 .T / with respect to theH 1-norm.

Writing the partial derivatives @x and @y in polar coordinates, we see that the
Sobolev space H 1.T / can alternatively be defined as follows:

H 1.T / D

²
u 2 L2.T; sin.r/drd�/ W @ru and

1

sin r
@�u 2 L

2.T; sin.r/drd�/
³
:
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We observe that the set H 1
0 .T / is defined in Section 2.1 as the completion of

C10 .T / with respect to the Dirichlet energy quadratic form q. We see here that it
coincides with the usual one.

In the rest of this section, we aim at proving that if u is in dom.�/, then all its
second-order derivatives are in L2. This result can be extracted from [15], but we give
here some ideas of an alternative proof.

First, we double T to form a surface zT that is a sphere equipped with a singu-
lar spherical metric that has three cone points A, B , C at which the total angle is
(strictly) less than 2� . The (spherical) Laplace operator z� is first defined on the set
C10 .

zT n ¹A;B; C º/. The theory of self-adjoint extensions of this operator is parallel
to that of flat surfaces with conical singularities (see [16]). In particular, we can define
the Friedrichs extension z�F that is self-adjoint, and we have the following lemma.

Lemma 7. Let �A;B;C be radial cutoffs near A, B , and C . For any u in the domain
of z�F , there exist three constants cA;B;C such that the function

u0 D u � .cA�A C cB�B C cC�C /

is in the domain of the closure of z�.

Proof. The proof relies on separation of variables near the conical points. We refer
to [16] for the details, observing that the total angle at each conical point is less
than 2� .

By definition, the domain of the closure of z� is the completion on the set
C10 .

zT n ¹A;B;C º/ relative to the norm k � kz� defined by

kuk2
z�
D kuk2

L2
C kz�uk2

L2
:

Using a partition of unity and elliptic estimates, this norm is equivalent to the H 2-
norm on C10 . zT n ¹A;B;C º/. This implies that the function u0 in the previous lemma
is in H 2. zT /. By a direct computation, the cutoff functions are also in H 2. zT /. It
follows that the domain of z�F is a subset of H 2. zT /.

Let now v be a function in the domain of the Dirichlet Laplace operator in T , and
let Qv be the function in zT that is odd and coincides with v on T . By construction,
this function is in the domain of z�F so that the preceding argument yields that Qv
is in H 2. zT /. It follows that v is in H 2.T / so that we have proved the following
proposition.

Proposition 8. Let v be an element of the domain of the Dirichlet Laplace operator.
Then, v, @rv, and 1

sin r @�v belong to H 1.T /.
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B. Application to the Hadamard formula

In this section, we use the regularity of eigenfunctions to prove that the limit "! 0

that is used in the proof of Hadamard variational formula is justified (see the proof of
Proposition 6). As in Remark 5, we emphasize here that it is actually not needed to
prove Theorem 2, since we would only need to consider the first three eigenfunctions
of the equirectangle triangle for which explicit bounds can be given.

We begin by addressing the limit of D"
ˇ
.u/ since it gives simpler computations,

the global strategy being the same. We first observe that, in all terms, the � or �0 factor
cuts off near r D Lˇ0.r/. Using the fact that u 2 H 1

0 .T /, all terms with the factor �
converge to 0 by integration of a L1-function on a shrinking domain. It remains to
address the terms with a �0. All these terms can be written under the expression

B".h/ D

Z ˛0

0

Z `.�/

0

1

"
�0
�
Lˇ0.�/ � r

"

�
h.r; �/ drd�;

in which h is obtained as a product of a smooth function (away of r D 0) times two
first-order derivatives of u. Since u 2 dom T , the partial derivatives @ru and @�u are
inH 1.T \ ¹r > r0 > 0º/. It follows that h belongs toW 1

1 .T /: the set of L1 functions
whose gradient is also L1.

Changing variables, we have

B".h/ D

Z 1

0

Z ˛0

0

�0.�/h.Lˇ0.�/ � "�; �/d�d�:

Since
R
�0.�/d� D �1, we see that

B".h/C

Z ˛0

0

h.Lˇ .�/; �/ d�

D

Z 1

0

Z ˛0

0

�0.�/
�
h.Lˇ0.�/ � "�; �/ � h.Lˇ0.�/; �/

�
d�d�:

We define the mapping ˆ on Œ0; 1� � Œ0; 1� � Œ0; ˛0� by

.�; s; �/ 7! .�; Lˇ0.�/ � s"�; �/:

For any fixed � and �, s 7! ˆ.�; s; �/ parametrizes a curve in T , and since u 2 W 1
1 ,

we can write

h.Lˇ0.�/ � "�; �/ � h.Lˇ0.�/; �/ D �

Z 1

0

"�@rh ıˆ.�; s; �/ ds:

This leads us to consider the integral

R" D

Z 1

0

Z 1

0

Z ˛0

0

ˇ̌
�0.�/"�@rh ıˆ.�; s; �/

ˇ̌
dsd�d�:
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The mapping ˆ is obviously smooth and injective, and since its Jacobian determinant
is �"�, the change of variables is legitimate. Using the fact that �0 has support in
Œ1
3
; 2
3
�, we obtain

R" D

Z
U"

j�0.�/@rh.r; �/jd�drd�;

where U" is the image of Œ1
3
; 2
3
� � Œ0; 1� � Œ0; ˛� under ˆ. We define the set V" � T

such that
¹1º � V" D ˆ¹1º � Œ0; 1� � Œ0; ˛0�I

it is straightforward that
U" � Œ0; 1� � V"

and that U" is a shrinking neighbourhood in T of the side

¹.L.�/; �/ W � 2 Œ0; ˛0�º:

Since @rh 2 L1.T /, we obtain that R" goes to 0 with ", and, hence,

lim
"!0

B".h/ D �

Z ˛0

0

h.Lˇ .�/; �/ d�:

Applying this result to the different terms in D"
ˇ
.u/ yields the Hadamard formula

for @ˇE.
We follow the same strategy to study the limit of D"

˛.u/. We have two terms that
can be brought to the expression

A".h/ D

Z ˛0

0

Z Lˇ0 .�/

0

1

"
�0
�˛0 � �

"

�
h.r; �/ rdrd�

with h 2 W 1
1 .T /. We first perform a change of variables that fixes the domain of

integration. For .�; t/ in Œ0; Lˇ0.˛0/� � Œ0; 1�, we define

� D ˛0 � "t;

ı.�; t/ D
1

"

�
Lˇ0.˛0 � "t/ � Lˇ0.˛0/

�
�

�
Lˇ0.˛0/ � �

Lˇ0.˛0/

�
;

r D �C "ı.r; t/:

Observe that ı also depends on ".
The mappingˆ is seen to be a diffeomorphism from Œ0;Lˇ0.˛0/�� Œ0; 1� ontoW",

which is a neighbourhood in T of the side ¹.r; ˛0/ W r 2 Œ0; Lˇ0 �º that shrinks when "
goes to 0. Using ˆ as a change of variables, we obtain

A".h/ D

Z 1

0

Z Lˇ0 .˛0/

0

�0.t/h.�C "ı; ˛0 � "t/Œ1C "@�ı�.�C "ı/d�dt:
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We obtain a sum of the three terms

A0".h/ D

Z 1

0

Z Lˇ0 .˛0/

0

�0.t/h.�C "ı; ˛0 � "t/�d�dt;

R1" .h/ D

Z 1

0

Z Lˇ0 .˛0/

0

�0.t/h.�C "ı; ˛0 � "t/"@�ı�d�dt;

R2" .h/ D

Z 1

0

Z Lˇ0 .˛0/

0

�0.t/h.�C "ı; ˛0 � "t/Œ1C "@�ı�"ıd�dt:

Using the fact that ı is identically 0 if � < 1
3

and that ı and its first-order derivatives
are uniformly bounded with respect to ", t , �, by undoing the change of variables,
we see that the terms R1" and R2" are bounded by the integral of jhj over W". Since
h 2 L1, the latter goes to 0, and we are left to studying the limit of A0" .

We now set

R0" .h/ D A0".h/C

Z Lˇ0 .˛0/

0

h.r; ˛0/r dr

so that, as above,

R0" .h/ D

Z 1

0

Z Lˇ0 .˛0/

0

�0.t/Œh.�C "ı; ˛0 � "t/ � h.�; ˛0/� �d�dt:

Fix .�; t/ 2 Œ0; Lˇ0.˛0/� � Œ0; 1�. The mapping


.� I �; t/ W s 7! .�C s"ı.�; st/; ˛0 � "st/

sends the interval Œ0; 1� onto a smooth curve in T that stays withinW". Since h isW 1
1 ,

we have

R0" .h/ D

Z 1

0

Z Lˇ0 .˛0/

0

Z 1

0

�0.t/"t

��
ı.�; st/

t
C s@tı.�; st/

�
@rh ı 
.sI �; t/

� @�h ı 
.sI �; t/

�
�dsd�dt:

We now argue in a similar fashion as before: we define ‰ on Œ0; Lˇ0.˛0/� � Œ0; 1� �
Œ0; 1� by

‰.�; t; s/ D .
.sI �; t/; t/ D .r D �C s"ı.�; st/; � D ˛0 � "st; t/;

and we show that it is a legitimate change of variables. The Jacobian determinant of
this change of variables is �

1C s"
@ı

@�

�
� "t:
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Using the fact that ı
t

is uniformly bounded, this change of variables turns R0" into an
integral that is bounded above by the integral of aL1-function overW" � Œ0; 1�. It thus
tends to 0, and that makes the proof finally complete.
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